搜档网
当前位置:搜档网 › 高纯金属的纯度分析方法

高纯金属的纯度分析方法

高纯金属的纯度分析方法
高纯金属的纯度分析方法

高纯金属的纯度分析方法

1 前言

1.1 高纯金属的概念

任何金属都不能达到绝对纯。“高纯”和“超纯”具有相对的含义,是指技术上达到的标准。由于技术的发展,也常使“超纯”的标准升级。例如过去高纯金属的杂质为ppm级(即百万分之几),而超纯半导体材料的杂质达ppb级(十亿分之几),并将逐步发展到以ppt级(一万亿分之几)表示。实际上纯度以几个“9”(N)来表示(如杂质总含量为百万分之一,即称为6个“9”或6N),是不完整概念,如电子器件用的超纯硅以金属杂质计算,其纯度相当于9个“9”,但如计入碳,则可能不到6个“9”。“超纯”的相对名词是指“杂质”,广义的杂质是指化学杂质(元素)及“物理杂质”(晶体缺陷),后者是指位错及空位等,而化学杂质是指基体以外的原子以代位或填隙等形式掺入。但只当金属纯度达到很高的标准时(如纯度9N以上的金属),物理杂质的概念才是有意义的,因此目前工业生产的金属仍是以化学杂质的含量作为标准,即以金属中杂质总含量为百万分之几表示。比较明确的办法有两种:一种是以材料的用途来表示,如“光谱纯”、“电子级纯”等;一种是以某种特征来表示,例如半导体材料用载流子浓度,即一立方厘米的基体元素中起导电作用的杂质个数(原子/cm2)来表示。而金属则可用残余电阻率表示。

1.2 高纯金属的纯度分析原则

高纯金属材料的纯度一般用减量法衡量。减量计算的杂质元素主要是金属杂质,不包括C ,O ,N ,H 等间隙元素,但是间隙元素的含量也是重要的衡量指标,一般单独提出。依应用背景的不同,要求进行分析的杂质元素种类少则十几种, 多则70 多种。简单的说高纯金属是几个N(九) 并不能真正的表达其纯度, 只有提供杂质元素和间隙元素的种类及其含量才能明确表达高纯金属的纯度水平。在高纯金属中要控制的主要杂质包括: 碱金属、碱土金属、过渡族金属、放射性金属(U , Th)。例如对于高纯钴, 一般要求碱金属、碱土金属、过渡族金属杂质单

元素含量小于1×10- 4% ,放射性杂质元素的单元素含量小于1×10- 7% , 间隙元素含量小于几十(10-4%)[1]。

高纯金属的纯度检测应以实际应用需要作为主要标准,例如目前工业电解钴的纯度一般接99.99 % ,而且检测的杂质元素种类较少。我国电解钴的有色金属行业标准(YS/ T25522000) 仅要求分析C ,S ,Mn , Fe, Ni , Cu , As , Pb , Zn , Si , Cd , Mg , P , Al , Sn ,Sb , Bi等17 个杂质元素, Co9998电解钴的杂质总量不超过0.02,但这仍然不能满足功能薄膜材料材料的要求[2]。

高纯金属中痕量元素的检测方法应具有极高的灵敏度,痕量元素的化学分析系指1g样品中含有微毫克级(10-6g/g)、毫微克级(10-9g/g)和微微克级(10-12g/g)杂质的确定。随着各学科研究的深入,待测元素含量越来越低,普通的滴定分析等无法准确测定痕量元素,因此促进了仪器测试技术不断发展,痕量、超痕量多元素的同时或连续测定已成为可能。常用的手段有质谱分析(采用电感耦合高频等离子质谱ICP-MS分析仪,金属中痕量杂质可达0.1ppb以下,分析灵敏度

0.01ppb),中子和带电粒子活化分析(具有较高的灵敏度,如反应堆的种子通量位1013中子数/cm2?S时,可分析到10-9-10-10g范围),光谱分析(使用最多的是化学光谱法),X射线荧光光谱分析等。此外,半导体材料中的电离杂质浓度,通过霍尔系数测定,一些金属的纯度用剩余电阻率测定,微观结果可用扫描电镜、超微量元素的微区分析和表面分析用电子探针分析。

2 化学方法分析高纯金属纯度

2.1 质谱法

2.1.1 电感耦合高频等离子体质谱法( ICP-MS)

ICP - MS技术是20 世纪80 年代发展成熟起来的一种痕量、超痕量多元素同时分析技术。ICP-MS 综合了等离子体极高的离子化能力和质谱的高分辨、高灵敏度及连续测定多元素的优点, 检出限低至(0.001~0.1)ng/ml,测定的线性范围宽达5~6个数量级, 还可测定同位素比值。ICP- MS 测定贵金属元素在国外从20世纪80年代后期就开始有报道。在我国直到20 世纪90年代中后期才开始研究。可以说在近十年的飞速发展中,该技术与不同的样品前处理及富集技

术相结合成为现今痕量、超痕量贵金属分析领域最强有力的工具。用同位素稀释法测定回收率低的元素,已成为高纯金属多元素测定最有潜力的方法之一[3-6 ]。

ICP-MS 测定贵金属元素时,选择恰当的待测元素同位素是很重要的。一般而言,同量异位干扰比多原子干扰严重,氧化物干扰比其他多原子干扰严重。因此,选择同位素总的原则是: 若无干扰,选择丰度最高的同位素进行测定;如果干扰小,可用干扰元素进行校正;如果干扰严重,则选择丰度较低的没有干扰的同位素进行测定。获取待测元素结果常用的方法有:外标法、内标法、标准加入法和同位素稀释法。

外标法适合于溶液成分简单的条件实验。内标法能在一定程度上克服基体效应,是常用的方法[7]。标准加入法的优点是基体匹配,结果准确,但费时,费钱。同位素稀释法不受回收率影响,能克服基体效应,是很精确的方法[8]。采用同位素稀释法的关键是同位素平衡,目前的研究表明,高压酸分解或Carioustube 酸溶法是同位素平衡最彻底的方法。但是Au和Rh是单同位素元素,不能用同位素稀释法测定。总之,条件实验用外标法; 分析实际样品时,用内标法测Rh 和Au ,其余贵金属元素用同位素稀释法;回收率测试用标准加入法。

多数情况下,等离子体质谱法采用溶液进样。激光烧蚀样品技术大大减少了样品前处理的时间[9-10]。但是,固样进样基体影响严重,贵金属同位素不能达到平衡,所以该法一般用于快速分析或成分简单、贵金属分布均一的样品。此外,利用流动注射进样,可以克服ICP-MS 要求可溶性固体含量低的缺点,还能克服基体

效应,将越来越引起关注[11]。

Jarvis研究了离子交换树脂法分离富集ICP- MS 测定PGEs的方法,取1g

地质材料用王水-HF微波消解,残渣用Na

2O

2

+ Na

2

CO

3

或Na

2

O

2

熔融后阳离子交换

树脂分离富集测定。我国学者分别用酸溶解样品后直接ICP-MS测定地质物料中的铂族元素,样品检测下限可达到ng/g水平。在其他技术运用方面,J ames用离子交换富集,USN (超声雾化) - ICP -MS 测定了地质样品中的贵金属元素; Goe-do[12 ]用离子螯合树脂分离基体FI - ICP -MS 联用测定了地质样品中的贵金属并讨论了样品处理、分析变量的优化和可测浓度水平。LA -ICP-MS是当今国际上最热门的ICP - MS 研究课题,Jorge用UV 激光烧蚀ICP-MS 测定了硫化镍

试金扣中的贵金属元素; Shibuya研究了紫外激光高分辩率ICP-MS测定地质样品中的铂族元素和金[12-14]。

2.1.2 辉光放电质谱法(GDMS)

辉光放电质谱法(GDMS)被认为是目前对固体导电材料直接进行痕量及超痕量元素分析的最有效的手段。由于其可以直接固体进样,近20年来已广泛应用于高纯金属、合金等材料的分析[15-18]。辉光放电质谱由辉光放电离子源和质谱分析器两部分组成。辉光放电离子源(GD源)利用惰性气体(一般是氩气,压强约10-100 Pa)在上千伏特电压下电离产生的离子撞击样品表面使之发生溅射溅射产生的样品原子扩散至等离子体中进一步离子化,进而被质谱分析器收集检测。

电感耦合等离子体质谱(ICP-MS)、石墨炉原子吸收光谱法(GF-AAS)均可分析试样中痕量及超痕量组分,但试样一般均需先转换成溶液。大多数无机非金属材料本身难以溶解,试样的这种转换因稀释倍数较大而使方法的检出限上升,也易引入玷污而影响分析结果。采用溶液进样和常压分析的特点也使ICP-MS 等分析技术无法测定C、N、O 等非金属元素。相比之下,GDMS 可对固体样品直接进行分析的优点就突显出来了。GDMS 通常采用很方便的进样杆推进式进样方式,更换样品时不必破坏离子源的真空[15]。可以满足多种尺寸的棒状或块状固体样品分析的需要,样品的表面污染则可通过一定时间的预溅射过程得以清除。

与其他常用的固体进样分析技术包括N 荧光光谱法(XRF)、火花源质谱法(SSMS)以及二次离子质谱(SIMS)等相比,GDMS也表现出显著的优点。XRF 法具有较好的准确度和精密度,但由于其检出限仅为微克级,且存在严重的基体效应,难以满足高纯样品的分析要求。SSMS法精密度较差,应用已逐渐被GDMS所取代。SIMS检出限同样很低,但主要用于微区分析,GDMS更适合作样品平均含量分析,具有分析速度快,灵敏度高,分辨率高,离子源电离能力强,几乎可对周期表中所有元素作定性或定量分析的突出优点。

2.1.3 负离子热表面电离质谱法(NTIMS)

负离子热表面电离质谱法是近年发展的质谱技术,可以用于金属同位素年龄的研究,为年代学的研究提供了有力保障[19]。和ICP-MS不同,该法是通过质谱对

待测元素的负离子进行测试的。由于元素形成负离子所需的能量较形成正离子的

Os 能量低很多,所以离子化率高,检出限比ICP-MS 低。Creaser用NTIMS 分析Re

2

体系,他们的离子产率分别为:2 %~6 %(Os) , > 20 % (Re) ,检出限达pg/ml[20]。

Os 没有同量异位干扰,不需要分离Os 和Re ,简化了整个分析由于该法分析Re

2

流程。尽管高纯金属多元素的分析越来越多地用等离子体质谱法测定,但是等离子体质谱法存在Os和Re同位素的同量异位干扰问题,所以能精确测试Os和Re 的NTIMS方法有不可取代的作用。

2.2 中子活化分析法(NAA)

中子活化分析的灵敏度高,准确度好,污染少,适用于高纯金属、地质样品、宇宙物质液体、固体等各类样品中超痕量金属的测定。特别是NAA 的无损分析特性消除了多数其它痕量分析方法中可能破坏溯源链的最危险的环节———样品制备和溶解过程中可能带来的待测元素的污染或丢失。由于活化之后的放化操作可以加入载体和反载体以克服“超低浓”行为和无需定量分离,因此由样品处理引起的污染和丢失危险远远低于其它方法。在约1012n·cm- 2·s- 1的通量下,NAA 可在10- 6~10- 9的范围内测定周期表中的大部分元素[21]。NAA是目前唯一能够同时测定Cl,Br,I的最有效方法。为克服基体效应,进行预富集与放化分离常常是需要的。海洋沉积物和结核经锍试金分解后,试金扣中的贵金属元素用NAA 测定,结果令人满意。对贵金属而言,用中子活化分析灵敏度最高的是Ir 、Au 和Rh[20]。该法的检出限很低,可以和等离子体质谱法媲美。

用锍试金-中子活化和等离子质谱分析地质样品中铂族元素,发现用中子活化分析Ir 的检出限高十倍,其余的比等离子质谱低,两种方法可以互补[22] 。但是核辐射对人体有害,且需要小型反应堆,设备受到地域限制,使用难以普及。

2.3 化学光谱法

2.3.1 原子吸收光谱法(AAS)

原子吸收光谱法(AAS)具有灵敏度高、谱线简单、选择性好和不易受激发条件影响等待点,是痕量和超痕量元素分析的重要手段之一。

AAS常和分离与富集技术联用,来消除干扰和提高灵敏度。近年来,火焰原子吸收光谱法(FAAS)的应用研究,取得了很大进展,诸如原于捕集,缝管技术以反增感效应等新技术的开发研究使FAAS的灵敏皮有较大的提高,灵敏度达

10ng/ml(1%吸收)。石墨炉原子吸收光谱法((FGAAS)也糊继出现了一些行之有效的测定新技术,如石墨管改进技术、最人功率升温原于化和塞曼效应背景校正等,对改善待测元素的原子化条件、降低检出限、消除或降低基体效应的影响均起着重要作用。斯莱提出的稳定平台炉方法就是通过联台应用上述各种技术实现等温原子化的设想,其灵敏度高达1ng/g(1%吸收),可与SSMS、NAA相媲美。

现今,无论火焰原子吸收法还是无火焰原子吸收法都在金银分析领域占据了

主导地位,在其它金属元素测试方面也有应用。近年来发展的主要动态是强有力的富集技术的发展,特别是特效树脂多元素同时富集技术以及FIA-AAS联用技术在贵金属分析中的应用。FIA - FAAS 联用技术在近几年得到了很大的发展,其快速、方便的分析测试性能在近年来被广泛使用, Xu 用FIA 以XAD - 8 为柱填充材料富集金,乙醇洗脱,FAAS测定; Kovalev[23] 用在线固相萃取与FAAS 联用

测定了合金及矿石中的Pd、Pt 和Rh ,富集1min ,D.L = 3×10 -9~8×10 – 7;Mao[24]用DDTC-铜作共沉淀剂在线共沉淀富集FAAS法测定了痕量银,D.L =0.6μ

g/L 。FIA-ETAAS 联用也是近年来发展的一项新技术。其他分离富集技术与F(ET) AAS 法配合使用在金属分析领域亦得到了广泛的应用。侯书恩等[25]使用自制的全自动探针原子化装置,将探针原子化技术结合石墨炉原子吸收应用于测定高纯金属镁中痕量铅,利用样品中的基体镁转化成的硝酸镁作为基体改进剂,进一步改

善了铅的分析性能。方法检出限为4.3×10-12g Pb ,相对标准偏差(RSD ,n = 6) 为8.2% ,高纯金属镁中加标回收率在93%~104%。

原子吸收在多元素分析方面也有突破,李丽容等[26]用原子吸收法采用空气-

乙炔焰,以一套混合标准溶液及一份试液直接测定了金属Zn中铜、铅、铁、镉四个主要杂志元素,对于铜和镉的测量范围为0.1-15PPm,对于铅和铁的测量范围是1-20PPm。J G Sen用日立Z-9000型仪器对Pt、Pd、Rh、Ir、Ru和Au进行了多元素同时测定,一次可以测定4个元素[27],大大提高了分析效率,是一个值得关注的研究方向。

2.3.2 发射光谱分析(AES)

原子发射光谱法(AES)是测定高纯金属或半导休材料中痕量杂质的主要分析方法之一,经常采用预富集与AES测定联用技术。这种联用技术既保持了AES

同时检测多元素的特点,又克服了基体效应和复杂组分的干扰,也便于引进行利于痕量元素激发的缓冲剂,从而提高了检测灵敏度。

痕量杂质富集物的光谱激发通常有溶液干渣法、粉末法、溶液法三种方法。溶液于渣法是将富集物溶液浓缩后转移到涂有封闭剂的石墨电极烘干后,用电弧、火花或空心阴极光源激发。粉末法是将痕量元素富集在几毫克或几十毫克石墨粉或外加基体中,井装入杯状石墨电极中,用电弧激发。溶液法是将富集物溶液直接送入ICP光源激发进行光谱测定。

此外,以激光为激发光源的激光光谱法,因具有极好的绝对检出限,可能成为重要的痕量分析方法之一。激光光谱主要用于表面、微区的分析,是检测高纯材料痕量杂质的重要方法。能实现贵金属和贱金属同时测定的AES技术,特别是电感耦合等离子体发射光谱法( ICP-AES) 联用技术在痕量金属分析领域的应用也比较广泛。ICP - AES技术具有多功能性、广泛的应用范围以及操作简便、灵敏度高、分析快速、准确可靠和多元素同时测定等特点,在所有的元素分析法中几乎是前所未有的,它解决了一定的分析困难,节省了分析时间,使许多工作变得快捷。而且除极其严格的应用要求以外,ICP-AES 的准确度、精密度和灵敏度对一般应用都是合适的。孙丹丹等[28]利用这种方法可以直接测定了高纯金中Cd,Cr,Cu,Fe,Mn,Ni,Pb,Pt 等8种元素的含量,检出限在0.01-1μg/g-1之间,杂质元素含量在0.1-20μg/g-1范围内,比分光光度法和原子吸收法简便、快速,测定结果符合要求。田冶龙等[29]采用ICP-AES分析测定高纯黄金中微量杂质,可以使Ag、Cu、Fe、Pb、Sb、Bi的方法检出限分别达到1.6×10-9,1.3×10-9,1.5×10-9,2.8×10-9,9.0×10-9,10×10-9,完全可以满足当前高纯黄金中杂质的分析测定。宋小年等[30]采用电感耦合等离子体发射光谱法测定高纯金属锡中9种痕量

元素,用HCl、H

2O

2

和HNO

3

溶解样品,对分析谱线和仪器工作参数进行了优化选择,

利用基体匹配消除干扰。加标实验表明,回收率为98% ~102% ,相对标准偏差(n=6)低于2.1% ,检出限为0.1~8.5μg/L,方法准确、可靠,可满足高纯金属锡中的痕量金属元素的快速分析要求。

但由于该种分析技术检测能力有限,用其直接测定时一般很难达到对超痕量贵金属元素的准确测定,因此近年来研究的重点是与之配套的分离富集技术。其中,秦永超[31]用悬浮体进样ETV(电热蒸发)-ICP-AES法测定了Pt 、Pd、Os;孙丽娟[32]用流动注射在线清理MPT-AES法测定了铂、钯、金。

2.4 X射线光谱技术(XRF)

X射线光谱技术因其是一种环保型、非破坏性、分析精度高的分析技术[33],特别是在贵金属产品、饰品无损检测方面有其独特的优势。用XRFA互标法无损检测黄金饰品,对金饰品[w(Au)>96%]的测定绝对误差<0.1%。在微量分析方面,人们长期致力于研究便携式X 射线光谱仪的研究并用于微量贵金属元素的测定。另外,载体富集XRF测定了地质物料中贵金属元素也被运用。

波长色散X-射线荧光光谱法可测定纯金中的金[34],用该方法测定了质量分

数为98.00 %~99.95%的金,与火试金法、AAS、ICP-AES的结果对照,其偏差绝对值均小于0.10 %[35]。X-射线荧光光谱法无损检测制备金标准也有报道[36] ,还报道了黄金饰品质量的X-射线荧光光谱无损检测[37]。表面镀铑的白色K金首饰用X-射线荧光能谱法进行测定,饰品中成分含量与铑层的厚度有关[38]。

全反射X射线荧光(TXRF)分析技术是近年来才发展起来的多元素同时分析技术。TXRF利用全反射技术,使样品荧光的杂散本底比X荧光能量色散谱仪(EXRF)本底降低约四个量级,从而大大提高了能量分辨率和灵敏度,避免了XRF测量中通常遇到的本底增强或减弱效应;同时TXRF技术又继承了EXRF方法的优越性,成为一种不可替代的全新的元素分析方法。该技术被誉为在分析领域是最具有竞争力的分析手段、在原子谱仪领域内处于领先地位。

在X荧光谱仪范围内,与波长色散谱仪(WXRF)方法比较,由于TXRF分析技术用样量很少,也不需要制作样品的烦琐过程,又没有本底增强或减弱效应,不需要每次对不同的基体做不同的基体校准曲线。另外由于使用内标法,对环境温度等要求很低。因而在简便性、经济性、用样量少等方面,都比WXRF方法有明显的优越性。TXRF技术可以对从氧到铀的所有元素进行分析,一次可以对近30种元素进行同时分析,这是原子吸收谱仪中的ETAAS和FAAS方法难以做到的。与质谱仪中的ICP-MS和GDMS以及中子活化分析(NAA)等方法相比较,TXRF分

析方法在快速、简便、经济、多元素同时分析、用样量少、检出限低、定量性好等方面有综合优势。其最低绝对检出限为pg级(10-12g)。

2.5 其他分析技术

化学发光分析因有极高的灵敏度而在金属元素分析领域得到一定的研究。SK- 800 型原子荧光测金仪也有报道。其中,近年来固相化学发光分析及化学发光与流动注射联用技术在贵金属测定中得到一定应用。另外电化学分析法、流动注射分析法及激光热透镜光谱法等分析技术也用于不同物料中痕量金属元素的测定[39]。

2.6 各种仪器分析法的比较

在上文简述的基础上,表1 从分析范围、分析精度、多元素同时检测能力、抗干扰能力等方面对各类仪器在贵金属分析性能方面进行定性比较。在这里的测定范围是指该仪器一般情况下的检测范围,不包括高度富集和稀释;分析精度是指在仪器的最佳测定范围内的分析重现性;因贵金属分析一般须进行有效的分离,所以在这里抗干扰能力主要指共存贵金属元素间的干扰,同时也考察了其他共存元素的干扰以及对测定介质的要求等许多因素。从上表可以看出,在纳克级贵金属元素测定方面, ICP - MS 法有很大的技术优势,检测下限低、精度较好,可多元素同时测定并有较强的抗干扰能力;ETAAS 法一般只能单元素测定,但其他方面优势较明显且运转费用低。在微克级的贵金属元素测定方面,ICP - AES 法有较大的优势,但运转费用较高;FAAS 法虽只能单元素测定,但仪器比较普及且操作方便、运转费用低、分析速度快,为一种较理想的测试技术。在高含量贵金属分析方面,XRF 有其独特的优势,但分析时须有相应基体的标准匹配; X射线荧光能谱法能够方便快捷地测定物质组成, 是检测贵金属含量的重要手段。将测量不确定度评定应用于实际检测工作中, 有助于不断改进实验条件, 提高测试的精确程度,

ECA 中的精密库仑分析法不失为一种好的分析方法。

从容易使用程度和精密度及使用费用来看:在日常工作中ICP-AES分析技术是最成熟的,可由技术不熟练的人员应用ICP-AES技术人员制定的分析方法来进行工作。在常规工作中,ICP-AES可分析10﹪TDS的溶液。甚至可以高至30﹪的盐溶液。ICP-AES具有106以上的线性范围 LDR且抗盐份能力强,可同时进行痕量及主量元素的测定,ICP-AES可同时直接测定0.001﹪~60﹪的浓度含量。ICP-AES的短期精密度可以达到0.3﹪~0.5﹪RSD,几个小时的长期精密度已可达到~1﹪RSD。因此,ICP-AES外加ICP-MS,或GF-AAS便可很好地满足实验室的分析需要。对于每个样品分析5~20个元素,含量在亚ppm至﹪,使用ICP-AES 是最合适的。ICP-AES和GF-AAS由于现代化的自动化设计及使用惰性气体的安全性,可以整夜无人看管工作。因此,ICP仪器必将成为冶金分析实验室的基本配置,其分析技术在冶金分析中发挥越来越重要的作用。

3 物理方法测定超纯金属的纯度

半导体材料的纯度,也可用电阻率来表征。区域提纯后的金属锗,其锭底表面上的电阻率为30~50欧姆?厘米时,纯度相当于8~9N,可以满足电子器件的要求。但对于杂质浓度小于10 10原子/厘米3的探测器级超纯锗,则尚须经过特殊处理。由于锗中有少数杂质如磷、砷、铝、镓、硅、硼的分配系数接近于1或大于1,要加强化学提纯方法除去这些杂质,然后再进行区熔提纯。电子级纯的区熔锗锭用霍尔效应测量杂质(载流子)浓度,一般可达1011~1012原子/厘米3。经

切头去尾,再利用多次拉晶和切割头尾,一直达到所要求的纯度(1010原子/厘米3),这样纯度的锗(相当于13N)所作的探测器,其分辨率已接近于理论数值。

半导体中的电离杂质浓度可以通过霍尔系数测定,对于非本征半导体材料,在补偿度不大的情况下,只要知道迁移率的数据,就可通过电阻率的测量,决定杂质的浓度[40]。锗和硅的电阻率与杂质浓度的关系分别如图1和图2。

图1硅电阻率与杂质浓度关系图

图2锗电阻率与杂质浓度关系图

超纯金属铝中杂质,已低于化学分析和仪器分析灵敏度的限量,须用

物理方法测定,可用剩余电阻率(ρ

4.2K /ρ

300K

)来测定铝的纯度,因为在4.2K下,

点阵中原子振动所引起的电阻率可以忽略,这样测出的电阻率就是杂质引起的电阻率,各种纯度铝中的杂质含量

及剩余电阻率如表2[铝中杂质含量及剩余电阻率值] 。超纯镓的纯度也可以用剩余电阻率来测定,其值约为2×10-5。

现代科学技术的发展趋势是对金属纯度要求越来越高。因为金属未能达到一定纯度的情况下,金属特性往往为杂质所掩盖。不仅是半导体材料,其他金属也有同样的情况,由于杂质存在影响金属的性能。钨过去用作灯泡的灯丝,由于脆性而使处理上有困难,在适当提纯之后,这种缺点即可以克服(钨丝也有掺杂及加工问题)。当金属纯度提高以后,就能进一步明确杂质对金属性能的影响,因此制备超纯金属既为金属性能的科学研究创造了有利的条件,又在工业上有很大意义。

4 展望

从近年来国内外金属纯度分析的发展与应用可以看出,在痕量与超痕量金属元素测定中,一个基本的模式可以归结为:有效的样品分解方法,高效的分离富集方法与简便、快速、准确的多组分仪器分析的结合。其中萃取、共沉淀以及离子交换为重要的分离富集法,而等离子体质谱法因众多优点而将越来越为人们重视。用负离子热表面质谱测定杂质元素,能取得很精确的结果,将成为未来的一个较好的研究方向。随着科学技术的进步,未来金属纯度分析将朝以下几方面发展:

(1) 在测定的元素个数上,将从单元素向多元素同时或连续测定的方向发展。

(2) 在分析方法上,将从离线/ 手动操作向在线/ 自动方式发展。

(3) 在数据采撷与处理上,化学计量法、模式识别、专家系统、人工智能、神

经网络等数学方法的应用,将有助于提高试验数据的系统性、完整性与准确性。

(4) 随着现代材料科学与分析科学的发展,人们对高纯金属材料中杂质的存在

形态日益关注[41]。由此可见,除含量分析外,形态分析将成为贵金属测定的新兴领域。

参考文献

[1] Masahito Uchikoshi , High purity cobalt . method of manufacturingthereof , and high purity cobalt targets [ P ] . USA , US 6740290 ,2004,25.

[2] 陈蓉,王力军,罗远辉,等高纯钴制备技术[J]. 稀有金属,2005,vol(5):797-802

[3] Jarvis I , Totland M M, Jarvis K E1 Assessment of Dowex 1-X8-based anion-exchange procedure for the separation and determination of ruthenium , rhodium , palladium , iridium , platinum and gold in geological samples by inductively coupled plasma mass spectrometry [J ]. Analyst, 1997 , 122 : 19~26.

[4] Qu Wenjun , Du Andao , Zhao Dunmin1 Determination of 187Os in molybdenite by ICP-MS with neutron induced 186Os and 188Os spikes [J ]. Talanta, 2001 , 55 : 815~820.

[5]黄珍玉,张勤,胡克,等.等离子体质谱法直接测定地球化学样品中金铂钯[J].岩矿测试,2001 ,20(1) :15~19.

[6]谢烈文,候泉林,阎欣,等. 电感耦合等离子体质谱分析通古斯大爆炸地区沉积物中超痕量铂族元素[J]. 岩矿测试,2001 ,20(2) :88~90.

[7] 易永,章新泉,, 苏亚勤,等. 电感耦合等离子体质谱法测定高纯金属铋中痕量杂质元素[J]. 分析科学学报,2005,21(1):90-92.

[8] 章新泉, 刘晶磊1, 姜玉梅 ,等. 电感耦合等离子体质谱测定高纯金属钐中25 种杂质元素[J]. 分析科学学报,2005,24(1):73-75.

[9]Elisa K, Shibuya , Jorge E S S , et al1 Determination of platinum group elements and gold in geological materials using an ultraviolet laser ablation high2resolution inductively coupled plasma mass spectrometric technique [J ]. J. Anal. At. Spectrom. , 1998 , 13(9) : 941~944.

[10]Hirata T, Hattori M, Tanaka T. In-situ osmium isotope ratio analyses of iridosmines by laser ablation-multiple collector-inductively coupled plasma mass spectrometry [J]. Chem. Geol. , 1998 , 144 : 269~2801

[11]Motelica,Heino M, Rauch S , Morrison GM, et al. Determination of palladium , platinum and rhodium concentrations in urban road sediments by laser ablation-ICP-MS [J]. Anal. Chim. Acta, 2001 , 436(2) : 233~244.

[12] James C E , Neal C R , O’Neil J A, et al. Quantifying the platinum group elements and gold in geological samples using cation exchange pre-treatment and USN inductively coupled plasma mass[ J ] . Chem. Geo.. , 1999 , 157 ( 2) : 219 -234

[13] Goedo A G, Dorado M T , Padilla I ,et al. Pre-concentration and matrix separation of precious metals in geological and related materials using metalfix-chelamine resin prior to inductivity coupled plasma mass spectrometry [ J ] . Anal.Chim. Acta , 1997 , 340(1/ 3) : 31 - 39.

[14] Jorge A P , Enzweiler J . Determination of platinum group lements and gold in nickel sulfide fire assay button using an ultraviolet laser ablation inductively coupled plasma mass spectrometry [J] . Geostand. News.. ,1998 ,22(1) :47 -55.

[15] 陈刚,葛爱景,卓尚军,等. 辉光放电质谱法在无机非金属材料分析中的应用[J]. 分析化学,2004,32(1):107-112.

[16] 苏永选孙大海王小如,等. 辉光放电质谱研究与应用新进展[J]. 分析测试学报,1999,18(3):82-86.

[17] 刘灿辉. 高纯材料中痕量元素分析的发展趋势[J]. 四川有色金属,2002,3:17-19.

[18] 张毅, 陈英颖, 吴则嘉,等,辉光放电光谱法分析掺杂纳米硅薄膜的研究[J]. 理化检验- 化学分册,2005,41(2):80-83.

[19]杜安道,赵敦敏,王淑贤,等. Carius 管溶样2负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄[J].岩矿测试,2001 ,20(4) :247~252.

[20] 任曼,邓海琳,漆亮. 贵金属多元素分析进展[J].地质地球化学,2003,31(3):80-87.

[21] 刘书田,夏益华等编著. 环境污染检测使用手册. 北京:原子能出版社1997 ,184~192

[22] 张鸿,孙慧斌,柴之芳. AAS ,ICP2MS 与NAA 的特点及其应用比较[J]. 现代科学仪器,2003,4:34-38.

[23] I A Kovalev ,L V Bogacheva. FIA - FAAS system including on2line solid phase extraction for the determination of Pd ,Pt ,Rh in alloys and ores[J ] . Talanta. ,2000 ,52 :39 - 50.

[24] Mao X Q ,Chen H W. Coprecipitate concentration with DDTC - Cu for the determination of silver by flame atomic absorption spectrometry[J ] . Microchem. J . ,1998 ,58(3) :383 - 391.

[25] 侯书恩,史玉芳,王亚平.探针原子化石墨炉原子吸收法测定高纯金属镁中痕量铅[J].岩矿测试,2003,20(1):65-67.

[26] 李丽容.原子吸收光谱法测定金属锌中铜、铅、铁、镉元素[J].冶金丛刊,1996,1:33-36.

[27] 李中玺,周丽萍,冯玉怀.现代分析仪器在贵金属分析中的应用及进展[J]. 黄金科学技术,2002,10(3):1-6.

[28] 孙丹丹,曹昕宇. 萃取分离ICP2AES法测定高纯金中的杂质元素[J]. 光谱学与光谱分析,2001,21(6):849-851.

[29] 田治龙,李中宇. 用ICP-AES分析高纯黄金中的杂质[J]. 黄金,2004,25(11):53-56.

[30] 宋小年, 冯天培.电感耦合等离子体发射光谱法测定高纯金属锡中痕量杂质元素[J].岩矿测试,2006,25(3):282-284.

金属材料性能及国家标准

金属材料性能 为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。 材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。 材料的工艺性能指材料适应冷、热加工方法的能力。 (一)、机械性能 机械性能是指金属材料在外力作用下所表现出来的特性。 1 、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。材料单位面积受载荷称应力。 2 、屈服点(бs ):称屈服强度,指材料在拉抻过程中,材料所受应力达到某一临界值时,载荷不再增加变形却继续增加或产生 0.2%L 。时应力值,单位用牛顿 / 毫米 2 ( N/mm2 )表示。 3 、抗拉强度(бb )也叫强度极限指材料在拉断前承受最大应力值。单位用牛顿 / 毫米 2 ( N/mm2 )表示。 4 、延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。 5 、断面收缩率(Ψ)材料在拉伸断裂后、断面最大缩小面积与原断面积百分比。 6 、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度( HBS 、 HBW )和洛氏硬度( HKA 、 HKB 、 HRC ) 7 、冲击韧性( Ak ):材料抵抗冲击载荷的能力,单位为焦耳 / 厘米 2 ( J/cm2 ) . (二)、工艺性能 指材料承受各种加工、处理的能力的那些性能。 8 、铸造性能:指金属或合金是否适合铸造的一些工艺性能,主要包括流性能、充满铸模能力;收缩性、铸件凝固时体积收缩的能力;偏析指化学成分不均性。 9 、焊接性能:指金属材料通过加热或加热和加压焊接方法,把两个或两个以上金属材料焊接到一起,接口处能满足使用目的的特性。 10 、顶气段性能:指金属材料能承授予顶锻而不破裂的性能。 11 、冷弯性能:指金属材料在常温下能承受弯曲而不破裂性能。弯曲程度一般用弯曲角度α(外角)或弯心直径 d 对材料厚度 a 的比值表示, a 愈大或 d/a 愈小,则材料的冷弯性愈好。 12 、冲压性能:金属材料承受冲压变形加工而不破裂的能力。在常温进行冲压叫冷冲压。检验方法用杯突试验进行检验。 13 、锻造性能:金属材料在锻压加工中能承受塑性变形而不破裂的能力。(三)、化学性能 指金属材料与周围介质扫触时抵抗发生化学或电化学反应的性能。 14 、耐腐蚀性:指金属材料抵抗各种介质侵蚀的能力。 15 、抗氧化性:指金属材料在高温下,抵抗产生氧化皮能力。 >> 返回 金属材料的检验

常用金属材料参考手册

Q/NVC 惠州雷士光电科技有限公司企业标准 (技术手册) Q/NVC XXX-2011 常用材料参考手册 --------金属材料 2011年10月1日发布2011年12月1日实施 惠州雷士光电科技有限公司发布

目录 1 范围 2 规范性引用文件 3 术语 4 常用碳素结构钢材 5 弹簧钢 6 镀锌钢板及钢带 7 常用不锈钢 8 铝合金板材 9 压铸铝合金 10 铜合金

常用金属材料参考手册 1 范围 本手册列举了常用钢材、不锈钢材、铝合金、铜合金的标记、性能参数及一般用途。为设计工程师、品检工程师提供依据。 2 规范性引用文件 2.1 GB/T 699《优质碳素结构钢》 2.2 GB/T 700《碳素结构钢》 2.3 GB/T 2518《连续热镀锌钢板及钢带》 2.4 ASTM A666《退火或冷加工奥氏体不锈钢薄板、钢带、厚板和扁钢》2.5 GB/T 16475《变形铝及铝合金状态代号》 2.6 GB/T 1222 《弹簧钢》 3 术语 3.1 抗拉强度(tensile strength):是金属由均匀塑性变形向局部集中塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载能力。对于塑性材料,它表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致上的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为RM,单位为MPA。 3.2 伸长率(elongation):指金属材料受外力(拉力)作用断裂时,试棒伸长的长度与原来长度的百分比,伸长率按试棒长度的不同分为:短试棒求得的伸长率,代号为δ5,试棒的标距等于5倍直径长试棒求得的伸长率,代号为δ10,试棒的标距等于10倍直径,其中标距为用来测定试样应变或长度变化的试样部分原始长度。 4 常用碳素结构钢材 4.1 标记: 我司常用碳素结构钢建议采用国家标准牌号,具体参考:GB/T699及GB/T700,也可根据日本牌号(宝钢)如下: 厚度 牌号,如Q235、08AL、SPHC、SPHD、SPCC等 名称 4.2 碳素结构钢热轧薄钢板,参考GB/T700

金属材料检测标准大汇总

金属材料检测标准大汇 总 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

金属材料化学成分分析 GB/T 222—2006钢的成品化学成分允许偏差 GB/T 系列钢铁及合金X含量的测定 GB/T 4336—2002碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法) GB/T 系列海绵钛、钛及钛合金化学分析方法X量的测定 GB/T 系列铜及铜合金化学分析方法第X部分:X含量的测定 GB/T 5678—1985铸造合金光谱分析取样方法 GBT 系列铝及铝合金化学分析方法 GB/T 7999—2007铝及铝合金光电直读发射光谱分析方法 GB/T 11170—2008不锈钢多元素含量的测定火花放电原子发射光谱法(常规法) GB/T 11261—2006钢铁氧含量的测定脉冲加热惰气熔融-红外线测定方法 GB/T 系列镁及镁合金化学分析方法第X部分X含量测定 金属材料物理冶金试验方法 GB/T 224—2008钢的脱碳层深度测定法 GB/T 225—2006钢淬透性的末端淬火试验方法(Jominy 试验) GB/T 226—2015钢的低倍组织及缺陷酸蚀检验法 GB/T 227—1991工具钢淬透性试验方法 GB/T 1954—2008铬镍奥氏体不锈钢焊缝铁素体含量测量方法 GB/T 1979—2001结构钢低倍组织缺陷评级图 GB/T 1814—1979钢材断口检验法 GB/T 2971—1982碳素钢和低合金钢断口检验方法 GB/T —2012变形铝及铝合金制品组织检验方法第1部分显微组织检验方法

GB/T —2012变形铝及铝合金制品组织检验方法第2部分低倍组织检验方法GB/T 3488—1983硬质合金显微组织的金相测定 GB/T 3489—1983硬质合金孔隙度和非化合碳的金相测定 GB/T 4236—1984钢的硫印检验方法 GB/T 4296—2004变形镁合金显微组织检验方法 GB/T 4297—2004变形镁合金低倍组织检验方法 GB/T 4334—2008金属和合金的腐蚀不锈钢晶间腐蚀试验方法 GBT 4335—2013低碳钢冷轧薄板铁素体晶粒度测定法 GB/T —2015不锈钢5%硫酸腐蚀试验方法 GB/T 4462—1984高速工具钢大块碳化物评级图 GB/T 5058—1985钢的等温转变曲线图的测定方法(磁性法) GB/T 5168—2008α-β钛合金高低倍组织检验方法 GB/T 5617—2005钢的感应淬火或火焰淬火后有效硬化层深度的测定 GB/T 8359—1987高速钢中碳化物相的定量分析X射线衍射仪法 GB/T 8362—1987钢中残余奥氏体定量测定X射线衍射仪法 GB/T 9450—2005钢件渗碳淬火硬化层深度的测定和校核 GB/T 9451—2005钢件薄表面总硬化层深度或有效硬化层深度的测定 GB/T 10561—2005钢中非金属夹杂物含量的测定标准评级图显微检验法GB/T 10851—1989铸造铝合金针孔 GB/T 10852—1989铸造铝铜合金晶粒度 GB/T 11354—2005钢铁零件渗氮层深度测定和金相组织检验 GB/T 13298—2015金属显微组织检验方法

材料测试分析方法(究极版)

绪论 3分析测试技术的发展的三个阶段? 阶段一:分析化学学科的建立;主要以化学分析为主的阶段。 阶段二:分析仪器开始快速发展的阶段 阶段三:分析测试技术在快速、高灵敏、实时、连续、智能、信息化等方面迅速发展的阶段4现代材料分析的内容及四大类材料分析方法? 表面和内部组织形貌。包括材料的外观形貌(如纳米线、断口、裂纹等)、晶粒大小与形态、各种相的尺寸与形态、含量与分布、界面(表面、相界、晶界)、位向关系(新相与母相、孪生相)、晶体缺陷(点缺陷、位错、层错)、夹杂物、内应力。 晶体的相结构。各种相的结构,即晶体结构类型和晶体常数,和相组成。 化学成分和价键(电子)结构。包括宏观和微区化学成份(不同相的成份、基体与析出相的成份)、同种元素的不同价键类型和化学环境。 有机物的分子结构和官能团。 形貌分析、物相分析、成分与价键分析与分子结构分析四大类方法 四大分析:1图像分析:光学显微分析(透射光反射光),电子(扫描,透射),隧道扫描,原子力2物象:x射线衍射,电子衍射,中子衍射3化学4分子结构:红外,拉曼,荧光,核磁 获取物质的组成含量结构形态形貌及变化过程的技术 材料结构与性能的表征包括材料性能,微观性能,成分的测试与表征 6.现代材料测试技术的共同之处在哪里? 除了个别的测试手段(扫描探针显微镜)外,各种测试技术都是利用入射的电磁波或物质波(如X射线、高能电子束、可见光、红外线)与材料试样相互作用后产生的各种各样的物理信号(射线、高能电子束、可见光、红外线),探测这些出射的信号并进行分析处理,就课获得材料的显微结构、外观形貌、相组成、成分等信息。 9.试总结衍射花样的背底来源,并提出一些防止和减少背底的措施 衍射花样要素:衍射线的峰位、线形、强度 答:(I)花材的选用影晌背底; (2)滤波片的作用影响到背底;(3)样品的制备对背底的影响 措施:(1)选靶靶材产生的特征x射线(常用Kα射线)尽可能小的激发样品的荧光辐射,以降低衍射花样背底,使图像清晰。(2)滤波,k系特征辐射包括Ka和kβ射线,因两者波长不同,将使样品的产生两套方位不同得衍射花样;选择浪滋片材料,使λkβ靶<λk滤<λkα,Ka射线因因激发滤波片的荧光辐射而被吸收。(3)样品,样品晶粒为50μm左右,长时间研究,制样时尽量轻压,可减少背底。 11.X射线的性质; x射线是一种电磁波,波长范围:0.01~1000à X射线的波长与晶体中的原子问距同数量级,所以晶体可以用作衍射光栅。用来研究晶体结构,常用波长为0.5~2.5à 不同波长的x射线具有不同的用途。硬x射线:波长较短的硬x封线能量较高,穿透性较强,适用于金属部件的无损探伤及金属物相分析。软x射线:波长较长的软x射线的能量较低,穿透性弱,可用干分析非金属的分析。用于金属探伤的x射线波长为0.05~0.1à当x射线与物质(原子、电子作用时,显示其粒子性,具有能量E=h 。产生光电效应和康普顿效应等 当x射线与x射线相互作用时,主要表现出波动性。 x射线的探测:荧光屏(ZnS),照相底片,探测器

史上最全!各种钢材型号及理论重量大全

史上最全!各种钢材型号及理论重量大全 角钢:每米重量=0.00785*(边宽+边宽-边厚)*边厚 圆钢:每米重量=0.00617*直径*直径(螺纹钢和圆钢相同) 扁钢:每米重量=0.00785*厚度*边宽 管材:每米重量=0.02466*壁厚*(外径-壁厚) 板材:每米重量=7.85*厚度*宽度 黄铜管:每米重量=0.02670*壁厚*(外径-壁厚) 紫铜管:每米重量=0.02796*壁厚*(外径-壁厚) 铝花纹板:每平方米重量=2.96*厚度 有色金属比重:紫铜板8.9黄铜板8.5锌板7.2铅板11.37 有色金属板材的计算公式为:每平方米重量=比重*厚度 各种规格的螺纹钢的重量如何计算,是否有个标准?是多少? 0.617是圆10钢筋每米重量。钢筋重量与直径(半径)的平方成正比。 G/m=0.617*D*D/100 每米的重量(Kg)=钢筋的直径(mm)×钢筋的直径(mm)×0.00617 其实记住建设工程常用的钢筋重量也很简单:Φ6=0.222kg,Φ6.5=0.26kg,Φ8=0.395kg,Φ10=0.617kg,Φ12=0.888kg,Φ14=1.21kg,Φ16=1.58kg,Φ18=2.0kg,Φ24=2.47kg,Φ22=2.98kg,Φ25=3.85kg,Φ28= 4.837kg..... Φ12(含12)以下和Φ28(含28)的钢筋一般小数点后取三位数,Φ14至Φ25钢筋一般小数点后取二位数: Φ6=0.222kg Φ8=0.395kg Φ10=0.617kg Φ12=0.888kg Φ14=1.21kg Φ16=1.58kg Φ18=2kg Φ20=2.47kg Φ22=3kg Φ25=3.86kg Φ28=4.83kg Φ32=6.31kg Φ36=7.99kg Φ40=9.87kg 钢材理论重量计算简式 扁钢、钢板、钢带 W=0.00785×宽×厚

金属材料成分分析方法探讨

金属材料成分分析方法探讨 摘要:金属材料化学成分的含量及形态决定着金属的性能,准确分析金属材料 的化学成分对鉴别材料性能及用途起着重要作用。利用传统化学法进行成分分析 存在着过程复杂、效率低下的缺点,本文主要介绍分光光度法、原子吸收光谱法、原子发射光谱法、X射线荧光光谱法、滴定分析法等常见分析方法在金属材料化 学成分分析中的应用,并对金属材料成分分析技术的发展趋势做了简单的介绍。 关键词:金属材料;成分分析;重要性;方法 引言 金属材料涉及领域广泛,大类包括纯金属、合金、金属间化合物以及特种材 料等,在航空航天、现代机械等方面发挥着极其重要的作用。金属材料的发展对 国家发展、国防建设有着十分重要的作用,因此,社会对其需求量在不断增长。 随着科学技术的进步以及行业发展的要求,各种复杂的金属材料应运而生,同时,金属材料分析方法也随之不断发展,从传统方法到现今多种多样的分析技术,通 过对金属材料的成分分析,全面了解金属材料的性能和内部构造,方便金属材料 的设计研发。 一、金属材料成分分析的重要性 1、对金属材料的性能成因有深入的了解 金属材料成分分析可以帮助了解金属材料表征特性的成因,并且能够在大量 分析数据的基础上发现金属特性的规律,为以后设计研发更加复杂的金属材料提 供理论依据。金属材料性能从微观上有五个十分重要的影响因素,分别是金属晶 粒的类型、大小、数量、分布以及形状。由于金属材料微观组织上的原子结构、 晶体结构以及原子间的结合键存在很大的不同,在宏观上表现为金属材料性能的 差异。 2、为金属材料加工方法的合理选择提供依据 对金属材料的化学成分进行分析之后,能够更好地了解分析金属的成分组成 和基本特性,充分了解其性质,然后结合相关理论和工作经验确定合适的材料加 工方法,来保证金属材料性能表达的最大化,达到事倍功半的金属制造效果。所 以说,金属材料成分分析能够帮助选择合适的金属材料加工方法。 3、为金属材料热处理方法及设备的选择提供依据 为了使金属材料的性能得到充分的发挥,需要在完成金属材料加工之后,对 金属材料进行热处理,同时,还能够对生产过程中产生的组织缺陷进行消除。然而,热处理的方式及工艺控制参数的确定需要有一定的科学依据,要根据金属材 料的成分来确定热处理方法和设备。 4、保证金属材料应用的安全和经济 金属材料成分分析有利于金属材料性能的充分发挥,达到人们预期的使用效果,同时能够合理搭配金属的组成成分,降低金属制造成本,达到效益的最大化。 二、金属材料成分分析方法 1、分光光度法 金属材料成分分析的传统方法中最常见的是分光光度法,是一种根据Lambert(朗伯)-Beer(比尔)定律,通过测定被测物质在特定波长处或一定波 长范围内光的吸光度或发光强度,对该物质进行定性和定量分析的方法。采用的 检测仪器为紫外分光光度计,可见分光光度计(或比色计)、红外分光光度计或 原子吸收分光光度计。在分光光度计中,将不同波长的光连续地照射到一定浓度

材料成型技术基础_模拟试题_参考答案共11页文档

材料成型技术基础模拟试题 参考答案一、填空题: 1、合金的液态收缩和凝固收缩是形成铸件缩孔和缩松的基本原因。 2、铸造车间中,常用的炼钢设备有电弧炉和感应炉。 3、按铸造应力产生的原因不同可分为热应力和机械应力。 4、铸件顺序凝固的目的是防止缩孔。 5、控制铸件凝固的原则有二个,即同时凝固和顺序凝固原则。 6、冲孔工艺中,周边为产品,冲下部分为废料。 7、板料冲裁包括冲孔和落料两种 分离工序。 8、纤维组织的出现会使材料的机械性能发 生各向异性,因此在设计制造零件 时, 应使零件所受剪应力与纤维方向垂 直,所受拉应力与纤维方向平行。 9、金属的锻造性常用塑性和变形抗力来综合衡量。 10、绘制自由锻件图的目的之一是计算坯料的质量和尺寸。 二、判断题: 1、铸型中含水分越多,越有利于改善合金的流动性。F 2、铸件在冷凝过程中产生体积和尺寸减小的现象称收缩。T 3、同一铸件中,上下部分化学成份不均的现象称为比重偏折。T 4、铸造生产中,模样形状就是零件的形状。F 5、模锻时,为了便于从模膛内取出锻件,锻件在垂直于分模面的表面应留有一定的斜度,这称为锻模斜度。T 6、板料拉深时,拉深系数m总是大于1。F 7、拔长工序中,锻造比y总是大于1。T 8、金属在室温或室温以下的塑性变形称为冷塑性变形。F 9、二氧化碳保护焊由于有CO2的作用,故适合焊有色金属和高合金钢。F 10、中碳钢的可焊性比低强度低合金钢的好。F 三、多选题: 1、合金充型能力的好坏常与下列因素有关 A, B, D, E A. 合金的成份 B. 合金的结晶特征 C. 型砂的退让性 D. 砂型的透气性 E. 铸型温度 2、制坯模膛有A, B, D, E A. 拔长模膛 B. 滚压模膛 C. 预锻模膛 D. 成形模膛 E. 弯曲 模膛 F. 终锻模膛 3、尺寸为φ500×2×1000的铸铁管,其生产方法是A, C A. 离心铸造 B. 卷后焊接 C. 砂型铸造 D. 锻造 四、单选题: 1、将模型沿最大截面处分开,造出的铸型 型腔一部分位于上箱,一部分位于下箱 的造型方法称 A. 挖砂造型 B. 整模造型 C. 分模造型 D. 刮板造型 2、灰口铸铁体积收缩率小的最主要原因是 由于 A. 析出石墨弥补体收缩 B. 其凝固 温度低 C. 砂型阻碍铸件收缩 D. 凝固温度区间小 3、合金流动性与下列哪个因素无关 A. 合金的成份 B. 合金的结晶特征 C. 过热温度 D. 砂型的透气性或预 热温度

材料分析方法__试卷2

材料现代分析方法试题2 材料学院材料科学与工程专业年级班级材料现代分析方法课程200—200学年第学期()卷期末考试题( 120 分钟) 考生姓名学号考试时间 主考教师:阅卷教师: 一、基本概念题(共10题,每题5分) 1.实验中选择X射线管以及滤波片的原则是什么?已知一个以Fe为主要成分的样品,试选择合适的X射线管和合适的滤波片? 2.下面是某立方晶系物质的几个晶面,试将它们的面间距从大到小按次序重 新排列:(12),(100),(200),(11),(121),(111),(10),(220),(130),(030),(21),(110)。 3.衍射线在空间的方位取决于什么?而衍射线的强度又取决于什么? 4.罗伦兹因子是表示什么对衍射强度的影响?其表达式是综合了哪几方面考虑而得出的? 5.磁透镜的像差是怎样产生的? 如何来消除和减少像差? 6.别从原理、衍射特点及应用方面比较X射线衍射和透射电镜中的电子衍 射在材料结构分析中的异同点。 7.子束入射固体样品表面会激发哪些信号? 它们有哪些特点和用途? 8.为波谱仪和能谱仪?说明其工作的三种基本方式,并比较波谱仪和能谱 仪的优缺点。 9.如何区分红外谱图中的醇与酚羟基的吸收峰? 10.紫外光谱常用来鉴别哪几类有机物? 二、综合分析题(共5题,每题10分) 1.试比较衍射仪法与德拜法的优缺点? 2.试述X射线衍射单物相定性基本原理及其分析步骤?

3.扫描电镜的分辨率受哪些因素影响? 用不同的信号成像时,其分辨率有何不同? 所谓扫描电镜的分辨率是指用何种信号成像时的分辨率? 4.举例说明电子探针的三种工作方式(点、线、面)在显微成分分析中的应用。5.分别指出谱图中标记的各吸收峰所对应的基团? 材料现代分析方法试题2(参考答案) 一、基本概念题(共10题,每题5分) 1.实验中选择X射线管以及滤波片的原则是什么?已知一个以Fe为主要成分的样品,试选择合适的X射线管和合适的滤波片? 答:实验中选择X射线管的原则是为避免或减少产生荧光辐射,应当避免使用比样品中主元素的原子序数大2~6(尤其是2)的材料作靶材的X射线管。 选择滤波片的原则是X射线分析中,在X射线管与样品之间一个滤波片,以滤掉Kβ线。滤波片的材料依靶的材料而定,一般采用比靶材的原子序数小1或2的材料。 分析以铁为主的样品,应该选用Co或Fe靶的X射线管,它们的分别相应选择Fe和Mn为滤波片。 2.下面是某立方晶系物质的几个晶面,试将它们的面间距从大到小按次序重 新排列:(12),(100),(200),(11),(121),(111),(10),(220),(130),(030),(21),(110)。 答:它们的面间距从大到小按次序是:(100)、(110)、(111)、(200)、(10)、(121)、(220)、(21)、(030)、(130)、(11)、(12)。3.衍射线在空间的方位取决于什么?而衍射线的强度又取决于什么? 答:衍射线在空间的方位主要取决于晶体的面网间距,或者晶胞的大小。

金属和金属材料教材分析

第八单元金属和金属材料教材分析 【单元教材概览】 ⑴本单元在初中化学《新课程标准》内容中:身边的化学物质一金属与金属矿物、 物质 的化学变化一认识几种化学反应(置换反应) 、金属活动性顺序、及有关含杂质的化学方程 式计算。 ⑵本单元主要围绕金属的性质、冶炼、防蚀、回收与利用等内容呈现学习情景和素材, 强调学生从生产、生活中发现问题并获取信息。强调学生通过探究性学习获取知识。 ⑶本单元是教材中首次出现的系统研究和认识金属及合金的性质、 冶炼、金属保护和用 途的内容。通过前几单元的学习,学生对物质的组成及表示方法、 质量守恒定律、化学方程 式等基础已经有了一定的了解, 对化学实验等探究性学习活动已经有了一定的实践体验。 在 此基础上安排了本单元内容,既能使学生用化学用语描述物质的性质和变化。 又能让学生进 一步学习和运用探究学习的方法。 厂 (物理性质 r * 与酸反应 》 置换反应 9硫酸铜反应/金属活动顺序 “性能 电 「用途 t 金属的锈蚀的条件 1、 知识与技能目标 了解金属的物理特征,能区分常见的金属和非金属;认识金属材料在生产、生活和社会 发展中的重要作用。知道常见的金属(铁、铝、铜)与氧气的反应;初步认识常见金属 与盐酸、稀硫酸的置换反应,以及与部分盐溶液的置换反应,能用置换反应解释一些与 日常生活有关的化学问题。能用金属活动性顺序表对有关的置换反应进行简单的判断, 并能解释日常生活中的一些现现象。知道一些常见金属(铁、铝)等矿物;了解从铁矿 石中将还原出来的方法。了解常见金属的特性及其应用,认识加入其他元素可以改良金 属特性的重要性;知道生铁和钢等重要的合金。知道废弃金属对环境的污染,认识回收 金属的重要性。会根据化学方程式对含有某些杂质的反应物或生成物进行有关计算。了 解金属锈蚀的条件以及防止金属锈蚀的简单方法。 2、 过程与方法 ⑴通过对生活中常见的一些金属材料选择的讨论引导学生从多角度分析问题。 ⑵通过金属活动顺序探究实验,让学生进一步学习和运用探究性学习方法。 3、 情感态度与价值观 ⑴通过日常生活中广泛使用金属材料等具体事例, 认识金属材料与人类生活和社会发展 的密切关系。 ⑵引导学生主动参与知识的获取过程,学习科学探究的方法,培养学生进行科学探究的 能力。 ⑶通过废弃金属对环境的污染,让学生树立环保意识。认识金属资源保护的重要性,让 学生产生金属资源的危机意识。 【重点、难点扫描 】 【知识结构透视】 【单元目标聚焦】

金属材料检验

分享]金属材料的检验 金属材料属于冶金产品,从事金属材料生产、订货、运输、使用、保管和检验必须依据统一的技术标准--冶金产品标准。对从事金属材料的工作人员必须掌握标准的有关内容。 我国冶金产品使用的标准为国家标准(代号为"国标"GB"")、部标(冶金工业部标准"YB"、一机部标准"JB"等、)企业标准三级。 (一)包装检验 根据金属材料的种类、形状、尺寸、精度、防腐而定。 1.散装:即无包装、揩锭、块(不怕腐蚀、不贵重)、大型钢材(大型钢、厚钢板、钢轨)、生铁等。 2.成捆:指尺寸较小、腐蚀对使用影响不大,如中小型钢、管钢、线材、薄板等。 3.成箱(桶):指防腐蚀、小、薄产品,如马口铁、硅钢片、镁锭等。 4.成轴:指线、钢丝绳、钢绞线等。 对捆箱、轴包装产品应首先检查包装是否完整。 (二)标志检验 标志是区别材料的材质、规格的标志,主要说明供方名称、牌号、检验批号、规格、尺寸、级别、净重等。标志有; 5.涂色:在金属材料的端面,端部涂上各种颜色的油漆,主要用于钢材、生铁、有色原料等。 6.打印:在金属材料规定的部位(端面、端部)打钢印或喷漆的方法,说明材料的牌号、规格、标准号等。主要用于中厚板、型材、有色材等。 7.挂牌:成捆、成箱、成轴等金属材料在外面挂牌说明其牌号、尺寸、重量、标准号、供方等。 金属材料的标志检验时要认真辨认,在运输、保管等过程中要妥善保护。 (三)规格尺寸的检验 规格尺寸指金属材料主要部位(长、宽、厚、直径等)的公称尺寸。 8.公称尺寸(名义尺寸):是人们在生产中想得到的理想尺寸,但它与实际尺寸有一定差距。 9.尺寸偏差:实际尺寸与公称尺寸之差值叫尺寸偏差。大于公称尺寸叫正偏差,小于公称尺寸叫负偏差。在标准规定范围之内叫允许偏差,超过范围叫尺寸超差,超差属于不合格品。

材料的成分分析

材料的成分分析 913000730018 鲁皓辰一、成分分析的定义 材料的成分分析是指通过谱图对产品或样品的成分进行分析,对各个成分进行定性定量分析的技术方法。成分分析主要用于对未知物及未知成分等进行分析,通过快速确定目标样品中的组成成分来鉴别材料的材质、原材料、助剂、特定成分及含量、异物等信息。 二、成分分析的分类 按照结论来区分,成分分析可以分为定性分析和定量分析两部分。定性分析主要是确定物质的组分种类,而定量分析是在定性分析后进行相应的定量分析,得出各种组分的分配比例。按照科学技术,定量分析只能做到无限接近真实情况,但却无法 100%保证准确。 1、指定成分含量分析 指定成分含量分析是材料成分分析的重要组成部分之一,能够针对性的对材料中某种或几种指定物质的含量进行定量分析。因指定成分含量分析的目的性强,结果一般干扰极小,准确度极高。 除部分材料中的某些物质有相关国家标准规定外,大多数指定成分的含量分析需要借助高精密仪器来完成,如光谱、色谱、质谱等。 常规材料指定成分含量分析项目: ◆无机物含量分析◆有机物含量分析◆高分子化合物含量分析 2、元素含量分析

元素含量分析也是材料成分分析的重要组成部分之一,能够针对性的对材料中某种或几种指定元素的含量进行定量分析。元素含量分析的准确度极高,一般能达到 ppm 级别(百万分之一)。元素含量分析仅对材料中的元素组成情况进行鉴定,而不能提供材料中具体的化合物组分的 组成情况,因此一般适合金属、合金、矿石等主要需求元素组成情况的材料的分析。常用的元素含量分析手段包括 X 射线衍射(XRD)、X 射线荧光光谱(XRF)、电感耦合等离子体 放射光谱(ICP-AES)等。 常规材料元素含量分析项目: ◆金属元素含量分析◆非金属元素含量分析◆全元素含量分析 3、材质鉴定分析 材质鉴定是材料成分分析的主要组成部分之一,能够对材料中主要组分的含量进行定性或定量分析,或者足以鉴别材料类型的某种或几种成分或元素含量进行分析。部分材料如钢材等的材质鉴定有相关国家标准的规范。 材质鉴定集中对材料的主要组成成分进行定性或定量分析,得到的是材料的大致组成情况,一般不涵盖材料中的全部组分,因此适合企业或个人在进行采购、使用等过程时对材料进行质量的基础控制,既节约了成本,又保证了质量。 常规材质鉴定项目: ◆钢材材质鉴定◆其他合金材质鉴定◆材料主成分定性分析◆材料主成分定量分析 三、成分分析的可用材料服务领域

手册列表

物理化学数据对于科学研究、生产实际和工业设计等具有很重要的意义。因此,在物理化学和物理化学实验课程的学习中,学生必须重视学习、掌握查阅文献数据的方法。由于发表、记载实验数据的书刊很多,在此仅介绍一些重要的手册和杂志,作为初学者的引导。物理化学数据手册分为一般和专用二种。 一、一般物理化学手册 这类手册归纳及综合了各种物理化学数据,是提供一般查阅用的。属于这类的有: 1.“CRC Handbook of Chemistry and Phy sics”(化学与物理学手册) 1913年出第一版,至今已出多版。Robert C.Weast担任该书主编达三十多年,第71版起改由Dav id R.Lide任主编.此书每年修订一次,由美国CRC(化学橡胶公司)新出一版,前有目录,后有索引,并附有文献数据出处,内容丰富,使用方便。从71版起,该书标题由原来的6个,调整改为16个标题,除保留原内容外,又增加了新的内容。每一新版都收录有最新发表的重要化合物的物性数据。 2.“International Critical T ables of Numerical Data,Phy sics,Chemistry and T echnology”(物理、化学和工艺技术的国际标准数据表) 1926-1933年出版,共七大卷,另附索引一卷。所搜集的数据是1933年以前的,比较陈旧;但数据比较齐全,为一本常用的手册。I.C.T.原以法国的数据年表(T ables Annuelles)前五卷为基础,后来Tables Annuelles继续出版,自然就成为I.C.T.的补充。 3.“Landolt Bornstein”(第六版),德文全名为“Zahlenwerte und Funktionen aus Phy sik,Chemie,Astronomie,Geophy sik und T echnik”(物理、化学、天文、地球物理及工艺技术的数据和函数) 郎-彭氏(L.B.)手册收集的数据较新、较全,因此在I. C.T.不能满足要求时,常可查阅郎-彭手册。这个手册系按物理性质先分成许多小节,如以上所引的目录所示。在每一小节中再按化合物分类,分类方法见各分册卷。 1961年该书开始出版新辑(L.B.Neue Serie),重新作了编排,名字改为“Landolt-Boernstein Zahlenwerte und Funktionen aus Naturwissenschaften und T echnik”(自然科学与技术中的数据和函数关系),到目前已陆续出版了五大类,50余卷,涉及的内容很广泛。 第六版的卷I-IV已译成英文: 卷Ⅰ:原子和分子物理。 卷Ⅱ:各种聚集状态的物理性质。 卷Ⅲ:天文和地球物理。 卷Ⅳ:基本技术。 每卷又分为若干分册,例如第一卷有五个分册: I/1: 原子和离子。 I/2:分子Ⅰ(核架)。 I/3:分子Ⅱ(电子层)。 I/4: 晶体。

金属材料检测标准大汇总

金属材料检测标准大汇总Newly compiled on November 23, 2020

金属材料化学成分分析 GB/T 222—2006钢的成品化学成分允许偏差 GB/T 系列钢铁及合金X含量的测定 GB/T 4336—2002碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法) GB/T 系列海绵钛、钛及钛合金化学分析方法X量的测定 GB/T 系列铜及铜合金化学分析方法第X部分:X含量的测定 GB/T 5678—1985铸造合金光谱分析取样方法 GBT 系列铝及铝合金化学分析方法 GB/T 7999—2007铝及铝合金光电直读发射光谱分析方法 GB/T 11170—2008不锈钢多元素含量的测定火花放电原子发射光谱法(常规法) GB/T 11261—2006钢铁氧含量的测定脉冲加热惰气熔融-红外线测定方法 GB/T 系列镁及镁合金化学分析方法第X部分X含量测定 金属材料物理冶金试验方法 GB/T 224—2008钢的脱碳层深度测定法 GB/T 225—2006钢淬透性的末端淬火试验方法(Jominy 试验) GB/T 226—2015钢的低倍组织及缺陷酸蚀检验法 GB/T 227—1991工具钢淬透性试验方法 GB/T 1954—2008铬镍奥氏体不锈钢焊缝铁素体含量测量方法 GB/T 1979—2001结构钢低倍组织缺陷评级图 GB/T 1814—1979钢材断口检验法 GB/T 2971—1982碳素钢和低合金钢断口检验方法 GB/T —2012变形铝及铝合金制品组织检验方法第1部分显微组织检验方法

GB/T —2012变形铝及铝合金制品组织检验方法第2部分低倍组织检验方法GB/T 3488—1983硬质合金显微组织的金相测定 GB/T 3489—1983硬质合金孔隙度和非化合碳的金相测定 GB/T 4236—1984钢的硫印检验方法 GB/T 4296—2004变形镁合金显微组织检验方法 GB/T 4297—2004变形镁合金低倍组织检验方法 GB/T 4334—2008金属和合金的腐蚀不锈钢晶间腐蚀试验方法 GBT 4335—2013低碳钢冷轧薄板铁素体晶粒度测定法 GB/T —2015不锈钢5%硫酸腐蚀试验方法 GB/T 4462—1984高速工具钢大块碳化物评级图 GB/T 5058—1985钢的等温转变曲线图的测定方法(磁性法) GB/T 5168—2008α-β钛合金高低倍组织检验方法 GB/T 5617—2005钢的感应淬火或火焰淬火后有效硬化层深度的测定 GB/T 8359—1987高速钢中碳化物相的定量分析X射线衍射仪法 GB/T 8362—1987钢中残余奥氏体定量测定X射线衍射仪法 GB/T 9450—2005钢件渗碳淬火硬化层深度的测定和校核 GB/T 9451—2005钢件薄表面总硬化层深度或有效硬化层深度的测定 GB/T 10561—2005钢中非金属夹杂物含量的测定标准评级图显微检验法GB/T 10851—1989铸造铝合金针孔 GB/T 10852—1989铸造铝铜合金晶粒度 GB/T 11354—2005钢铁零件渗氮层深度测定和金相组织检验 GB/T 13298—2015金属显微组织检验方法

最新人教版化学金属和金属材料知识点总结

金属和金属材料 金属材料 一、金属材料的发展与利用 1、从化学成分上划分,材料可以分为金属材料、非金属材料、有机材料及复合材料等四大类。 2、金属材料包括纯金属和合金。 金属材料:纯金属(90多种);合金(几千种) 黑色金属:通常指铁、锰、铬及它们的合金。 纯金属重金属:如铜、锌、铅等 有色金属 轻金属:如钠、镁、铝等; 有色金属:通常是指除黑色金属以外的其他金属。 (1)金属材料的发展 石器时代→青铜器时代→铁器时代→铝的应用→高分子时代 (2)金属材料的应用 ①最早应用的金属是铜,应用最广泛的金属是铁,公元一世纪最主要的金属是铁 ②现在世界上产量最大的金属依次为铁、铝和铜 ③钛被称为21世纪重要的金属 二、金属的物理性质 1、金属共同的物理性质:常温下金属都是固体(汞除外),有金属光泽,大多数金属是电和热的良导体,有延展性(又称可塑性→金属所具有的展性和延性:在外力的作用下能够变形,而且在外力停止作用以后仍能保持已经变成的形状和性质。各种金属的可塑性有差别;金属的可塑性一般是随着温度的升高而增大。),密度较大,熔沸点较高等。 2、金属的特性: ①纯铁、铝等大多数金属都呈银白色,而铜呈紫红色,金呈黄色; ②常温下,大多数金属都是固体,汞却是液体; ③各种金属的导电性、导热性、密度、熔点、硬度等差异较大。 3、金属之最 地壳中含量最多的金属元素—铝(Al)人体中含量最多的金属元素—钙(Ca) 导电、导热性最好的金属——银(Ag)目前世界年产量最高的金属—铁(Fe) 延展性最好的金属———金(Au)熔点最高的金属————钨(W) 熔点最低的金属————汞(Hg)硬度最大的金属————铬(Cr) 密度最小的金属————锂(Li)密度最大的金属————锇(Os) 最贵的金属————锎kāi(Cf)

手工金属材料成分化验

*化学分析方法

目录 方法一普碳钢及低合金钢中............................ 1-3 Mn、Si、P、Cr、Ni 、Cu、Mo 的测定(炉前快速法) 方法二轴承钢(中高合金钢中)........................ 4-5 Mn 、Cr、Mo 的测定(炉前快速法) 方法三合金钢及不锈钢中................................. 6-8 Ni 、Cr、Cu、Mo、Mn、P、Ti 的联合测定 方法四不锈钢中Cr、Ni的联合测定 (9) 方法五合金钢及不锈钢中Si的测定 (10) 方法六高锰钢中Mn、Si、P的测定................... 11-12 方法七生(铸)铁及合金铸铁中...................... 13-16 Mn 、Si、P、Cu、Cr、Ni 、Mo、RE、Mg、Ti 的联合测定方法八铸造铝合金中................................ 17-18 Si、Fe、Cu、Mn 、Mg、Ti 的联合测定

普碳钢及低合金钢中 Mn、Si、P、Cr、Ni 、Cu、Mo 的测定(炉前快速法) 一、锰的测定(0.1%L 2% ㈠主要试剂: 1. 硝酸一硝酸银溶液(0.4%);称取硝酸银4g,溶于硝酸(1+4)中,用 (1+4)稀至1000ml; 2. 过硫酸铵溶液(15%); ㈡分析操作 称样50mg置于预热10ml硝酸一硝酸银溶液的250ml高型烧杯中,加热溶解后,加过硫酸铵溶液(15%)10ml,煮沸30S,取下,加40ml 水,摇匀,流水冷却。 于波长530nm处,1cm比色杯中,水为参比,测量吸光度。 二、硅的测定 ㈠主要试剂 1. 硝酸(1+6); 2. 铝酸铵溶液(5%); 3. 草酸溶液(10%); 4. 硫酸亚铁铵溶液(1%),每100ml 溶液中,加入浓硫酸1ml。㈡分析操作 称取试样30mg 于250ml 高型烧杯中,杯中预置预热硝酸(1+6)5ml,中温并在摇动中加热溶解后,加5ml铝酸铵溶液(5%,加热10S,取下,立即加入30ml 草酸(1.7%)溶液,摇动至溶液清亮时(10S),加入30ml硫酸亚铁铵溶液(1%,摇匀,加水40ml,摇匀。

十种常用成分分析方法—科标检测

十种常见的成分分析方法介绍 成分分析是运用科学方法分析产品的成分,并对各个成分进行定性定量分析的一个过程。科标检测研究院有限公司,设有专业的分析实验室,成分分析检测领域有:化学品成分分析、金属成分分析、纺织品成分分析,水质成分分析,颗粒物成分分析,粉末成分分析,异物成分分析等。 常见的成分分析方法有以下10种。 一、成分分析-化学分析方法 化学分析从大类分是指经典的重量分析和容量分析。重量分析是指根据试样经过化学实验反应后生成的产物的质量来计算式样的化学组成,多数是指质量法。容量法是指根据试样在反应中所需要消耗的标准试液的体积。容量法即可以测定式样的主要成分,也可以测定试样的次要成分。 1.1重量分析 指采用添加化学试剂是待测物质转变为相应的沉淀物,并通过测定沉淀物的质量来确定待测物的含量。检测采用的仪器设备如:电子天平。 1.2容量分析 滴定分析主要分为酸碱滴定分析、络合滴定分析、氧化还原滴定分析、沉淀滴定分析。 酸碱滴定分析是指以酸碱中和反应为原理,利用酸性标定物来滴定碱性物质或利用碱性标定物来滴定酸性待测物。检测采用的仪器设备如:滴定管。 二、成分分析-原子吸收光谱法 原子吸收光谱法是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长,由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。

其基本原理是每一种元素的原子不仅可以发射一系列特征谱线,也可以吸收与发射线波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态。检测采用的仪器设备如:AAS原子吸收光谱仪。 三、成分分析-原子发射光谱法 原子发射光谱法是依据各种元素的原子或离子在热激发或电激发下,发射特征的电磁辐射,而进行元素的定性与定量分析的方法,是光谱学各个分支中最为古老的一种,可同时检测一个样品中的多种元素。 其基本原理是各物质的组成元素的原子的原子核外围绕着不断运动的电子,电子处在一定的能级上,具有一定的能量。从整个原子来看,在一定的运动状态下,它也是处在一定的能级上,具有一定的能量。在一般情况下,大多数原子处在最低的能级状态,即基态。原子发射光谱法(AES, atomic emission spectroscopy),是根据处于激发态的待测元素原子回到基态时发射的特征谱线,对元素进行定性与定量分析的方法,是光谱学各个分支中最为古老的一种。检测采用的仪器设备如:ICP-OES。 四、成分分析-原子荧光分析法 原子荧光分析法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。但所用仪器与原子吸收光谱法相近。原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。 原子荧光光谱是介于原子发射光谱和原子吸收光谱之间的光谱分析技术。 其基本原理是通过测量待测元素的原子蒸气在一定波长的辐射能激发下发射的荧光强度而进行定量分析。原子荧光的波长在紫外、可见光区。气态自由原子吸收特征波长的辐射后,原子的外层电子从基态或低能态跃迁到高能态,约经10-8秒,又跃迁至基态或低能态,同时发射出荧光。若原子荧光的波长与吸收线波长相同,称为共振荧光;若不同,则称为非共振荧光。共振荧光强度大,分析中应用最多。在一定条件下,共振荧光强度与样品中某元素浓度成正比,从而

《材料现代分析测试方法》复习题

《近代材料测试方法》复习题 1.材料微观结构和成分分析可以分为哪几个层次?分别可以用什么方法分析? 答:化学成分分析、晶体结构分析和显微结构分析 化学成分分析——常规方法(平均成分):湿化学法、光谱分析法 ——先进方法(种类、浓度、价态、分布):X射线荧光光谱、电子探针、 光电子能谱、俄歇电子能谱 晶体结构分析:X射线衍射、电子衍射 显微结构分析:光学显微镜、透射电子显微镜、扫面电子显微镜、扫面隧道显微镜、原 子力显微镜、场离子显微镜 2.X射线与物质相互作用有哪些现象和规律?利用这些现象和规律可以进行哪些科学研究工作,有哪些实际应用? 答:除贯穿部分的光束外,射线能量损失在与物质作用过程之中,基本上可以归为两大类:一部 分可能变成次级或更高次的X射线,即所谓荧光X射线,同时,激发出光电子或俄歇电子。另一部分消耗在X射线的散射之中,包括相干散射和非相干散射。此外,它还能变成热量逸出。 (1)现象/现象:散射X射线(想干、非相干)、荧光X射线、透射X射线、俄歇效 应、光电子、热能 (2)①光电效应:当入射X射线光子能量等于某一阈值,可击出原子内层电子,产 生光电效应。

应用:光电效应产生光电子,是X射线光电子能谱分析的技术基础。光电效应 使原子产生空位后的退激发过程产生俄歇电子或X射线荧光辐射是 X射线激发俄歇能谱分析和X射线荧光分析方法的技术基础。 ②二次特征辐射(X射线荧光辐射):当高能X射线光子击出被照射物质原子的 内层电子后,较外层电子填其空位而产生了次生特征X射线(称二次特征辐射)。 应用:X射线被物质散射时,产生两种现象:相干散射和非相干散射。相干散射 是X射线衍射分析方法的基础。 3.电子与物质相互作用有哪些现象和规律?利用这些现象和规律可以进行哪些科学研究工作,有哪些实际应用? 答:当电子束入射到固体样品时,入射电子和样品物质将发生强烈的相互作用,发生弹性散射和非弹性散射。伴随着散射过程,相互作用的区域中将产生多种与样品性质有关的物理信息。 (1)现象/规律:二次电子、背散射电子、吸收电子、透射电子、俄歇电子、特征X射 线 (2)获得不同的显微图像或有关试样化学成分和电子结构的谱学信息 4.光电效应、荧光辐射、特征辐射、俄歇效应,荧光产率与俄歇电子产率。 特征X射线产生机理。 光电效应:当入射X射线光子能量等于某一阈值,可击出原子内层电子,产生光电效应。 荧光辐射:被打掉了内层电子的受激原子,将发生外层电子向内层跃迁的过程,同时辐射出波长严格一定的特征X射线。这种利用X射线激发而产生的特征辐射为二次特

相关主题