搜档网
当前位置:搜档网 › 仪器分析与表征

仪器分析与表征

仪器分析与表征
仪器分析与表征

《仪器分析与表征》课程总结

仪器分析是分析化学中一个重要分支,仪器分析是指采用比较

复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质

的参数及其变化来获取物质的化学组成、成分含量及化学结构等信

息的一类方法。这些方法一般都有独立的方法原理及理论基础[1.2.3]。

仪器分析(近代分析法或物理分析法):物质相互作用时产

生各种实验现象。仪器分析就是利用能直接或间接地表征物质的各

种特性(如物理的、化学的、生理性质等)的实验现象,通过探头

或传感器、放大器、分析转化器等转变成人可直接感受的已认识的

关于物质成分、含量、分布或结构等信息的分析方法。也就是说,

仪器分析是利用各种学科的基本原理,采用电学、光学、精密仪器

制造、真空、计算机等先进技术探知物质化学特性的分析方法。因

此仪器分析是体现学科交叉、科学与技术高度结合的一个综合性极

强的科技分支。这类方法通常是测量光、电、磁、声、热等物理量

而得到分析结果,而测量这些物理量,一般要使用比较复杂或特殊

的仪器设备,故称为“仪器分析”。仪器分析除了可用于定性和定

量分析外,还可用于结构、价态、状态分析,微区和薄层分析,微

量及超痕量分析等,是分析化学发展的方向。仪器分析包括两大部

分内容,即基于测定被分析物质的化学和物理性质对无机、有机和

生物物质进行定性和定量分析的各种方法;对复杂的混合物进行定

性和定量分析前采用的高效分离技术。

1.仪器分析方法的分类

1.1光学分析法(spectroscopic annlysis)

以物质的光学性质(吸收、发射、散射、衍射)为基础的仪器

分析方法。

包括原子吸收光谱法、原子发射光谱法、紫外-可见吸收光谱法、红外光谱法、核磁共振波谱法等。

1.2电分析(electrical analysis)

电流分析、电位分析、电导分析、电重量分析、库仑法、伏安法。

1.3色谱分析(chromatography analysis)

气相色谱法、液相色谱法

1.4其他仪器分析方法(other analysis)

(1)质谱法;(2)热分析法;包括热重法、差热分析法、示差

扫描量热法等。(3)电子显微镜,超速离心机,放射性技术等。

2.分析原理

仪器分析是根据被测组分的某些物理的或物理化学的特性,如

光学的、电学的性质,进行分析检测的方法,因此,它实际上已经

超出了化学分析的范围和局限,成为生产和科学各个领域的工具。

分析化学中的分析是分离和测定的结合,分离和测定是构成分

析方法的两个既相独立又相联系的基本环节。分离是使物质纯化的

一种手段,而纯化的背后是物质的不纯,是物质具有混合性。我们

知道,化学家所说的物质,指的是物质本身,是某种单质或化合物。

这里所说的物质本身,意思是以纯粹的形式存在的物质,没有其他

物质混合于其中的物质,也就是人们通常所说的纯物质。可是,无

论是天然存在的还是人工制造的物质,都不是绝对纯的,绝对纯是

达不到的,绝对纯只能在理论中或思想上存在。因此,在化学分析中,首先遇到的矛盾就是纯与不纯的矛盾。

3.仪器介绍与表征

3.1紫外分光光度计

紫外分光光度计的原理:物质的吸收光

谱本质上就是物质中的分子和原子吸收了入

射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同。因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量。又因为许多物质在紫外-可见光区有特征吸收峰,所以可用紫外分光光度法对这些物质分别进行测定(定量分析和定性分析)。紫外分光光度法使用基于朗伯-比耳定律,俗称光吸收定律。当入射光波长一定时,溶液的吸光度A是吸光物质的浓度C及吸收介质厚度l(吸收光程)的函数。在实验金溶胶的制备及其对4-NP的催化性能检测中就用到了这个仪器。

如图,可以发现催化剂对4-NP的催化起始阶段比较慢,但是反应开始就特别的快,由紫外光谱图就可以直接获取这一信息。

3.2 X射线衍射分析(XRD)

X射线也是一种电磁波,当光照射到尺度与其波长相近,甚至更小的狭缝时,会产生绕过现象,即衍射,光子的叠加根据位相原理进行,位相相同时加强,相反时相消,形成衍射环状图案,根据环的位置和距离可以判断狭缝的尺度。在晶体中,原子、离子或分子的空间排布也是高度有序的,不同方向原子构建同平面的原子层,称为晶面,同一方向上,晶面之间有固定的距离,沿该方向用X光照射时产生固定的衍射环,如果改变入射角度,则对应不同晶面,分别产生不同的衍射环。从而确定各个晶面间距。由于不同晶体,其原子、离子和分子的排列方式不同,对称性不同,与X射线作用强弱不同,而产生差异,以此来确定晶体的组成和结构。

3.3 光电子能谱分析(XPS)

它是用X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来。被光子激发出来的电子称为光电子,可以测量光电子的能量,以光电子的动能为横坐标,相对强度(脉冲/s)为纵坐标可做出光电子能谱图,从而获得待测物组成。XPS主要应用是测定

电子的结合能来实现对表面元素的定性分析,包括价态。

X射线光电子能谱因对化学分析最有用,因此被称为化学分析用电子能谱。常用于元素的定性分析。如根据能谱图中出现的特征谱线的位置鉴定除H、He以外的所有元素;元素的定量分析。可以根据能谱图中光电子谱线强度(光电子峰的面积)反应原子的含量或相对浓度;固体表面分析。包括表面的化学组成或元素组成,原子价态,表面能态分布,测定表面电子的电子云分布和能级结构等;化合物的结构。可以对内层电子结合能的化学位移精确测量,提供化学键和电荷分布方面的信息;分子生物学中的应用。利用XPS鉴定维生素B12中的少量的Co。

4.仪器分析(与化学分析比较)的特点:

(1)灵敏度高,检出限量可降低。如样品用量由化学分析的mL、mg级降低到仪器分析的μg、μL级,甚至更低。适合于微量、痕量和超痕量成分的测定。

(2)取样量少:化学分析法需用10-1-10-4g;仪器分析试样常在10-2-10-8g。

(3)在低浓度下的分析准确度较高:含量在10-5%-10-9%范围内的杂质测定,相对误差低于1%-10%

(4)选择性好。很多的仪器分析方法可以通过选择或调整测定的条件,使共存的组分测定时,相互间不产生干扰。

(5)便于遥测、遥控、自动化:可作即时、在线分析控制生产过程、环境自动检测与控制。

5.仪器分析的发展历史

第一阶段:起始于20世纪初,这正是分析化学的第一次变革时期。

第二阶段:20世纪40年代后,一方面由于生产和科学技术发展

的需要,另一方面由于物理学革命使人们的认识进一步深化,分析

化学也发生了革命性的变革,促进了各种仪器分析方法的迅速建立,仪器分析成为分析化学中的重要支柱。并形成了第二次变革。

第三阶段:20世纪70年代后,是仪器分析日新月异发展的时期。也是分析化学的第三次变革时期。

6.仪器分析的重要意义

仪器分析自20世纪30年代后期问世以来,不断丰富分析化学

的内涵并使分析化学发生了一系列根本性的变化。随着科技的发展

和社会的进步,分析化学将面临更深刻、更广泛和更激烈的变革。

现代分析仪器的更新换代和仪器分析新方法、新技术的不断创新与

应用,是这些变革的重要内容。因此,仪器分析在高等院校分析化

学课程中所处的地位日趋重要。许多地方高校为了使自己培养的人

才能从容迎接和面对新世纪科学技术的挑战,已将仪器分析列为化

学等专业学生必修的专业基础课[4.5.6]。

7.仪器分析的创新变革

随着生产、生活和科学的发展,作为被分析的试样,其外延扩

大了,从单一的自然物发展为自然物和人工产物。试样的内涵深化了,要求分析的内容不再局限于物质的定性组成,还要求分析各组

分的含量。与此同时,试剂的种类越来越多,应用范围也越来越广。一种试样可以用多种试剂进行分析,一种试剂也可用于分析多种试样,同时还产生了类似于系统分析中组试剂的一般性试剂。在当代,被分析的试样既有各类混合物,也有一些纯净的化合物,既要求进

行元素分析,还要求进行结构分析、生物大分子的测定等等。试剂

也有很大发展,应用于分析化学的试剂,有各种物理化学试剂、有

机试剂和生化试剂,还研究和制备了一系列相对于某种分析方法的

专用试剂、特效试剂和特殊试剂。

在分析过程中,又产生了一种关系,这就是灵敏度和准确度的

关系。灵敏度是被测组分浓度或含量改变一个单位所引起的测量信

号的变化。若考虑分析时存在噪声等因素,灵敏度实际上就是被测

组分的最低检出限。准确度是测量值的可靠程度,实质上是测量值

与真值的接近程度,一般用误差来表示。在分析中,既要求分析方

法具有一定的灵敏度,又要求具有一定的准确度。就具体的分析方

法来说,灵敏和准确常常发生矛盾。有的分析方法有较高的准确度,却不够灵敏;有的分析方法灵敏度较高,但却不够准确。前者如重

量分析法,后者如比色分析法。现代科学技术的发展,要求高准确

度和高灵敏度,现代仪器分析正是适应这种要求而发展起来的。在

分析化学发展的初期,人们只是在实践中掌握了一些简单的分析、

检验方法,当时既没有化学理论,也没有分析方法的理论。随着分析、检验实践的进步和发展,各种分析和检验方法被应用于生产、

生活和科学研究之中,并对这些方法进行了概括和总结,形成了分

析化学理论,分析化学才真正成为一门科学。

在仪器分析的发展中,理论和方法的相互作用,需要中介和桥梁,这就是技术。理论要起指导作用,要转化为方法,需要特定的

仪器、设备和试剂。而制作和使用仪器或工具,正是通常所说的技

术的特点。例如,光谱学原理早在牛顿时期就已初步形成,到18世

纪已经发展成熟,利用光谱线特征进行物质的鉴定的思想也已有人

提出,但是,直到19世纪中期,才实现了光谱分析。其原因在于,

到这个时候,才应用光谱学原理制作出了可用于分析的光谱仪。技

术是实现和实施方法的保证,仪器分析方法尤其如此。

科学仪器的创新是知识创新和技术创新的重要内容。发展科学

仪器应当视为国家战略。分析仪器工业是高技术信息产业。分析仪

器的发展是现代科学、经济和社会发展的重要基础和推动力之一。

分析仪器的主要应用领域正向生物医学领域转移、分析仪器本身将

不断微型化、智能化,但人类向时间和空间的两个极限挑战所需的

高级精密仪器也不容忽视、生命过程、生产、科研和社会活动大量

需要的将是在线、非侵入、非损坏、原位、实时、多维分析仪器[6.7]。

8.现代仪器

现代仪器分析应用了现代分析化学的各项新理论、新方法、新

技术,把光谱学、量子学、富里叶变换、微积分、模糊数学、生物学、电子学、电化学、激光、计算机及软件成功地运用到现代分析

的仪器上,研发了原子光谱(原子吸收光谱、原子发射光谱、原子

荧光光谱)、分子光谱(UV、IR、MS、NMR、Flu)、色谱(GC、LC)、分光光度法、激光光谱法、拉曼光谱、流动注射分析法、极谱法、离子选择性电板、火焰光度分析等现代分析仪器,计算机的应用则极大地提高了仪器分析能力,因此现代分析仪器灵敏度高,选择性好、检出限低、准确性好,在数据处理和显示分析结果,实现了分析仪器的自动化和样品的连续测定。

9.仪器分析的发展趋势

现代科学技术的发展、生产的需要和人民生活水平的提高对分析化学提出了新的要求,为了适应科学发展,仪器分析随之也将出现一下发展趋势:

(1)方法创新进一步提高仪器分析方法的灵敏度、选择性和准确的。各种选择性检测技术和多组分同时分析技术等是当前仪器分析研究的重要课题。

(2)分析仪器智能化微机在一起分析法中不仅只运算分析结果,而且可以储存分析方法和标准数据,控制仪器的全部操作,实现分析操作自动化和智能化。

(3)新型动态分析检测和非破坏性检测离线的分析检测不能瞬时、直接、准确地反映生产实际和生命环境的情景实况,布恩那个及时控制生产、生态和生物过程。运用先进的技术和分析原理,研究并建立有效而使用的实时、在线和高灵敏度、高选择性的新型动态分析检测和非破坏性检测,将是21世纪仪器分析发展的主流。

生物传感器和酶传感器、免疫传感器、DNA传感器、细胞传感器等

不断涌现;纳米传感器的出现也为活体分析带来了机遇。

(4)多种方法的联合使用仪器分析多种方法的联合使用可以

使每种方法的优点得以发挥,每种方法的缺点得以补救。联用分析

技术已成为当前仪器分析的重要发展方向。

(5)扩展时空多维信息随着环境科学、宇宙科学、能源科学、生命科学、临床化学、生物医学等学科的兴起,现代仪器分析的发

展已不局限于将待测组分分离出来进行表征和测量,而且成为一门

为物质提供尽可能多的化学信息的科学。随着人们对客观物质认识

的深入,某些过去所不甚熟悉的领域(如多维、不稳定和边界条件等)也逐渐提到日程上来。采用现代核磁共振光谱、质谱、红外光

谱等分析方法,可提供有机物分子的精细结构、空间排列构成及瞬

态变化等信息,为人们对化学反应历程及生命的认识提供了重要基础。

总之,仪器分析正在向快速、准确、灵敏及适应特殊分析的方

向迅速发展。

10.参考的相关书籍

10.1《现代仪器分析》

本书以选择常规分析项目为中心,围绕分析测试任务学习分析

方法的原理、仪器结构、使用维护方法、定性定量测定方法,内容

深度以“必需”、“够用”为原则。教材内容共分两部分,第一部

分为基础理论,重点介绍了常用的电位分析法、光谱分析法及色谱

分析法等。第二部分为实训技术,共设计15个适用性强、操作简便、实验效果好的实验为实训项目,涉及食品、环境监测、生物等领域

以及电位法、电导法、光谱法和色谱法等分析方法。内容与大学物理、大学化学相衔接,以化学信息学为基础,介绍了农业和生物学

中常用仪器分析技术——紫外一可见光谱、原子吸收、原子发射、

缸外、核磁共振、质谱、气相色谱与高压液相色谱的信息来源、信

号特征、仪器的结构和工作原理、定性定量方法与应用。实训项目

与职业岗位群紧密挂钩,方法全部取之于最新国家标准,突出了职

业技能特点。

10.2《现代仪器分析方法》

随着科学技术的飞速发展,仪器分析领域也取得了巨大的成就。很多传统的仪器分析方法都得到了改进和提高,同时也出现了一些

新的仪器分析技术和方法。作为现代科学技术的“眼睛”,仪器分

析方法在化学、化工及相关领域具有极其重要的地位,仪器分析方

面的新技术和新方法对相关领域的科学研究也非常重要。研究生是

各个专业科学研究的生力军,他们的研究工作往往处于学科研究的

前沿,掌握好仪器分析这一重要工具,对研究生培养来说至关重要。因此,研究生的教材必须要跟上仪器分析的发展,在保证掌握基础

知识的前提下,还要体现分析化学学科最新发展的理论、技术和方法。本书根据分析化学及其相关学科的特点和最新发展动向,收录

了各种重要的仪器分析方法,既涵盖了仪器分析的基本内容,如传

统的色谱分析、光谱分析、电分析化学等,又加入了目前发展迅速、

应用广泛的新技术和新方法,如表面分析技术、化学传感器、化学计量学等。同时在每章中还尽可能开辟一节专门介绍各种仪器分析领域的最新技术和前沿研究内容。

本书不把仪器分析方法作为研究对象,而是作为研究手段。因此特别强调方法的实用,学以致用。书中包含了很多有关仪器分析应用的内容,而且突出讲述了各种仪器分析方法中样品处理和制备的方法,通过学习这本书能够掌握基本的样品处理和制备方法。

参考文献

[1] 武汉大学化学系. 仪器分析[M]. 北京: 高等教育出版社, 2001.

[2] 方惠群,于俊生, 史坚. 仪器分析[M]. 北京: 科学出版社, 2002, 330-359.

[3] 武汉大学.分析化学 (下册) [M]版.北京: 高等教育出版社, 2007.

[4] 黄一石. 仪器分析( 第 2 版)[ M ].北京: 化学工业出版社, 2008.

[ 5] [日]泉美治, 等. 仪器分析导论( 第 2 版)[ M ]. 北京: 化学工业出版社, 2005.

[ 6] 李继睿, 等. 仪器分析[ M ] . 北京: 化学工业出版社, 2010.

[ 7] 钱晓荣,郁桂云,吴静,潘梅等.仪器分析实验教学体系改革研究[ J ]. 盐城工学院学报( 社会科学版),2009,22(2) : 86-88.

仪器分析各个章节小结

第八章电位法和永停滴定法- 章节小结 1.基本概念 指示电极:是电极电位值随被测离子的活(浓)度变化而变化的一类电极。 参比电极:在一定条件下,电极电位基本恒定的电极。 膜电位:跨越整个玻璃膜的电位差。 不对称电位:在玻璃电极膜两侧溶液pH相等时,仍有1mV~3mV的电位差,这一电位差称为不对称电位。是由于玻璃内外两表面的结构和性能不完全相同,以及外表面玷污、机械刻划、化学腐蚀等外部因素所致的。 酸差:当溶液pH<1时,pH测得值(即读数)大于真实值,这一正误差为酸差。 碱差:当溶液pH>9时,pH测得值(即读数)小于真实值,这一负误差为碱差,也叫钠差。 转换系数:指当溶液pH每改变一个单位时,引起玻璃电极电位的变化值。 离子选择电极:一般由电极膜(敏感膜)、电极管、内充溶液和内参比电极四个部分组成。 电位选择性系数:在相同条件下,同一电极对X和Y离子响应能力之比,亦即提供相同电位响应的X和Y离子的活度比。 可逆电对:电极反应是可逆的电对。 此外还有相界电位、液接电位、原电池、残余液接电位。 2.基本理论 (1)pH玻璃电极: -浓度一定)、内参比电极(Ag-AgCl电极)、绝缘套; ①基本构造:玻璃膜、内参比溶液(H+与 Cl ②膜电位产生原理及表示式:; ③玻璃电极作为测溶液pH的理论依据。 (2)直接电位法测量溶液pH: ①测量原理。 ②两次测量法。pHs 要准,而且与pHx差值不大于3个pH单位,以消除液接电位。(3)离子选择电极: ①基本构造:电极膜、电极管、内参比溶液、内参比电极; ②分类:原电极、敏化电极; ③响应机理及电位选择性系数; ④测量方法:两次测量法、校正曲线法、标准加入法。 (4)电位滴定法:以电位变化确定滴定终点(E-V曲线法、曲线法、曲线法)。 (5)永停滴定法:以电流变化确定滴定终点,三种电流变化曲线及终点确定。 第九章光谱分析法概论- 章节小结 1.基本概念 电磁辐射:是一种以巨大速度通过空间而不需要任何物质作为传播媒介的光子流。 磁辐射性质:波动性、粒子性 电磁波谱:所有的电磁辐射在本质上是完全相同的,它们之间的区别仅在于波长或频率不同。若把电磁辐射按波长长短顺序排列起来,即为电磁波谱。 光谱和光谱法:当物质与辐射能相互作用时,物质内部发生能级跃迁,记录由能级跃迁所产生的辐射能强度随波长(或相应单位)的变化,所得的图谱称为光谱。利用物质的光谱进行定性、定量和结构分析的方法称光谱法。 非光谱法:是指那些不以光的波长为特征讯号,仅通过测量电磁辐射的某些基本性质(反射、折射、干涉、衍射和偏振)的变化的分析方法。 原子光谱法:测量气态原子或离子外层电子能级跃迁所产生的原子光谱为基础的成分分析方法。为线状光谱。 分子光谱法:以测量分子转动能级、分子中原子的振动能级(包括分子转动能级)和分子电子能级(包括振-转能级

仪器分析报告(完整版)

绪论 一、什么是仪器分析?仪器分析有哪些特点?(简答,必考题) 仪器分析是分析化学的一个重要部分,是以物质的物理或物理化学性质作为基础的一类分析方法,它的显著特征是以仪器作为分析测量的主要手段。 1、灵敏度高,检出限量可降低。 如样品用量由化学分析的mL、mg级降低到仪器分析的、级,甚至更低。适合于微量、痕量和超痕量成分的测定。 2、选择性好。 很多的仪器分析方法可以通过选择或调整测定的条件,使共存的组分测定时,相互间不产生干扰。 3、操作简便,分析速度快,容易实现自动化。 4、相对误差较大。 化学分析一般可用于常量和高含量成分分析,准确度较高,误差小于千分之几。多数仪器分析相对误差较大,一般为5%,不适用于常量和高含量成分分析。 5、需要价格比较昂贵的专用仪器。 二、仪器分析的分类 光化学分析法,电化学分析法,色谱分析法和其他仪器分析方法。 三、仪器分析法的概念 仪器分析法是以物质的物理或物理化学性质为基础,探求这些性质在分析过程中所产生的分析信号与物质的内在关系,进而对待测物进行定性、定量及结构分析及动态分析的一类测定方法。 四、仪器分析法的主要性能指标 精密度,准确度,灵敏度,标准曲线的线性范围,检出限(浓度—相对检出限;质量—绝对检出限) 五、选择分析方法的几种考虑 仪器分析方法众多,对一个所要进行分析的对象,选择何种分析方法可从以下几个方面考虑: 1.您所分析的物质是元素?化合物?有机物?化合物结构剖析? 2.您对分析结果的准确度要求如何?

3.您的样品量是多少? 4.您样品中待测物浓度大小范围是多少? 5.可能对待测物产生干扰的组份是什么? 6.样品基体的物理或化学性质如何? 7.您有多少样品,要测定多少目标物? 光谱分析法导论 一、什么是光谱分析法 以测量光与物质相互作用,引起原子、分子内部量子化能级之间的跃迁产生的发射、吸收、散射等波长与强度的变化关系为基础的光学分析法,称为光谱分析法——通过各种光谱分析仪器来完成分析测定——光谱分析仪器基本组成部分:信号发生系统,色散系统,检测系统,信号处理系统等。 二、光谱的分类 1、按产生光谱的物质类型:原子光谱(线状光谱)、分子光谱(带状光谱)、固体光谱 2、按产生光谱方式:发射光谱、吸收光谱、散射光谱 3、按光谱性质和形状:线状光谱、带状光谱、连续光谱 三、光谱仪器的组成 1、光源:要求:强度大(分析灵敏度高)、稳定(分析重现性好) 按光源性质:连续光源:在较大范围提供连续波长的光源,氢灯、氘灯、钨灯等 线光源:提供特定波长的光源,金属蒸气灯(汞灯、钠蒸气灯)、空心 阴极灯、激光等。 2、单色器:是一种把来自光源的复合光分解为单色光,并分离出所需要波段光束的装置(从连续光源的辐射中选择合适的波长频带)。 单色光具有一定的宽度(有效带宽)。有效带宽越小,分析的灵敏度越高、选择性越好、分析物浓度与光学响应信号的线性相关性也越好。 3、样品室:光源与试样相互作用的场所; 吸收池:紫外-可见分光光度法:石英比色皿 红外分光光度法:将试样与溴化钾压制成透明片 4、检测器 5、显示与数据处理 二、光的能量E 、频率υ、波长λ、波数σ的关系 E=h υ=hc/λ=hc σ 不同波长的光(辐射)具有不同的能量,波长越长,频率、波数越低,能量越低 KcL A

仪器分析之气相色谱法试题及答案

气相色谱法练习 一:选择题 1.在气相色谱分析中,用于定性分析的参数是 ( A ) A保留值 B峰面积 C分离度 D半峰宽 2.在气相色谱分析中,用于定量分析的参数是 ( D ) A保留时间 B保留体积 C半峰宽 D峰面积 3.良好的气-液色谱固定液为 ( D ) A蒸气压低、稳定性好 B化学性质稳定C溶解度大,对相邻两组分有一定的分离能力 D A、B和C 6.色谱体系的最小检测量是指恰能产生与噪声相鉴别的信号时 ( B ) A进入单独一个检测器的最小物质量 B进入色谱柱的最小物质量 C组分在气相中的最小物质量 D组分在液相中的最小物质量 7.在气-液色谱分析中,良好的载体为 ( D ) A粒度适宜、均匀,表面积大 B表面没有吸附中心和催化中心 C化学惰性、热稳定性好,有一定的机械强度 D A、B和C 8.热导池检测器是一种 ( A ) A浓度型检测器 B质量型检测器 C只对含碳、氢的有机化合物有响应的检测器 D只对含硫、磷化合物有响应的检测器10.下列因素中,对色谱分离效率最有影响的是 ( A ) A柱温 B载气的种类 C柱压 D固定液膜厚度 三:计算题 1. 热导池检测器的灵敏度测定:进纯苯1mL,苯的色谱峰高为4 mV,半峰宽为1 min,柱出口载气流速为20mL/min,求该检测器的灵敏度(苯的比重为 0.88g/mL)。若仪器噪声为0.02 mV,计算其检测限。 解:mV·mL·mg-1 mg·mL-1 2.一根 2 m长的填充柱的操作条件及流出曲线的数据如下: 流量 20 mL/min( 50℃)柱温 50℃ 柱前压力:133.32 kpa 柱后压力101.32kPa

仪器分析心得体会

仪器分析心得体会 篇一:仪器分析的感想 对仪器分析课程的认识和感想 仪器分析是高等学校等有关专业开设的一门基础课,其目的是使学生在大学学习期间掌握有关仪器分析中一些常用方法的基本原理、特点和应用,对于将来参加科学研究或具体实际工作都是很有益的。 仪器分析法是以物理和化学及其信号强度为基础建立起来的一种分析方法,使用比较复杂和特殊的仪器。仪器分析的基本原理源于分析化学。分析仪器的发展与分析化学的发展紧密相关,分析化学经历过三次重大变革,使得仪器分析也逐步升级,从仪器化、电子化、计算机化到智能化、信息化以至仿生化。 常用的仪器分析方法主要包括几类:光学分析法、电化学分析法、色谱分析法、质谱法。这些方法依据的原理不同,具有的性能指标如精密度、灵敏度、检出限、测定下限、线性范围、准确度等,在选择方法时,还要有一些考虑,如对样品结果准确度的要求,还有费用(包括仪器的购置费、运转费)、样品量、分析速度等。使用仪器分析法检测样品,具有效率高、速度快、方便、实用的特点。 仪器分析的应用范围十分广泛。仪器分析与科学四大理论(天体、地球、生命、人类起源和深化)及人类社会面临

的五大危机(资源、粮食、能源、人口、环境)问题的解决密切相关,也与工农业生产及人们日常衣食住行用的质量保证等领域密切相关,仪器分析的发展包括仪器和方法两方面的发展,仪器分析的发展趋势表现在建立原位、在体、实时、在线的动态分析检测方法建立无损以及多参数同时检测方法。现在以实现各种分析法的联用;分析仪器的智能化、自动化和微型化等几个方面。 通过对仪器分析这一课程的学习,对常用仪器的基本原理、特点、使用方法和应用都有了大致的认识和掌握。这门学科的实用性强,应用广泛。它的方法和基本思想如逻辑思维,对以后的科研和日常的工作有巨大的帮助。如果能对仪器分析这门课程有深刻认识,对以后仪器的创新和发展也能尽到一份力。 篇二:《仪器分析》问题学习法总结 《仪器分析》问题学习法心得体会 虽然只有短短的八周学习时间,但在张玲老师的指导学习下,使我对仪器分析这门学科了解颇多。通过学习是我知道仪器分析是我们学化学的必学的一门课程,是化学分析中不可缺少的方法。而且随着科技的发展,仪器分析变得越来越重要,在化学分析中的应用也越来越广泛。因此,我们必须学好仪器分析。就像张玲老师说的那样,大学毕业后我们什么书都可以卖掉,但《仪器分析》这本书一定要留下来。

最新中外合作办学总结

上海应用技术学院与新西兰奥克兰理工大学合作举办应用化学专业本科教育项目2010年度办学报告 上海应用技术学院化学与环境工程学院的应用化学(分析及监测方向)和新西兰奥克兰理工大学(Auckland University of Technology,AUT)的应用科学系于2002年达成合作办学项目协议,并于2003年开始招生应用化学专业的学生。新西兰奥克兰理工大学作为一所建校超过百年的综合性大学,是新西兰全国仅有的八所全日制国立综合性大学之一,可授予学士、硕士学位。作为中国和新西兰高校共同管理的本科层次的应用化学合作项目,也得到了新西兰最高教育行政部门的高度重视。该中外合作办学项目学生在两校所得学分互认,录取为本项目的学生既可以在国内完成四年的全部学业,也可以在第四学年申请赴新西兰AUT学习完成全部学业。对于准备第四学年赴新西兰AUT 学习完成全部学业的学生,必须通过中方本专业前三年所有课程考试,同时英语达到雅思(学术)6.0以上。 几年办学下来,在中新双方的共同努力下,该项目得到了各方面的认可,在人才培养方面也积累了一定经验,具体汇报如下: 1、教学计划、课程设置及授课教师情况 本项目由两校共同管理,两校共同设计制定人才培养计划,专业课程分别由中外教师授课。 应用化学专业(分析及监测专业方向)的专业教学目标是培养德智体美劳等方面全面发展,具有化学基本理论、基本知识和较强实验技能,具备科学研究和化工分析基本训练的高级分析化学应用人才。毕业生既能从事化工、轻工、医药、食品、环保及其相关领域的分析及研究工作,又可在科研院所、高等院校以及事业行政部门从事与本专业有关的技术管理工作。本专业学生主要学习化学方面的基本理论、基本技能以及相关的技术知识,掌握本专业必需的基本理论,掌握基本分析技能和现代化分析实验技术,具备运用所学知识和实验技能进行应用研究、技术开发和生产管理的基本技能。本专业学生在校期间,需要在学习化学与化工基本理论、基本知识的基础上,学习与分析专业相关的知识。毕业生可以获得以下几个方面的知识和能力:(1)具有勤奋刻苦和求实创新的精神风貌,较好的文化和道德素养,健康的体魄和优良的心理素质,养成良好的行为习惯,具有一定的社会、人文科学知识、法律知识和国防知识。(2)掌握数学、物理等方面的基

仪器分析气相色谱分析习题+答案.doc

气相色谱习题 一 . 选择题 ( ) 1.色谱图上一个色谱峰的正确描述是( ) A. 仅代表一种组分 ; B. 代表所有未分离组分 ; C. 可能代表一种或一种以上组分; D. 仅代表检测信号变化( )2.下列保留参数中完全体现色谱柱固定相对组分滞留作用的是( ) A. 死时间 ; B. 保留时间 ; C.调整保留时间; D.相对保留时间 ( )3.气-液色谱系统中,待分离组分的k值越大,则其保留值: A. 越大; B. 越小; C.不受影响; D.与载气流量成反比 ( )4.关于范第姆特方程式,正确的说法是: A. 最佳线速这一点,塔板高度最大; B. 最佳线速这一点,塔板高度最小; C. 塔板高度最小时,线速最小; D.塔板高度最小时,线速最大 ( )5.根据范第姆特方程式H=A+B/u+Cu,下列说法正确的是: A.H 越大,则柱效越高,色谱峰越窄,对分离有利; B. 固定相颗粒填充越均匀,则柱效越高; C. 载气线速越高,柱效越高; D. 载气线速越低,柱效越高 ( )6.在范第姆特方程式中,涡流扩散项主要受下列哪个因素影响 A. 载体填充的均匀程度 ; B.载气的流速大小; C.载气的摩尔质量; D.固定液的液膜厚度

( )7.用气相色谱法定量分析试样组分时,要求分离达98%,分离度至少为: ( )8.在气相色谱中,当两组分未能完全分离时,我们说: A. 柱效太低; B. 柱的选择性差; C.柱的分离度低; D. 柱的容量因子大 ( )9.分离非极性组分和极性组分混合物时,一般选用极性固定液,这是利用极性固定液的: A. 氢键作用; B. 诱导效应; C.色散作用; D.共轭效应 ( )10.苯和环已烷的沸点分别是80.10 °C 和 80.81 ° C,都是非极性分子。气相色谱分析中,若采用极性固定 液,则保留时间关系是: A. 苯比环已烷长; B. 环已烷比苯长; C. 二者相同; D. 无法确定 ( )11. 已知苯的沸点为80.10 ° C,环已烷的沸点为80.81 °C。当用邻苯二甲酸二壬酯作固定液分析这二种组 分时,环已烷比苯先出峰,其原因是固定液与被测组分间的: A. 静电力; B. 诱导力; C.色散力; D.氢键力 ( )12.使用热导池检测器时,一般选用H 2或He作载气,这是因为它们: A. 扩散系数大; B. 热导系数大; C.电阻小; D. 流量大 ( )13.氢火焰离子化检测器优于热导检测器的主要原因是: A. 装置简单; B. 更灵敏; C.可以检出许多有机化合物; D.较短的柱能够完成同样的分离

仪器分析 总结

第一章和第二章 1,电化学分析法的定义: 电化学分析法是根据物质的电学和电化学性质为分析一句来测定物质含量的一类分析方法。这类方法通常需要以化学电池,并在化学电池(被测溶液)中放置两个电极,两个电极与外接电源相连或不相连,测定通过化学电池的电阻(电导)、电流、两电极间的电位差或电极增加的质量,从而计算出被测物质的含量。 2,,电化学分析法的分类: ①电导分析法②电位分析法③电解分析法④库仑分析法⑤极谱法和伏安法 3,化学电池 化学电池是化学能与电能互相转换的装置; 组成化学电池的条件; 根据电极与电解质的接触方式不同,化学电池分为两类:液接和非液接;(等等,课本P10-11)4,盐桥:由装有电解质及凝胶状琼脂的 U型玻璃管构成。 由于其中电解质的浓度比较高,在他与电池中的两溶液链接式,界面上所形成的电位差基本上由盐桥中的电解质扩散产生。由于电解质的正、负离子扩散速率相近,产生的电位差很小,并且这两个电位差的方向正好相反,可以相互抵消。 5,能斯特方程 第三章 1,电位分析法的定义:

通过测定化学电池的电位差,根据电极电位和溶液中某种离子的活度(或浓度)之间的关系来测定待测物质活度(或浓度)的电化学分析法称为电位分析法。 2,电位分析法的原理: 测量装置:电位差计(毫伏计)、参比电极、指示电极。 测量时参比电极电极电位保持不变;指示电极电极电位随待测离子活度或浓度的变化而变,电池电动势随指示电极的电极电位而变。 3,电位分析法的分类: ①直接电位法直接测量电池电动势,根据Nernst公式计算出待测物质的含量。 a,直接比较法 b,标准曲线法 ×c,标准加入法 d,连续标准加入法—格氏作图法 ②电位滴定法通过测量滴定过程中电池电动势的突变确定滴定终点,进而求出待测物质的含量。 确定滴定终点:a,E-V曲线法三切线法 b,ΔE/ΔV-V曲线法曲线最高点所对应的体积V即为滴定终点时所消耗滴定剂的体积 c,Δ2E/ΔV2-V曲线法Δ2E/ΔV2=0时所对应的体积V就是滴定终点。4,参比电极的定义:电极电位恒定,不受溶液组成或电流流动方向变化影响的电极。 参比电极的主要要求:稳定性好 指示电极定义:电位随溶液中待测离子活度(或浓度)变化而变化,并能反映出待测离子活度(或浓度)的电极。

仪器分析实验总结

仪器分析实验总结 1014061525 虞梦娜 一、红外光谱仪实验报告 1.仪器结构 仪器设备:SHIMADZU IRPresting-21型傅立叶变换红外光谱仪 SHIMADZU IRPresting-21 仪器结构: 傅 傅立叶变换红外光谱仪的工作原理图 固定平面镜、分光器和可调凹面镜组成傅立叶变换红外光谱仪的核心部

件-迈克尔干涉仪。由光源发出的红外光经过固定平面镜反射镜后,由分光器分为两束:50%的光透射到可调凹面镜,另外50%的光反射到固定平面镜。 可调凹面镜移动至两束光光程差为半波长的偶数倍时,这两束光发生相长干涉,干涉图由红外检测器获得,经过计算机傅立叶变换处理后得到红外光谱图。 IRPresting-21型傅立叶变换红外光谱仪具300入射迈克尔逊密闭型干涉仪,单光束光学系统,空冷陶瓷光源,镀锗KBr基片分束器,温度可调的DLATGS检测器,波数范围7,800~350cm-1,S/N大于40000∶1(4cm-1,1分钟,2100cm-1附近,P—P),具有自诊断功能和状态监控器。可收集中红外、近红外、远红外范围光谱。 常用红外光谱-红外光谱仪 ①棱镜和光栅光谱仪 光栅光谱仪 属于色散型光谱仪,它的单色器为棱镜或光栅,属单通道测量,即每次只测量一个窄波段的光谱元。转动棱镜或光栅,逐点改变其方位后,可测得光源的光谱分布。随着信息技术和电子计算机的发展,出现了以多通道测量为特点的新型红外光谱仪,即在一次测量中,探测器就可同时测出光源中各个光谱元的信息。 ②傅里叶变换红外光谱仪

它是非色散型的,核心部分是一台双光束干涉仪,常用的是迈克耳孙干涉仪。当动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。 傅里叶变换红外光谱仪 傅里叶变换光谱仪的主要优点是: ①多通道测量使信噪比提高; ②没有入射和出射狭缝限制,因而光通量高,提高了仪器的灵敏度; ③以氦、氖激光波长为标准,波数值的精确度可达0.01厘米-1; ④增加动镜移动距离就可使分辨本领提高; ⑤工作波段可从可见区延伸到毫米区,使远红外光谱的测定得以实现。 上述各种红外光谱仪既可测量发射光谱,又可测量吸收或发射光谱。当测量发射光谱时,以样品本身为光源;测量吸收或反射光谱时,用卤钨灯、能斯脱灯、硅碳棒、高压汞灯(用于远红外区)为光源。所用探测器主要有热探测器和光电探测器,前者有高莱池、热电偶、硫酸三甘肽、氘化硫酸三甘肽等;后者有碲镉汞、硫化铅、锑化铟等。常用的窗片材料有氯化钠、溴化钾、氟化钡、氟化锂、氟化钙,它们适用于近、中红外区。在远红外区可用聚乙烯片或聚酯薄膜。此外,还常用金属镀膜反射镜代替透镜。

仪器分析法概论

仪器分析法概论 一、近代仪器分析的发展过程 50年代仪器化;60年代电子化;70年代计算机化;80年代智能化;90年代信息化;21世纪是仿生化和进一步智能化。 二、化学分析法与仪器分析法的关系 重量分析法 化学分析法酸碱滴定法 滴定分析法沉淀滴定法 配位滴定法 氧化还原滴定法 天平的出现化学分析法的优点:准确、仪器简单、快速、适用于常量化学。 比色计、分光光度计出现 光谱分析法-根据物质发射的电磁辐射或物质与辐射的相互作用建仪器分析法立起来的一类仪器分析方法。 (精密仪器)色谱分析法-是一种物理或物理化学分离分析方法。 仪器分析法的优点:灵敏、快速、准确、适用于微量和痕量分析。 第十一章光谱分析法概论

1.定义:光学分析法是根据物质发射的电磁辐射或物质与辐射的相互作用建立起来的一类仪器分析方法。 2.光学分析法包含的三个主要过程: (1)由仪器设置的能源提供能量照射至被测物质。 (2)能量与被测物质之间相互发生作用。 (3)产生可被检测的讯号。 第一节 电磁辐射及其与物质的相互作用 (一)电磁辐射和电磁波谱 1.光的波粒二象性:光是一种电磁辐射(电磁波),是一种以巨大速度通过空间而不需要任何物质作为传播媒介的光子流,它具有波粒二象性。 (1)光的波动性:光的波动性用波长λ(nm )、波数σ(cm - 1)和频率υ(Hz )表述。 在真空中,波长、波数和频率的关系为: ,C υλ= (11-1) 光速=光的频率×波长 (11-2) 波数=1/波长 (2)光的微粒性:用以解释光与物质相互作用产生的光电效应、光的吸收和发射等现象。 光的微粒性用每个光子具有的能量E 作为表征,光子的能量是与频率成正比,与波长成反比。它与频率、波长和波数的关系为: 从γ射线一直到无线电波都是电磁辐射,光是电磁辐射的一种形式,每个波段之间,由于波长或频率不同,光子具有的能量也不相同。电磁辐射按照波长顺序的排列称为电磁波谱,电磁波谱的波长或能量是没有边际的,表11-1所示的电磁波谱只是排列出了已被人们认识了的几个主要波段。下册主要讨论近紫外区、可见区和近红外区、远红外区的电磁波谱与物质的定性和定量关系。从表可见,光的波长越短、频率越高,能量越大;反之亦然。 表11-1 电磁波谱及其在仪器分析中的应用 C υλ =1σλ =C E h h υλ ==

仪器分析复习总结

1.光谱范围:仪器能测量光谱的波长范围。 2.工作范围:仪器能按规定的准确度和精密度进行测量的吸光度或强度范围。 3.厚度:样品池的两个平行且透光的内表平面之间的距离。 4.光路长度:光通过吸收池内物质的入射面和出射面之间的路程。当垂直入射时,应与厚度相同。 5.仪器的准确度:在不考虑随机误差的情况下,仪器给出的读数与被测量的真值相一致的能力。考察系统误差。 6.仪器的重复性:在不考虑系统误差的情况下,仪器对某一测量值能给出相一致读数的能力 (短时间内) 。 7.仪器的稳定性:在一段时间内,仪器保持其精密度的能力 8.仪器的可靠性:仪器保持其所有性能(准确度、精密度和稳定性)的能力。 1 仪器分析:是指通过测量物质是某些物理或者物理化学性质` 参数及其变化来确定物质的组成成分含量级化学结构的分析方法。 2 定性分析:鉴定式样由哪些元素、离子、基团或化合物组成,即确定物质的组成。 3 定量分析:试样中各种组分(如元素、根或官能团等)含量的操作。 4精密度:指同一分析仪器的同一方法多次测定所得到数据间的一致程度,是表征随机误差大小的指标,亦成为重复测定结果随测定平均值的分散度,即重现性。 5 灵敏度:仪器或分析方法灵敏度是指区别具有微小浓度差异分析物能力的度量,它取决于两个因素:即校准曲线的斜率和仪器设备的重现性或精密度。 6 检出限:又称检测下限或最低检出量,指一定置信水平下检出分析物或组分的最小量或最低浓度。它取决于分析物产生信号与本底空白信号波动或噪声统计平均值之比。 7动态范围:定量测定最低浓度(LOQ)扩展到校准曲线偏离线性响应(LOL)的浓度范围。 8选择性:一种仪器方法的选择性是指避免试样中含有其它组分干扰组分测定的程度。 9 分辨率:指仪器鉴别由两相近组分产生信号的能力。不同类型仪器分辨率指标各不相同,光谱仪器指将波长相近两谱线(或谱峰)分开的能力;质谱仪器指分辨两相邻质量组分质谱峰的分辨能力;色谱指相邻两色谱峰的分离度;核磁共振波谱有它独特的分辨率指标,以临二氯甲苯中特定峰,在最大峰的半宽度为分辨率大小。 10 分析仪器的校正:仪器分析中将分析仪器产生的各种响应信号值转变成被测物质的质量或浓度的过程称为校正。一般包括分析仪器的特征性能指标和定量分析方法校正。 11 电磁辐射:电场和磁场的交互变化产生的电磁波,电磁波向空中发射或汇聚的现象,叫电磁辐射举例说,正在发射讯号的射频天线所发出的移动电荷,便会产生电磁能量。 12 电磁辐射的吸收、发射、散射、折射、干涉、衍射: (4) 折射折射是光在两种介质中的传播速度不同;(7) 衍射光绕过物体而弯曲地向他后面传播的现象; 13 分子光谱、原子光谱 分子光谱:分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱)。 原子光谱:是由原子中的电子在能量变化时所发射或吸收的一系列光所组成的光谱。

常用仪器分析方法概论.

第十三* 常用仪分析方法轨淹 第一节仪器分析简介 仪器分析法是通过测定物质的光、电、 磁等物理化学性质来确定其化学组 含量和化学结构的分析方法。 热、 - \ 6 *豪

方法试样质!n/mg试液体积/mL 常量分析>100>10 半微量分析10~1001~10 微量分析0?1~100.1-1 超微量分析<0.1<0.01 ?灵敏度高,检出限量可降低.样品用量由化学分析的mL、mg级降低到pg、|1L级,S至至低。适合于微量、痕量和超痕量成分的测定。 ?选择性好:仪器分析方法可以通过选择或调整测定的条件,使共存的组分测定时,相互间不产生干扰。 ?操作简便,分析速度快,容易实现自动化。 ?相对误差较大:化学分析一般用于常量和高含量成分分析,准确度较高,误差小于千分之几。多数仪器分析相对误差较大,一般为5%,不适用于常量和高含量成分分析。

?需要价格比较昂贵的专用仪器。

仪器分析与化学分析关系 仪器分析是在化学分析基础上的发展 -不少仪器分析方法的原理,涉及到有关化学分析的基本理论; -不少仪器分析方法,还必须与试样处理、分离及掩蔽等化学分析手段相结合,才能完成分析的全过程。 -仪器分析有时还需要采用化学富集的方法提高灵敏度; -有些仪器分析方法,如分光光度分析法,由于涉及大量的有机试剂和配合物化学等理论,所以在不少书籍中,把它列入化学分析。 仪器分析与化学分析关系 ?应该指出,仪器分析本身不是一门独立的学科,而是务种仪器方法的组合。这些仪器方法在化学学科中极其重要,已不单纯地应用于分析的目的,而是广泛地应用于研究和解决各种化学理论和实际问题。因此,将它们称为“化学分析中的仪器方法' 更为确切。 4和滞 Vi

河科大仪器分析总结试题

选择题 3. 分子的紫外-可见吸收光谱呈带状光谱,其原因是什么? A. 分子电子能级的跃迁伴随着振动、转动能级的跃迁; 4. 分光光度计的主要部件中不包括:B. 比色皿; 5. 银-氯化银电极的电位决定于溶液中:D. 氯离子活度 6. 下列哪一项对组分的分离度影响较大?A. 柱温 7. 气相色谱分析中,增加柱温,组分保留时间如何变化?B. 缩短 8. 在气相色谱分析中,提高柱温,色谱峰如何变化?D. 峰高增加,峰变窄 9. 在下列情况下,两个组分肯定不能被分离的是:C. 两个组分分配系数比等于1; 10. 速率理论从理论上阐明了:D. 影响柱效能的因素 11. 下列不是氢火焰检测器组成部分的是:A. 热敏电阻; 12. 公式E K a 2.303 lg RTnF= + ¢但下列不包括在其中的一项是__。C. 膜电位; 14. 测定物质的吸收曲线时,每改变一次波长,需要C. 调整仪器透光度范围; 15. 在分光光度分析法中,摩尔吸光系数的大小与下列哪种因素无关?B. 参比溶液; 16. 离子选择性电极的选择性系数是:C. 估计干扰离子给测定带来误差大小的系数; 17. 电位分析中的标准加入法不要求的是:C. 加入标准溶液后,测量溶液离子强度变化小; 18. 用离子选择性电极进行测量时,需用磁力搅拌器搅拌溶液,这是为了A. 加快响应速度 19. 原子吸收分析中光源的作用是:C. 发射一种元素基态原子所吸收的特征共振辐射; 20. 气相色谱中,下列哪个组分最宜用电子捕获检测器:B. 农作物中含氯农药的残留;1、色谱定量分析方法中使用归一化法的情况是:A试样中所有组分都出峰D对进样量要求不严。2、属于浓度型检测器的是A热导检测器C电子捕获检测器。3、笵第姆特方程中,影响A项的因素有A固定相粒径大小D色谱柱填充的均匀程度。4、影响两组分相对保留值的因素是B柱温D固定液的性质。5、下列分析方法属于光学分析法的是C紫外光谱法D 原子吸收法,6、影响组分调整保留时间的主要因素有A固定液的性质D载气流速。 A水样ph、B氟离子选择、C格式作图、D电位滴定、E分光光度、F紫外光谱、G原子吸收、H气相色谱。原子光谱G分子光谱EF分离分析H吸收光谱EFG电位分析ABCD 1.可见分光光度法合适的检测波长范围是:200-800nm。可见光的波长范围是400-76.nm。 2.温度降低,荧光效率增加,荧光强度增大。 3.溶液的极性会使吸收带的最大吸收波长发生变化。HPLC法最常用紫外吸收检测器。现需分离氨基酸试样用高效液相色谱。分析苯与二甲苯用FID。 判断题: 1.甘汞电极的电位随电极内 KCl 溶液浓度的增加而增加。(×) 2. 离子选择性电极的电位与待测离子活度成正比。(×) 3. 在载气流速比较高时,分子扩散成为影响柱效的主要因素。(×) 4. 气液色谱分离机理是基于组分在两相间反复多次的吸附与脱附,气固色谱分离是基于组分在两相间反复多次的分配。(×) 5. 检测器性能好坏将对组分分离度产生直接影响。(√) 6. 色谱的塔板理论提出了衡量色谱柱效能的指标,速率理论则指出了影响柱效的因素。(√) 7. 采用色谱归一化法定量的前提条件是试样中所有组分全部出峰。(√) 8. 电子捕获检测器对含有 S、P 元素的化合物具有很高的灵敏度。(×) 9. 毛细管色谱的色谱柱前需要采取分流装置是由于毛细管色谱柱对试样负载量很小;柱后采用“尾吹”装置是为了加速样品通过检测器,减少组分的柱后扩散。(√) 10. 液相色谱指的是流动相是液体,固定相也是液体的色谱。(×)

仪器分析

仪器分析 第一章绪论 1.仪器分析的概念 仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。 2.仪器分析特点 ①速度快,适合于复杂混合物样品的成批分析。 ②信息多,有利于结构或表面状态分析。 ③灵敏度高,样品用量少。 ④可实现非破坏性分析,还可用少量样品相继进行多种分析。 ⑤准确度低,不适合常量分析。 ⑥费用高。 3.分析仪器的性能指标:精密度、灵敏度、检出限、动态范围、选择性、分辨率。 第二章色谱法导论 1.色谱法定义 色谱法是一种物理化学的分离分析方法。它是利用样品中各种组分在固定相与流动相中受到的作用力不同,而将待分析样品中的各种组分进行分离,然后依次检测各组分含量的一种分离分析方法。 2.名词解释:峰高、峰宽、峰面积、保留时间。 峰高(b):色谱峰顶点与基线之间的垂直距离。 峰宽(w):又称峰底宽度,色谱峰两侧拐点上的切线在基线上截距间的距离。 峰面积(A):指色谱曲线与基线间包围的面积。 保留时间(tr):试样从进样到柱后出现峰极大点时所经过的时间,称为保留时间。 3.从色谱流出曲线上可以得到的信息 ①根据色谱峰的个数,可以判断样品中所含组分的最少个数; ②根据色谱峰的保留值,可以进行定性分析; ③根据色谱峰的面积或峰高,可以进行性定量分析; ④色谱峰的保留值及其区域宽度,是评价色谱柱分离效能的依据; ⑤色谱峰两峰间的距离,是评价固定相(或流动相)选择是否合适的依据。 4.掌握几个概念 ①分配系数:是指在一定温度和压力下,组分在固定相和流动相之间分配达平衡时的浓度 之比。 ②容量因子:分配比又称容量因子,它是指在一定温度和压力下,组分在两相间分配达平 衡时,分配在固定相和流动相中的质量比。 ③色谱分离度:分离度又叫分辨率,是指相邻两个峰的分离程度。它定义为相邻两组分色 谱峰保留值之差与两组分色谱峰底宽总和之半的比值。 第三章气相色谱法 1.气相色谱仪:

仪器分析习题(色谱)

仪器分析习题(色谱) 一、问答题 1、简述气相色谱(气—固;气—液)分析法的分离原理 答:色谱分离法是一种物理分析方法,其分离原理是将被分离的组分在固定相与流动相之间进行多次分配,由于被分离组分之间物理化学性质之间存在微小差异,在固定相上的滞留时间不同,经过多次分配之后,其滞留时间差异被拉大,经过一定长度的色谱柱后,组分即按期与固定相之间作用强弱顺序流出色谱柱。由试验看出,实现色谱分离的必要条件是分离体系必须具有两相,即固定相与流动相,被分离组分与固定相之间的相互作用有差异。在分离过程中,固定相可以是固体吸附剂也可以是涂渍在惰性担体表面上的液态薄膜,在色谱分析中,此液膜称为固定液。流动相可以是惰性气体、液体或超临界流体。其惰性是指流动相与固定相和被分离组分之间无相互作用。色谱分离之所以能够实现,其内因是由于组分与固定相之间的吸附或分配性质的差异。其宏观表现是吸附与分配的差异。其微观解释是固定相与组分之间作用力的差别。分子间作用力的差异大小用组分在固定相与流动相之间的分配系数来表示。在一定的温度条件下分配系数越大,说明组分在固定相上滞留的越强,组分流出色谱柱越晚;反之,分配系数越,组分在固定相上滞留的越弱,组分流出色谱柱的时间越短。而气相色谱的流动相为气体。 2、保留时间和调整保留时间; 答:保留时间t R(retention time) 试样从进样到柱后出现峰极大点时所经过的时间,称为保留时间,如图2~3中O’B。调整保留时间tR(adjusted retention time) 某组分的保留时间扣除死时间后,称为该组分的调整保留时间,即 tR=t R-t0 由于组分在色谱柱中的保留时间t r包含了组分随流动相通过柱子所需的时间和组分在固定相中滞留所需的时间,所以t r实际上是组分在固定相中停留的总时间。保留时间是色谱法定性的基本依据,但同一组分的保留时间常受到流动相流速的影响,因此色谱 3、区域宽度; 答:区域宽度(peak width) 色谱峰的区域宽度是色谱流出曲线的重要多数之一,用于衡量柱 效率及反映色谱操作条件的动力学因素。表示色谱峰区域宽度通常有三 种方法。 (1).标准偏差(standatd deviation) 即0.607倍峰高处色谱峰宽的一半,如图中距离的一半。 (2).半峰宽(peak width at half-height)Y1/2 即峰高一半处对应的峰宽。如图1中间的距离,它与标准偏差的关 系为 Y1/2=2.35 σ (3).峰底宽度W(peak width at base) 即色谱峰两侧拐点上的切线在基线上截距间的距离。如图2~3 中IJ的距离,它与标准偏差σ的关系是: Y=4 σ 4、正相液—液色谱和反相相液—液色谱; 答:正相液--液色谱:亲水性固定相,疏水性流动相,既固定相极性大于流动相;反相液--液色谱:疏水性固定相,亲水性流动相,既固定相极性小于流动相。

仪器分析总结

1仪器分析概述 1、1分析化学 1、1、1定义 分析化学就是指发展与应用各种方法、仪器与策略,获得有关物质在空间与时间方面组成与性质信息的一门科学,就是化学的一个重要分支。 1、1、2任务 分析化学的主要任务就是鉴定物质的化学组成(元素、离子、官能团、或化合物)、测定物质的有关组分的含量、确定物质的结构(化学结构、晶体结构、空间分布)与存在形态(价态、配位态、结晶态)及其与物质性质之间的关系等,属于定性分析、定量分析与结构分析研究的范畴。 ①确定物质的化学组成——定性分析 ②测量试样中各组份的相对含量——定量分析 ③表征物质的化学结构、形态、能态——结构分析、形态分析、能态分析 ④表征组成、含量、结构、形态、能态的动力学特征——动态分析 1、1、3 分类 根据分析任务、分析对象、测定原理、操作方法与具体要求的不同,分析方法可分为许多种类。 ①定性分析、定量分析与结构分析 ②无机分析与有机分析

③化学分析与仪器分析 ④常量分析、半微量分析与微量分析 ⑤例行分析与仲裁分析 1、1、4 特点 分析化学就是一门信息的科学,现代分析化学学科的发展趋势与特点可归纳为如下几个方面: ①提高分析方法的灵敏度; ②提高分析方法的选择性及解决复杂体系的分离问题; ③扩展物质的时间空间多维信息; ④对微型化及微环境的表征与测定; ⑤对物质形态、状态分析及表征; ⑥对生物活性及生物大分子物质的表征与测定; ⑦对物质非破坏性检测及遥测;

⑧分析自动化及智能化。 1、2 仪器分析 仪器分析就是化学学科得到一个重要分支,以物质的物理与物理化学性质为基础建立起来的一种分析方法。 1、2、1分类 仪器分析分为电化学分析、光化学分析、色谱分析、质谱分析、热分析法与放射化学分析法,详见下表。 1、2、2特点 ①灵敏度高:大多数仪器分析法适用于微量、痕量分析。如原子吸收分光光度法测定某些元素的绝对灵敏度可达10-14g,电子光谱甚至可达10-18g; ②取样量少:化学分析法需用10-1~10-4g,而仪器分析试样常在10-2~10-8g;

仪器分析总结(DOC)

1仪器分析概述 1.1分析化学 1.1.1定义 分析化学是指发展和应用各种方法、仪器和策略,获得有关物质在空间和时间方面组成和性质信息的一门科学,是化学的一个重要分支。 1.1.2任务 分析化学的主要任务是鉴定物质的化学组成(元素、离子、官能团、或化合物)、测定物质的有关组分的含量、确定物质的结构(化学结构、晶体结构、空间分布)和存在形态(价态、配位态、结晶态)及其与物质性质之间的关系等,属于定性分析、定量分析和结构分析研究的范畴。 ①确定物质的化学组成——定性分析 ②测量试样中各组份的相对含量——定量分析 ③表征物质的化学结构、形态、能态——结构分析、形态分析、能态分析 ④表征组成、含量、结构、形态、能态的动力学特征——动态分析 1.1.3 分类 根据分析任务、分析对象、测定原理、操作方法和具体要求的不同,分析方法可分为许多种类。 ①定性分析、定量分析和结构分析

②无机分析和有机分析 ③化学分析和仪器分析 ④常量分析、半微量分析和微量分析 ⑤例行分析和仲裁分析 1.1.4 特点 分析化学是一门信息的科学,现代分析化学学科的发展趋势和特点可归纳为如下几个方面: ①提高分析方法的灵敏度; ②提高分析方法的选择性及解决复杂体系的分离问题; ③扩展物质的时间空间多维信息;

④对微型化及微环境的表征与测定; ⑤对物质形态、状态分析及表征; ⑥对生物活性及生物大分子物质的表征与测定; ⑦对物质非破坏性检测及遥测; ⑧分析自动化及智能化。 1.2 仪器分析 仪器分析是化学学科得到一个重要分支,以物质的物理和物理化学性质为基础建立起来的一种分析方法。 1.2.1分类 仪器分析分为电化学分析、光化学分析、色谱分析、质谱分析、热分析法和放射化学分析法,详见下表。

现代仪器分析重点总结(期末考试版)

现代仪器分析:一般的说,仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。 灵敏度:指待测组分单位浓度或单位质量的变化所引起测定信号值的变化程度。灵敏度也就是标准曲线的斜率。斜率越大,灵敏度就越高 光分析法:利用光电转换或其它电子器件测定“辐射与物质相互作用”之后的辐射强度等光学特性,进行物质的定性和定量分析的方法。 光吸收:当光与物质接触时,某些频率的光被选择性吸收并使其强度减弱,这种现象称为物质对光的吸收。 原子发射光谱法:元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进行定性、定量的分析方法。 主共振线:在共振线中从第一激发态跃迁到激发态所发射的谱线。 分析线:复杂元素的谱线可能多至数千条,只选择其中几条特征谱线检验,称其为分析线。 多普勒变宽:原子在空间作不规则的热运动所引起的谱线变宽。 洛伦兹变宽:待测原子和其它粒子碰撞而产生的变宽。 助色团:本身不吸收紫外、可见光,但与发色团相连时,可使发色团产生的吸收峰向长波方向移动,且吸收强度增强的杂原子基团。 分析仪器的主要性能指标是准确度、检出限、精密度。 根据分析原理,仪器分析方法通常可以分为光分析法、电分析化学方法、色谱法、其它仪器分析方法四大类。 原子发射光谱仪由激发源、分光系统、检测系统三部分组成。 使用石墨炉原子化器是,为防止样品及石墨管氧化应不断加入(N2)气,测定时通常分为干燥试样、灰化试样、原子化试样、清残。 光谱及光谱法是如何分类的? ⑴生光谱的物质类型不同:原子光谱、分子光谱、固体光谱; ⑵光谱的性质和形状:线光谱、带光谱、连续光谱; ⑶产生光谱的物质类型不同:发射光谱、吸收光谱、散射光谱。 ⑷ 原子光谱与发射光谱,吸收光谱与发射光谱有什么不同 原子光谱:气态原子发生能级跃迁时,能发射或吸收一定频率的电磁波辐射,经过光谱依所得到的一条条分立的线状光谱。 分子光谱:处于气态或溶液中的分子,当发生能级跃迁时,所发射或吸收的是一定频率范围的电磁辐射组成的带状光谱。 吸收光谱:当物质受到光辐射作用时,物质中的分子或原子以及强磁场中的自选原子核吸收了特定的光子之后,由低能态被激发跃迁到高能态,此时如将吸收的光辐射记录下来,得到的就是吸收光谱。 发射光谱:吸收了光能处于高能态的分子或原子,回到基态或较低能态时,有时以热的形式释放出所吸收的能量,有时重新以光辐射形式释放出来,由此获得的光谱就是发射光谱。 选择内标元素和分析线对有什么要求? a.若内标元素是外加的,则该元素在分析试样中应该不存在,或含量极微可忽略不计,以免破坏内标元素量的一 致性。 b.被测元素和内标元素及它们所处的化合物必须有相近的蒸发性能,以避免“分馏”现象发生。 c.分析线和内标线的激发电位和电离电位应尽量接近(激发电位和电离电位相等或很接近的谱线称为“均称线 对”);分析线对应该都是原子线或都是离子线,一条原子线而另一条为离子线是不合适的。 d.分析线和内标线的波长要靠近,以防止感光板反衬度的变化和背景不同引起的分析误差。分析线对的强度要合 适。 e.内标线和分析线应是无自吸或自吸很小的谱线,并且不受其他元素的谱线干扰。 原子荧光光谱是怎么产生的?有几种类型? 过程:当气态原子受到强特征辐射时,由基态跃迁到激发态,约在10-8s后,再由激发态跃迁回到基态,辐射出与吸收光波长相同或不同的辐射即为原子荧光。 三种类型:共振荧光、非共振荧光与敏化荧光。 为什么原子发射光谱法可采用内标法来消除实验条件的影响? 影响谱线强度因素较多,直接测定谱线绝对强度计算难以获得准确结果,实际工作多采用内标法。内标法属相对强度法,是在待测元素的谱线中选一条谱线作为分析线,然后在基体元素或在加入固定量的其他元素的谱线中选一条

相关主题