搜档网
当前位置:搜档网 › gurobi (数学规划优化引擎)可视化建模环境—python 编程

gurobi (数学规划优化引擎)可视化建模环境—python 编程

五种最优化方法

五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2原理和步骤

3.最速下降法(梯度法) 3.1最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 3.2最速下降法算法原理和步骤

4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤

5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)) s.t. g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进

1最优化方法教案(线性规划)

最优化方法 一、引言 最优化理论与方法是一门应用性很强的年轻学科。它研究某些数学上定义的问题的最优解,即对于给出的实际问题,从众多的方案中选出最优方案。 虽然最优化可以追朔到十分古老的极值问题,然而,他成为一门独立的学科诗在上世纪40年代末,是在1947年Dantzing 提出求解一般线性规划问题的单纯型法之后。现在,解线性规划、非线性规划以及随机规划、非光滑规划、多目标规划、几何规划、整数规划等各种最优化问题的理论的研究发展迅速,新方法不断出现,实际应用日益广泛。在电子计算机的推动下,最优化理论与方法在经济计划、工程设计、生产管理、交通运输等方面得到了广泛应用,成为一门十分活跃的学科。 现在大多数有代表性的最优化算法已有可以方便使用的软件包,如lindo\lingo 优化软件包。但有效利用这些成果是以有待解决的问题已被模型化成最优化问题的形式为前提的。要做到这点,要有深刻的洞察力和综合能力,这需要掌握最优化算法的结构和特点,并与专业知识的结合和兼蓄。 最优化有着丰富的内容和方法,本课我们主要介绍线性规和非线性规划的主要方法与理论他们是最优化理论的重要分支,也是最基本的部分。 第一部分:线性规划 第一章:单纯型法 第一节问题的引出: 例 1:某制造公司需要生产n 种产品,生产这n 种产品需要m 种不同的原材料,第i (i=1,2,.....m.。)种原材料的拥有量为b i 。实际情况很复杂,我们将其简化或理想化,只关注某个时间点的特定情况,第i 种原材料在某时间点的市场价格为ρi ,生产单位数量的第j 种产品需消耗第i 种原材料a ij 个单位。第j 种产品在同一时间点上的市场价格为σj 。 考虑问题一:如何安排1,2,…….n 种产品的生产,从而使收益最大 设第j 种的产量为j x 单位,第j 种产品的收益与市场销售价i σ有关,也与生产第j 种产 品所消耗的原材料费用1 m i j i i a ρ=∑有关,因此第j 种单位产品的纯收入为1 m j j ij i i c a σρ==-∑, 全部纯收入 j j c x ∑,此时0j x ≥。 而我们不可能超出原材料的拥有量生产产品。生产n 种产品时,所消耗的第i (i=1,2,.....m.。)种原材料的总量为 11221 n i i in n ij j j a x a x a x a x =++ +=∑

最优化方法(线性规划)——用Lingo对线性规划进行灵敏度分析

lingo 软件求解线性规划及灵敏度分析 注:以目标函数最大化为例进行讨论,对求最小的问题,有类似的分析方法!所有程序运行环境为lingo10。 一、用lingo 软件求解线性规划 例1: m a x 23..4310 3512,0 z x y s t x y x y x y =++≤+≤≥ 在模型窗口输入: model: max=2*x+3*y; 4*x+3*y<=10; 3*x+5*y<12; ! the optimal value is :7.454545 ; End 如图所示: 运行结果如下(点击 工具栏上的‘solve ’或点击菜单‘lingo ’下的‘solve ’即可): Global optimal solution found. Objective value: 7.454545(最优解函数值) Infeasibilities: 0.000000 Total solver iterations: 2(迭代次数)

Variable (最优解) Value Reduced Cost X 1.272727 0.000000 Y 1.636364 0.000000 Row Slack or Surplus Dual Price 1 7.454545 1.000000 2 0.000000 0.9090909E-01 3 0.000000 0.5454545 例2: 12123124125m a x 54.. 390280450 z x x s t x x x x x x x x x x =+++=++=++=≥ 在模型窗口输入: model: max=5*x1+4*x2; x1+3*x2+x3=90; 2*x1+x2+x4=80; x1+x2+x5=45; end 运行(solve )结果如下: Global optimal solution found. Objective value: 215.0000 Infeasibilities: 0.000000 Total solver iterations: 3 Variable Value Reduced Cost X1 35.00000 0.000000 X2 10.00000 0.000000 X3 25.00000 0.000000 X4 0.000000 1.000000 X5 0.000000 3.000000 Row Slack or Surplus Dual Price 1 215.0000 1.000000 2 0.000000 0.000000 3 0.000000 1.000000 4 0.000000 3.000000 例3

五种最优化方法

精心整理 五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3 4 1.2 2. 2.1 1 2 3 2.2 3. 3.1 1 2 3 3.2 4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降

方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤 5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下: min(f_1(x),f_2(x),...,f_k(x)) s.t.g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。 6.1遗传算法基本概念 1.个体与种群 个体就是模拟生物个体而对问题中的对象(一般就是问题的解)的一种称呼。 种群就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。 2.适应度与适应度函数 适应度就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。 适应度函数就是问题中的全体个体与其适应度之间的一个对应关系。该函数就是遗传算法中指导搜索的评价函数。 6.2遗传算法基本流程 遗传算法的中心思想就是对一定数量个体组成的生物种群进行选择、交叉、变异等遗传操作,最终求得最优解或近似最优解。 遗传算法步骤 步1在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;

数学建模案例之多变量最优化

数学建模案例之多变量最 优化

数学建模案例之 多变量无约束最优化 问题1[1]:一家彩电制造商计划推出两种产品:一种19英寸立体声彩色电视机,制造商建议零售价(MSRP)为339美元。另一种21英寸立体声彩色电视机,零售价399美元。公司付出的成本为19英寸彩电195美元/台,21英寸彩电225美元/台,还要加上400000美元的固定成本。在竞争的销售市场中,每年售出的彩电数量会影响彩电的平均售价。据估计,对每种类型的彩电,每多售出一台,平均销售价格会下降1美分。而且19英寸彩电的销售量会影响21英寸彩电的销售量,反之也是如此。据估计,每售出一台21英寸彩电,19英寸的彩电平均售价会下降0.3美分,而每售出一台19英寸的彩电,21英寸彩电的平均售价会下降0.4美分。问题是:每种彩电应该各生产多少台? 清晰问题:问每种彩电应该各生产多少台,使得利润最大化? 1.问题分析、假设与符号说明 这里涉及较多的变量: s:19英寸彩电的售出数量(台); t:21英寸彩电的售出数量(台); p:19英寸彩电的售出价格(美元/台); q:21英寸彩电的售出价格(美元/台); C:生产彩电的成本(美元); R:彩电销售的收入(美元); P:彩电销售的利润(美元)

两种彩电的初始定价分别为:339美元和399美元,成本分别为:195美元和225美元;每种彩电每多销售一台,平均售价下降系数a=0.01美元(称为价格弹性系数);两种彩电之间的销售相互影响系数分别为0.04美元和0.03美元;固定成本400000美元。 变量之间的相互关系确定: 假设1:对每种类型的彩电,每多售出一台,平均销售价格会下降1美分。 假设2:据估计,每售出一台21英寸彩电,19英寸的彩电平均售价会下降0.3美分,而每售出一台19英寸的彩电,21英寸彩电的平均售价会下降0.4美分。 因此,19英寸彩电的销售价格为: p=339-a×s-0.03×t,此处a=0.01 21英寸彩电的销售价格为: q=399-0.01×t-0.04×s 因此,总的销售收入为: R=p×s+q×t 生产成本为: C=400000+195×s+225×t 净利润为: P=R-C 因此,原问题转化为求s≥0和t≥0,使得P取得最大值。 2.建立数学模型 根据前面的分析,原问题的数学模型如下:

五种最优化方法

五种最优化方法 1. 最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2 原理和步骤

3. 最速下降法(梯度法) 3.1最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 3.2 最速下降法算法原理和步骤

4. 模式搜索法(步长加速法) 4.1 简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤

5.评价函数法 5.1 简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)) s.t. g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有

数学建模-面试最优化问题

C题面试时间冋题 有4名同学到一家公司参加三个阶段的面试:公司要求每个同学都必须首先找公司秘书初试,然后到部门主管处复试,最后到经理处参加面试,并且不允许插队(即在任何一个阶段4名同学的顺序是一样的)。由于4名同学的专业背景不同,所以每人在三个阶段的面试时间也不同,如下表所示(单位:分钟): 这4名同学约定他们全部面试完以后一起离开公司?假定现在时间是早晨8:00问他们最早何时能离开公司? 面试时间最优化问题 摘要: 面试者各自的学历、专业背景等因素的差异,每个面试者在每个阶段的面试时间有所不同,这样就造成了按某种顺序进入各面试阶段时不能紧邻顺序完成,即当面试正式开始后,在某个面试阶段,某个面试者会因为前面的面试者所需 时间长而等待,也可能会因为自己所需时间短而提前完成。因此本问题实质上是求面试时间总和的最小值问题,其中一个面试时间总和就是指在一个确定面试顺序下所有面试者按序完成面试所花费的时间之和,这样的面试时间总和的所有可能情况则取决于n位面试者的面试顺序的所有排列数 根据列出来的时间矩阵,然后列出单个学生面试时间先后次序的约束和学生间的面试先后次序保持不变的约束,并将非线性的优化问题转换成线性优化目标,最后利用优化软件lingo变成求解。 关键词:排列排序0-1非线性规划模型线性优化 一)问题的提出 根据题意,本文应解决的问题有: 1、这4 名同学约定他们全部面试完以后一起离开公司。假定现在的时间是早晨8:00,求他们最早离开公司的时间; 2、试着给出此类问题的一般描述,并试着分析问题的一般解法。 (二)问题的分析问题的约束条件主要有两个:

一是每个面试者必须完成前一阶段的面试才能进入下一阶段的面试(同一个面试者的阶段次序或时间先后次序约束),二是每个阶段同一时间只能有一位面试者 (不同面试者在同一个面试阶段只能逐一进行)。对于任意两名求职者P、Q,不妨设按P在前,Q在后的顺序进行面试,可能存在以下两情况: (一)、当P进行完一个阶段j的面试后,Q还未完成前一阶段j-1的面试, 所以j阶段的考官必须等待Q完成j-1阶段的面试后,才可对Q进行j阶段的面试,这样就出现了考官等待求职者的情况。这一段等待时间必将延长最终的总时间。 (二)、当Q完成j-1的面试后,P还未完成j阶段的面试,所以,Q必须等待P 完成j 阶段的面试后,才能进入j 阶段的面试,这样就出现了求职者等待求职者的情况。同样的,这个也会延长面试的总时间。 以上两种情况,必然都会延长整个面试过程。所以要想使四个求职者能一起最早离开公司,即他们所用的面试时间最短,只要使考官等候求职者的时间和求 职者等候求职者的时间之和最短,这样就使求职者和考官的时间利用率达到了最高。他们就能以最短的时间完成面试一起离开公司。这也是我们想要的结果。 (三)模型的假设 1. 我们假设参加面试的求职者都是平等且独立的,即他们面试的顺序与考官无关; 2. 面试者由一个阶段到下一个阶段参加面试,其间必有时间间隔,但我们在这里假定该时间间隔为0; 3. 参加面试的求职者事先没有约定他们面试的先后顺序; 4. 假定中途任何一位参加面试者均能通过面试,进入下一阶段的面试。即:没有中途退出面试者; 5. 面试者及各考官都能在8:00 准时到达面试地点。 (四)名词及符号约束 1. aij (i=1,2 ,3,4;j= 1 ,2,3)为求职者i 在j 阶段参加面试所需的时间甲乙丙丁分别对应序号i=1 ,2,3 ,4 2. xij (i=1,2 ,3,4;j=1,2,3)表示第i 名同学参加j 阶段面试的开始时间(不妨把早上8:00 记为面试的0 时刻)

天津大学-研究生-最优化方法复习题

《最优化方法》复习题 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg m in m ax x f x f n n R x R x -=∈∈ √ 2 {}{}.:)(min :)(max n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题 )(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的严格局部最 优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为下降算法, 则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ . 13 算法迭代时的终止准则(写出三种):_____________________________________。

数学建模五步法与灵敏度分析

灵敏度分析 简介: 研究与分析一个系统(或模型)的状态或输出变化对系统参数或周围条件变化的敏感程度的方法。在最优化方法中经常利用灵敏度分析来研究原始数据不准确或发生变化时最优解的稳定性。通过灵敏度分析还可以决定哪些参数对系统或模型有较大的影响。因此,灵敏度分析几乎在所有的运筹学方法中以及在对各种方案进行评价时都是很重要的。 用途: 主要用于模型检验和推广。简单来说就是改变模型原有的假设条件之后,所得到的结果会发生多大的变化。 举例(建模五步法): 一头猪重200磅,每天增重5磅,饲养每天需花费45美分。猪的市场价格为每磅65美分,但每天下降1美分,求出售猪的最佳时间。 建立数学模型的五个步骤: 1.提出问题 2.选择建模方法 3.推到模型的数学表达式 4.求解模型 5.回答问题 第一步:提出问题 将问题用数学语言表达。例子中包含以下变量:猪的重量w(磅),从现在到出售猪期间经历的时间t(天),t天内饲养猪的花费C(美元),猪的市场价格p(美元/磅),出售生猪所获得的收益R(美元),我们最终要获得的净收益P(美元)。还有一些其他量,如猪的初始重量200磅。 (建议先写显而易见的部分) 猪从200磅按每天5磅增加 (w磅)=(200磅)+(5磅/天)*(t天) 饲养每天花费45美分 (C美元)=(0.45美元/天)*(t天) 价格65美分按每天1美分下降 (p美元/磅)=(0.65美元/磅)-(0.01美元/磅)*(t天) 生猪收益 (R美元)=(p美元/磅)*(w磅) 净利润 (P美元)=(R美元)-(C美元) 用数学语言总结和表达如下: 参数设定: t=时间(天)

w=猪的重量(磅) p=猪的价格(美元/磅) C=饲养t天的花费(美元) R=出售猪的收益(美元) P=净收益(美元) 假设: w=200+5t C=0.45t p=0.65-0.01t R=p*w P=R-C t>=0 目标:求P的最大值 第二步:选择建模方法 本例采用单变量最优化问题或极大—极小化问题 第三步:推导模型的数学表达式子 P=R-C (1) R=p*w (2) C=0.45t (3) 得到R=p*w-0.45t p=0.65-0.01t (4) w=200+5t (5) 得到P=(0.65-0.01t)(200+5t)-0.45t 令y=P是需最大化的目标变量,x=t是自变量,现在我们将问题转化为集合S={x:x>=0}上求函数的最大值: y=f(x)=(0.65-0.01x)(200+5x)-0.45x (1-1) 第四步:求解模型 用第二步中确定的数学方法解出步骤三。例子中,要求(1-1)式中定义的y=f (x)在区间x>=0上求最大值。下图给出了(1-1)的图像和导数(应用几何画板绘制)。在x=8为全局极大值点,此时f(8)=133.20。因此(8,133.20)为f在整个实轴上的全局极大值点,同时也是区间x>=0上的最大值点。 第五步:回答问题 根据第四步,8天后出售生猪的净收益最大,可以获得净收益133.20美元。只要第一步中的假设成立,这一结果正确。

数学建模中常用的思想和方法

数学建模中常用的思想和方法(1) knowledge 2010-08-19 00:42:51 阅读160 评论0字号:大中小 在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。 拟合与插值方法(给出一批数据点,确定满足特定要求的曲线或者曲面,从而反映对象整体的变化趋势):matlab可以实现一元函数,包括多项式和非线性函数的拟合以及多元函数的拟合,即回归分析,从而确定函数;同时也可以用matlab实现分段线性、多项式、样条以及多维插值。 在优化方法中,决策变量、目标函数(尽量简单、光滑)、约束条件、求解方法是四个关键因素。其中包括无约束规则(用fminserch、fminbnd实现)线性规则(用linprog实现)非线性规则、(用fmincon实现)多目标规划(有目标加权、效用函数)动态规划(倒向和正向)整数规划。 回归分析:对具有相关关系的现象,根据其关系形态,选择一个合适的数学模型,用来近似地表示变量间的平均变化关系的一种统计方法(一元线性回归、多元线性回归、非线性回归),回归分析在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型(经验公式);对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制。相对应的有线性回归、多元二项式回归、非线性回归。 逐步回归分析:从一个自变量开始,视自变量作用的显著程度,从大到地依次逐个引入回归方程:当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉;引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步;对于每一步都要进行值检验,以确保每次引入新的显著性变量前回归方程中只包含对作用显著的变量;这个过程反复进行,直

运筹学与最优化方法习题集

一.单纯性法 1.用单纯形法求解下列线性规划问题(共 15 分) 12 21 21212max 25156224..5 ,0 z x x x x x s t x x x x =+≤??+≤??+≤??≥? 2.用单纯形法求解下列线性规划问题(共 15 分) 12 121212 max 2322..2210 ,0z x x x x s t x x x x =+-≥-??+≤??≥? 3.用单纯形法求解下列线性规划问题(共 15 分) 1234 123412341234max 24564282..2341 ,,,z x x x x x x x x s t x x x x x x x x =-+-+-+≤??-+++≤??≥? 4.用单纯形法求解下列线性规划问题(共 15 分) 123 123123123123max 2360210..20 ,,0 z x x x x x x x x x s t x x x x x x =-+++≤??-+≤??+-≤??≥? 5.用单纯形法求解下列线性规划问题(共 15 分) 123 12312123max 224..26 ,,0z x x x x x x s t x x x x x =-++++≤??+≤??≥? 6.用单纯形法求解下列线性规划问题(共 15 分)

12 121212 max 105349..528 ,0z x x x x s t x x x x =++≤??+≤??≥? 7.用单纯形法求解下列线性规划问题(共 16 分) 12 121212max 254212..3218 ,0 z x x x x s t x x x x =+≤??≤??+≤??≥?

数学建模培训——最优化方法练习题

练习 1、求解下列线性规划问题。 (1) ()131********max 43112 .222333 3 24 36400,1,2,3,4 i f x x x s t x x x x x x x x x x i =--++-=+=-+=≥= (2) ()123123123max 23.2222320,1,2 i f x x x x s t x x x x x x x i =---+≤-+-≤-≥= (3) ()1231212312max 564.22553415100,1,2,3 i f x x x x s t x x x x x x x x i =+++≤++≤+≤≥= (4) 12312312312123min 33.. 25231612,,0 x x x s t x x x x x x x x x x x -++-+≤-+≤+≤≥ (5) 1212312412515max 2.. 506221,,0 x x s t x x x x x x x x x x x +++=-++=++=≥ (6)

() 123412341234max 30354045.. 34647043658001,2,3,4i x x x x s t x x x x x x x x x i ++++++≤+++≤≥= 2、建立线性规划模型,求解下列问题。 (1)某工厂生产甲、乙两种产品。已知生产甲种产品t 1需耗A 种矿石t 10、B 种矿石t 5、煤t 4;生产乙种产品t 1需耗A 种矿石t 4、B 种矿石t 4、煤t 9。每t 1甲种产品的利润是600元,每t 1乙种产品的利润是1000元。工厂在生产这两种产品的计划中要求消耗A 种矿石不超过t 300、B 种矿石不超过t 200、煤不超过t 360。甲、乙两种产品应各生产多少,能使利润总额达到最大? (2)设有A 1,A 2两个香蕉基地,产量分别为60吨和80吨,联合供应B 1,B 2,B 3三个销地的销售量经预测分别为50吨、50吨和40吨。两个产地到三个销地的单位运价如下表所示: 表1(单位运费:元/ 吨) 问每个产地向每个销地各发货多少,才能使总的运费最少? (3)某工厂用甲,乙两种原料生产A,B,C,D 四种产品,每种产品的利润、现有原料数量及每种产品消耗原料定额如下表: 问题:怎样组织生产才能使总利润最大? 3、一维非线性优化问题 (1)求函数()()()6 30sin tan 1x x x x e ?=-在[]0,1内的极大值 (2)求函数()t t t e e ψ-=+在[]1,1-内的极小值 (3)求函数()() () 2 2 1 1 60.30.01 0.90.04 f x x x =+ --+-+在1处的零点及在() 0.5,1.5-内的最大值;

天津大学《最优化方法》复习题(含答案)

天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg m in m ax x f x f n n R x R x -=∈∈ √ 2 {}{}.:)(min :)(max n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题 )(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的严格局部最 优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为下降算法, 则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ .

相关主题