搜档网
当前位置:搜档网 › 膜过滤大全

膜过滤大全

膜过滤大全
膜过滤大全

膜过滤应用手册

实践技巧和提示

2000年6月

介绍

这是膜过滤应用手册第二版。为了提高这本手册的应用价值,新增了预处理、自动控制和泵的描述。

这本手册是在膜过滤领域许多年实践的产物,它也是一个信息的综合。目的是提供一些常见问题的信息,为初步介入膜过滤领域的新人提供一些帮助,回答一些问题。这本书对已从事膜设备设计及建设的工程师和在已建工厂工作的工程师都能提供许多有用的信息。同时对膜系统的设计和操作的学习也有较大的帮助。

本书提供的信息相对于理论计算和思索,更多的是实践经验。因此,它并不是技术学院里的一本传统的教科书。虽然书中没有太多的数学计算,但它对于工业和学术应用都是非常有用的,因为它含有膜过滤领域许多“老到”的经验,即使对于业内行家而言,它也并不是一本出版物而已。

这本手册并不适用于那些纯粹的初学者,因为书中对膜和膜技术的描述比较具体,而简略了一些基础的膜和化学知识。

本书中大多数的实例是基于平板膜(DDS板框系统)和卷式膜组件(DESAL)。卷式膜组件占了世界大多数的销售市场份额,而纤维膜系统、陶瓷膜系统和管式膜系统分享的市场份额则相当小。由于他们在领域的地位,在2000年以前纤维膜系统、陶瓷膜系统和管式膜系统想成为市场主导的机会极小。因此在本书关于他们的信息比较少。

在当今时代,膜正在被努力推广,但还未被消费者熟知,因为膜一般都隐藏在整个工业系统中。有些行业依靠膜生产一些基础的产品,有些则利用膜解决一些复杂的分离过程,另一些则用膜达到一些环保的标准。膜就象计算机一样:很少人理解它们,而只有一些人喜欢它们,但是我们都需要它们。即使我们不喜欢它们,但我们知道它们可以使生活更简便和舒适。

开发高效、完好、经济的膜来处理各种液体包括废水的工作已进行35年。但是对于如何让人们普遍了解建设和操作一个膜工厂的工作还有很长的路要走。希望本书能帮助避免许多以往很容易的犯的错误。

同时我要真心感谢Bjame Nicolaisen提供的许多宝贵的技术上和语言上意见和建议,同时感谢我的妻子作为我的同事参与了许多技术问题的讨论。同时也感谢以不同方式参与本书的其它朋友!

Jorgen Wagner

专业名词解释及约定表1、专业名词解释及约定

四种膜过程

反渗透(RO)是液体/液体分离过程中最可能使用的膜分离过程。原则上水是唯一通过膜的物质;特别是所有的溶解和悬浮的物质被截留。有时一些开放类型的RO膜和纳滤(NF)膜会产生混淆。

真正的纳滤只截留超过一价的负电荷离子,如硫酸盐、磷酸盐,而能通过单价的负离子。根据分子的大小和形状,纳滤也能截留不带电荷、溶解性物质和正电荷离子。纳滤对氯化纳0~50%的截留率主要决定于进水的浓度。而“宽松的反渗透”是一种减少了盐截留率的反渗透膜。由于盐截留率的减少可以降低压力和能耗,因此在有些项目上也是可以被接受的。

超滤(UF)是大分子量组分(HMWC),如蛋白质、悬浮固体被截留,而所有的小分子量组分自由通过膜的过程。因此,单价和二价的糖类、盐、氨基酸、有机物、无机酸或氢氧化纳都不能通过。

微滤(MF)过程理论上只有悬浮固体被截留,而其它甚至蛋白质都可以自由通过膜。但是实际情况和理想状态有一定的差距。

下表是对以上内容的总结。

表二四种膜过程的比较

产品和膜过程

许多产品使用膜来处理,但已销售的80%以上的膜用于水的脱盐处理。剩余的部分20%被用于乳制品的处理,其余被用于各种液体的处理。其中某些液体属于废弃的产品,而某些则是非常贵重的只要产物。表3列出了一些典型的应用,阴影部分代表主要的产物。注意:透过液和浓水都可以是需要的产物,而可以同时成为产物。

表3 某些产物的膜过程类型

膜的材料、结构和使用限制

膜材料

在商务上由不同供货商提供的膜的选择方案看起来令人迷惑,因为许多材料都可以用来做膜,而它们又有许多商务名称,实际上,真正使用的材质很少,并且大多数销售和使用的膜只是一些很基本的类型。

?整膜

醋酸纤维素(CA)是“最初的”膜,被用作RO、NF和UF应用。这种材料有一些缺陷,特别是针对于pH和温度。CA其主要的优点是低价,以及由于它的亲水性使其不易阻塞污染。如今还有一些“顽固的”用户坚持购买“同样的膜直到最后”,他们坚持使用CA膜是因为它们还可以工作,但实际上CA膜的弱点是它们易被微生物吞噬。

聚砜(PSO)自从1975年以来已被广泛应用于UF和MF膜。PSO的主要优点是它良好的耐温和耐pH能力。实际上在食品和乳制品行业中,聚砜是唯一被大量使用的膜材料。原则上,聚砜(PSO)膜不能抗油、油脂、脂肪和两极溶剂。然而,也有一种亲水类型的聚砜膜能违反此原则,在乳化油行业应用良好。

聚偏二氟乙烯(PVDF)是一种传统的膜材料,但是它并未被广泛使用,因为它很难使膜具有良好且稳定的分离特性。它的主要优点是其高度的抗碳氢化合物和氧化环境的能力。

?复合膜

也称薄膜复合膜,它一般被缩写为TFC和TFM,被用来代替醋酸纤维RO膜。其主要的优点是同时具有较高的通量和很高的盐截留率,用复合RO膜氯化钠的截留率一般可达99.5%。它们也有好的抗温度和pH的能力,但不能耐氧化环境。

复合膜有二层和三层的设计,但所有的都有精确的组分。一般来讲,一种薄膜复合膜由一个PSO(聚砜)膜作为其非常薄的表面层的支撑,在PSO超滤膜的表面层是一种聚合物。而三层设计则在PSO支撑膜的上部有二层薄膜。

大约在1980年,Film Tec主导了二层膜设计的市场,并很快成为水脱盐处理的行业标准,直到现在这种类型的膜都占领了水脱盐处理的市场。

多年以来膜已有了很大的发展,但基础设计没有改变,如今已有好几家公司制造这种类型的膜。

二十世纪八十年代中期,Desal开始进行三层复合膜的设计。在水脱盐处理方面这种膜很难和二层竞争,但在工业分离领域被证明可以工作得更好。三层膜更稳定,更不易阻塞污染。它们一般用于RO和NF,对于处理许多较难的分离过程,也是最佳的选择。Desal是唯一生产三层复合膜的制造商。

以下是根据膜的表面积来划分的全世界膜的消耗量。

复合RO膜85%

复合NF膜3~5%

聚砜UF和MF膜5~7%

其它膜3~5%

“其它膜”包括聚丙烯(PAN)、陶瓷材料( SiO2)和纤维素(水解醋酸纤维素)等。

膜材料的选择

对于一个给定的分离过程选择合适的膜和膜材料是比较困难的,为了作出合适的选择必须先提供一些有关分离过程环境的概要信息。第一步现确定可取的过程(RO、NF、UF或MF)和适用的膜材料。可以选择对于过程环境最适合的膜材料。表2(四种膜过程的比较),表3(产品和过程)以及表4(一些膜材料的抗化学品性能)可能对膜的选择有些帮助。

表4 一些膜材料的抗化学性能

√表示基于理论的信息或在实践应用中有不确定性。

除了已经应用的案例外,膜材料的选择是比较困难的,因为可以考虑的往往不止一种材料。按一般原则,对于一个分离过程只有通过良好的计划和成功的试验才能为膜的选择提供最佳方案。

PH和温度耐受力

在“膜材料”部分已讨论了不同的材料的pH耐受力。当确定一个膜过程的时候,仅仅考虑膜材料是不够的。膜有好多种构型(板框式、管式、卷式等)。同一个膜系统包括许多其它的组件,它们都有严格的pH限制。许多膜供货商规定的pH限制实际上是存在于整个膜系统中的限制,而不只是膜本身,在整个系统中耐受力最差的材料决定了整个系统的pH限定范围。

目前主要的膜类型是卷式膜组件,虽然以下的说法对所有膜类型都适用,但我们还是以卷式膜为例。

通常膜表面的衬背材料是一个限制因素。目前使用最广泛的衬背材料是聚酯(PE)。它具有非常良好的温度稳定性,但受限于高pH环境。因此,许多膜说明书中列出了最高pH 11.5的限制。然而,许多膜可以以聚丙烯(PP)作为衬背,它具有非常良好的pH稳定性,但温度受

限制,会给膜产品带来麻烦。因此我们的观点是当选定了合适的膜材料和膜构型后,必须确定这种组合对于耐受过程的工作环境是可行的。

由于卷式膜组件含有许多其它的不同的高分子材料,因此除了PE衬背材料外,还可能有一些其它的限制因素。一般中心管和反套装置/内部接头由PVC或ABS制成,这些材料都没有良好的温度耐受力。聚砜(PSO)是一种价格贵得多的材料,但是可以提供良好的pH和温度耐受力,因此它一般在工业过程中被选作中心管和反套装置/内部接头。

一个规定的pH限制一般有一个灵活的变化范围,在其它条件正常的情况下短时间超过范围不会有太大影响。通常低pH比高pH要好些。温度和pH同时超出范围一般都会引起较大的问题。

复合膜和氧化环境

目前世界上还在寻找能耐受20ppm次氯酸钠的用于RO和NF的好的复合膜。一些现有的复合RO膜有氯耐受力,但它们仍不能满足目前的一般行业需要。?。相反,多数薄膜复合膜(TFM)能较好地耐受过氧化氢,至少在限制浓度、低温和较短持续时间的条件下。

膜结构

从表面看,所有的RO、NF和UF膜都是非对称型的。这将多数膜和一般的过滤器区分开来,如咖啡过滤器,它们是对称型的,换句话说,在过滤器的两侧是对称的。

面向被处理的产品一侧膜有一个不透水的致密表层,这也称为皮肤层。它很薄,一般<<0.1μm。而膜本身在150~250μm,大多数膜为皮肤层提供结构支撑。非对称结构意味着膜孔径远大于致密表层的孔径,这样可以避免膜孔被堵塞。因此膜具有较好的抗污染能力,污染物要么被完全截留要么全部通过。

以下是在较宽范围内列出的膜的孔径。

表5 一般的膜孔径,μm

迄今为止,还无法用显微镜从RO膜和NF膜中观察到小孔,但水还是透过了膜而盐被截留了。这意味着自从制造出第一张膜后的35年来研究膜的科学家并不真正了解膜是怎样的或为什么有这些功能的,或至少他们并不了解其中的细节。而第一张膜是有人亲眼看到脱盐水通过膜而产生的。如果他只是通过显微镜来观察膜,则他可能会拒绝接受这个事实,因为显微镜中根本无法看到小孔,因此也不可能透过水。

尽管我们还无法了解以上的现象,但我们可以预言RO膜的应用将得到推广。而NF膜则更困难些。但如果现在有三种溶剂在一种溶液中,我们只能选作NF膜进行分离,当然必须先对进水进行精确而完整的分析。

表6 膜制造商1996年以来主要制造商的不完全统计

膜组件/组件设计

就象前面所提到的那样,目前市场上有许多种膜构型。

卷式构型占膜市场的主导。卷式膜的设计原本专用于水脱盐处理,但其紧凑的设计、低廉的价格已吸引了其它行业。经过了许多试验和失败后,重新设计的组件已经可以用于许多工业行业,如乳制品行业、纸浆和造纸行业、高纯水以及一些高温和极端pH的场合。但是,大多数膜公司只为极端项目提供一种卷式膜。

管式膜已存在较长一段时间了。它的设计简洁而易于理解。许多大学院校喜欢用管式膜,因此它易于计算雷诺数并将其传递系数理论化。管式膜有一个较大的优点,它们能较大范围地耐悬浮固体和许多令人讨厌的纤维。

但所有的管式膜有以下几个缺点:

?占地面积大;

?膜的更换困难且耗时多;

?大口径(1英寸)的管式系统能耗大;

?内部体积大,周期性使用化学品和水冲洗和反冲洗耗费昂贵;

?制造商改变管式设计投资大且困难。

有时管式系统的优点超过缺点,管式膜在市场上有一定的地位,虽然比较小。

板框式(板式)系统早先由DDS主导,并在欧洲占据乳制品市场15年了。在1989年∽1995年期间缺乏研发和居高不下的价格结构或多或少地扼杀了其设计进步。

目前在欧洲有一些新的适用的板框式系统。最有名的由ROCHEM设计。板式系统虽然价格较贵,但能提供周密而完善的设计。现代的板式系统可以耐非常高的压力,超过100bar。因此在处理垃圾填埋沥出液和船上海水脱盐处理中需要极端压力情况下有一定的应用市场。

纤维构型(有一种例外)类似于管式系统。只是纤维的内径很小,一般<2mm。同大口径管式膜最大的不同点在于纤维系统通常无需支撑,它们上市容易但价格相当昂贵。纤维系统抗机械力差。因此它们一般仅在一定范围内使用,如纯牛奶超滤和乳化油等。

陶瓷膜构型也非常昂贵。理论上说,陶瓷系统对微滤(MF)非常有效。事实上,其市场非常小。

中空纤维构型早先由杜邦公司用于海水脱盐。由于需要非常严格的预过滤,它们几乎不用于销售。

卷式膜组件的分类和参数

市场上有许多种卷式膜组件。下表列出一部分。更多信息见P16。

表7 卷式膜组件的分类和参数

管式膜的分类和参数

表8管式膜的分类和参数

板框系统的分类和参数

“板框式”这个名称包括了许多不同构型的膜组件,所有的都使用平板式膜。其它系统则包括卷式组件、管式膜或纤维系统。对于板框式系统,除了它们都是平板膜外,在组件中板和模的排列有较大的区别。表9列出了主要的板框式产品。

表9 板框式产品和组件列表(不完全)

纤维系统的分类和参数

表10 纤维系统的分类和参数

不同膜组件之间的比较见表11。

膜组件和组件的比较

下表是不同类型膜组件和组件性能的定性比较。

表11 几种膜组件的比较

注意:1)膜系统只能按一种方式设计,膜的更换意味着整个硬件的更换。但管式和板式膜换膜时可以仅换膜,其余系统不变。

卷式膜组件

膜壳设计在市场上有许多不同的膜壳设计,可以根据材料(不锈钢和高分子)或功能(侧面端口进出或通过端盖进出)进行分类。

高分子膜壳一般都由加固的聚酯玻璃钢制成。这种设计已有30多年并工作良好。但也并不是毫无问题。它们在地面水和海水的脱盐处理中运用良好,但对其余的产品却有些问题。多数高分子膜壳使用一个拉紧环来稳固端盖。

不锈钢膜壳早先专用于乳制品行业。如今它们的应用已越发广泛了。结构上以侧端口作为标准。一些不锈钢膜壳的结构和玻璃钢膜壳相同,这样会造成其端盖的难以移开。不锈钢膜壳的内部需电镀磨光。否则几乎不可能将组件推进推出。

玻璃钢膜壳只有三种标准直径:2.5英寸、4英寸和8英寸。不锈钢膜壳则有一个非常宽泛的标准范围,且无标准直径。

不幸地是在欧洲,使用的大多数不锈钢膜壳运用的都是美国英寸度量标准,且标准的乳制品尺寸较常见,但2.5英寸、4英寸和8英寸直径的膜壳却较难找到。

表12是以上内容的总结。

表12 玻璃钢和不锈钢膜壳的比较

图1

侧端进出口的不锈钢膜壳有两种:4口型,使用这种膜壳可以作为无外部产品副件的模块,且另一种类型则使用内部副件的排列。?(见图1)使用者可以自己确定使用哪种类型,但事实上大多数的系统都建成外部副件型。

侧端进入型的主要优点是在卫生级系统中允许高流量。但在水脱盐中很少使用。

卷式膜组件的尺寸在当今是非常关键的。外径、组件长度和中心管的内径都没有标准化。因此更换组件使供货商变得非常困难,也给模块制造商带来许多麻烦。

每个膜壳内的组件数量-压降

为了确定每个膜壳内的组件数量,必须考虑以下几点:

?首先确定使用的是RO/NF还是UF/MF;

?然后审查整个处理过程;

?第三,确定每个膜组件能耐受的压降值。

以下两点应更值得注意:

?传导膜压(TMP)(膜壳进口和出口之间的压力变化);

?通过每个膜壳的压降。

传导膜压代表了一个膜壳进口和出口之间的压力改变值。压力的降低是负荷通过膜组件的结果。具体例子见表13。

我们很容易理解的是,如果进水压力是10bar,则进出口之间的压力变化很小,并可忽略不计。但如果进水压力只有1~5bar,那就完全不同了。因此,在一个膜壳中所有的组件最好有相同的传导压力。而在低压操作中,组件的最大数量将减少。下表将作出相应说明

表13 卷式膜组件的压降举例

表14 每个40″组件的压降(bar)

表15 每个膜壳内的组件数量

膜和系统的局限性

温度

膜的一般简介

以醋酸纤维作材料的膜有其本身的温度限制,其上限操作温度大约在35℃。

PSO、PVDF和PAN材料能耐较高的温度。PSO和PVDF膜据称可在95℃下操作而没问题。PSO的操作温度更可达120℃。

一般来说复合膜的操作温度至少可达80℃,在低压情况下,它们可经受更高的温度,如热消毒时。

膜系统的耐温能力大多数情况下并不仅受膜本身的温度限制而限制,而更主要受膜的构型和膜系统中的其它组件的限制。

卷式膜组件

一般卷式膜组件的温度上限为45℃。这个限制对用于水脱盐的标准组件是有效的,但目前市场上已有能耐更高温度的卷式膜组件。虽然在水脱盐中45℃并不是一个最高温度限制,但对于食品和分离行业的个案却有问题。经过了许多试样和失败后,一些公司已经成功地研制出了耐温稳定的膜组件。

多年来用于乳制品行业的组件已可以在比供货商原先说明的更高的温度(和压降)下操作了。如今,在乳制品行业标准组件的真正温度限制是55℃,在正常操作中很少会在这个温度下操作。

一种新型的具有标准的30mil菱形流道的组件可以耐受更高的温度。这种组件的销售名称为Duratherm?。这些组件可以在70℃下持续操作,短时期可加温到90℃,而同时可保持正常的膜使用寿命。但必须注意通量,并保持低于35lmh,这样可以确保操作压力保持低压。关于标准进水流道的使用,这种类型的组件只用于纯水操作。

有较宽进水流道的组件可以在进水含较高溶解性固体的情况下操作。标准膜组件使用50mil的流道,但较宽的流道可达90mil,可以处理较难处理的液体。用这种类型的膜,这些组件可以持续操作在90℃温度下。来自DESAL TM公司的此种类型的膜其销售名称为

DURATHERM?EXCEL。好的温度稳定性可以确保这些组件彻底灭菌,或者它们可以持续操作在理论上微生物不会有任何生长的温度下。

胶的超滤中的膜可以喜爱80~90℃下操作多年。最近一个个案表明除硅石的蒸发器冷凝物的RO处理其操作温度接近90℃。

记录表明:DESAL TM膜组件已经在工业领域起主导地位,可以在140℃无水操作。这可能已经非常接近高分子膜的极限。

表16 卷式膜已经的温度限制

请仔细阅读供货商提供的有关膜组件的说明书,关注如pH、通量和压力等方面的限制。

高温操作一个正面的影响是:高温可以增加通量(见优化压力和温度一节)。90℃下操作可以在相同压力下将通量从100%提高到300%。但更好的方法是将压力(NDP)减少到三分之一,这样可以减少电耗。

高温一般被认为问题比较多。但作者也经常发现:即使在高温下比常温必须对一些细节予以更多的关注和重视,但高温膜操作还是有许多优点。我们应注意主要的原则:温度越高,必须越关注其组件和膜的物理特性。

-过大的传导膜压力将使膜变得非常平(压紧),导致不可挽回的通量的下降。

-过大的压降将导致膜和/或构件的高分子材料移动,有时破裂,最终导致膜的彻底损坏。

除了卷式膜外的其它系统。

?纤维系统一般可耐温达80℃;

?无支撑磨管的低价管式膜系统一般注明最大操作温度为35℃;

?有支撑的高价管式膜系统,如一个不锈钢的支撑排列可以耐温超过80℃;

?中空精细纤维系统温度限制<50℃;

?板框式系统,根据实际设计,操作温度可>80℃,但一些较陈旧的系统在高温操

作时压力稳定性有些问题。

压力

所有的膜对压力都是敏感的。“压紧”(compaction)一词常用于描述由于压力而导致膜的不可反转的“变平”。除了膜本身受到的危害外,其至关重要的是要有适当的支撑,防止压力将

膜挤压入支撑材料。

因此仔细地阅读和遵守供货商的说明书是非常重要的。通常这类说明书不仅基于理论计算而且得之于实践经验,因此我们何必去重复别人的失败经历呢?

表17 典型的压力限制,bar

表18 避免压紧的指导方针(不适用于CA膜)

关于膜的最大允许温度和压力没有固定的准则。表18内的指导方针除了CA膜外适用于所有的膜。表18A提供了一些用Wagner单位换算的关于温度/压力关系的一般原则。注意:温度比压力更危险!因此,当操作接近上限温度时,建议尽可能限制压力。

表18A 避免或使压紧最小化的指导方针

pH

除了CA膜外大多数的膜对极端pH有较好的耐受力。一般对许多膜主要的限制是因为使用了聚酯衬背,经实践应用其pH上限为11.5。在很高的pH值下许多膜的性能将发生改变,但还可以用。多数膜在低pH值下比较稳定。

表19 不同膜材料的pH限制

*)同时低pH和高温可能减少水通量,有时会达到零,并不可逆转。

**)目前的趋势应增加TFM的高pH稳定性。

***)在室温下有效。温度提高膜的损坏老化将加快。不同类型的聚酯胺薄膜在低pH下稳定性方面有较大不同。

进水流量

对膜没有绝对的进水流量限制。但膜或组件的机械强度对其有所限制。

粘性

进水的粘度本身并不是个问题,但高粘度将导致较高压降。因此只要压降允许,通量满足要求并稳定,粘度才不能为操作问题。可见除了高粘度进水对于一个膜系统来说不仅是个膜的问题,更是一个工程问题。

系统组件

一个膜系统不仅仅包括膜本身。本节将看重讨论膜系统中的主要组件。

加热/冷却和热交换器

在膜系统中常用多管(管式和壳形)热交换器用于加热和冷却。加热或冷却的介质在管子外面,而产品在内部。这种结构可以耐高压,因此可以耐压达70bar的设备还是比较常见的。

多管热交换器其工作方式不同于传统的盘式热交换器。主要不同点在于:

?在一个信道内产品的温度变化很小,一般仅0.5℃或更小;

?相比于热交换介质的流量,产品流量大。

由于产品的冷却需求不仅仅为了产品的加热或冷却还受水泵能耗的限制,因此一般选择多管热交换器。温度一般能保持一段较长时间。而通过一个多管热交换器的压降都比较低。

多管热交换器可以从APV-Pasilac和Uniq Filtra tion公司处购买。

阀门

在膜系统中不同行业需要不同类型的阀门,以下是一些例子:

?乳制品行业:卫生级蝶阀和针式阀;

?纯水行业:球阀和针式阀;

?纸浆和造纸行业:任何型号,多数为球阀;

?废水专案:任何型号,多数为球阀。

一些机械工程师声明,球阀和蝶阀不能用于流量或压力控制。理论上这可能是对的,但在模行业中实践同这种观点相矛盾。这些类型的阀门用于控制目的比较困难,但也不是不可能。球阀和蝶阀的一个有利的方面是,它们具有允许流量和压降有较大不同的性能,如此被用来获得生产和清洗的正确条件。

在膜系统设计中一个主要头痛的问题是高体积浓缩率的回流设备,这意味着系统必须根据小流量浓缩来控制。在这儿用的阀门是一种针式阀。如果浓液中不含有悬浮固体,这种类型一般能运行良好,但很少的悬浮固体却能通过针式阀,严重阻塞浓缩口而导致控制问题。

当在含有悬浮固体很多的液体中操作时,控制问题可以通过“止水浓缩阀”来解决。方法如下:系统中安装有两个定时器和一个自动阀,此阀一般情况下全关。定时器1控制阀门开启的周期长度,定时器2控制阀门开启的时间。当定时器1启动时,浓缩阀全开,浓缩快速进行。当定时器2启动时,浓缩阀完全关闭。用这种方法可以得到精确的浓缩控制。

用于浓缩的控制阀对在反冲洗过程(CIP)中所需的大水量来说太小。因此,需要平行于浓缩阀安装一个反冲洗阀门,(见图2),反冲洗阀一般是一个3或4路蝶阀,如果从T形接头到阀门的管道的长度短于或等于管道内径的三倍,这种设计可以被认为是卫生级的。在RO系统中,可能可以使用一种大口径的低压活塞阀,虽然这有些违背原则。其诀窍是通过挤压出口的密封将高压引向活塞的一侧,换句话说将水流引向标准方向的相反,在生产过程中,压力使阀门保持关闭,阀门无法打开。在反冲洗和冲刷过程中,管线的压力很低以致阀门无法打开。(发明者:Tom Sirnes)

图2 浓缩阀

根据教科书所说,球阀和蝶阀由于其性能因素不适合用于调节。但经验表明这类阀门在膜过滤工厂中可以用于调节。

泵也可用作特殊的阀门。在处理有高粘度产品和许多悬浮固体的液体的系统中,带变频器的正位移泵可以用作背压阀。这也可以用来剪切敏感产品如蛋白。

压力测量

在膜过滤系统中压力是驱动力,必须被监测。以前只可以使用含有振动板的测量仪,并且必须经过充分减振。使用Bourdon类型的测量仪的一个主要问题是无法调节并且无法精确地读出压力。

本人喜欢使用压力变速器,因为它们可以提供更加精确的读数并很容易标定。采用信号

可以用于数据记录,并实现膜系统的电子控制。压力变速器的精确度一般高于Bourdon类型的测量仪10倍,这对于膜系统中压降的确定非常重要,是一个非常重要的测量参数。如果压降的增加超过正常值,而流量条件正确,那么表明发生了物理缩比例或膜阻塞。

用普通的测量仪几乎无法测量压降,因为对于一个40bar的操作压力,压力测量仪可能的最大压力指示会达到60或100bar。即使是很好的压力计其误差值有1%,通过转换达1bar。为了计算压降,用读出的进口压力减去出口压力。如果一个压力计显示40bar,另一个为38bar,由于压力计本身的误差,真正的差值一般在0~4bar。换句话说,压力计导致较高的错误结果,而压力变速器可以提供更可靠的资料。

流量测定仪

在膜系统中需要严格的流量测量和控制。一般使用转子流量计,它们在由操作员进行日常读数的系统中足够了,但也有些缺点,它们一般只提供一个视觉的读数而不提供可以数据记录的数据。因此,如果产品是比较混浊或带有颜色,它们几乎没有用,且如果产品的密度或粘度不同于水它们的读数也不正确。总之,它们只能用于日常监测。

如今一直使用的流量计是电磁流量计。虽然电磁流量计看起来较贵,但它非常精确,可以测出系统中的实际流量。丹麦Sikeborg公司的ProcesData流量计价格不贵且质量相当好,可以满足乳制品行业的卫生级标准,还有许多大的电磁流量计供货商,如Krohne(德国)、Siemens(德国)Fischerard、Porter(英国)、Danfoss(丹麦)。

市场上多数流量计都用于普通场合,其实还有许多其它的类型,如Burchert流量计使用一个小的信号装置指示流量。由于这种流量计可以耐受90℃高温和高压,因此可以用于许多案例的测试。但不适用于流量大、产品中颗粒和纤维多的场合。

我们应该特别注意透过液流量计。这里的问题主要是用于生产和反冲洗循环过程的透过液流量计是很不同的。在超滤系统中,反冲洗流量一般要高10~30倍。在这种情况下,流量计变成了一个喉结,这不是我们所希望和接受的。解决的方法之一是为反冲洗装置设置一个旁路阀,另一种方法是选择的电磁流量计口径应同时适合于生产和反冲洗的流量。

极少的流量计能耐受RO和NF系统中的压力、pH和温度。因此为这类膜过程选择流量计时必须特别注意。

储罐设计

膜系统中使用的储罐为了便于排水彻底应作成圆锥形或斜底。否则一些颗粒、晶体或其它沈淀物质将积在储罐底部,迟早导致一些化学的、机械的或生物细菌的问题,或者三种问题同时发生。同时储罐的盖子应较松,便于冲洗和人工清洗。

不管是否可能,储罐内部不设加热盘或液位开关也是非常重要的。所有的测量装置应该置于储罐外部。液位控制最好使用压力传感器,温度测量装置可以用管子连通装置而不要置于储罐内。

储罐最适宜的材料是不锈钢。其它多数材料都有内在的温度限制。

在大型的超滤(UF)系统中,一般在进水平衡槽旁设置一个渗透液槽,按一般惯例是建两个储罐作为一个溢流单元。这样可以在生产过程中将透过液和浓液分离开,但是当把超大流量作为透过液时,在冲刷过程和反冲洗过程中允许透过液自流入进水平衡槽,这样的作法在许多膜系统中被证明是很切实可行的。

管式薄膜过滤器工作原理

南京博滤工业设备有限公司 *工业流体过滤与分离* 废液处理研究论讨 第2008-13期 以PALL管式过滤器为研究对象的深入论讨 1) 结构 过滤器系统由罐体,反冲罐,管道,气动挠性阀,过滤元件,自动控制系统等组成。(见附件 2:过滤器系统总图) 2) 过滤流程 3) 工作原理 过滤液通过1#阀进入过滤器,并经过薄膜过滤袋进行过滤。清液经过薄膜过滤袋进入上腔(清液腔)通过溢流管排出;过滤液中的固体物质(滤渣)被薄膜过滤袋截流在滤袋表面。当过滤一段时间后,薄膜过滤袋上的滤渣达到一定厚度后,过滤压力上升,过滤器自动进入反冲清膜状态,1#、4#、7#阀按各自的功能自动切换,使滤渣脱离薄膜过滤袋表面并沉降到过滤器的锥形底部,过滤器自动进入下一个过滤、反冲、沉降周期;当过滤器锥形底部的滤渣达到一定量时,过滤器自动打开6#阀排出滤渣,然后重新进入下一运行循环周期。

换按钮进入报警画面,查看所有报警内容。确认并 3、控制器操作说明 1) 启动 z 检查电源接地是否良好,电源电压 220V/AC 50Hz 。 z 检查电源无误后,开启电源开关(在控制箱内)。 2) 手动/自动选择说明 打开电源后,系统首先进入主画面,在画面的中间有一个系统的手动/自动选择开关。当开关置于手动位置时,触摸手动按钮将显示手动操作画面。当开关置于自动位置时,操作员可以使用右边的按钮启动系统,系统将在自动状态下运行。在每个画面的下方有多个按钮,通过它们操作员可进入其它的显示画面。 3) 手动运行状态描述: z 在手动画面里,操作员可以通过画面上的手动按钮开/关阀门。 z 此时,系统处于手动状态。 4) 自动运行状态描述: z 当操作员按下"启动"按钮后,系统进入自动运行状态。此时,操作员可通过工艺流程 画面监视系统的运行。 z 在工艺流程画面,动态显示系统瞬间的过滤运行情况:显示每个阶段的运行时间。 z 当系统出现故障时,屏幕上的报警灯和控制箱上报警灯同时闪亮,在屏幕显示故障的 内容及简单的提示。 z 操作员可通过屏幕下方的屏幕切换按钮进入过滤膜压力变化曲线画面,监视压力的变 化。 z 操作员可通过屏幕下方的屏幕切解决问题后,用屏幕下方的"报警清除按钮"消除报警显示,否则,系统不能启动。

膜分离的原理

膜分离的原理是什么? 何为纳滤膜? 答:纳滤膜的透过物大小在1-10nm,科学家们推测纳滤膜表面分离层可能拥有纳米级(10nm以下)的孔结构,故习惯上称之为"纳滤膜"又叫"纳米膜"、"纳米管"。 纳滤膜净化原理? 答:(1)溶解--扩散原理:渗透物溶解在膜中,并沿着它的推动力梯度扩散传递,在膜的表面形成物相之间的化学平衡,传递的形式是:能量=浓度o淌度o推动力,使得一种物质通过膜的时候必须克服渗透压力。 (2)电效应:纳滤膜与电解质离子间形成静电作用,电解质盐离子的电荷强度不同,造成膜对离子的截留率有差异,在含有不同价态离子的多元体系中,由于道南(DONNAN)效应,使得膜对不同离子的选择性不一样,不同的离子通过膜的比例也不相同。 道南平衡:当把荷电膜置于盐溶液中会发生动力学平衡。膜相中的反离子浓度比主体溶液中的离子浓度高而同性离子的浓度低,从而在主体溶液中产生道南能位势,该能位势阻止了反离子从膜相向主体溶液的扩散和同性离子从主体溶液向膜的扩散。当压力梯度驱动水通过膜进同样会产生一个能位势,道南能位势排斥同性离子进入膜,同时保持电中性,反离子也被排斥。 三达纳滤膜具有哪些特点? 答:①超低压力下工作(0.15Mpa的压力下就可以稳定工作)。 ②大通量供水。在普通的市政水压下就可以使用,水通量可达15m2/小时。 ③选择性离子脱除。在去除细菌、病毒、过量金属离子、低分子有机物、氟、砷等有害物质的同时,保留一定量钾、钠、钙、铁等对人体有益矿物质。 ④使用领域广。在淡水处理、工业废水处理、医药和食品领域都有广泛的应用。 如何保存纳滤膜? 答:纳滤膜的保存目标是防止微生物在膜表布的繁殖及破坏,防止膜的水解,冻结及膜的收缩变形。前人就有微生物对膜性能的影响进行过多种试验,结果表明:不同的微生物对膜的性能产生不同的影响。防止膜的水解,对任何膜都很重要。温度和PH值是醋酸纤维素膜水解的两个主要因素。对芳香聚酰胺膜,PH值及水中游离氯的含量则是其水解的主要因素。纳滤膜的冻结在冬季运输过程中常常发生。经验表明膜的冻结使膜中的水分形成冰晶而使膜结构膨胀,造成膜的性能大幅度下降或破坏。膜的收缩变形,发生在湿态膜保存时的失水、及膜在与高深度溶液接触时膜中的水急剧向溶液中扩散。不同种类的纳滤膜,其保存方法不同。醋酸纤维素纳滤膜在干态时应避免阳光直接照射,要保存在荫凉、干燥的地方。保存温度以8~35℃。 三达纳滤膜用在水处理时与反渗透膜有什么区别? 答:纳滤膜是荷电膜,能进行电性吸附,它具有敏锐的分子截留区,对不同物质能有目的地提纯或去除的优越分离效果。反渗透膜的滤分子量在100以下,只能过滤掉水中的水分子和气体。在相同的水质及环境下制水,纳滤膜所需的压力小于反渗透膜所需的压力。 三达纳滤膜与反渗透制水水质有何不同? 答:经纳滤膜过滤后的自来水能脱除细菌、病毒、低分子有机物、重金属等物质,保留部分

超过滤膜分离实验报告

实验二 超过滤膜分离 一、实验目的 1.了解和熟悉超过滤膜分离的工艺过程; 2.了解膜分离技术的特点; 二、分离机理 根据溶解-扩散模型,膜的选择透过性是由于不同组分在膜中的溶解度和扩散系数不同而造成的。若假设组分在膜中的扩散服从Fick 定律,则可推出透水速率F W 及溶质通过速率F S 方程。 1、 透水速率 '() ()w w M w D c V p F A p RT ππδ ?-?= =?-? 式中 22332/;;//;;;/w w w M w w M F g cm s D cm s c g cm V cm mol p atm atm R T K cm D c V A g cm s at RT πδδ-?-?--?-?-----??’透水速率,水在膜中的扩散系数,水在膜中的浓度,;水的偏摩尔体积,膜两侧的压力差,膜两侧的渗透压差,气体常数;温度,; 膜的有效厚度,; 膜的水渗透系数(= ),。 2、溶质透过速率 2323() ()s s s s s D K c D K c c F B c B c c δ δ ?-= = =?=- 式中 2/;s s D cm s K B c ---?-溶质在膜中的扩散系数,溶质在溶液和膜两相中的分配系数; 溶质渗透系数;膜两侧的浓度差。 有了上述方程,下面建立中空纤维在定态时的宏观方程。料液在管中流动情况如图十三

所示。 取假设条件: (1)径向混合均匀; (2)A BX π=A ,渗透压正比于摩尔分数; (3)A B N N ,3 1A X ,B 组分优先通过; (4)/AM D K δ?,1A X K 同或无关; (5)0U L PeB E = =∞,忽略轴向混合扩散。 图十三 料液在管中流动示意图 由假设看出,其实质是一维问题,只是侧壁有液体流出的情况,因为关心的是管中组分的浓度分布和平均速度分布,只需做出两个质量衡算方程即可求解。 由连续性方程: 和总流率方程:

膜过滤技术及其应用范围介绍

膜过滤技术及其应用范围介绍 北京陶普森膜应用工程技术有限公司孙永杰 过滤是分离液体中固体性颗粒的常用方法之一。我们熟悉的土壤就是一个天然过滤器,池塘、湖泊和河流中的地表水在通过不同类型的土壤之后,渗透聚积成相对洁净的地下水,土壤让水透过的时候截留了其它成分,如颗粒物和污染物等,而渗透到深处的地下水得到了净化。 过滤是实验室常用的物料分离技术。从筛网、滤纸到膜滤器等技术手段的延伸、发展,促进了产品提纯技术的提高,净化效果明显,分离精度大大提高。在能量消耗,过滤效果和操作简便方面,相比于传统的分离方法如蒸馏或结晶,膜过滤技术的表现优于其他分离过程。在许多分离领域,膜过滤克服了传统技术局限性,尤其对生化或药物的加工应用过程,膜技术的应用提高了产品品质和收率,因为其中的蛋白质和有效成分大多是热敏感的。因膜过滤为物理过滤方式,膜材质稳定性强,经验证的实验室过滤工艺,很容易被放大和改进,更易成功应用到实际的大规模生产中。 在生物和制药技术行业的许多领域,包括食品和饮料行业,生物技术和饮用水处理行业,都普遍使用过滤膜用于过滤。 过滤膜的工作原理:膜过滤器的原理类似于上面提到的地下水渗透过程,人工制备的膜相当于地表土层,待过滤的溶液中一部分的小分子物质可以通过薄膜的微孔,其渗透性取决于孔的大小。比滤膜孔更小的颗粒可透过滤膜,而比滤膜孔大的颗粒就被截留下来。

一般情况下,膜的孔径决定了应用,根据孔径的大小,将不同的过滤膜技术分为四类:微滤,超滤和纳滤以及反渗透。 1. 微滤膜技术 过滤膜的孔径一般在5μm和0.1μm之间。在微生物实验中经常被使用孔径为0.1μm至0.2μm的膜,可以分离出酵母菌和细菌,是一种温和快速的杀菌方法。在工业化生产上,这种滤膜技术通常为过滤器的滤芯,广泛应用在医药,食品和饮料工业生产线中。例如,生物制药厂用于生物反应器中微生物生长阶段之后的“收获”和细菌菌体的分离,废水处理或浑浊液的油水分离等。 2. 超滤膜技术 超滤技术常常用于大分子的浓缩和脱水,超滤膜过滤“孔径”在0.1μm和0.01μm之间。由于该技术主要用于分离或浓缩蛋白质分子,所以膜的过滤孔径被定义为“分子量切断”(MWCO)或“标称分子量切断”(NMWC),单位为道尔顿(质量单位,等于一氧原子的1/16)。MWCO值表示可被膜截留的球状分子的小分子量。为了安全起见,应总是选择MWCO值至少比要分离的大分子的分子量高20%。这种膜过滤技术的应用操作压力,通常在2-10巴之间。 3.纳滤技术 是纳米级过滤技术的简称,纳米级过滤的膜过滤器,其孔径小于0.005μm,可截留更小的有机分子和大部分盐类物质,以及重金属离子等。陶普森纳米级过滤需要更高的外部压力,过滤压力一般在10-80巴之间。

纳滤膜的结构以及原理

一纳滤膜原理及现代工业应用 纳滤膜的定义 透过物大小在1-10nm,膜表面分离层可能拥有纳米级(10nm以下)的孔结构,故习惯上称之为"纳滤膜"又叫"纳米膜"、"纳米管"。 纳滤膜工作原理 纳滤是在压力差推动力作用下,盐及小分子物质透过纳滤膜,而截留大分子物质的一种液液分离方法,又称低压反渗透。纳滤膜截留分子量范围为200-1000MWCO,介于超滤和反渗透之间,主要应用于溶液中大分子物质的浓缩和纯化。 纳滤膜概述 1. 纳滤系统多采用错流过滤的方式。错流方式避免

了在死端过滤过程中产生的堵塞现象:料液流经膜的表面,在压力的作用下液体及小分子物质透过纳滤膜,而不溶性物质和大分子物质则被截留; 2. 料液具有足够的流速可将被膜截留的物质从膜表面剥离,连续不断的剥离降低了膜的污染程度,因而可在较长的时间内维持较高的膜渗透通量。 3. 错流过滤是最有效、最可靠、最可以创造经济效益的膜分离手段。 4. 错流过程同时避免了在死端过滤(如板框压滤机、鼓式真空过滤机)过程中依靠滤饼层进行过滤的情况,分离发生在膜表面而不是滤饼层中,因而滤液质量在整个过程中是均一而稳定的。滤液的质量取决于膜本身,使生产过程完全处于有效的控制之中。 卷式纳滤膜的结构 卷式纳滤膜组件设计简单,填充密度大,内部结构为多个“膜袋”卷在一多孔中心管外形成,膜袋三边粘封,另一边粘封于多孔中心管上,膜袋内以多孔支撑材料形成透过物流道。膜袋与膜袋间以网状材料形成料液流道,料液平行于中心收集管流动,进入膜袋内的透过物,旋转着流向中心收集管,并由中心收集管流出。 二、系统操作规程

A. 系统启动前的准备工作 检查物料的供应是否正常。 检查所有的电器设备连接和接地是否完好。 检查所有的仪表是否完好。 检查所有的管道、阀门是否完好。 检查所有的泵的润滑。 进料前保证系统内充满水。 启动系统电源,点动所有的泵,检查泵的旋转方向是否正确。 B. 系统运行程序 1、打开系统进料管路阀门:进料罐底阀,保安泵进出口阀,过滤器进出口阀,输送泵泵进出口阀; 打开纳滤系统内相关阀门:循环泵出料阀,膜设备进料阀,膜设备出料阀,膜设备滤出液阀,打开浓缩液出口阀; 膜运行模式切换成恒流量模式; 启动保安泵泵,使系统保持相应压力,用料液充满膜系统。 打开输送泵进出阀,启动输送泵。 启动循环泵(依次1#,2#,3#,且待前一组到达相应流量再启动下一组泵),缓慢调节浓缩液出口阀,以达到需要的压力以及浓缩倍数。

膜分离技术的介绍及应用讲解

题目:膜分离技术读书报告日期2015年11月20日

目录 一、膜的种类特点及分离原理 (1) 二、最新膜分离技术进展 (3) 1. 静电纺丝纳米纤维在膜分离中的应用 (3) 1.1 静电纺丝技术的历史发展 (3) 1.2 静电纺丝纳米纤维制备新型结构复合膜 (3) 1.2.1 在超滤方面 (4) 1.2.2 在纳滤方面 (4) 1.2.3 在渗透方面 (5) 1.2.4 静电纺丝纳米纤维制备空气过滤膜 (5) 2. 多孔陶瓷膜应用技术 (6) 2.1 高渗透选择性陶瓷膜制备技术 (7) 2.1.1 溶胶—凝胶技术 (7) 2.1.2 修饰技术 (7)

一、膜的种类特点及分离原理 膜分离技术(membrane separation technology, MST)是天然或人工合成的高分子薄膜以压力差、浓度差、电位差和温度差等外界能量位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集的方法。常用的膜分离方法主要有微滤(micro-filtration, MF)、超滤(ultra-filtration,UF)、纳滤(nano-filtration,NF)、反渗透(reverse-osmosis, RO)和电渗析(eletro-dialysis, ED)等。MST具有节能、高效、简单、造价较低、易于操作等特点、可代替传统的如精馏、蒸发、萃取、结晶等分离,可以说是对传统分离方法的一次革命,被公认为20世纪末至21世纪中期最有发展前景的高新技术之一,也是当代国际上公认的最具效益技术之一。 分离膜的根本原理在于膜具有选择透过性,按照分离过程中的推动力和所用膜的孔径不同,可分为20世纪30年代的MF、20世纪40年代的渗析(Dialysis, D)、20世纪50年代的ED、20世纪60年代的RO、20世纪70年代的UF、20世 纪80年代的气体分离 (gas-separation, GS)、20世纪90 年代的PV和乳化液膜(emulsion liquid membrane, ELM)等。 制备膜元件的材料通常是有 机高分子材料或陶瓷材料,膜材料中的孔隙结构为物质透过分离膜而发生选择性分离提供了前提,膜孔径决定了混合体系中相应粒径大小的物质能否透过分离膜。图1是MF、UF、NF、RO的工作示意图。MF的推动力是膜两端的压力差,主要用来去除物料中的大分子颗粒、细菌和悬浮物等;UF的推动力也是膜两端的压力差,主要用来处理不同相对分子质量或者不同形状的大分子物质,应用较多的领域有蛋白质或多肽溶液浓缩、抗生素发酵液脱色、酶制剂纯化、病毒或多聚糖的浓缩或分离等;NF自身一般会带有一定的电荷,它对二价离子特别是二价阴离子的截留率可达99%,在水净化方面应用较多,同时可以透析被RO膜截留的无机盐;RO是一种非对称膜,利用对溶液施加一定的压力来克服溶剂的渗透压,使溶剂通过反向从溶液

膜过滤原理

膜过滤原理: 膜分离技术是利用具有选择透过能力的薄膜做分离介质,膜壁密布微孔,原液在一定压力下通过膜的一侧,溶剂及小分子溶质透过膜壁为透过液,而较大分子溶质被膜截留,从而达到物质分离及浓缩的目的。膜分离过程为动态错流过程,大分子溶质被膜壁阻隔,随浓缩液流出膜组件,膜不易被堵塞,可连续长期使用。过滤过程可在常温、低压下运行,无相态变化,高效节能。 膜孔经分类: 膜组件的使用及维护: 1、使用条件 : 1、系统最高跨膜压力不超过0.2MPa,长期工作压力小于0.1MPa。 2、最高进液温度不能超过45℃,长期运行温度10~40 ℃。 3、膜组件应避免接触强酸、强碱,短时间清洗碱浓度应小于0.5%,长期运行pH 应在2~12, 3~10范围之内(具体见膜产品资讯)。 4、允许进料液内含颗粒粒径小于5μm。 膜组件清洗: 由于膜适用范围广泛,处理介质复杂。在处理料液过程中,膜表面会存在不同程度的污染。清洗周期越短,膜性能恢复越好,使用寿命越长。清洗进行方法

与正常超滤过程相同,清洗液自原液入口处进入,浓缩液及滤出液全部返回清洗液容器,循环后排放,以净水洗净即可。清洗方式主要分为物理清洗和化学清洗。 物理清洗:一般每批料液处理完后,用清水将膜组件内残余料液清洗干净,用清水以一定流速通过纤维内、外表面,将污染物洗出,时间约20~30分钟。 化学清洗:可用稀酸、稀碱或其他清洗剂进行化学清洗。在许多情况下,用稀碱液清洗膜较为有效。用0.5~1% 的氢氧化钠水溶液在膜系统内循环,浸泡20~60分钟,可取得较好的清洗效果。如果处理液中含有蛋白质,则可用0.5~ 1%碱性蛋白酶、胃蛋白酶进行浸泡清洗。 (注意:常用的化学药品的选择必须根据膜材料的性质选择,如酸类、碱类、氧化剂、杀菌剂、加酶洗涤剂等。)

膜过滤技术

膜过滤技术及其应用 摘要:陶瓷膜过程作为一门新型的高效分离、浓缩、提纯及净化技术, 近30 年来发展迅速, 已经在石油化工、轻工纺织、食品、医药、环保等多个领域得到广泛应用[1] 。膜分离技术具有操作简单、占地面积小, 处理过程中无相变及不会产生新的污染物质、分离效果好等优点, 近年来在水处理领域中得到广泛应用。本文就膜过滤的研究进展,膜材料以及它的应用作简要叙述。 关键词:滤膜; 分离技术;应用 引言 随着科技和工业化生产的发展,能源、资源、三废治理等问题更加受到重视。尤其是生物化工、精细化工、能源材料等高技术领域的迅速发展,对液、固分离技术的研究和开发提出更高的要求,高分离精度、高运行效率的微孔过滤技术及微孔过滤材料愈来愈引起人们的重视。微孔陶瓷材料由于具有孔隙率高、透气阻力小、可控孔径、清洗再生方便以及耐高温、高压、耐化学介质腐蚀等特点,在许多领域具有较大的应用市场[1]。以微孔陶瓷材料做过滤介质的陶瓷微过滤技术及陶瓷过滤装置由于其不仅解决了高温、高压、强酸碱和化学溶剂介质等难过滤问题,而且由于本身具有过滤精度高、洁净状态好以及容易清洗、使用寿命长等特点,目前已在石油、化工、制药、食品、环保和水处理等领域得到广泛应用。 20 世纪70 年代以来,利用生物亲和相互作用,分离蛋白质等生物大分子的亲和纯化技术迅速发展。其中亲和层析技术已得到广泛应用,但是亲和层析法亦存在许多难以克服的缺点: (1) 亲和载体价格昂贵,使用寿命短;(2) 色谱柱易堵塞和污染,需对原料进行预处理以除去颗粒性杂质;(3) 难以实现连续操作和规模放大[2]。目前亲和层析法仅局限于价值极高的生物活性物质的小批量纯化. 为克服膜过滤和亲和层析的缺点,发展了亲和膜过滤技术,不仅利用了生物分子的识别性能,分离低浓度的生物制品,而且膜的渗透性及通量大,能在纯化的同时实现浓缩,此外还有操作方便、设备简单、便于大规模生产的特点,展前景引人瞩目。 一膜过滤的分类 1.1 微孔过滤膜 微孔过滤膜的孔径O.1~l0微米,多为对称性多孔膜,可分离大的胶体粒子

RO水处理工艺及RO膜工作原理介绍

RO水处理工艺及RO膜工作原理介绍 基础RO水处理工艺介绍:原水→原水箱→原水泵→多介质过滤器 (石英砂过滤器)→活性炭过滤器→精密过滤器→高压泵→一级反渗透(RO)装置→纯净水箱→用水点 ·脱盐率高,又可以同时除去细菌、毒素及其它有机物,出水水质符合国标GBI7323-1998标准; ·反渗透纯水设备主件采用进口复合膜元件及进口高压不锈钢泵,进水适应性、脱盐率和使用寿命等方面,与其它反渗透元件相比,具有独特的优点; ·设计压力:1.05~1.6Mpa,脱盐率:96~99%; ·自动化程度高,运行稳定,故障率低且运行费用低等优点; ·能耗低,运行成本低。 ·结构合理,占地面积少。 ·先进的膜保护系统,在设备关机时,淡化水可自动将膜表面的污染物冲洗干净,延长膜寿命。 ·系统无易损部件,无需大量维修,运行长期有效。 反渗透设备不仅可用在食品饮料工业,它还能用在电子行业清洗用水,中水处理循环利用,苦咸水,海水的淡化等。 ro膜工作原理即反渗透膜——对透过的物质具有选择性的薄膜称为半透膜,一般将只能透过溶剂而不能透过溶质的薄膜称之为理想半透膜。当把相同体积的稀溶液(例如淡水)和浓溶液(例如盐水)分别置于半透膜的两侧时,稀溶液中的溶剂将自然穿过半透膜而自发地向浓溶液一侧流动,这一现象称为渗透。当渗透达到平衡时,浓溶液侧的液面会比稀溶液的液面高出一定高度,即形成一个压差,此压差即为渗透压。渗透压的大小取决于溶液的固有性质,即与浓溶液的种类、浓度和温度有关而与半透膜的性质无关。若在浓溶液一侧施加一个大于渗透压的压力时,溶剂的流动方向将与原来的渗透方向相反,开始从浓溶液向稀溶液一侧流动,这一过程称为反渗透。反渗透是渗透的一种反向迁移运动,是一种在压力驱动下,借助于半透膜的选择截留作用将溶液中的溶质与溶剂分开的分离方法,它已广泛应用于各种液体的提纯与浓缩,其中最普遍的应用实例便是在水处理工艺中,用反渗透技术将原水中的无机离子、细菌、病毒、有机物及胶体等杂质去除,以获得高质量的纯净水。以下为ro膜的构造图

中空纤维膜过滤技术在单抗生产中的应用

GE Healthcare 中空纤维膜过滤技术在单抗生产中的应用 Application of Hollow Fiber Filtration Technology in MAb Production 作为生物药物的“重磅炸弹”,大规模动物细胞培养生产治疗用单抗已成为生物制药发展的主导。Mabselect SuRe 亲和层析结合Capto Adhere复合离子交换两步层析工艺已经成为抗体生产工艺的亮点,而中空纤维膜过滤技术是一种快速高效的膜分离技术,具有容尘量高、温和低剪切力、操作灵活、成本低、易于放大等优点,因此广泛应用于重组蛋白、疫苗等生物制药领域。通过将中空纤维膜过滤技术和下游两步层析工艺相结合,可以成功的迎接几十甚至上百公斤单抗生产所面临的挑战。 1.单抗的发展和面临的挑战 近年来,高密度细胞培养技术和大规模蛋白质生产纯化技术的不断进步,推动了治疗用抗体产业化的发展。和传统的基因工程蛋白药物相比,治疗用单抗具有一些不同的特点: (1) 高剂量 单抗的给药剂量较高,一般从数百毫克到克级,且给药方式多为静脉注射。因此,抗体的生产规模和产品质量都面临着巨大挑战。 为了满足日益增长的高剂量抗体药物需求,大规模细胞培养技术不断发展:细胞密度已达107~108cell/ml;表达量从1~5g/L增加到>10g/L,甚至出现27g/L的表达量新高1;细胞培养规模从上千升增加到20,000升。这就要求开发一条高速、高载量的下游分离纯化工艺,以便能够快速处理上万升的培养液,并实现每批几十公斤甚至上百公斤抗体的生产。另外,高的给药剂量也对产品质量提出了更高的要求。为了保证药品安全,很多杂质成分必需降低到极低水平,如宿主DNA,内毒素等;潜在的病毒、泄漏的亲和配基以及抗体的聚集体也必须有效去除,这就要求采用更高效的分离纯化工艺,并对每步工艺去除各种杂质的能力进行深入研究。 (2) 易形成多种变体 抗体是一类结构比较复杂的大分子,比活和稳定性很大程度上取决于其翻译后修饰的程度,如糖基化、磷酸化等。在生产过程中会由于糖基化程度不同、蛋白酶作用、以及脱氨基和脱酰胺等化学反应而产生性质不同的多种抗体变体2;另外,氧化、聚集和片段化也是常见的降解途径。针对这些变体,在表达和纯化过程中选择参数 (如pH、盐浓度等) 时要充分考虑到抗体的稳定性;另外,应严格控制细胞培养的条件,如溶氧、渗透压等3;同时加快下游分离纯化的速度,最大程度避免抗体在纯化过程中产生变体,保证终产品的均一性和高比活,也有利于控制终产品的内毒素水平。 (3) 高附加值 作为多种癌症和抗排异的特效药,高纯度的治疗用抗体具有极高的市场价值。因此收率成为抗体生产过程中的重要考量指标。减少不必要的工艺步骤不仅可以提高收率,还能提高生产效率。 基于抗体药物的上述特点,为了提高生产效率,达到严格的产品质量要求,抗体的生产工艺也必须着眼于:高处理速度、高载量,更简单有效! 苗景赟解红艳 (通用电气医疗集团 GE HC Life Sciences) 通用电气 (中国) 医疗集团免费咨询热线:800-810-9118 网址:https://www.sodocs.net/doc/b614063334.html,

微孔滤膜过滤技术EOODS产品中心

Microfiltration Technology in Pharmaceutical Industry

中美合资·杭州科诺过滤器材有限公司HANGZHOU ANOW WATER TREATMENT CO.,LTD. 目录(Catalogue)------------------ 2 1、纯化水(PW)膜过滤系统---------------------- 3 2、注射用水(WFI)膜过滤系统------------------- 4 3、大输液(LVP)膜过滤系统--------------------- 5 4、小针剂(SVP)膜过滤系统--------------------- 6 5、眼药液膜过滤系统---------------------------- 7 6、空气除菌膜过滤系统-------------------------- 8

三、配置与价格 注:1、过滤器的规格及滤芯的数量需根据厂家的实际产量而定; 2、终端绝对除菌过滤系统的清洗消毒可采用90°C左右的热水,在0.2MPa 的压力下进行,时间控制在半小时以内。

根据自己的实际生产情况调节好过滤的流量和压力。终端绝对除菌膜过滤芯要求能进行完整性测试,能经受重复多次蒸汽杀菌和热水消毒。空气过滤芯需采用疏水性膜材料。膜过滤芯属一次性消耗品,当滤器前后压差超过0.2~0.3Mpa或纯化水的过滤出口流量达不到实际要求时,建议厂家更换滤芯。 三、配置与价格 备注:1、过滤器的规格及滤芯的数量需根据厂家的实际产量而定; 2、终端绝对除菌过滤系统的清洗消毒可采用90°C左右的热水,在0.2MPa 的压力下进行,时间控制在半小时以内。

膜过滤技术

膜过滤技术 摘要:膜过程作为一门新型的高效分离、浓缩、提纯及净化技术, 近30 年来 发展迅速, 已经在石油化工、轻工纺织、食品、医药、环保等多个领域得到广泛应用[1] 。膜分离技术具有操作简单、占地面积小, 处理过程中无相变及不会产生新的污染物质、分离效果好等优点, 近年来在水处理领域中得到广泛应用。本文就膜过滤的研究进展,膜材料以及它的应用作简要综述。 关键词:滤膜; 过滤技术; 除菌;应用 正文: 20 世纪80 年代以来,生命科学和生物工程技术的发展日新月异,生物产品(如酶、抗体、抗原、受体) 的种类越来越多. 这些制品通常是从发酵液中或天然产品中提取,再经纯化而得到的产品. 由于目标产物产量小,通常又与底物、细胞等混杂在一起,浓度很低,且生物产品与传统的化工产品不一样,它们一般都具有生物活性,对分离操作条件要求比较苛刻. 传统的化工分离方法如精馏、沉降、结晶等都难以达到要求.膜分离是20 世纪60 年代以来发展较快的一项分离技术,它具有操作条件温和、无污染、无相变等特点,在许多方面都得到了应用,象微滤、超滤已应用于生物化工和医药行业中. 膜分离是根据分子大小不同来实现分离的,一般相对分子质量相差10倍以上的物系才具有分离作用,因此它还远远不能满足生化分离的需要. 而生物亲和作用是生物分子之间的可逆专一性识别作用,具有极高的选性.[2] 20 世纪70 年代以来,利用生物亲和相互作用,分离蛋白质等生物大分子的亲和纯化技术迅速发展. 其中亲和层析技术已得到广泛应用,但是亲和层析法亦存在许多难以克服的缺点: 1) 亲和载体价格昂贵,使用寿命短;2) 色谱柱易堵塞和污染,需对原料进行预处理以除去颗粒性杂质;3) 难以实现连续操作和规模放大. 目前亲和层析法仅局限于价值极高的生物活性物质的小批量纯化. 为克服膜过滤和亲和层析的缺点,发展了亲和2膜过滤技术,不仅利用了生物分子的识别性能,分离低浓度的生物制品,而且膜的渗透性及通量大,能在纯化的同时实现浓缩,此外还有操作方便、设备简单、便于大规模生产的特点,发展前景引人瞩目。 [1]

膜分离技术与传统的分离方法相 比

膜分离技术与传统的分离方法相比,具有节能、几乎无污染、不会产生健康危险、不需要助滤剂、使用灵活等优点,因此,在工业发展中有着极其重要的价值[1] 。此外,逐步完善的环境保护法也为膜分离技术的发展提供了新的机遇。 膜是具有选择性分离功能的材料,利用膜的选择性可以实现料液不同组分的分离、纯化和浓缩。膜可以在分子范围内进行分离,且这一过程是物理过程,不需发生相的变化和添加助滤剂。膜的孔径一般为微米级。根据其孔径(或截留分子量)的不同,可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜等[2] 。根据材料的不同,可分为无机膜和有机膜,无机膜主要是微滤级别的膜,如陶瓷膜和金属膜;有机膜是由高分子材料做成的,如醋酸纤维素、聚醚砜、聚氟聚合物等等。根据其构件的不同,可分为平板膜、卷式膜、管式膜。膜分离技术已在传统酿酒行业中得到广泛的应用,并表现出巨大的应用前景。 1 用反渗透膜生产无醇或低醇酒反渗透法生产无醇或低醇酒因几乎不改变风味而成为主流方法。国外基本都使用反渗透法生产无醇啤酒和低醇葡萄酒。反渗透又名逆渗透,是一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。即对膜一侧的料液施加高压,当压力超过它的渗透压时,溶剂会逆着自然渗透的方向,作反方向渗透。饮料酒中的各种成分,对膜的渗透能力相差很大:水最易透过;酒精次之;浸出物最困难,这样即可达到脱醇的目的。目前,国内已经研究开发出了反渗透法生产无醇啤酒的方法和设备,可得到酒精度< 0.5% (v/v)的无醇啤酒,反渗透法脱醇前后酒的理化指标分析见表1[3] 。从表1可看出,经过反渗透,酒精度下降89.7% ,反映啤酒中总浸出物的真正浓度几乎不变,表明反渗透膜对乙醇的透过率比啤酒中的其他物质大得多,用反渗透的工艺来制备无醇啤酒是可行的。此外,反映啤酒醇厚性的总蛋白质、多酚、葡聚糖3项指标经脱醇后确有下降,但下降仅在3.3% 以内,因此在酒体的醇厚性及黏稠度上,脱醇酒与原酒是基本一致的。与限制发酵、蒸馏脱醇方法相比,反渗透法能克服限制发酵法造成的无醇啤酒产品中的残糖含量高、蒸馏法使得无醇啤酒产品有蒸煮味等风味缺陷,能够得到高品质的无醇啤酒产品。 表1 啤酒脱醇前后理化指标的分析结果 项目原酒脱醇酒 色度/EBC 5.0~5.5 5.0~5.5 浊度/EBC 0.24 0.30 粘度/ (mPa ·s) 1.52 1.53 酒精度/% (v/v) 3.39 0.35 真正浓度/% (w/w) 2.69 2.67 原浓/% (w/w)7.96 3.23 外观浓度/% (w/w) 1.59 2.74 pH值 4.19 4.17 总酸/ (mL·100mL -1)0.88 0.80 总还原糖/ (g·100mL -1)0.90 0.87 总多酚/ (mg·L -1 )74.62 72.16 总蛋白质/(mL·100mL -1)58.07 56.21 α-氨基酸态氮/ (mg·L -1)66.52 65 双乙酰/ (mg·L -1 )0.072 0.065 浙江古越龙山绍兴酒股份有限公司与江南大学生物工程学院合作,对绍兴黄酒进行反渗透膜脱醇的中试表明,酒精度从16%~18%下降为10%~12% (v/v),几乎能保持绍兴黄酒风味和理化指标不变.

微孔膜过滤技术

微孔膜过滤技术 摘要 本文介绍了微孔滤膜的种类、微孔过滤膜的性质及检测、微孔过滤膜设备及其注意事项以及微孔过滤膜技术在生物化学和制药工业中的应用。 关键词:微孔滤膜;过滤技术;应用 目录 第一章前言 (1) 第二章微孔过滤膜 (1) 2.1微孔滤膜的优点及种类 (1) 2.2微孔滤膜的制备 (3) 2.3微孔滤膜的性质与检测 (3) 第三章微孔膜过滤设备 (5) 3.1设备 (5) 3.2过滤操作与注意事项 (6) 第四章微孔膜过滤的应用 (7) 4.1在生物化学中的应用 (7) 4.2在制药工业中的应用 (9) 第五章结论 (10) 参考文献 (10)

第一章前言 微孔膜过滤又称精密过滤,主要用于分离亚微米级颗粒,是目前应用最广泛的一种分离分析微细颗粒和超净除菌的手段。微孔膜过滤技术因其独特的优点已逐渐取代许多经典手段而成为独立的分离和分析方法,其适应性很强。 微孔滤膜孔径在0.025~14μm范围内,操作压力在1~10磅/英寸2之间。 孔径为0.01~0.05μm的膜可以截留噬菌体、较大病毒或大的胶体颗粒,可用于病毒分离。 孔径为0.1μm的膜用于试剂的超净、分离沉淀和胶体悬液,也可模拟生物膜。 孔径为0.2μm的膜用于高纯水的制备、制剂除菌、细菌计数、空气病毒定量测定等。 孔径为0.45μm的微孔滤膜用的最多,常用来进行水的超净化处理、汽油超净、电子工业检查、注射液的无菌检查、饮用水的细菌检查、放射免疫测定、光测介质溶液的净化以及锅炉水中Fe(OH)3的分析等。 随着微孔膜过滤技术的发展,微孔滤膜的商品种类日益增多,用来制膜的材料也叫多,如纤维素、纤维素脂、聚氯乙烯、聚四氟乙烯、聚乙烯、聚酰胺、丙稀腈/氯乙烯聚合物及聚碳酸酯,甚至玻璃纤维等。用各种材料以不同方法制造的微孔滤膜能够适应多种分离和测定的需要。目前,用于水处理的膜材料很多,不仅有疏水性聚合物如聚乙烯、聚偏氟乙烯、聚氯乙烯等[1~3]。还有亲水性聚合物如聚乙烯醇、聚砜等[4,5]。 第二章微孔过滤膜 2.1微孔滤膜的优点及种类 1.微孔滤膜的优点是: ①设备简单,只需要微孔滤膜和一般过滤装置便可进行工作。 ②操作简单、快速,适于同时处理多个样品。 ③分离效率高,重现性好。因膜孔径比超滤膜大,流速大大加快,且可在同一片微孔膜上进行分离、洗涤、干燥、测定等操作,所以不会因样品转移而导致损失。

陶瓷膜过滤器工作原理

陶瓷膜过滤器工作原理 南京博滤工业设备有限公司 (膜分离事业部Membrane Separation Dept.) 摘要:随着工业技术的不断更新迭代,膜分离应用技术近年来也取得巨大进展,极大提升了社会生产力水平。膜分离技术由于其具有分离效率高、能耗低、过程温和无相变、生产环境清洁等诸多优点,而越来越多的被应用于现代工业生产中物料富集(enrichment)、浓缩(concentration)、纯化(purification)等核心工艺处理过程。根据膜的材料我们可分为有机膜和无机膜,按膜孔径又可分为微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)和反渗透膜(RO)等。本文简单介绍下以陶瓷膜为代表的无机膜材料及其分离器构成与工作原理。 关键词:膜分离技术,无机陶瓷膜,陶瓷膜应用,陶瓷膜过滤,陶瓷膜分离,陶瓷膜过滤设备,陶瓷纳滤膜,陶瓷膜植物提取,陶瓷膜催化剂回收,陶瓷膜分离技术。 1 膜的定义 什么是膜?膜可以被视为两相之间的一个界面、具有选择透过性功能的薄层凝聚物质,它能够以特定的形式来限制和传递两侧流体中各物质的迁移过程。膜本身可以是一种均匀单相或两相以上凝聚物质所构成的复合体,其厚度大都以数微米至0.5mm之间不等。膜必须具有一定的透过性,否则就不能称之为膜。 我们可以认为理想化的膜应当结合了膜层薄、机械强度高、孔径小、耐高温、耐化学腐蚀等诸多优点,但很遗憾,在实际中,材料属性决定,该一系列理想化指标存在相互制约性矛盾,所以世界上并不存在绝对“完美”的膜,而应该结合具体工艺工况,通过对物料反复试验对比,确定采用何种最适合膜孔径,以及采取何种预处理,有时还需结合其它化学或物理辅助工艺等,这样最终优化、设计出一套最适合该工况的膜分离系统。 这对膜厂商的理论专业性、应用经验、工匠精神,以及严谨态度都提出了极高的要求。 0.0001 0.001 0.01 0.1 1 10 100μm 图1.1 膜分离实用范围过滤谱图 2 什么是陶瓷膜 2.1陶瓷膜是采用高纯度α-Al2O3在高温条件下烧制而成,具有筛分过滤作用的多孔固体连续介质。南京博滤工业无机陶瓷膜呈不对称结构,由三层组成:支撑层、过渡层和分离层。

膜分离技术应用综述

膜分离技术应用综述 The Standardization Office was revised on the afternoon of December 13, 2020

《食品科学概论》课程论文 论文题目:膜分离技术应用综述 学 院 :生物工程学院 专 业 :食品科学与工程 年级班别 :09级一班 学 号 :10122 学生姓名 :齐莹 学生 指导教师 :陈清禅 2011年 5 月 24 日 JINGCHU UNIVERSITY OF TECHNOLOGY

膜分离技术应用综述 齐莹 10122 摘要综述膜分离技术的特点、种类及分离机理,介绍国内外膜分离技术的研究进展及其在各个领域的应用现状,同时指出该技术存在的问题,提出选用更佳的膜材料以及多种膜分离技术联用是其今后的发展方向。 关键词膜分离技术微滤超滤食品工业 膜分离是在20世纪初出现,上世纪60年代后迅速崛起的一门分离新技术。膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。据统计,膜销售每年以14%~30%的速度增长,而最大的市场为生物医药市场[1] 。 1膜分离的简介 1. 1 膜的定义 膜是一种起分子级分离过滤作用的介质,当溶液或混和气体与膜接触时,在压力下,或电场作用下,或温差作用下,某些物质可以透过膜,而另些物质则被选择性的拦截,从而使溶液中不同组分,或混和气体的不同组分被分离,这种分离是分子级的分离。 1. 2 膜的种类 分离膜包括:反渗透膜(0. 0001~0. 005μm) ,纳滤膜(0. 001 ~0. 005μm) 超滤膜(0. 001 ~0. 1μm) 微滤膜(0. 1~1μm) 、电渗析膜、渗透气化膜、

纳米膜过滤技术

纳米膜过滤技术 摘要:纳米膜过滤技术(纳滤技术)是一种选择性敏锐,同时兼备超滤和反渗透的分离性能的新型膜分离技术。纳滤技术已在食品加工、医药工程、软化脱盐、废水处理等方面得以广泛应用。纳滤技术节能、环境友好,已越来越多地被用到制药工业的各种分离、精制和浓缩过程中以及工业、城市用水的水处理工业中。关键词:纳米膜过滤分离富集 1.前言 膜过程作为一门新型的高效分离、浓缩、提纯及净化技术,近30年来发展迅速,已经在冶炼工业[1]、轻工纺织[2]、食品、医药[3, 4]、环保[5, 6]等多个领域得到广泛的应用。 膜过滤是一种与膜孔径大小相关的筛分过程,以膜两侧的压力差为驱动力,以膜为过滤介质,在一定的压力下,当原液流过膜表面时,膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原液的分离和浓缩的目的。 根据膜选择性的不同,可将膜分为反渗透(RO)、纳滤(NF)、超滤(UF)和微滤(MF)等。其分类与特性如图1所示: (1)反渗透亦可称为高滤,是渗透的一种逆过程,通常在待过滤的液体一侧加上比渗透压更高的压力,使得原溶液中的溶剂压缩到半透膜的另一边,反渗透膜的过滤粒径在0.2~1.0 nm之间,操作压力在1~10 MPa之间。(2)纳滤是一种在反渗透基础上发展起来的膜分离技术,纳滤膜的拦截粒径一般在0.1~1 nm之间,操作压力在0.5~1 Mpa,拦截分子量为200~1000,对水中的分子量为数百的有机小分子具有很好的分离性能。 (3)超滤指在一定的压力下,含有小分子的溶液经过被支撑的膜表面时,其中的溶剂和小分子溶质会透过膜,而大分子的则被拦截,作为浓缩液被回 收,超滤膜过滤粒径在5~10 nm之间,操作压力在0.1~0.25 Mpa之间。 1

膜分离技术的应用特点

膜是具有选择性分离功能的材料。利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。它与传统的过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。 膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要还只有微滤级别的膜,主要是陶瓷膜和金属膜。有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等。交叉流膜工艺中各种膜的分离与截留性能以膜的孔径和截留分子量来加以区别。 对于微滤而言,膜的截留特性是以膜的孔径来表征,通常孔径范围在0.1~1μm,能对大直径的菌体、悬浮固体等进行分离。故微滤膜作为一般料液的澄清、预过滤、空气除菌。 对于超滤而言,膜的截留特性是以对标准有机物的截留分子量来表征,通常截留分子量范围在1000~300 000,能对大分子有机物(如蛋白质、细菌)、胶体、悬浮固体等进行分离。因此超滤膜广泛应用于料液的澄清、大分子有机物的分离纯化、除热源等方面。 对于纳滤而言,膜的截留特性是以对标准NaCl、MgSO4、CaCl2溶液的截留率来表征,通常截留率范围在60%~90%,相应截留分子量范围在100~1000,故纳滤膜能对小分子有机物等与水、无机盐进行分离,实现脱盐与浓缩的同时进行。 反渗透的截留对象是所有的离子,仅让水透过膜,对NaCl的载留率在98%以上,出水为无离子水。反渗透法能够去除可溶性的金属盐、有机物、细菌、胶体粒水、发热物质,也即能截留所有的离子,在生产纯净水、软化水、无离子水、产品浓缩、废水处理方面反渗透膜已经应用广泛。 由于膜分离过程是一种纯物理过程,能够广泛应用于发酵、制药、化工、食品、饮料、水处理工艺过程及环保等领域,并体现了以下特点:分子级别的分离,精密高效,滤液质量好,是普通过滤分离手段难以比拟的;物理过程,无相变,无化学反应;系统惟一的能源耗是电力,能耗低;系统全封闭运行,实现清洁化生产;系统体积小,操作简便安全,可实现自动化控制,扩展性好。 随着膜技术的不断发展,可以实现现有系统的软件升级,及时优化工艺操作条件,提高生产效益。 针对不同的料液及工艺处理要求,选择合适的膜工艺,对料液进行有效的分离、过滤澄清、浓缩,降低能耗、提高产品的质量和收率、减少环境污染,从而降低生产成本,促进效益。

超滤膜过滤原理及过滤方式

净水器常识:超滤膜过滤原理及过滤方式 作者:日期:2013-06-25 17:28:10 中国市场上的净水设备大致可分为净水器和纯水机两大类。所谓净水器就是去除水中的悬浮物以及对人体有害的有机化合物,无机化合物,重金属,细菌;所谓纯水机就是滤除水中所有的杂质,只剩下完全纯净的水分子。长期饮用纯净水是不利于人体健康的,纯水失去了人体所需的微量元素,长期饮用对身体不利。所有,我们可以选择超滤膜净水器,但是超滤膜净水器过滤原理及过滤方式如何?让小编为您共享下: 超滤膜过滤原理 超滤是一种与膜孔径大小相关的筛分过程,以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当原液流过膜表面时,超滤膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原液的净化、分离和浓缩的目的。 超滤膜过滤方式 一个中空纤维超滤膜组件主要是由成百到上千根中空纤维丝和膜壳两部分组成,一般将中空纤维内径在0.6-6mm之间的超滤膜称为毛细管式超滤膜,毛细管式超滤膜因内径较大,因此不易被大颗粒物质堵塞,更适用于过滤原液浓度较大的场合。 A)内压式过滤: 原液先从膜丝内孔进,经压力差驱动,沿径向由内向外渗透过中空纤维成透过液为内压式过滤,内压式过滤可以使用高压大流量的顺冲洗,使冲洗水流与膜孔成切向方向快速流过,从而可以将吸附在膜内孔表面上的污染物冲去,恢复膜的水通量。 B)外压式过滤: 原液经压力差驱动沿径向由外向内渗透过中空纤维膜丝成为透过液,而截留的物质汇集在中空丝的外部时为外压式过滤。:外压式超滤膜密封在膜壳内,水流的死角多,无法使用快速直冲的方法清除膜表面附着的污染物,因而不能完全去污。

相关主题