搜档网
当前位置:搜档网 › 电子负载仪是电源制作和电池性能测试必不可少的一种仪器

电子负载仪是电源制作和电池性能测试必不可少的一种仪器

电子负载仪是电源制作和电池性能测试必不可少的一种仪器
电子负载仪是电源制作和电池性能测试必不可少的一种仪器

电子负载仪是电源制作和电池性能测试必不可少的一种仪器。顾名思义电子负载仪是由电子器件组成模拟负载,用来检测各类电源带负荷特性和化学电源输出性能的仪器。在恒电流测试时加以同步计时,就可精确测出电池容量值。

笔者因工作需要,曾接触过多个厂家电子负载仪产品。虽然档次高低迥异、体积相差很大,但是电子负载的重要部分,即电子开关部件大部分由管耗较小的VMOS功率管组成,其工作模式均为PWM方式。为了电池容量计量的方便,负载仪大多工作于恒流放电模式。电子开关驱动电路有单片机、运算放大器、分立元件组成控制电路。高级的还具有各种功能显示和设置功能。所以配置较高的产品价位极高,约几千元至数万元不等。其价位是很多电子爱好者和小厂家望洋兴叹!可见,如果撇开很多华而不实的设置和显示功能,以坚固耐用、容易操作、简单可靠作为设计指标的大容量负载仪,肯定能受到很多用户所欢迎!

基于上述主导方针,笔者设计了一款用运放为主控器件的电子负载仪。整个仪器由电子开关、斜

波发生、电流检测放大、比较调节、PWM驱动单元组成。

该仪器可对12~48V电源和电池进行放电性能测试,最大电流为20A;操作非常方便;由K1控制放电投入或切出;W1调节电流幅度大小;W2调节欠压值。

下面简单介绍电路工作原理,其电路如图1所示。图中,IC1A、R1~R4、Q1、C3、C4、D1组成斜波发生电路。其中,R2、R3分压为IC1A反相输入端基准电压;而同相输入端接C3通过R1充电。初始时IC1A输出低电平;当C3电压上升大于反相基准时,IC1A输出为高电平;经D1、R4使Q6导通,致C3瞬间放电为0V。此时IC1A输出翻转为低电平。又重复上述过程。

电路工作原理

如此周而复始, C3接连产生类如锯齿波脉冲,锯齿最大幅度略低于反相端基准电压,该脉冲送IC1B反相端作为PWM周期比对脉冲;而IC1B同相端输入控制信号:此信号由经IC1D单元与电流反馈信号比较处理后输出。可以看出:如果控制信号幅度小于脉冲信号幅度,则IC1B输出低电平;而控制信号大于脉冲信号幅度,IC1B输出高电平。所以控制信号幅度变化转换为输出脉冲宽

度变化;且每个锯齿波周期内信号幅度越大,

IC1B输出脉冲越宽。信号幅度越小,IC1B输出脉宽越窄。

显而易见,IC1D输出的脉冲宽度变化,使场效应管每周期导通时间变化,即可达到控制负载电流的目的。这就是各类PWM控制的基本原理。PWM 方式的应用,既使功率器件工作在能耗极小的高频开关区域,又能使功率器件产生等同线性工作时的控制效果。

R12、R13、R14、IC1C组成电流取样放大部分,作用是将电流变化转换成一定幅度的反馈电压。其增益为10倍,由调节R13与R12比例决定。IC1C输出信号作为电流反馈信号输运到IC1D单元作比较处理。

IC1C输出送至IC1D反相端,与同相端电流给定信号作减法运算。电路中R15、R16、R17、R18阻值相等,构成一个标准减法器。图中为给定电压减去反馈电压。这可以理解为一旦给定电压确定后,如果由于某种原因电流上升,则ICID输出电压下降;由于电池电压下降导致电流下降时,IC1D输出电压上升。由于IC1D的作用,在很大程度上补偿了放电电流波动时的幅值变化,使之接近恒流放电情况。

R7~R10、Q1、Q2、Q3、Q4组成PWM驱动电路。1C1B 输出高电平时,Q1、Q2、Q3导通,Q3导通使Q5(场效应功率管)得到接近15V的栅压而导通,此时Q4反偏截止。IC1B输出翻转为低电时,Q1、Q2、Q3、截止,Q5栅压消失,此时,Q4正偏置导通,使Q5栅极快速放电而可靠关断!Q3、Q4对管的作用是:以足够的驱动功率克服场管的栅、源的电容效应使Q5可靠开关。

这是一个用于场效应管的经典电路,非常可靠,驱动能力也很强,笔者曾用来驱动数百安培的大功率器件,效果很好。

用于电池欠压保护的电路由R20、R19组成电压取样至IC2反相输入端。6.3V由R21、W2、R22组成欠压设定电路,设定电平信号至IC2同相输入端。在电源电压取样信号大于设定信号时;IC2输出为低电平,此时,T1不动作。一旦电源电压取样信号小于设定信号时,IC2输出端翻转为高电平,T1导通并自锁。T1导通,使Q1失去偏压而截止,中断了PWM驱动信号的传输,使电子开关随机关断,达到电池欠电压保护的目的。T1

的自锁是为了防止关闭放电后,电池端电压回升

使IC2输出翻转,系统重新进入工作区而频繁开关激发机振的必要措施。

Q5选用IXFK120N20 ,参数为120A/200V/10mΩ,配用150X100散热器;另外配置12V/0.35A仪表风机强制风冷。对于保护场效应管的安全也是非常必要的。

图中RX1为大功率电阻,阻值为0.75Ω,功率为300W。此电阻加入虽然大大降低了功率VMOS管承受的功耗,但是亦带来一个问题:在不加RX1的情况下,可测试很低电压的电池,如3.6V的动力锂电池的10A放电检测;加上RX1以后,等同Q5增加了0.75Ω的导通电阻,实际只能达到最大4.8A放电值。所以在单体电池大电流检测上,应该短接RX1,以达到预期效果。

对于超过20V的电源,此电阻效果很显著,如24V 电池以20A放电为例,此时电子开关须承受总计480W功率,可以计算出RX1分担了其中300W。实际上采购符合功率、阻值要求的功率电阻颇不容易,而且价值非常昂贵。下面介绍一种适合业余条件下制作该电阻的方法:材料系用2~5kW的电热丝,截取多段并联达到需要阻值和功率。注意尽量使每段阻值一致,保证流过电流相同。至

于其联接方法,为尽量减少系统电阻,不宜用接插方式,应尽量使用焊接方式。但电热丝不易上锡怎么解决?先把电热丝头用铜软线紧密排绕

一定宽度;然后以常规方式上锡;上锡前把电热丝头弯折,防止铜线滑出。这样就可以把很难上锡的电热丝实施焊接连接了。

土制的RX1在大电流值工作时,发热很厉害。散热的方法可以用强制风冷,但是并不理想,最好的方式还是水冷,即把电热丝放在一定容积的水槽中即可。但焊接点必须用树脂涂复或热缩管保护,而且由于电化作用,电热丝寿命也不可能很长。如果能找到一些变压器油(或汽车水箱防冻液)代替水作为冷却介质的话,那就比较理想了。显示仪表选用数字表头,最好采用220V供电的那种。注意:电流表与电压表不能共用5V电源,否则引发读数不准,甚至损坏表头。

仪器使用:接好220V电源,放电开关置关位置,W1反旋到底,接上放电电源(电池和各类电源)。然后把放电开关置放电位,调节W1至合适放电电流值即可。

欠压值没定:接上一个可调节电源,放电电流调节至0.5~1A,调整可调电源至欠压值,如21V;

再细心调节W2旋钮至电流表读数消失,证明W2已调节到21V欠压值;然后关闭仪器电源(使T1复位)再重启电源,接上被测电池,调节合适的电流值即可。当然每次欠压保护后,必须使T1复位。

——杰创立大功率电子负载

电动汽车用锂离子动力蓄电池包和系统测试规程

电动汽车用锂离子动力电池包和系统测试规程 范围 本标准规定了电动汽车用锂离子动力电池包和系统基本性能、可靠性和安全性的测试方法。 本标准适用于高功率驱动用电动汽车锂离子动力电池包和电池系统。 规范性引用文件(其中的一部分) 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2423.4-2008 电工电子产品环境试验第2部分:试验方法试验Db 交变湿热(12h+12h循环)(IEC 60068-2-30:2005,IDT) GB/T 2423.43-2008 电工电子产品环境试验第2部分:试验方法振动、冲击和类似动力学试验样品的安装(IEC 60068-2-47:2005,IDT) GB/T 2423.56-2006 电工电子产品环境试验第2部分:试验方法试验Fh:宽带随机振动(数字控制)和导则(IEC 60068-2-64:1993,IDT) GB/T 18384.1-2001 电动汽车安全要求第1部分:车载储能装置(ISO/DIS 6469-1:2000,EQV)GB/T 18384.3-2001 电动汽车安全要求第3部分:人员触电防护(ISO/DIS 6469-3:2000,EQV)GB/T 19596-2004 电动汽车术语(ISO 8713:2002,NEQ) GB/T xxxx.1- xxxx 道路车辆电气及电子设备的环境条件和试验第1部分:一般规定(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 1: General,MOD) GB/T xxxx.3- xxxx 道路车辆电气及电子设备的环境条件和试验第3部分:机械负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 3: Mechanical loads,MOD) GB/T xxxx.4- xxxx 道路车辆电气及电子设备的环境条件和试验第4部分:气候负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 4: Climatic loads,MOD) 术语和定义 1.1 蓄电池电子部件 采集或者同时监测蓄电池单体或模块的电和热数据的电子装置,必要时可以包括用于蓄电池单体均衡的电子部件。 注:蓄电池电子部件可以包括单体控制器。单体电池间的均衡可以由蓄电池电子部件控制,或者通过蓄电池控制单元控制。 1.2 蓄电池控制单元 battery control unit (BCU) 控制、管理、检测或计算电池系统的电和热相关的参数,并提供电池系统和其他车辆控制器通讯的电子装置。 1.3 1 / 20

锂电池测试方法

锂电池性能测试方法 锂电池是一个要求高品质、高安全的产品、消费者在使用时往往不清楚电池的性能,导致在使用时电池的工作效率往往达不到理想目标,有时甚至盲目使用还会引起电池爆炸事件的发生,人生安全也会受到损伤,因此了解电池的性能也是至关重要的。 锂电池性能测试主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等 工具/原料 测试仪 硬质棒 钉子 方法/步骤 方法一、自放电测试 镍镉和镍氢电池的自放电测试为: 由于标准荷电保持测试时间太长,一般采用24小时自放电来快速测试其荷电保持能力,将电池以0.2C放电至 1.0V.1C充电80分钟,搁臵15分钟,以1C放电至10V,测其放电容量C1, 再将电池以1C充电80分钟,搁臵24小时后测1C容量C2,C2/C1×100%应小于15% 锂电池的自放电测试为:一般采用24小时自放电来快速测试其荷电保持能力,将电池以0.2C放电至 3.0V,恒流恒压1C充电至 4.2V,截止电流:10mA,搁臵15分钟后,以1C放电至3.0V测其放电容量C1,再将电池恒流恒压1C充电至 4.2V,截止电流100mA,搁臵24小时后测1C容量C2,C2/C1×100%应大于99%. 方法二、内阻测量 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电电池内阻很小,测直流内阻时由于电极

容易极化,产生极化内阻,故无法测出其真实值;而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电压采样整流滤波等一系列处理从而精确地测量其阻值. 方法三、IEC标准循环寿命测试 IEC规定镍镉和镍氢电池标准循环寿命测试为: 电池以0.2C放至1.0V/支后 1.以0.1C充电16小时,再以0.2C放电2小时30分(一个循环). 2.0.25C充电3小时10分,以0.25C放电2小时20分(2-48个循环). 3.0.25C充电3小时10分,以0.25C放至1.0V(第49循环) 4.0.1C充电16小时,搁臵1小时,0.2C放电至1.0V(第50个循环),对镍 氢电池重复1-4共400个循环后,其0.2C放电时间应大于3小时;对镍隔电池重复1-4共500个循环,其0.2C放电时间应大于3小时. EC规定锂电池标准循环寿命测试 电池以0.2C放至3.0V/支后,1C恒流恒压充电到4.2V,截止电流20MA,搁臵1小时后,再以0.2C放电至3.0V(一个循环)反复循环500次后容量应在初容量的60%以上. 方法四、内压测试 镍镉和镍氢电池内压测试为: 将电池以0.2C放至1.0V后,以1C充电3小时,根据电池钢壳的轻微形变通过转换得到电池的内压情况,测试中电池不应彭底,漏液或爆炸. 锂电池内压测试为:(UL标准)

材料力学实验

材料力学实验 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

实验一实验绪论 一、材料力学实验室实验仪器 1、大型仪器: 100kN(10T)微机控制电子万能试验机;200kN(20T)微机控制电子万能试验机;WEW-300C微机屏显式液压万能试验机;WAW-600C微机控制电液伺服万能试验机 2、小型仪器: 弯曲测试系统;静态数字应变仪 二、应变电桥的工作原理 三、材料力学实验与材料力学的关系 四、材料力学实验的要求 1、课前预习 2、独立完成 3、性能实验结果表达执行修约规定 4、曲线图一律用方格纸描述,并用平滑曲线连接 5、应力分析保留小数后一到二位

实验二轴向压缩实验 一、实验预习 1、实验目的 I、测定低碳钢压缩屈服点 II、测定灰铸铁抗压强度 2、实验原理及方法 金属的压缩试样一般制成很短的圆柱,以免被压弯。圆柱高度约为直径的倍~3倍。混凝土、石料等则制成立方形的试块。 低碳钢压缩时的曲线如图所示。实验表明:低碳钢压缩时的弹性模量E和屈服极限σε,都与拉伸时大致相同。进入屈服阶段以后,试样 越压越扁,横截面面积不断增大,试样抗压能力也继续增强,因而得不 到压缩时的强度极限。 3、实验步骤 I、放试样 II、计算机程序清零 III、开始加载 IV、取试样,记录数据 二、轴向压缩实验原始数据 指导老师签名:徐

三、轴向压缩数据处理 测试的压缩力学性能汇总 强度确定的计算过程: 实验三轴向拉伸实验 一、实验预习 1、实验目的 (1)、用引伸计测定低碳钢材料的弹性模量E; (2)、测定低碳钢的屈服强度,抗拉强度。断后伸长率δ和断面收缩率; (3)、测定铸铁的抗拉强度,比较两种材料的拉伸力学性能和断口特征。 2、实验原理及方法 I.弹性模量E及强度指标的测定。(见图) 低碳钢拉伸曲线铸铁拉伸曲线 (1)测弹性模量用等增量加载方法:F o =(10%~20%)F s , F n =(70%~80%)F s 加载方案为:F 0=5,F 1 =8,F 2 =11,F 3 =14,F 4 =17 ,F 5 =20 (单位:kN) 数据处理方法: 平均增量法 ) , ( ) ( 0取三位有效数 GPa l A l F E m om ? ? ? = δ(1) 线性拟合法 () GPa A l l F n l F F n F E om o i i i i i i? ? ∑ - ∑? ∑ ∑ - ∑ = 2 2 ) ( (2)

材料级《材料力学性能》考试答案AB

贵州大学2007-2008学年第一学期考试试卷 A 缺口效应; 因缺口的存在,改变了缺口根部的应力的分布状态,出现: ① 应力状态变硬(由单向拉应力变为三向拉应力); ② 应力集中的现象称为缺口效应。 解理台阶; 在拉应力作用下,将材料沿某特定的晶体学平面快速分离的穿晶脆性断裂方式称为解理断裂,称该晶体学平面为解理平面;在该解理平面上,常常会出现一些小台阶,叫解理台阶;这些小台阶有汇聚为大的台阶的倾向,表现为河流状花样。 冷脆转变; 当温度T ℃低于某一温度T K 时,金属材料由韧性状态转变为脆性状态,材料的αK 值明显降低的现象。 热疲劳; 因工作温度的周期性变化,在构件内部产生交变热应力循环所导致的疲劳断裂,表现为龟裂。 咬合磨损; 在摩擦面润滑缺乏时,摩擦面间凸起部分因局部受力较大而咬合变形并紧密结合,并产生形变强化作用,其强度、硬度均较高,在随后的相对分离的运动时,因该咬合的部位因结合紧密而不能分开,引起其中某一摩擦面上的被咬合部分与其基体分离,咬合吸附于另一摩擦面上,导致该摩擦面的物质颗粒损失所形成的磨损。 二、计算题(共42分,第1题22分,第2题20分) 1、一直径为10mm ,标距长为50mm 的标准拉伸试样,在拉力P=10kN 时,测 得其标距伸长为50.80mm 。求拉力P=32kN 时,试样受到的条件应力、条件应变及真应力、真应变。(14分) 该试样在拉力达到55.42kN 时,开始发生明显的塑性变形;在拉力达到67.76kN 后试样断裂,测得断后的拉伸试样的标距为57.6mm ,最小处截面直径为8.32mm ;求该材料的屈服极限σs 、断裂极限σb 、延伸率和断面收缩率。(8分) 解: d 0 =10.0mm, L 0 = 50mm, P 1=10kN 时L 1 = 50.80mm ;P 2=32kN 因P 1、P 2均远小于材料的屈服拉力55.42kN ,试样处于弹性变形阶段,据虎克 得 分 评分人

IEC锂电池测试标准梳理

IEC锂电池测试标准梳理 评估测试项目 1(1)电性测试 测试项目充电状态电池条件温度评估测试方法标准 1.外部短路完全充电刚生产完的电池室温60℃通过电阻小于50mΩ的电线在两极短路6小时以上没有爆炸、没有着火的现象 2.强行放电完全充电刚生产完的电池正常室温按厂家推荐的电流强行深度放电计算容量的250%。*如果在测试过程中达到安全或保护功能,可以终止测试没有爆炸、没有着火的现象 3.连续充电完全放电刚生产完的电池正常室温按厂家推荐的方法充电,并在指定的电压持续28天没有爆炸、没有着火、没有裂开的现象的现象 过量充电完全放电刚生产完的电池正常室温按厂家推荐的电流充到计算容量的250%。*如果在测试过程中达到安全或保护功能,可以终止测试没有爆炸、没有着火的现象 5.大电流充电完全放电刚生产完的电池正常室温按厂家推荐的充电电流的3倍电流给电池充电至计算容量100%以上没有爆炸、没有着火的现象 1(2)Ⅰ机械性能测试 测试项目充电状态电池条件温度评估测试方法标准 1.振动完全充电或完全放电刚生产完的电池正常室温将电池在XYZ三个方向振动90至100分钟,振幅为0.8mm,频率为10HZ,频率的变化率为1HZ/min。测试后,完全放电电池将被充电到由厂家推荐的完全容量。没有爆炸、没有着火、没有变形的现象 2.加速度完全充电或完全放电刚生产完的电池正常室温以时间为单位加速在初始3毫秒里,平均加速度为75g(g为重力加速度单位),到达顶峰时为125-175g。在每一个XYZ互相垂直的方向振动。测试后,完全放电电池将被充电到厂家推荐的容量。没有爆炸、没有着火、没有变形的现象 3.掉落完全充电或完全放电刚生产完的电池正常室温从1.9m高的地方自由掉落10次到水泥地面上。测试后,完全放电电池将被充电到厂家推荐的容量。没有爆炸、没有着火的现象 1(2)Ⅱ 测试项目充电状态电池条件温度评估测试方法标准 钉子穿过电池完全充电刚生产完的电池正常室温用直径2.5至5mm的钉子穿过电池的纵心轴*将钉子放入电池内6h。没有爆炸、没有着火的现象 5.挤压完全充电刚生产完的电池正常室温将电池放在两块扁铁板间以使电池的纵轴心与扁铁板平行,再给电池施加13kN的压力没有爆炸、没有着火的现象 6.撞击完全充电刚生产完的电池正常室温将一个圆柱形木棒(直径为7.9mm)越过电池顶部,与电池纵心轴垂直。9.1kg相当重量从61cm高度掉落下来。没有爆炸、没有着火的现象 7.10m掉落完全充电刚生产完的电池正常室温从10m高的地方任意将电池掉落到水泥地面上。没有爆炸、没有着火的现象 1(3)Ⅰ环境性能测试 测试项目充电状态电池条件温度评估测试方法标准 1.高温储存完全充电刚生产完的电池(a)在温度100℃的烤箱中储存5小时后将电池放在温度为20℃的地方放置24h(b)在60℃的烤箱中储存30天后将电池放置在温度20℃的地方24小时没有爆炸、没有着火的现象

材料力学性能实验(2个)讲解

《材料力学性能》实验教学指导书 实验总学时:4 实验项目:1.准静态拉伸 2. 不同材料的冲击韧性 材料科学与工程学院实验中心 工程材料及机制基础实验室

实验一 准静态拉伸 一、实验目的 1.观察低碳钢(塑性材料)与铸铁(脆性材料)在准静态拉伸过程中的各种现象(包括屈服、强化和颈缩等现象),并绘制拉伸图。 2.测定低碳钢的屈服极限σs ,强度极限σb ,断后延伸率δ和断面收缩率ψ。 3.测定铸铁的强度极限σb 。 4.比较低碳钢和铸铁的力学性能的特点及断口形貌。 二、概述 静载拉伸试验是最基本的、应用最广的材料力学性能试验。一方面,由静载拉伸试验测定的力学性能指标,可以作为工程设计、评定材料和优选工艺的依据,具有重要的工程实际意义。另一方面,静载拉伸试验可以揭示材料的基本力学行为规律,也是研究材料力学性能的基本试验方法。 静载拉伸试验,通常是在室温和轴向加载条件下进行的,其特点是试验机加载轴线与试样轴线重合,载荷缓慢施加。 在材料试验机上进行静拉伸试验,试样在负荷平稳增加下发生变形直至断裂,可得出一系列的强度指标(屈服强度s σ和抗拉强度b σ)和塑性指标(伸长率δ和断面收缩率ψ)。通过试验机自动绘出试样在拉伸过程中的伸长和负荷之间的关系曲线,即P —Δl 曲线,习惯上称此曲线为试样的拉伸图。图1即为低碳钢的拉伸图。 试样拉伸过程中,开始试样伸长随载荷成比例地增加,保持直线关系。当载荷增加到一定值时,拉伸图上出现平台或锯齿状。这种在载荷不增加或减小的情况下,试样还继续伸长的现象叫屈服,屈服阶段的最小载荷是屈服点载荷s P ,s P 除以试样原始横截面面积Ao 即得到屈服极限s σ: s s A P = σ 试样屈服后,要使其继续发生变形,则要克服不断增长的抗力,这是由于金属材料在塑性变形过程中不断发生的强化。这种随着塑性变形增大,变形抗力不断增加的现象叫做形变强化或加工硬化。由于形变强化的作用,这一阶段的变形主要是均匀塑性变形和弹性变形。当载荷达到最大值b P 后,试样的某一部位截面积开始急剧缩小,出现“缩颈”现象,此后的变形主要集中在缩颈附近,直至达到 P b 试样拉断。P b 除以试样原始横截面面积A 0即得到

电动汽车用磷酸铁锂动力电池的制作及性能测试_英文_概要

ISSN 1674-8484CN 11-5904/U 汽车安全与节能学报, 2011年, 第2卷第1期J Automotive Safety and Energy, 2011, Vol. 2 No. 1Manufacture and Performance Tests of Lithium Iron Phosphate Batteries Used as Electric Vehicle Power ZHANG Guoqing, ZHANG Lei, RAO Zhonghao, LI Yong (Faculty of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China Abstract: Owing to the outstanding electrochemical performance, the LiFePO 4 power batteries could be used on electric vehicles and hybrid electric vehicles. A kind of LiFePO 4 power batteries, Cylindrical 26650, was manufactured from commercialized LiFePO 4, graphite and electrolyte. To get batteries with good high-current performance, the optimal content of conductive agent was studied and determined at 8% of mass fraction. The electrochemical properties of the batteries were investigated. The batteries had high discharging voltage platform and capacity even at high discharge current. When discharged at 30 C current, they could give out 91.1% of rated capacity. Moreover, they could be fast charged to 80% of rated capacity in ten minutes. The capacity retention rate after 2 000 cycles at 1 C current was 79.9%. Discharge tests at - 20 ℃ and 45 ℃ also showed impressive performance. The battery voltage, resistance and capaci ty varied little after vibration test. Through the safety tests of nail, no in ? ammation or explosion occurred. Key words: hybrid and electric vehicles; power batteries; lithium iron phosphate; lithium ion batteries; 电动汽车用磷酸铁锂动力电池的制作及性能测试 张国庆、张磊、饶忠浩、李雍

材料力学性能拉伸试验报告

材料力学性能拉伸试验报告 材化08 李文迪 40860044

[试验目的] 1. 测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能。 2. 测定低碳钢的应变硬化指数和应变硬化系数。 [试验材料] 通过室温拉伸试验完成上述性能测试工作,测试过程执行GB/T228-2002:金属材料室温拉伸试验方法: 1.1试验材料:退火低碳钢,正火低碳钢,淬火低碳钢的R4标准试样各一个。 1.2热处理状态及组织性能特点简述: 1.2.1退火低碳钢:将钢加热到Ac3或Ac1以上30-50℃,保温一段时间后,缓慢而均匀 的冷却称为退火。 特点:退火可以降低硬度,使材料便于切削加工,并使钢的晶粒细化,消除应力。1.2.2正火低碳钢:将钢加热到Ac3或Accm以上30-50℃,保温后在空气中冷却称为正 火。 特点:许多碳素钢和合金钢正火后,各项机械性能均较好,可以细化晶粒。 1.2.3淬火低碳钢:对于亚共析钢,即低碳钢和中碳钢加热到Ac3以上30-50℃,在此 温度下保持一段时间,使钢的组织全部变成奥氏体,然后快速冷却(水冷或油冷),使奥氏体来不及分解而形成马氏体组织,称为淬火。 特点:硬度大,适合对硬度有特殊要求的部件。 1.3试样规格尺寸:采用R4试样。 参数如下:

1.4公差要求 [试验原理] 1.原理简介:材料的机械性能指标是由拉伸破坏试验来确定的,由试验可知弹性阶段 卸荷后,试样变形立即消失,这种变形是弹性变形。当负荷增加到一定值时,测力度盘的指针停止转动或来回摆动,拉伸图上出现了锯齿平台,即荷载不增加的情况下,试样继续伸长,材料处在屈服阶段。此时可记录下屈服强度R 。当屈服到一定 eL 程度后,材料又重新具有了抵抗变形的能力,材料处在强化阶段。此阶段:强化后的材料就产生了残余应变,卸载后再重新加载,具有和原材料不同的性质,材料的强度提高了。但是断裂后的残余变形比原来降低了。这种常温下经塑性变形后,材料强度提高,塑性降低的现象称为冷作硬化。当荷载达到最大值Rm后,试样的某一部位截面开始急剧缩小致使载荷下降,至到断裂。 [试验设备与仪器] 1.1试验中需要测得: (1)连续测量加载过程中的载荷R和试样上某段的伸长量(Lu-Lo)数据。(有万能材料试验机给出应力-应变曲线) (2)两个个直接测量量:试样标距的长度 L o;直径 d。 1.2试样标距长度与直径精度:由于两者为直接测量量,工具为游标卡尺,最高精度为 0.02mm。 1.3检测工具:万能材料试验机 WDW-200D。载荷传感器,0.5级。引伸计,0.5级。 注1:应力值并非试验机直接给出,由载荷传感器直接测量施加的载荷值,进而转化成工程应力,0.5级,即精确至载荷传感器满量程的1/500。 注2:连续测试试样上某段的伸长量由引伸计完成,0.5级,即至引伸计满量程的1/50。

氧化铝陶瓷材料力学性能的检测

实验二 氧化铝陶瓷材料力学性能的检测 为了有效而合理的利用材料,必须对材料的性能充分的了解。材料的性能包括物理性能、化学性能、机械性能和工艺性能等方面。物理性能包括密度、熔点、导热性、导电性、光学性能、磁性等。化学性能包括耐氧化性、耐磨蚀性、化学稳定性等。工艺性能指材料的加工性能,如成型性能、烧结性能、焊接性能、切削性能等。机械性能亦称为力学性能,主要包括强度、弹性模量、塑性、韧性和硬度等。而陶瓷材料通常来说在弹性变形后立即发生脆性断裂,不出现塑性变形或很难发生塑性变形,因此对陶瓷材料而言,人们对其力学性能的分析主要集中在弯曲强度、断裂韧性和硬度上,本文在此基础上对其力学性能检测方法做了简单介绍。 1.弯曲强度 弯曲实验一般分三点弯曲和四点弯曲两种,如图1-1所示。四点弯曲的试样中部受到的是纯弯曲,弯曲应力计算公式就是在这种条件下建立起来的,因此四点弯曲得到的结果比较精确。而三点弯曲时梁各个部位受到的横力弯曲,所以计算的结果是近似的。但是这种近似满足大多数工程要求,并且三点弯曲的夹具简单,测试方便,因而也得到广泛应用。 图1-1 三点弯曲和四点弯曲示意图 由材料力学得到,在纯弯曲且弹性变形范围内,如果指定截面的弯矩为M ,该截面对 中性轴的惯性矩为I z ,那么距中性轴距离为y 点的应力大小为: z I My =σ 在图1-1的四点弯曲中,最大应力出现在两加载点之间的截面上离中性轴最远的点,其大小为: =???? ???=z I y a P max max 21σ?????圆形截面 16矩形截面 332D Pa bh Pa π 其中P 为载荷的大小,a 为两个加载点中的任何一个距支点的距离,b 和h 分别为矩形截面试样的宽度和高度,而D 为圆形截面试样的直径。因此当材料断裂时所施加载荷所对应的应力就材料的抗弯强度。 而对于三点弯曲,最大应力出现在梁的中间,也就是与加载点重合的截面上离中性轴最远的点,其大小为:

锂离子电池性能测试

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:锂离子电池性能测试 实验类型:验证设计综合实验时间:2014年5月5日-17日 实验指导老师:马国正组员:黄日权郭金海 一、实验目的 1.熟悉、掌握锂离子电池的结构及充放电原理。 2.熟悉、掌握锂离子正极材料的制备过程及工艺。 3.熟悉、掌握锂离子电池的封装工艺及模拟电池测试方法。 二、实验原理 锂离子电池是指正负极为Li+嵌入化合物的二次电池。正极通常采用锂过渡金属氧化物 Li x CoO2,Li x NiO2或Li x Mn2O4,负极采用锂-碳层间化合物Li x C6。电解质为溶有锂盐LiPF6,LiAsF6,LiClO4等的有机溶液。溶剂主要有碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)和氯碳酸酯(CIMC)等。在充放电过程中,Li+在两极间往返嵌入和脱出,被形象的称之为“摇椅电池”。 锂离子电池充放电原理和结构示意图如下。 锂离子电池的化学表达式为: -)Cn|LiPF6-EC+DMC|LiM x O y(+ 其电池反应为: LiM x O y+nC Li1-x M x O y+Li x C n 本实验以高温固相法制备的尖晶石型LiMn2O4为正极材料,纯锂片为负极,制备扣式锂离子模拟电池,并对制备的扣式半电池进行充放电测试。 三、仪器与试剂 电化学工作站,蓝点测试系统、手套箱、电子天平、真空干燥箱、切片机、对辊机、鼓风干燥机 LiMn2O4、乙炔黑、PVDF、无水乙醇、电解液(1M LiPF6溶与体积比EC:DEC:EMC=1:1:1

材料力学性能

《材料力学性能[焊]》课程简介 课程编号:02044014 课程名称:材料力学性能[焊] / The mechanical property of materials 学分: 2.5 学时:40(实验: 8 上机: ) 适用专业:焊接技术与工程 建议修读学期:5 开课单位:材料科学与工程学院,材料加工工程系 课程负责人:陈汪林 先修课程:工程力学、材料科学基础、材料热处理 考核方式与成绩评定标准:闭卷考试,期末考试成绩70%,平时(包括实验)成绩30%。 教材与主要参考书目: 主要教材: 1.工程材料力学性能. 束德林. 机械工业出版社, 2007 参考书目: 1.材料力学性能. 郑修麟. 西北工业大学出版社, 1991 2.金属力学性能. 黄明志. 西安交通大学出版社, 1986 3. 材料力学性能. 刘春廷. 化学工业出版社, 2009 内容概述: 《材料力学性能》是焊接技术与工程专业学生必修的专业学位课程。通过学习本课程,使学生掌握金属变形和断裂的规律,掌握各种力学性能指标的本质、意义、相互关系及变化规律,以及测试技术。了解提高力学性能的方向和途径,并为时效分析提供一定基础。强调课堂讲授与实践教学紧密结合,将最新科研成果用于课程教学和人才培养的各个环节,最终使学生能够独立地进行材料的分析和研究工作。 The mechanical property of materials is a core and basic course for the students of specialty of welding. By the study on this course, the studies should be master the deformation and fracture mechanisms of metals, and understand the essence and significance of each mechanical property of metal materials, as well as their correlations, the laws of variation and corresponding test methods of each mechanical property of materials. In addition, the studies should understand how to improve the mechanical properties of materials, and provide relevant basis for the failure analysis of materials. This course emphasizes the close combination of classroom teaching and practice teaching, and the latest research results will be applied in the course of teaching and personnel training in all aspects. Finally, this course will make the students acquired the capability on conducting research by adopting reasonable technologies by oneself.

动力电池充放电效率测试方法及特性

电动汽车能量流研究需要考虑电池充放电效率的影响,然而目前针对不同充放电模式下的充放电效率研究并不充分,实验方法、测试系统与分析结果仍不具备普遍适用性。因此,本文提出了一种电动汽车充放电效率表征方法和试验方法,并搭建了测试台架系统;在此基础上,针对某款电动汽车动力电池,定量研究了不同充电模式、放电工况下充放电效率的变化规律,从而为整车能量流研究提供了一种有效的动力电池充放电效率测试方法,接下来就为大家详细的讲解一下希望对大家有所帮助。 1 动力电池及其充放电效率 动力电池是电动汽车的能量来源,锂离子电池以其高能量密度和功率密度、长循环寿命、低自放电率等优势,成为电动汽车的首选动力电池;其中,磷酸铁锂电池(LiFePO4)和三元锂离子电池(NCA、NMC)等具有更高的安全性能,因此广泛应用于电动汽车领域。图1 所示为锂离子电池的基本结构与工作原理示意图,其充放电过程是通过Li+在正负极柱之间嵌入和脱出实现的。 2 实验平台和测试方法 实验平台结构包含试验箱、电池模拟器、12V 开关电源、冷却循环水机、上位机等试验仪器及设备。其中,动力电池系统在实验过程中放置于试验箱内,由高压线连接至电池模拟器,通过控制电池模拟器的功率及电流方向,实现动力电

池不同模式下的充放电;同时电池充放电数据通过CAN 总线进行通讯,并上传至上位机系统。实验过程中,电池模拟器及电池管理系统BMS 实时检测动力电池组总电压、单体电压、电池组温度等参数并设置保护措施,从而保证实验过程电池处于安全工作状态。 3 实验及结果分析 实验用动力电池系统采用三元电芯作为单体电池,整体模块标称能量为46kwh。充放电过程中,设置系统总电压、单体电压、温度等参数的安全范围;一旦检测到参数超出上下限安全阈值,将电池模拟器输出电流设置为0,并切断电池模拟器与动力电池系统的连接。 实验过程中,分别采用2.6kw 慢充、6.6kw 定功率充电、快充、1/3C 标准充电(15.3kw)以及1C 充电(46kw)对电池包进行充电,并通过变功率、45kw、6.5kw 、14.9kw 以及28.4kw 等效模拟车辆NEDC 工况、1C 放电、60km/h 等速、90km/h 等速、120km/h 等5 种驾驶工况。 杭州固恒能源科技有限公司从事于新能源汽车后市场领域,专注于动力电池的应用以及循环利用等方面的研发、生产、销售,并提供全套检测维护解决方案的高新技术企业。产品涉及动力电池检测与维护、数据监测与存储、电池模组级单体电池的高效分选以及成组、储能管理系统等设备领域,客户遍及国内各动力电池厂家,新能源汽车厂家、梯次利用回收企业以及储能应用等企业。

锂电池技术与测试方法

锂离子电池技术与测试方法 目 录 第一部分 1.1 锂离子电池简介 ----------------------------2 1. 2. 锂离子电池组成 -------------------------3 1. 3. 锂离子电池原理 -------------------------4 1. 4. 锂离子电池的种类 ------------------------5 1. 5. 锂离子电池优缺点 ------------------------7 1. 6. 如何正确使用锂离子电池 ------------------8 第二部分 ST-BTJCY3000型智能电池充电放电检测仪 2.1. 性能特点 --------------------------------10 2.2. 技术指标 --------------------------------11 2.3 技术支持与网站信息 -----------------------12 第三部分 聚合物锂离子电池规格、测试方法和标准 3.1.聚 合 物 锂 离 子 充 电 电 池 规 格--------------15 3.2.测试标准 ------------------------------------------16 3.3.文档参考的国标依据 --------------------------------18

第一部分 1.1 锂离子电池简介 1.1.1锂离子电池(Li-ion Batteries)是锂电池发展而来。在介绍 Li-ion之前,应先介绍锂电池。举例来讲,以前照相机里用的扣式电池就属于锂电池。锂电池的正极材料是二氧化锰或亚硫酰氯,负极是锂。电池组装完成后电池即有电压,不需充电.这种电池也可能充电,但循环性能不好,在充放电循环过程中,容易形成锂枝晶,造成电池内部短路,所以一般情况下这种电池是禁止充电的。 1.1.2后来,日本索尼公司发明了以炭材料为负极,以含锂的化合物 作正极,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出, 又运动回正极。回正极的锂离子越多,放电容量越高。 1.1.3我们通常所说的电池容量指的就是放电容量。在Li-ion的充 放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。

力学性能检测试验仪器

力学性能检测试验仪器 一、力学性能检测试验仪器技术参数:最大试验力:5KN负荷传感器容量:0.5T(5KN)(能加配1个或多个其他容量的负荷传感器) ?精度等级:0.5级试验力测量范围:0.4%~100%FS(满量程)试验力分辨率:最大试验力的±1/300000,全程不分档,且分辨率不变。力控制:力控控制速度范围:0.001%~5%FS/s。力控速度控制精度:0.001%~1%FS/s 时,±0.2%;1%~5%FS/s时,±0.5力控保持精度: ±0.002%FS。变形控制:变形控控制速度范围:0.001%~5%FS/s。变形控速度控制精度:0.001%~1%FS/s时,±0.2%;1%~5%FS/s时,±0.5%。变形控保持精度:±0.002%FS。位移控制:位移控控制速度范围:0.0001~1000mm/min。位移控速度控制精度:±0.2%;位移控保持精度:无误差。有效试验宽度:120mm、360mm、410mm三种规格有效拉伸空间:800mm有效压缩行程:800mm控制系统:全微机自动控制。单位选择:g/Kg/N/KN/Lb多重保护:系统具有过流、过压、欠流、欠压等保护;行程具有程控限位、极限限位、软件限位三重保护。出现紧急情况可进行紧急制动。主机结构:门式,结构新颖,美观大方,运行平稳电源:220V 50Hz功率:0.4Kw主机重量:95,130Kg主机外型尺寸:650*360*1600,800*410*1600 ?二、力学性能检测试验仪器使用范围及技术说明:1、适用范围QX-W400 微机控制电子万能试验机为材料力学性能测量的试验设备,可进行金属线材与非金属、高分子材料等的拉伸、剥离、压缩、弯曲、剪切、顶破、戳穿、疲劳等项目的检测。可根据客户产品要求按GB、ISO、ASTM、JIS、EN等标准编制,能自动求取最大试验力,断裂力,屈服力,抗拉强度,抗压强度,弯曲强

动力电池重要全参数定义及测量计算方法

动力电池重要参数定义及测量计算方法 1.概述 本文档的编写主要是为了方便公司内部研发人员更加快速清楚地认识电池的一些重要特性参数及其测量计算方法。主要包括动力电池的荷电状态SOC,电池健康状态SOH,内阻R等。 此文档主要参考了动力电池的国家标准与行业标准,以及网上的一些权威资料信息,同时结合自身工作经验整合编写而成。 2.电池荷电状态SOC及估算方法 2.1 电池荷电状态SOC的定义 电池的荷电状态SOC被用来反映电池的剩余电量情况,其定义为当前可用容量占初始容量的百分比(国标)。 美国先进电池联合会(USABC)的《电动汽车电池实验手册》中将SOC定义如下:在指定的放电倍率下,电池剩余电量与等同条件下额定容量的比值。 SOC=Q O/Q N 日本本田公司的电动汽车(EV Plus)定义SOC如下: SOC = 剩余容量/(额定容量-容量衰减因子) 其中剩余容量=额定容量-净放电量-自放电量-温度补偿 动力电池的剩余电量是影响电动汽车的续驶里程和行驶性能的主要因素,准确的SOC估算可以提高电池的能量效率,延长电池的使用寿命,从而保证电动汽车更好的行驶,同时SOC也是作为电池充放

电控制和电池均衡的重要依据。 实际应用中,我们需要根据电池的可测量值如电压电流结合电池内外界影响因素(温度、寿命等)来实现电池SOC的估算算法。但是SOC受自身内部工作环境和外界多方面因素而呈非线性特性,所以要实现良好的SOC估算算法必须克服这些问题。目前,国内外在电池SOC估算上已经部分实现并运用到工程上,如安时法、内阻法、开路电压法等。这些算法共同特点是易于实现,但是对实际工况中的内外界影响因素缺乏考虑而导致适应性差,难以满足BMS对估算精度不断提高的要求。所以在考虑SOC受到多种因素影响后,一些较为复杂的算法被提出,例如:卡尔曼滤波算法、神经网络算法、模糊估计算法等新型算法,相比于之前的传统算法其计算量大,但精度更高,其中卡尔曼滤波在计算精度和适应性上都有很好的表现。 2.2几种SOC估算算法简介 (1)安时法 安时法又被称为电流积分法,也是计算电池SOC的基础。假设当前电池SOC初始值为SOC0,在经过t时间的充电或放电后SOC为: Q0是电池的额定容量,i(t)是电池充放电电流(放电为正)。 事实上,SOC定义为电池的荷电状态,而电池荷电状态就是电池电流的积分,所以理论上讲安时法是最准确的。同时,它也易于实现,只需测量电池充放电电流和时间,而在实际工程应用时,采用离散化计算公式如下:

材料力学性能测试与评价新发展

材料力学性能测试与评价新发展 材科101班 201004005 杜园园

摘要:在对新型材料进行性能评价时,往往面临常规实验难以解决的问题,且因材料科学的发展和新材料的研制对于技术越来越高的要求,材料力学性能测试与评价是目前国内外材料力学工作者所需关注的重要课题。本文通过对材料力学性能测试和评价技术的发展历程和技术特点,以及对现在最近技术进行分析,进而阐述了材料力学性能测试与评价技术的进展。 关键词材料力学性能测试评价 1引言 现代材料科学在很大程度上依赖于对材料性能与其成分及显微组织关系的理解。因此,对材料性能的各种测试技术,对材料组织从宏观到微观不同层次的表征技术构成了材料科学与工程的一个重要部分,亦是联系材料设计与制造工艺直到获得具有满意使用性能的材料之间的桥梁。材料力学性能测试与评价是判断材料性能可能性与可靠性的主要途径,在工作中是计算机进行材料模拟和建立数据库的基础工作。 2材料性能测试与评价的应用 由于新材料的种类繁多,相应的测试和评价技术涉及面很广。材料检测评价技术大致可分为:性能测定、显微组织表征和无损检测等,而每一方面又包含各种不同的测试技术和标准试验方法。在多种材料和多种性能测试中,以力学性能为代表,力学性能是结构材料研究、生产、使用的最基本参数,其研究十分活跃。本文对材料的力学性能测试技术进展做简单论述。 3力学性能测试与评价发展历史简述 静态力学性能测试。由17世纪,工程技术人员对材料的力学性能仅限于其强度的概念,由早期的拉伸试验机到19世纪意大利科学家Galileo为验证解析法求解构件安全尺寸而提出拉伸,弯曲试验而创造的静力学材料试验机,液压试验机。随着电子技术和计算机控制技术的发展,相继出现了计算机控制的液压试验机。 动态力学性能测试。绝大数工程材料在其服役中承受的为动载荷,当材料或结构在受到重复变化的载荷作用后,性能出现变化—疲劳。应力(高周)疲劳试验技术:由疲劳极限来评价材料疲劳强度,常用装置为旋转弯曲试验机,因无法实现对载荷的精确控制,相应出现电磁共振高疲劳试验机,电液伺服高频疲劳试验机。低周疲劳试验技术:结构件在设计上由静强度设计变为有限寿命设计,零件由疲劳损坏变为低循环疲劳应力作用下,电液闭环控制控制技术的电液伺服系统相应而生。 断裂力学及环境模拟。由于构建在不同的环境中使用过程中,甚至在恶劣的环境中,不可避免的出现类似于裂纹的缺陷。高温和腐蚀复合环境系统和高温真空环境系统,可以在不同温度下进行试样或构件的各种腐蚀气氛和真空环境试目前环境试验技术。 4现代新技术 现代材料测试设备的特点: 随着对材料性能测试要求的不断更新,各种功能的材料试验设备不断出现。但不论测试设备动态测试系统,还是静态测试系统,无论是电子拉力还是电液伺服材料试验机,一般包括三个独立的子系统,即:机械动力系统(Meehaniealand Dynamic System):包括机架(Frame)、试件夹持和固定装置Gripsand Fixtures、

电动汽车用动力蓄电池技术要求及试验方法-新能源

《电动客车安全要求》 征求意见稿编制说明 一、工作简况 1、任务来源 为引导和规范我国电动客车产业健康可持续发展,提高电动客车安全技术水平,落实工业和信息化部建设符合电动客车特点的整车、电池、电机、高压线束等系统的安全条件及测试评价标准体系的要求,全国汽车标准化技术委员会于2016年8月启动了本强标的立项和编制工作。 2、主要工作过程 根据有关部门对电动客车安全标准制定工作的要求,全国汽车标准化技术委员会电动车辆分技术委员会组织成立“电动客车安全要求工作组”(以下简称工作组),系统开展电动客车安全要求标准的制定工作。 (1)GB《电动客车安全要求》于2016年底完成立项(计划号20160968-Q-339),2016年12月29日在南充电动汽车整车标准工作组会议上组建了标准制定的核心工作组,启动了强标制定工作,并由起草组代表介绍了标准的背景、编制思路、以及与相关标准的协调性关系。 (2) 2017年2月-3月,基于已开始执行的《电动客车安全技术条件》(工信部装[2016]377号,以下简称《条件》)的工作基础,工作组向电动客车行业主要企业、检测机构等16家单位征求《条件》的实施情况反馈与强制性国标制定建议。 (3) 2017年4月18日,工作组在重庆组织召开标准制定讨论会,会议对《条件》制定情况进行了回顾,对收集到的《条件》执行情况进行了分析讨论。根据讨论结果,针对共性问题形成了专项征求意见表。 (4) 2017年5月-6月,工作组根据重庆会议讨论结果向行业进行强标制定专项意见征求意见。 (5) 2017年6月6日,在株洲召开工作组会议,会议对专项征求意见期间收集的反馈意见进行研究讨论。 (6)2017年6月-10月,工作组依据意见反馈情况和会议讨论结果进行标

相关主题