搜档网
当前位置:搜档网 › 基于MATLAB下的SPWM三相桥式逆变电路

基于MATLAB下的SPWM三相桥式逆变电路

基于MATLAB下的SPWM三相桥式逆变电路
基于MATLAB下的SPWM三相桥式逆变电路

基于MATLAB 下的SPWM 三相桥式逆变电路 理论补充:

逆变器工作原理:整个实验在三相桥式逆变电路下进行,如下图1,电感电阻性负载,A 、B 、C 相的上下桥臂轮流导通。当1VT 导通,4VT 截止时,a 点电位位Ud/2;当4VT 导通,1VT 截止时,a 点电位位-Ud/2。同理可得b 、c 点的电位。通过控制六个管子的导通时间,达到逆变效果。

图1 实验主电路

PWM 是六个VT 管子的触发信号,此信号是通过调制信号(即正弦波)和

载波(三角波)的比较得到的,分析1VT 管的通断情况:当正弦波r u 比三角载波c u 大的时候比较器输出1,1VT 导通,否则,比较器输出0,1VT 关断。同理4VT 导通情况只要与1VT 反相即可。

图2 PWM 波生成原理简图

仿真:

1.主电路模块搭建:

如图3,输入直流电压源大小V U d 250=,输入部分为三相对称电感、电阻性负载,作星形连接,电阻取值大小为Ω=2R ,电感取值mH L 01.0=。

图3 SPWM 三相桥式逆变仿真电路

Universal Bridge 元器件说明

图4 Universal Bridge 模块和通用桥展开图

Universal Bridge 模块的中文名是通用桥模块,它有1个桥臂、2个桥臂和3个桥臂的选择。它的三个桥臂的展开图如下图4所示,当六列PWM 信号输入通用桥的g 端口时,通用桥会自动分配每一列的信号给每一个管子,控制该管子的开闭。其输入的顺序是,第一列信号输入到1VT ,第二列信号输入到4VT ,第三列信号输入到3VT ,第四列信号输入到6VT ,第五列信号输入到5VT ,第六列信号输入到2VT 。

2.SPWM 生成模块

由图2可知,当调制信号的正弦波r u 大于三角载波c u 时,逆变器输出高电平,否则,输出低电平,可设计如图5触发电路,以A 相电路上下桥臂为例。

图5SPWM中A相的上下桥臂的输入信号

图5中用了两个逻辑比较器Relational Operator来比较两列输入波形的大小,Relational Operator的工作原理是,符合图中逻辑关系时,输出1;反之,输出0。

当调制比为0.8,载波比为12,仿真时间为s

.

0时,有以下输出波形,如

04

图6,第一栏为输入的调制波和载波信号,第二栏为A相电路上桥臂开关信号,第三栏为A相电路下桥臂开关信号,与上桥臂反相。同时可以看到,当调制波比三角载波大时上桥臂的开关信号为1,开关管导通,当调制波比三角载波小时上桥臂的开关信号为0,开关管关闭,上下桥臂交替导通,形成逆变。

图6 M=0.8,C=12时A相上下桥臂的开关信号整个仿真电路如图7,左边的三个模块是SPWM的生成模块,六列信号输入到通用桥中,控制通用桥内管子的导通顺序。主电路电感为0.02H,电阻为2 。

图7完整电路仿真图

参数的设置

A相正弦模块设置,幅值为0.8,频率为100*pi,初相位为0.

图8 A相正弦模块

同样B、C相只需要设置初相位时有个120°的差值就可以了,注意,在MATLAB中要把120°转换为弧度输入,即为pi/3。

载波设置,三角模块是一个时间值对应一个幅值的大小的,至于载波频率是多少,根据实验需要,读者可以自己改。

图9三角载波设置

万用表参数设置

三个万用表参数设置如下(可拉大看),第一个测的是负载相电压,第二个和第三个测的都是相电流,第二个是把电流分别用示波器展开看,第三个是把三个电流在同一示波器下显示。

图10 万用表的参数设置

仿真结果

仿真时调整算法为ode45,仿真步长为可变步长,最大步为1e-5,最小步为1e-6,仿真时间为0.08s 。如下图11所示。

图11 算法参数设置

为了便于分析,本论文的仿真结果均经过顺序调整,使得第一个图均为初相位为0的正弦波形。

图12 相电压an U 、bn U 、cn U 波形图

图13三相电流波形图

图14三相电流波形在同一坐标下显示图

分析所得到的相电压波形有正弦的趋势,但谐波含量还是比较高,这时因为

没有滤波电路的缘故。仿真结果达到预期效果。

单相桥式全控整流及有源逆变电路的MATLAB仿真

单相桥式全控整流及有源逆变电路的MATLAB 仿真 图1 单相桥式全控整流 知识点回顾: 整流(AC/DC)就是将交流变化为方向不变,大小为纹波的直流,相信大家都很清楚,这里就不详细介绍整流啦! 逆变(DC/AC),按负载性质的不同,逆变分为有源逆变和无源逆变。如果把逆变电路的交流侧接到交流电源上,将直流电能经过直—交变换,逆变成与交流电源同频率的交流电返回到电网上去,叫有源逆变,其相应的装置是有源逆变器。而将直流电能经过变换逆变成交流电能直接消耗在非电源性负载上者,叫无源逆变,其相应的装置是变频器。 逆变与整流是变流装置的两种不同工作状态,能在同一套变流装置上实现,只是其工作条件不一样而已。首要条件是变流装置内部,使直流电压d U 改变极性,从而使功率的流向有可能发生逆转。当控制角?<≤ 900α时, 变流装置工作在整流状态,直流电压d U 与直流电流d I 是同一方向,装置将交流电能转换成直流电能供给直流负载;当控制角?≤< ?18090α时,变流装置工作在逆变状态,由于晶闸管的单向导电性,电流d I 方向不变,而直流 电压d U 改变了极性,装置将直流电能转换成交流电能输向电网或非电源性负载。其次是外部调件,必须是提供直流能源,而且是d U E > 。 仿真环境: MATLAB (R2009b) 实验一:电感性负载整流 1.电路搭建

元件路径 晶闸管T SimPowerSystems/Power Electronics/Thyristor 交流电源AC100V SimPowerSystems/Electrical Sources/AC Voltage Source 脉冲发生器Pulse Generator Simulink/Sources/Pulse Generator 支路RLC SimPowerSystems/Elements/Series RLC Branch 电压测量Vd SimPowerSystems/Measurements/Voltage Measurement 电流测量SimPowerSystems/Measurements/Current Measurement 示波器Scope Simulink/Sinks/Scope 选择器Selector Simulink/Signal Routing/Selector 3.参数设置

三相全控桥式整流及有源逆变电路的设计

电力电子技术课程设计报告 有源逆变电路的设计 姓名 学号 年级20级 专业电气工程及其自动化 系(院) 指导教师 2012年12 月10 日 课程设计任务书

课程《电力电子技术》 题目 有源逆变电路的设计 引言 任务: 在已学的《电力电子技术》课程后,为了进一步加强对整流和有源逆变电路的认识。可设计一个三相全控桥式整流电路及有源逆变电路。分析两种电路的工作原理及相应的波形。通过电路接线的实验手段来进行调试,绘制相关波形图 要求: a. 要有设计思想及理论依据 b. 设计出电路图即整流和有源逆变电路的结构图 c. 计算晶闸管的选择和电路参数 d. 绘出整流和有源逆变电路的u d(t)、i d(t)、u VT(t)的波形图 e. 对控制角α和逆变β的最小值的要求

设计题目三相全控桥式整流及有源逆变电路的设计 一.设计目的 1.更近一步了解三相全控桥式整流电路的工作原理,研究全控桥式整流电路分别工作在电阻负载、电阻—电感负载下Ud, Id及Uvt的波形,初步 认识整流电路在实际中的应用。 2.研究三相全控桥式整流逆变电路的工作原理,并且验证全控桥式电路在有源逆变时的工作条件,了解逆变电路的用途。 二.设计理念与思路 晶闸管是一种三结四层的可控整流元件,要使晶闸管导通,除了要在阳极—阴极间加正向电压外,还必须在控制级加正向电压,它一旦导通后,控制级就失去控制作用,当阴极电流下降到小于维持电流,晶闸管回复阻断。因此,晶闸管的这一性能可以充分的应用到许多的可控变流技术中。 在实际生产中,直流电机的调速、同步电动机的励磁、电镀、电焊等往往需要电压可调的直流电源,利用晶闸管的单向可控导电性能,可以很方便的实现各种可控整流电路。当整流负载容量较大时,或要求直流电压脉冲较小时,应采用三相整流电路,其交流侧由三相电源提供。三相可控整流电路中,最基本的是三相半波可控整流电路,应用最广泛的是三相桥式全控整流电路。三相半波可控电路只用三只晶闸管,接线简单,但晶闸管承受的正反向峰值电压较高,变压器二次绕组的导电角仅120°,变压器绕组利用率较低,并且电流是单向的,会导致变压器铁心直流磁化。而采用三相全控桥式整流电路,流过变压器绕组的电流是反向电流,避免了变压器铁芯的直流磁化,同时变压器绕组在一个周期的导电时间增加了一倍,利用率得到了提高。 逆变是把直流电变为交流电,它是整流的逆过程,而有源逆变是把直流电经过直-交变换,逆变成与交流电源同频率的交流电反送到电网上去。逆变在工农业生产、交通运输、航空航天、办公自动化等领域已得到广泛的应用,最多的是交流电机的变频调速。另外在感应加热电源、航空电源等方面也不乏逆变电路的身影。 在很多情况下,整流和逆变是有着密切的联系,同一套晶闸管电路即可做整流,有能做逆变,常称这一装置为“变流器”。 三.关键词

SPWM逆变电路原理

对于大多数应用场合需要的是工频电源,例如我们的电冰箱,洗衣机,电风扇等都需要正弦波的220伏、50赫兹电源,各种动力设备,远距离输电也都需要正弦波的交流电。更多的太阳能光伏发电装置输出的是正弦波交流电,目前生成正弦波仍采用前面介绍的全桥电路,只是对开关晶体管的控制采用PWM脉宽调制或移相控制或调频控制等方式。这里仅介绍最常用的PWM脉宽调制方式。 面积等效原理转换 把直流电转换成正弦波交流电是根据根据面积等效原理,在图1上图中的正弦半波(红线)分成n等份,把正弦半波看成是由n个彼此相连的矩形脉冲组成的波形,为简单清晰,划分为7等份。7个脉冲的幅值按正弦规律变化,每个脉冲面积与相对应的正弦波部分面积相同,这一连续脉冲就等效正弦波。 图1 用面积等效原理转换为SPWM波形 如果把上述脉冲序列改为相同数量的等幅而不等宽的矩形脉冲(图1下图),脉冲中心位置不变,并且使该矩形脉冲面积和上图对应的矩形脉冲相同,得到图1下图所示的脉冲序列,脉冲宽度按正弦波规律变化,这就是PWM波形。根据面积等效原理,PWM波形和正弦半波是等效的,图中红线就是该序列波形的平均值。 对于正弦波的负半周,也可以用同样的方法得到PWM 波形。这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称SPWM波形。要改变等效输出的正弦波的幅值时,只需按照同一比例系数改变上述各脉冲的宽度即可。 SPWM波形的生成 输出SPWM波形仍需全桥逆变电路,在“光伏用DC-DC变换器”课件中已介绍过这种电路,通过控制开关晶体管的通与断在负载上产生交变电压,见图2。

s 图2 全桥逆变电路的工作状态 输出SPWM波形的矩形波必须生成序列的控制信号来控制桥式电路中开关晶体管的通与断,普遍使用的是调制法来生成控制信号,可采取单极性调制也可采用双极性调制来生成控制信号,下面介绍常用的单极性调制方式。 图3上部分是SPWM波形控制信号生成的原理图,下部分是生成的SPWM波形。在调制法中,把所希望输出的波形称为调制波ur,把接受调制的信号称为载波uc,通常采用等腰三角波作为载波,正弦波作为调制信号。在两波交点时对电路中的开关器件进行通断控制,就可得到宽度正比于调制信号幅值的脉冲。 在ur正半周时,T2与T3保持关断,在ur和uc的交点时刻控制开关晶体管T1与T4开通与关断:当ur>uc时控制T1与T4导通,R上的电压为Ud,当ur<uc时控制T1与T4关断,R上的电压为0。在ur负半周时,T1与T4保持关断,当uc>ur时控制T3与T2导通,R上的电压为-Ud,当uc<ur时控制T1与T4关断,R上的电压为0。这样在R上产生宽度按正弦波规律变化的SPWM波形,见图2下图,其中红线uof表示输出等效的正弦波交流电电压。 SPWM逆变器输出的正弦波交流电电压uof的峰值uofm小于输入的直流电压ud,把uofm/ud 称为直流电压利用率,对于单相SPWM电路直流电压利用率的理论值最大为1,实际上由于种种原因,直流电压利用率要小于1。对于输出相电压(有效值)为220V单相交流电的逆变电路输入直流电压要高于310V。 SPWM逆变器输出电压与ur/uc成正比,保持载波uc不变,改变调制波ur的大小即可控制输出交流电压的大小。当然,调制波ur峰值要小于载波uc峰值。

1单相桥式全控整流和有源逆变电路实验实验报告

实验报告 课程名称:现代电力电子技术 实验项目:单相桥式全控整流及有源逆变电路实验实验时间: 2012/10/19 实验班级: 总份数: 指导教师:朱鹰屏 自动化学院电力电子实验室 二〇〇年月日

广东技术师范学院实验报告 学院:自动化学院专业:电气工程及其自 动化 班级:成绩: 姓名:学号:组别:组员: 实验地点:电力电子实验室实验日期:10/19指导教师签名: 实验(一)项目名称:单相桥式全控整流及有源逆变电路实验1.实验目的和要求 (1)加深理解单相桥式全控整流及逆变电路的工作原理。 (2)研究单相桥式变流电路整流的全过程。 (3)研究单相桥式变流电路逆变的全过程,掌握实现有源逆变的条件。 (4)掌握产生逆变颠覆的原因及预防方法。 2.实验原理 图3-8为单相桥式整流带电阻电感性负载,其输出负载R用D42三相可调电阻器,将两个900Ω接成并联形式,电抗Ld用DJK02面板上的700mH,直流电压、电流表均在DJK02面板上。触发电路采用DJK03-1组件挂箱上的“锯齿波同步移相触发电路Ⅰ”和“Ⅱ”。 图3-9为单相桥式有源逆变原理图,三相电源经三相不控整流,得到一个上负下正的直流电源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器反馈回电网。“三相不控整流”是DJK10上的一个模块,其“心式变压器”在此做为升压变压器用,从晶闸管逆变出的电压接“心式变压器”的中压端Am、Bum,返回电网的电压从其高压端A、B输出,为了避免输出的逆变电压过高而损坏心式变压器,故将变压器接成Y/Y接法。图中的电阻R、电抗Ld和触发电路与整流所用相同。有关实现有源逆变的必要条件等内容可参见电力电子技术教材的有关内容。 3.主要仪器设备

三相桥式PWM逆变电路

湘潭大学 课程设计报告书题目:三相桥式PWM逆变电路设计 学院信息工程学院 专业自动化 学生 同组成员 指导教师 课程编号 课程学分 起始日期

目录 一、课题背景 (1) 二、三相桥式SPWM逆变器的设计内容及要求 (2) 三、SPWM逆变器的工作原理 (3) 1.工作原理 (4) 2.控制方式 (5) 3.正弦脉宽调制的算法 (8) 四、MATLAB仿真分析 (17) 五、电路设计 (11) 1.主电路设计 (11) 2.控制电路设计 (12) 3.保护电路设计 (14) 4.驱动电路设计 (15) 六、实验总结 (21) 附录 (22) 参考文献 (23)

三相桥式SPWM逆变电路设计 一、课题背景 随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。 在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。该调制方法的最大缺点是它的6个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。本实验针对正弦波输出变压变频电源SPWM 调制方式及数字化控制策略进行了研究,以SG3525为主控芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。 正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装 置被广泛地应用于国民经济生产生活中 ,其中有:针对计算机等重要负载进行断电保护的交流不间断电源 UPS (Uninterruptle Power Supply) ;针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源 EPS ( Emergence Power Supply) ;针对船舶工业用电的岸电电源 SPS(Shore Power Supply) ;还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新 ,特别是以绝缘栅极双极型晶体管 IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现 ,大大简化了正弦逆变电源的换相问题 ,为各种 PWM 型逆变控制技术的实现提供了新的实现方法 ,从而进一步简化了正弦逆变系统的结构与控制. 电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。 IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。它的并联不成问题,由于本身的关断延迟很短,其串联也容易。尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外,绝缘材料的缺陷也是一个问题。

单相桥式全控整流电路实验及有源逆变电路

单相桥式全控整流电路 实验及有源逆变电路 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

重庆三峡学院 实验报告 课程名称电力电子技术 实验名称单相桥式全控整流电路实验 实验类型验证学时 2 系别电信学院专业电气工程及自动化 年级班别 2015级2班开出学期 2016-2017下期 学生姓名袁志军学号 4228 实验教师谢辉成绩 2017 年 5 月 14 日

U2(V)220220220220 U d(计算值)(V)99 计算公式:U d=(1+cosα)/2 (2)60゜(3)90゜(1)30゜ U d =(1+cosα)/2 = U d =(1+cosα)/2 =99V U d =(1+cosα)/2 =

(3)120゜ 七、注意事项 (1)在本实验中,触发脉冲是从外部接入DJKO2面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,并将U lf 及U lr 悬空,避免误触发。 (2)为了保证从逆变到整流不发生过流,其回路的电阻R 应取比较大的值,但也要考虑到晶闸管的维持电流,保证可靠导通。 八、思考题 实现有源逆变的条件是什么 1)外部条件:一定要有直流电源,其极性必须和晶闸管导通方向一致,其值应稍大于变流器直流侧平均电压。 2)内部条件:要求晶闸管的控制角a>90度,使Ud 为负值。 3)充分条件:电路支流回路中必须要有足够大的电感,以保证有源逆变连续进行。 九、实验总结 此次试验,进行了单相桥式全控整流电路实验,有四只晶闸管,两只桥臂,两两一组,分别采用互差180度的正反脉冲,由于要求各组晶闸管触发时间一致,对于实验精度高,要求严格。 实验前首先检查各个器件的完好性,避免接好线后盲目查找错误,特别是检查触发脉冲的情况。在实验中,出现了加脉冲后,晶闸管未工作的情况,经检查发现诸多晶闸管损坏,导致脉冲不起作用。 总之,在做实验时,要对实验熟悉,做到心中有数,严格按照实验步骤,切不可怀侥幸心理而不检查器件;在出现实验现象有误时,不要慌乱,借助实验仪器检查仪器,培养自己查错纠错的能力。 最后,我们用matlab 仿真完成了实验,完整观察了晶闸管,负载的电流,电压波形。 教师评语: U d =(1+cosα)/2 =

实验四 三相全桥逆变电路

实验四三相全桥有源逆变电路 一、实验目的 1.加深理解三相桥式有源逆变电路的工作原理 2.研究三相桥式有源逆变电路逆变的全过程 3.掌握三相全桥有源逆变电路MATLAB的仿真方法,会设置各模块的参数。 二、预习内容要点 三相全桥有源逆变电路带阻感性负载在α所取不同角度下的运行情况。 三、实验仿真模型 三相全桥有源逆变电路 四、实验内容及步骤 对三相全桥有源逆变电路带阻感性负载在在α所取不同角

度下的运行情况进行仿真并记录分析改变脉冲频率时的波形。 (1)器件的查找 以下器件均是在MATLAB R2014a环境下查找的,其他版本类似。有些常用的器件比如示波器、脉冲信号等可以在库下的Sinks、Sources中查找;其他一些器件可以搜索查找 (2)三相对称正弦交流电源要求设置参数 Um=50V、f=50Hz初相位依次为0°、-120°、-240°。选择阻感性负载,R=2Ω,L=0.01H,C=inf 仿真波形及分析 α=30度时的波形 α=60度时的波形

α=90度时的波形 α=120度时的波形

α=150度时的波形 仿真波形图 从仿真结果可以看到α=30°和α=60°时,电路工作在整流状态,负载电压为正值,变流电路输出电压波形正面积大于负面积,平均电压大于零。当α=120°和α=150°时,负载电压为正值,输出电压波形正面积大于负面积,平均电压为负,电路工作在逆变状态;α=90°时,电路工作在中间态平均电压为0。 五、实验总结 采用Matlab/Simulink对三相半波有源逆变电路进行仿真分析,避免了常规分析方法中繁琐的绘图和计算过程,使

单相桥式全控整流电路

单相桥式全控整流电路 一、原理 图1.1为单相桥式全控整流带电阻电感性负载,图中DJK03是装置上的晶闸管触发装置。假设电路已工作于稳态。 在u2正半周期,触发角α处给晶闸管VT1和VT4加触发脉冲使其开通,ud=u2。负载中有电感存在时负载电流不能突变,电感对负载电流起平波作用,假设负载电感很大,负载电流id连续且波形近似为一水平线,u2过零变负时,由于电感的作用晶闸管VT1和VT4中仍流过电流id,并不关断。至ωt=π+α时刻,给VT3和VT2加触发脉冲,因VT3和VT2本已承受正电压,故两管导通。VT3和VT2导通后,u2通过VT3和VT2分别向VT1和VT4施加反压使VT1和VT4关断,流过VT1和VT4的电流迅速转移到VT3和VT2上,此过程成为换相,亦称换流。至下一周期重复上述过程,如此循环下去,其平均值为Ud=0.9U2。 图1.2为单相桥式有源逆变电路实验原理图,三相电源经三相不控整流,得到一个上负下正的直流电源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器反馈回电网。图中的电阻Rp、电抗Ld和触发电路与单相桥式整流电路相同。 产生有源逆变的条件如下: (1)要有直流电动势,其极性需和晶闸管的导通方向一致,其值应大于变流电路直流侧的平均电压。 (2)要求晶闸管的控制角α>π/2.,使Ud为负值。 两者必须同时具备才能实现有源逆变。 二、实验内容 (1)单相桥式全控整流电路带电阻性负载。 (2)单相桥式有源逆变电路带电阻电感性负载。 (3)有源逆变电路逆变颠覆现象的观察。 (4)单相桥式整流、单相桥式有源逆变电路带电阻电感性负载时MATLAB的仿真。 三、实验仿真 1.带电阻电感性负载的仿真 启动MATLAB,进入SIMULINK后新建文档,绘制单相桥式全控整流电路模型,如图1.3所示。双击各模块,在出现的对话框内设置相应的参数。

单相单极性SPWM逆变电路matlab仿真

计算机仿真实验报告 专业:电气工程及其自动化班级:11电牵4班 姓名:江流 在班编号:26 指导老师:叶满园 实验日期:2014年5月15日

一、实验名称: 单相单极性SPWM逆变电路MATLAB仿真 二、目的及要求 了解并掌握单相单极性SPWM逆变电路的工作原理; 2.进一步熟悉MA TLAB中对Simulink 的使用及构建模块; 3.进一步熟悉掌握用MA TLAB绘图的技巧。 三、实验原理 1.单相单极性SPWM逆变的电路原理图 2、单相单极性SPWM逆变电路工作方式 单极性PWM控制方式(单相桥逆变):在Ur和U c的交点时刻控制IGBT的通断,Ur正半周,V1保持通,V2保持断,当Ur>cu时使V4通,V3断,U0=Ud,当UrUc时使V3断,V4通,U0=0。

输出电压波形 四、实验步骤及电路图 1、建立MATLAB仿真模型。以下分别是主电路和控制电路(触发电路)模型:

2、参数设置 本实验设置三角载波的周期为t,通过改变t的值改变输出SPWM矩形波的稠密,从而调节负载获取电压的质量。设置正弦波周期为0.02s,幅值为1。直流电源幅值为97V,三角载波幅值为1.2V,三角载波必须正弦波正半周期输出正三角载波,而在正弦波负半周期输出负三角载波,这可以通过让三角载波与周期与正弦波相同、幅值为1和-1的矩形波相乘实现。 五、实验结果与分析 1、设置三角脉冲波形的周期t=0.02/9s时的仿真结果:

三相桥式全控整流

实验一三相桥式全控整流 一、实验目的 (1)加深理解三相桥式全控整流及有源逆变电路的工作原理 (2)了解KC系列集成触发器的调整方法和各点的波形 (3)掌握三相桥式全控整流电路MA TLAB的仿真方法,会设置各模块的参数。 二、实验原理 实验电路如图所示。主电路由三相全控整流电路及作为逆变直流电源的三相不可控整流电路组成,三相桥式整流及逆变电路的工作原理可参见电力电子技术教材的有关内容。 途中的R p用滑线变阻器,接成并联形式,电感L b选用700mH。在三相桥式有源逆变电路中,电阻、电感与整流的一致,而三相不可控整流机心式变压器可在实验装置上获得,其中心式变压器用作升压变压器,逆变输出的电压接心式变压器的中压端A m、B m、C m,返回电网的电压从高压端A、B、C输出,变压器接成Y/Y接法。 三相桥式全控整流电路的计算公式如下: U d=2.34U2cosα(0~60°) U d=2.34U2[1+cos(α+π)](60°~120°) 三相桥式有缘逆变电路计算公式如下: U d=2.34U2cos(180°-β) 三、实验内容 (1)三相桥式全控整流电路了 (2)三相桥式有缘逆变电路 (3)在整流或有源逆变状态下,当触发电路出现故障(认为模拟)时观测主电路的各电压波形。 四、实验仿真 带电阻性负载的仿真 三相桥式全控整流系统模型图

启动MATLAB,进入SIMULINK后新建文档,绘制三相桥式全控整流系统模型,如图所示。双击各模块,在出现的对话框设置相应的参数。 (1)交流电压源的参数设置:三相电源的相位互差120°,设置交流峰值相电压为100V、频率为60Hz (2)负载的参数设置:R=45Ω,L=0H,C=inf (3)通用变换器桥参数设置:本例中设置桥的结构为三相,缓冲电阻R s,为了消除模块中的缓冲电路,可以缓冲电阻R s的参数设定为inf。缓冲电容Cs,单位为F,为了消除模块中的缓冲电路,可将缓冲电容C s的参数设定为inf。电力电子器件选择通用变换器桥中使用的电力电子的类型。内电阻R on单位为Ω,通用变换器中使用的是功率电子元件的内电阻,R on=1e-3(1×10-3)。内电感L on,单位为H,变换桥中使用的是二极管、晶闸管、MOSFET灯功率电子元件的内电感。 (4)同步6脉冲触发器的参数设置:设置同步电压频率为60Hz,脉冲宽度为60°。 (5)常熟模块参数设置:该模块只有一个输出端,在本例中只要改变参数对话框的数值大小,即改变了触发信号的控制角。 打开仿真/参数窗,选择ode23tb算法,将相误差设置为1e-3(1×10-3),开始仿真时间为0,停止时间设置为0.02. 设置好各模块参数后,单击仿真按钮,得到仿真结果。改变触发角α,得到不同的仿真结果。

无源三相PWM逆变器控制电路设计65427

目录 第一章:课程设计的目的及要求 (2) 第二章整流电路 (5) 第三章逆变电路 (9) 第四章PWM逆变电路的工作原理 (11) 第五章三相正弦交流电源发生器 (14) 第六章三角波发生器 (15) 第七章比较电路 (16) 第八章死区生成电路 (18) 第九章驱动电路 (20) 附录 参考文献 课程设计的心得体会

第一章:课程设计的目的及要求 一、课程设计的目的 通过电力电子计术的课程设计达到以下几个目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索 需要的文献资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 二、课程设计的要求 1. 自立题目 题目:无源三相PWM逆变器控制电路设计 注意事项: ①学生也可以选择规定题目方向外的其它电力电子装置设计,如开关电源、镇流器、UPS电源等,

②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。首先要明确自己课程设计的设计容。 控制框图 设计装置(或电路)的主要技术数据 主要技术数据 输入交流电源: 三相380V,f=50Hz 交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流: 电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH

设计容: 整流电路的设计和参数选择 滤波电容参数选择 三相逆变主电路的设计和参数选择 IGBT电流、电压额定的选择 三相SPWM驱动电路的设计 画出完整的主电路原理图和控制电路原理图 2.在整个设计中要注意培养灵活运用所学的电力电子技术 知识和创造性的思维方式以及创造能力 要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。主电路具体电路元器件的选择应有计算和说明。课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过剖析、提炼,设计出所要求的电路(或装置)。课程设计中要不断提出问题,并给出这些问题的解决方法和自己的研究体会。设计报告最后给出设计中所查阅的参考文献最少不能少于5篇,且文中有引用说明,否则也不能得优)。

三相SPWM逆变器

第四章三相SPWM逆变器 4.1三相SPWM逆变器的结构 SPWM逆变器与PWM逆变器在主电路方面没有本质的区别,将电压型PAM主电路结构中的晶闸管替换为IGBT就成了SPWM型逆变器的主电路结构。SPWM脉宽调制时,瞬时电压以极高的速度切换方向而输出半波内不改变方向,因此,输出电压与输出电流常常方向不一致,这时就需要续流二极管来提供与电压极性相反的电流通道。加上了续流二极管的三相逆变桥,我们就设计好了SPWM逆变器的基本主电路。图4.1是SPWM逆变器的主电路结构,它由六只IGBT组成三相桥式结构,每个桥上反并联了续流二极管。 4.1 SPWM逆变器的主电路图 IGBT器件有自己特有的驱动电路及保护电路,实际中IGBT通常不以单独的形式供货,而是以包括了驱动及保护电路的智能模块(IPM)方式提供的。 IPM不仅为IGBT器件提供了驱动电路及保护电路,也为整个模块提供了过热保护等。在容量比较小的情况下,IPM常常做成多器件结构,例如六单元或七单元结构。六单元结构集成了一个完整的SPWM逆变器,图4.2就是一个六单元IPM的结构示意图。七单元IPM除一个逆变器外,还把能耗制动用的斩波元器件及附属电路集成在里边了。 4.2 IPM结构

从图4.2看到,六单元模块为五个主电路端子,即直流正负极输入和交流三相输出端子。另外有驱动和保护的控制端子若干,它们是能够和常规控制芯片直接连接或者通过光耦合连接的电压型接口。驱动端子是输入端子,接受外部触发器件,保护端子是输出端子,在保护电路封锁驱动电路的同时发出保护动作信号给外部控制器。主电路端子通常是接线桩形式,控制端子通常是集中插口形式。七单元IPM增加了一个连接制动电阻的主电路端子及相应的控制端子。 当容量比较大时,如果IPM仍然集成整个逆变器,会产生两个方面的缺点:一是模块的体积和重量加大,给安装和布置带来困难,也不利于散热;二是当模块中局部元器件损坏时需要更换整个模块,而大容量的模块的成本必然更高,因此使维护成本增加了。 所以,容量比较大时,IPM以两个或者一单元的形式提供。两单元IPM包括一个逆变桥臂的所有器件,即两个IGBT、续流二极管、驱动及保护电路。一单元IPM包括一个IGBT和它的续流二极管、驱动及保护电路。 逆变器的输出主电路中,还需要连续用于限制电压变化率的缓冲电路。IGBT的驱动电路、保护电路以及包括缓冲电路在内的其他附加辅助电路的具体接线原理。 4.2异步电动机按磁通定向的矢量控制原理 一、电动机合成磁通势及磁链 合成磁通势及磁链是指气隙合成磁通势和气隙磁链。如果计及定转子绕组漏磁影响,还有另外两个合成磁通势和磁链:定子合成磁通势和定子磁链;转子合成磁通势和转子磁链,三种合成磁通势和磁链定义如下。 (一)气隙磁链 是定子、转子通过气隙相互交链的那部分磁链: = + (4-1) 式中:为定、转子绕组之间的互感;为由定子电流产生,穿过气隙与转子绕组交链的那部分磁链; 为由转子电流产生,穿过气隙与定子绕链的那部分磁链。 是由气隙合成磁通势产生的。 (二)定子磁链 是气隙磁链与定子漏磁链之和。 = + = ++ =+(4-2) 式中:为定子绕组漏感;为定子绕组全电感,=+;为定子电流产生的全部磁链。 是由定子合成磁通势产生的。 (三)转子磁链 是气隙磁链与转子漏磁磁链之和。 = += ++ =+(4-3) 式中:为转子绕组漏感;为转子绕组全电感,=+;为转子电流产生的全部磁链(包括漏磁 链)。 是由转子合成磁通势产生的。 根据上述分析结果,可以作出磁链方向图,如图4-3所示。、、均可以同步角速度旋转。

单相桥式全控整流及有源逆变电路实验实验报告记录

单相桥式全控整流及有源逆变电路实验实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实验报告 课程名称:现代电力电子技术 实验项目:单相桥式全控整流及有源逆变电路实验实验时间:2012/10/19 实验班级: 总份数: 指导教师:朱鹰屏 自动化学院电力电子实验室 二〇〇年月日

广东技术师范学院实验报告 学院: 自动化学院 专业: 电气工程及其自动化 班级: 成绩: 姓名: 学号: 组别: 组员: 实验地点: 电力电子实验室 实验日期: 10/19 指导教师签名: 实验 (一) 项目名称:单相桥式全控整流及有源逆变电路实验 1. 实验目的和要求 (1)加深理解单相桥式全控整流及逆变电路的工作原理。 (2)研究单相桥式变流电路整流的全过程。 (3)研究单相桥式变流电路逆变的全过程,掌握实现有源逆变的条件。 (4)掌握产生逆变颠覆的原因及预防方法。 2. 实验原理 图3-8为单相桥式整流带电阻电感性负载,其输出负载R 用D42三相可调电阻器,将两个900Ω接成并联形式,电抗Ld 用DJK02面板上的700mH ,直流电压、电流表均在DJK02面板上。触发电 路采用DJK03-1组件挂箱上的“锯齿波同步移相触发电路Ⅰ”和“Ⅱ”。 图3-9为单相桥式有源逆变原理图,三相电源经三相不控整流,得到一个上负下正的直流电 源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器反馈回电网。“三相不控整流” 是DJK10上的一个模块,其“心式变压器”在此做为升压变压器用,从晶闸管逆变出的电压接“心 式变压器”的中压端Am 、Bum ,返回电网的电压从其高压端A 、B 输出,为了避免输出的逆变电压过 高而损坏心式变压器,故将变压器接成Y/Y 接法。图中的电阻R 、电抗Ld 和触发电路与整流所用相同。有关实现有源逆变的必要条件等内容可参见电力电子技术教材的有关内容。 3. 主要仪器设备 预习情况 操作情况 考勤情况 数据处理情况

pwm逆变电路仿真

题目如下: 使用IGBT完成逆变电路仿真,直流电压300V。阻感负载,电阻值1Ω,电感值3mH。调制深度m=0.5。输出基波频率50Hz,载波频率为基频15倍,即750Hz。分别按下列要求仿真输入输出波形,进行谐波傅里叶分析。绘制主要器件的工作波形。 1,单极性SPWM方式下的单相全桥逆变电路仿真,及双极性SPWM方式下的单相全桥逆变电路仿真。对比两种调制方式的不同。 题目中需要做单极性与双极型SPWM的单相全桥逆变电路仿真,那么首先了解一下SPWM的原理。 SPWM控制的基本原理 PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形。PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻,PWM控制技术在逆变电路中的应用也最具代表性。面积等效原理是PWM控制技术的重要理论基础,即在采样控制中,冲量相等而形状不同的窄脉冲加在具有惯性的同一环节上时,其效果基本相同。其中,冲量指的是窄脉冲的面积;效果基本相同是指环节的输出响应波形基本相同。如图1.1所示,三个窄脉冲形状不同,但是它们的面积都等于1, 图1.1 SPWM控制如下:

如图1-2是单相PWM逆变电路VT1~VT4是四个IGBT管,VD1~ VD4是四个二极管,调制电路作为控制电路控制IGBT导通与关断来得到所需要的波形。 图1-2 计算法和调制法: SPWM逆变电路主要有两种控制方法:计算法和调制法。计算法是将PWM脉冲宽度的波形计算出来,显然这种方法是很繁琐的,不采用。调制法是用一个三角波作为载波,将一正弦波作为调制信号进行调制。我们采用调制法。因为等腰三角波上下宽度与高度呈线性关系且左右对称,当它与一个平缓变化的正弦调制信号波相交时,在交点时刻就可以得到宽度正比于正弦信号波幅度的脉冲 单极性与双极型的控制方法如下: 1单极性PWM控制方式: 如图1-3所示,在u r和u c的交点时刻控制IGBT的通断 u r正半周,VT1保持通,VT2保持断 . 当u r>u c时使VT4通,VT3断,u o=u d当u r

逆变电路的基本工作原理

逆变电路的基本工作原理 1、S4闭合,S 2、S3断开时,负载电压uo为正S1;S 1、S4断开,S 2、S3闭合时,uo为负,把直流电变成了交流电。改变两组开关切换频率,可改变输出交流电频率。图5-1 逆变电路及其波形举例电阻负载时,负载电流io和uo的波形相同,相位也相同。阻感负载时,io滞后于uo,波形也不同(图5-1b)。t1前:S 1、S4通,uo和io均为正。t1时刻断开S 1、S4,合上S 2、S3,uo变负,但io不能立刻反向。io从电源负极流出,经S 2、负载和S3流回正极,负载电感能量向电源反馈,io逐渐减小,t2时刻降为零,之后io才反向并增大(2)换流方式分类换流电流从一个支路向另一个支路转移的过程,也称换相。开通:适当的门极驱动信号就可使其开通。关断:全控型器件可通过门极关断。半控型器件晶闸管,必须利用外部条件才能关断,一般在晶闸管电流过零后施加一定时间反压,才能关断。研究换流方式主要是研究如何使器件关断。本章换流及换流方式问题最为全面集中,因此在本章讲述

1、器件换流利用全控型器件的自关断能力进行换流(Device Commutation)。 2、电网换流由电网提供换流电压称为电网换流(Line Commutation)。可控整流电路、交流调压电路和采用相控方式的交交变频电路,不需器件具有门极可关断能力,也不需要为换流附加元件。 3、负载换流由负载提供换流电压称为负载换流(Load Commutation)。负载电流相位超前于负载电压的场合,都可实现负载换流。负载为电容性负载时,负载为同步电动机时,可实现负载换流。图5-2 负载换流电路及其工作波形基本的负载换流逆变电路:采用晶闸管,负载:电阻电感串联后再和电容并联,工作在接近并联谐振状态而略呈容性。电容为改善负载功率因数使其略呈容性而接入,直流侧串入大电感Ld, id基本没有脉动。工作过程:4个臂的切换仅使电流路径改变,负载电流基本呈矩形波。负载工作在对基波电流接近并联谐振的状态,对基波阻抗很大,对谐波阻抗很小,uo波形接近正弦。t1前:VT 1、VT4通,VT 2、VT3断,uo、io均为正,VT 2、VT3电压即为uot1时:触发VT 2、VT3使其开通,uo加到VT 4、VT1上使其承受反压而关断,电流从VT 1、VT4换到VT

三相桥式PWM逆变电路

《电力电子技术》课程设计说明书三相桥式PWM逆变电路的设计院、部:电气与信息工程 学生姓名:刘远治 指导教师:桂友超职称副教授 专业:电气工程及其自动化 班级:电气本1104班 完成时间:2014年06月

摘要 本文设计了一个三相桥式PWM控制的逆变电路。PWM控制就是对脉冲的宽度进行调制的技术,如果脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称为SPWM波形。该设计包括主电路、驱动电路、SPWM信号产生电路、过流保护等方面的设计。该逆变器主电路采用的开关器件是IGBT;如需实物制作,驱动电路可采用现在大功率MOSFET、IGBT专用驱动芯片IR2110;PWM信号产生电路可采用CD4538芯片控制产生。 关键词:三相桥式;主电路;IR2110;CD4538

Abstract This paper designed a three-phase PWM controlled inverter bridge circuit. PWM control is on the pulse width modulation technology, if the pulse width changes according to sine law and the sine wave PWM waveform equivalent, also known as SPWM waveform. The design includes the main circuit, driver circuit, SPWM signal generation circuit, over-current protection and other aspects of design. The inverter main circuit uses IGBT; If you need make it real, driver circuit can use high-power MOSFET, IGBT dedicated driver chip IR2110; PWM signal generation circuit controlled by the CD4538 chip produced。 Key words three-phase bridge; main circuit; IR2110; CD4538

单相全桥逆变电路毕业设计

2008级应用电子技术 毕业设计报告 设计题目单相电压型全桥逆变电路设计姓名及 学号 学院 专业应用电子技术 班级2008级3班 指导教师老师 2011年05月1日

题目:单相电压型全桥逆变电路设计

目录 第一章绪论 1.1整流技术的发展概况 (4) 第二章设计方案及其原理 2.1电压型逆变器的原理图 (5) 2.2电压型单相全桥逆变电路 (6) 第三章仿真概念及其原理简述 3.1 系统仿真概述 (6) 3.2 整流电路的概述 (8) 3.3 有源逆变的概述 (8) 3.4逆变失败原因及消除方法 (9) 第四章参数计算 4.1实验电路原理及结果图 (10) 第五章心得与总结 (14) 参考文献 (15)

第一章绪论 1.1整流技术的发展概况 正电路广泛应用于工业中。整流与逆变一直都是电力电子技术的热点之一。桥式整流是利用二极管的单向导通性进行整流的最常用的电路。常用来将交流电转化为直流电。从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。基本原理和方法已成熟十几年了,随着我国交直流变换器市场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。 目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。从而大大提高了通信网运行可靠和通信质量。高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。

单相单极性SPWM逆变电路matlab仿真

单相单极性SPWM逆变电路matlab仿真

————————————————————————————————作者:————————————————————————————————日期:

计算机仿真实验报告 专业:电气工程及其自动化班级:11电牵4班 姓名:江流 在班编号:26 指导老师:叶满园 实验日期:2014年5月15日

一、实验名称: 单相单极性SPWM逆变电路MATLAB仿真 二、目的及要求 了解并掌握单相单极性SPWM逆变电路的工作原理; 2.进一步熟悉MA TLAB中对Simulink 的使用及构建模块; 3.进一步熟悉掌握用MA TLAB绘图的技巧。 三、实验原理 1.单相单极性SPWM逆变的电路原理图 2、单相单极性SPWM逆变电路工作方式 单极性PWM控制方式(单相桥逆变):在Ur和U c的交点时刻控制IGBT的通断,Ur正半周,V1保持通,V2保持断,当Ur>cu时使V4通,V3断,U0=Ud,当UrUc时使V3断,V4通,U0=0。 输出电压波形

四、实验步骤及电路图 1、建立MATLAB仿真模型。以下分别是主电路和控制电路(触发电路)模型:

2、参数设置 本实验设置三角载波的周期为t,通过改变t的值改变输出SPWM矩形波的稠密,从而调节负载获取电压的质量。设置正弦波周期为0.02s,幅值为1。直流电源幅值为97V,三角载波幅值为1.2V,三角载波必须正弦波正半周期输出正三角载波,而在正弦波负半周期输出负三角载波,这可以通过让三角载波与周期与正弦波相同、幅值为1和-1的矩形波相乘实现。 五、实验结果与分析 1、设置三角脉冲波形的周期t=0.02/9s时的仿真结果: