搜档网
当前位置:搜档网 › 双机热备工作原理及切换过程具体剖析

双机热备工作原理及切换过程具体剖析

双机热备工作原理及切换过程具体剖析
双机热备工作原理及切换过程具体剖析

双机热备工作原理及切换过程具体剖析

双机热备容错基本原理是一个企业需要长期学习的技术,但是企业在组建的时候还是有很多不解的地方。下面我们就详细的了解下双机热备容错的相关知识。

一.双机工作原理

(1)心跳工作过程

通过IP做心跳检测时,主备机会通过此心跳路径,周期性的发出相互检测的测试包,如果此时主机出现故障,备机在连续丢失设定数目的检测包后,会认为主机出现故障,这时备机会自动检测设置中是否有第二种心跳,如果没有第二种心跳的话,备机则根据已设定的规则,启动备机的相关服务,完成双机热备容错的切换。

(2)IP工作过程

IP地址用虚拟IP地址的方法来实现,主要原理

主机正常的情况下虚拟IP地址指向主机的实IP地址,用户通过虚拟IP地址访问主机,这时,双机热备容错软件将虚拟IP地址解析到主机实IP地址。当主机做相关的切换时,虚拟IP地址通过双机热备容错软件自动将虚拟IP地址解析到备机的实IP地址上,这时,虚拟IP地址指向备机的实IP地址。但对用户来说,用户访问的仍然是虚拟IP地址。所以用户只会在切换的过程中发现有短暂的通信中断,经过一个短暂的时间,就可以恢复通信。

应用及网络故障切换过程

(i)可以检测到操作系统的故障并及时将服务切到备用服务器。

(ii)当操作系统正常的情况下,数据库系统出现意外故障,这时双机容错软件可以及时发现并将其切到备用服务器,使服务不致于停止。(如图2)

(iii)当操作系统和数据库系统全都正常的情况下,服务器网络出现故障,这时双机热备容错软件,可以将系统切到正常的备用服务器上。

二.双机热备容错模式

双机热备有两种实现模式,一种是基于共享的存储设备的方式即双机热备容错方式,另一种是没有共享的存储设备的方式,一般称为镜像方式。

双机热备容错方式

对于这种方式,采用两台服务器,使用共享的存储设备(磁盘阵列柜或存储区域网SAN)。两台服务器可以采用互备、主从、并行等不同的方式。在工作过程中,两台服务器将以一个

虚拟的IP地址对外提供服务,依工作方式的不同,将服务请求发送给其中一台服务器承担。同时,服务器通过心跳线(目前往往采用建立私有网络的方式)侦测另一台服务器的工作状况。当一台服务器出现故障时,另一台服务器根据心跳侦测的情况做出判断,并进行切换,接管服务。对于用户而言,这一过程是全自动的,在很短时间内完成,从而对业务不会造成影响。由于使用共享的存储设备,因此两台服务器使用的实际上是一样的数据,由双机或集群软件对其进行管理。

双机热备容错镜像方式

对于镜像的方式,则是通过支持镜像的双机软件,将数据可以实时复制到另一台服务器上,这样同样的数据就在两台服务器上各存在一份,如果一台服务器出现故障,可以及时切换到另一台服务器。

镜像方式还有另外一种情况,即服务器只是提供应用服务,而并不保存数据(比如只进行某些计算,做为应用服务器使用)。

双机容错软件:

软件、硬件配置

a、软件:双机热备容错软件。

b、硬件:服务器可以是任何Intel基础上的平台,Server的型号、配置不必一致,只需硬件平台能保证Windows NT/2K/Linux/Unix运行;磁盘阵列正常使用。

双机热备容错软件原理

1.双机热备容错软件定义、特性、资源保护

双机热备容错软件提供了一个完全容错的软件解决方案,并提供数据、应用程序和通信资源的高度可用性。双机热备容错软件不需要任何特别的容错硬件,并访问特定节点的配置数据。双机热备容错软件会自动地提供错误检测和现场恢复。

在出现故障的情况下,双机热备容错软件会将保护资源自动转换到一个根据预先设定好优先权的系统。在实际进行切换用户时,会经历一个十分短暂的休眠,但是,当系统完成了切换操作后,双机热备容错软件会在所选择的节点上自动地恢复操作。

可以被双机热备容错软件保护起来的资源是:

卷(Volume): 在共享磁盘阵列的双机方式下,双机热备容错软件可以对磁盘阵列的卷资源进行保护,防止因双机共同写同一个文件造成的故障。

IP 地址: 双机热备软件可以对网络IP地址,网卡进行全方位的检测。

共享文件:可以对文件夹共享。

管理器服务器名称: 可以对服务器名做集群热备。

应用程序: 可以对Oracle,Sybase,Informix,DB2,MSSQLServer数据库进行保护及检测功能。

定义的用户: 对用户自有程序做到实时检测及热备功能。

2、心跳故障检测Heartbeat

双机热备容错软件在集群节点间保持着间歇的通信信号,也叫做心跳信号,是错误检测的一个机制。即通过每一个通信路径,在两个对等系统之间进行周期性的握手,如果连续没有收到的心跳信号到了一定的数目,双机热备容错软件就把这条路径标示为失效(红色)。

如果你只定义了一条通信路径,当双机热备容错软件把这唯一的一条通信路径标为失效时,双机热备容错软件便立即开始恢复过程。然而,如果你有冗余路径,双机热备容错软件能够通过第二条路径确定是系统故障还是只是通信路径有问题。如果双机热备容错软件开启优先级第二的通信路径并收到了心跳信号,它就不开始failover恢复,只需要把第一条通信路径标成红色(失效),作为信号告诉你需要修复有故障的路径。

一般情况下双机热备容错软件只在下列事件发生时,启动系统恢复功能:

所有的通信路径故障。如果所有节点都没能收到心跳信号,把所有通信路径都标为失效,双机热备容错软件开始安全检查。

安全检查失败。当所有通信路径故障时,双机热备容错软件向整个网络发出安全检查信号。如果信号指出配对系统还“活”着的时候,双机热备容错软件不启动Failover。如果安全检查没从配对节点返回信号,双机热备容错软件就开始Failover。

因而,为了减少由于潜在的通讯错误所引起的不必要的系统切换,建议您使用不同介质的多条通信路径。

通信路径

双机热备容错软件支持在节点之间和心跳通讯中,使用如下通讯路径:

(1) socket,即套接字。你使用任何的网络硬件接口,只要它能够支持TCP/IP的通讯协议。这样的硬件包括:以太网、快速以网。

(2)串行口在双机热备容错软件配置中,你应当配置有一个串行口通信路径。串口通信路径需要利用RS232的拟调解线路来与双机热备容错软件系统相连接。

双机热备容错软件假定当通过心跳信号检测其它服务器失败时,则认为此服务器是关闭的。

因此,为了避免不必要的失效切换,最好建立两种以上独立的物理路径,使用至少两种心跳。

例如,如果两个服务器被一个串口连接起来,并且,从属服务器来的心跳信号无法被主服务器所检测到,则下面之一是可能引起这一现象的原因:

服务器的RS-232卡或者端口失败电缆失效

主服务器暂时挂起主服务器失败

失效切换只可能在最后一种情况下才发生。因此,节点间的多种通信路径可以帮助避免不必要的失效切换。

(工作分析)计数器工作原理的模式化分析

(工作分析)计数器工作原理的模式化分析

计数器工作原理的模式化分析 时序逻辑电路是《脉冲和数字电路》这门课程的重要组成部分,计数器是时序逻辑电路基础知识的实际应用,其应用领域非常广泛。计数器原理是技工学校电工电子专业学生必须重点掌握的内容,也是本课程的考核重点,更是设计计数器或其他电子器件的基础。 但近年来技校学生的文化理论基础和理解能力普遍较差,按照课件体系讲授计数器这个章节的知识,超过70%的学生听不懂。 我先后为四届学生讲授过这门课,于教学实践中摸索出壹套分析计数器的方法——模式化分析,即把分析步骤模式化,引导学生按部就班地分析计数器。用这种方法分析,我只要以其中壹种计数器(如异步二进制计数器)为例讲解,学生便能够自行分析其他计数器。 教学实践证明,用这种方法讲授计数器知识,学生比较感兴趣,觉得条理清晰,易于理解,掌握起来比较轻松。这种方法仍有壹个好处,不管是同步计数器仍是异步计数器,不管是二进制计数器仍是十进制计数器,不管是简单的计数器仍是复杂的计数器,只要套用这种方法,计数器工作原理迎刃而解。即使是平时基础很差的学生,只要记住几个步骤,依葫芦画瓢,也能把计数器原理分析出个大概来。 一、明确计数器概念 分析计数器当然要先清楚什么是计数器啦。书上的概念是:

计数器是数字系统中能累计输入脉冲个数的数字电路。我告诉学生,计数器就是这样壹种电子设备:把它放于教室门口,每个进入教室的同学均于壹个按钮上按壹下,它就能告诉你壹共有多少位同学进入教室。其中,每个同学按壹下按钮就是给这个设备壹个输入信号,N个同学就给了N个信号,这N个信号就构成计数器的输入CP脉冲,计数器要统计的就是这个CP脉冲系列的个数。当然,如果没有接译码器,计数器的输出端显示的是二进制数而非十进制数,比如有9位同学进入教室,它不显示“9”,而是显示“1001”。 随后,我简要介绍了计数器的构成和分类,且强调,计数器工作前必须先复位,即每个触发器的输出端均置零。 二、回顾基础知识 分析计数器要用到触发器的关联知识,其中JK触发器最常用,偶尔用到T触发器和D触发器。因此,介绍完计数器概念后,我不急于教学生分析其原理,而是先提问JK、T、D触发器的关联知识,包括触发器的逻辑符号、特性方程、特性表等。 由于计数器的控制单元由逻辑门电路构成,分析前仍要简要回顾壹下和、或、非等常用逻辑门电路的关联知识。另外,用模式化方法分析计数器仍要用到逻辑代数的运算方法、逻辑函数的化简方法等关联知识。 三、画出解题模板 准备工作做完了,下面进入核心部分——列出分析计数器的

IPM自举电路设计过程中的关键问题研究

IPM自举电路设计过程中的关键问题研究 摘要:介绍了IPM自举电路的基本拓扑结构和原理,并在理论分析的基础上,研究和探讨了自举电阻、自举二极管和自举电容的选型方法,重点对自举电容初始充电展开研究,提出了一种简单实用的初始充电方法,在实际项目应用中取得良好的充电效果。实验结果表明,这种初始充电方法简单、实用、安全可靠,解决了初始充电可能导致IPM上下管直通的问题。关键词:自举电路;自举电容;自举电阻;自举二极管;初始充电 通常IPM模块应有四路独立电源供电,下桥臂三个IGBT控制电路共用一个独立电源,上桥臂三个IGBT控制电路用三个独立电源。对于小功率IPM,可以由自举电路将其他三路电压进行自举而得到三个独立电源[1]。IPM模块通过将功率器件、驱动电路和保护电路高度集成在一块很小封装基板上,使得功率模块应用单一电源供电成为可能。为了简化设计,驱动电路已普遍采用单一控制电源方案。使用单一电源,必须满足两个要求:一是保证控制电源能够为上桥臂功率器件提供正确的门极偏置电压;二是保证直流母线上的高压不致串到控制电源电路而烧坏元器件。通常使用自举电路法来实现IPM模块的单一电源供电。实现自举有两个关键问题:一是自举电容的初始充电;二是自举电容充完电后,当下臂关断后上臂并未立即导通,而在从下臂关断到上臂导通期间,电容会放电,因此必须保证少量放电后电容电压仍有驱动能力。如果以上两个问题未能处理好,将导致即使PWM波形正常,IPM也不能工作,因为自举电压不足以驱动上臂导通。本文介绍了IPM自举电路的基本拓扑结构和原理,并重点研究了自举电容初始充电问题,通过在控制程序中执行简单的初始充电语句,很好地解决了上述关键问题,并在项目中取得良好的充电效果。1 IPM模块自举电路基本拓扑结构和原理电压自举,就是利用电路自身产生比输入电压更高的电压。基于电容储能的电压自举电路通常是利用电容对电荷的存储作用来实现电荷的转移,从而实现电压的提升。电压自举电路利用电荷转移的方式进行工作,通过存储电容,把电荷从输入转移到输出,提供负载所需要的电流。图1给出了双倍压电压自举电路的基本原理。 假设所有开关均为理想开关,电容为理想电容。当开关S1和S3闭合时,电源VCC给电容C充电使其电压达到VCC。然后开关S1和S3断开,S2闭合,直接接到电容C的低压端,此时电容C上仍然保持有前一个相位存储的电荷VCC×C。由于在S2闭合时,电容C上的电荷量不能突变,因此有:(V0-VCC)×C=VCC×C,即V0=2VCC。在没有直流负载的情况下,通过图1所示的电路,在理想情况下,输出可达到输入电压的两倍。2 自举电路设计中的关键问题研究本项目的IPM型号选用IGCM20F60GA[2]。图2是IPM自举电路原理图。由图2可知,自举元件一端接电路的输入部分,另一端接到同相位的输出电路部分,借输入、输出的同相变化,把自己抬举起来,即自举元件引入的是正极性的反馈。 对原理图中第一路自举电路进行分析[3-4]。IPM模块自举电路仅由自举电阻R62、自举二极管D9和自举电容E1组成,因此简单可靠。其电路基本工作过程为:当VS因为下桥臂功率器件导通被拉低到接近地电位GND时,控制电源VCC会通过R62和D9给自举电容E1充电。当上桥臂导通,VS上升到直流母线电压后,自举二极管D9反向截止,从而将直流母线电压与VCC隔离,以防止直流母线侧的高压串到控制电源低压侧而烧坏元器件。此时E1放电,给上桥臂功率器件的门极提供驱动电压。当VS再次被拉低时,E1将再次通过VCC充电以补充上桥臂导通期间E1上损失的电压。这种自举供电方式就是利用VS端的电平在高低电平之间不停地摆动来实现的。,自举电路给E1充电,E1的电压基于上桥臂输出晶体管源极电压上下浮动。由于运行过程中反复地对自举电容进行充放电,因此必须选择适当的参数,保证

换向阀工作原理

换向阀 利用阀芯对阀体的相对运动,使油路接通、关断或变换油流的方向,从而实现液压执行元件及其驱动机构的启动、停止或变换运动方向。 按阀芯相对于阀体的运动方式:滑阀和转阀 按操作方式:手动、机动、电磁动、液动和电液动等按阀芯工作时在阀体中所处的位置:二位和三位等 按换向阀所控制的通路数不同:二通、三通、四通和五通等。 1、工作原理 图4-3a所示为滑阀式换向阀的工作原理图,当阀芯向右移动一定的距离时,由液压泵输出的压力油从阀的P口经A口输向液压缸左腔,液压缸右腔的油经B口流回油箱,液压缸活塞向右运动;反之,若阀芯向左移动某一距离时,液流反向,活塞向左运动。图4-3b为其图形符号。 2、换向阀的结构 1)手动换向阀 利用手动杠杆来改变阀芯位置实现换向。分弹簧自动复位(a)和弹簧钢珠(b)定位两种。 2)机动换向阀 机动换向阀又称行程阀,主要用来控制机械运动部件的行程,借助于安装在工作台上的档铁或凸轮迫使阀芯运动,从而控制液流方向。 3)电磁换向阀

利用电磁铁的通电吸合与断电释放而直接推动阀芯来控制液流方向。它是电气系统和液压系统之间的信号转换元件。 图4-9a所示为二位三通交流电磁阀结构。在图示位置,油口 P和A相通,油口B断开;当电磁铁通电吸合时,推杆1将阀芯2推向右瑞,这时油口P和A断开,而与B相通。当电磁铁断电释放时,弹簧3推动阀芯复位。图 4-9b为其图形符号。 4)液动换向阀 利用控制油路的压力油来改变阀芯位置的换向阀。阀芯是由其两端密封腔中油液的压差来移动的。如图所示,当压力油从K2进入滑阀右腔时,K1接通回油,阀芯向左移动,使P和B相通,A和T相通;当 K1接通压力油,K2接通回油,阀芯向右移动,使P和A相通,B和T相通;当K1和K2都通回油时,阀芯回到中间位置。 5)电液换向阀 由电磁滑阀和液动滑阀组成。电磁阀起先导作用,可以改变控制液流方向,从而改变液动滑阀阀芯的位置。用于大中型液压设备中。 3、换向阀的性能和特点 1)滑阀的中位机能 各种操纵方式的三位四通和三位五通式换向滑阀,阀芯在中间位置时,各油口的连通情况称为换向阀的中位机能。其常用的有“O”型、“H”型、“P”型、K”型、“M”型等。 分析和选择三位换向阀的中位机能时,通常考虑: (1)系统保压 P口堵塞时,系统保压,液压泵用于多缸系统。 (2)系统卸荷 P口通畅地与T口相通,系统卸荷。(H K X M型) (3)换向平稳与精度 A、B两口堵塞,换向过程中易产生冲击,换向不平稳,但精度高;A、B口都通T口,换向平稳,但精度低。 (4)启动平稳性阀在中位时,液压缸某腔通油箱,启动时无足够的油液起缓冲,启动不平稳。

放大电路的组成及工作原理

2、4 放大电路的组成及工作原理 参考教材:《模拟电子技术基础》孙小子张企民主编西安:西安电子科技大学出版社 一、教学目标及要求 1、通过本次课的教学,使学生了解晶体管组成的基本放大电路的三种类型,掌 握放大电路的组成元器件及各元器件的作用,理解放大电路的工作原理。 2、通过本节课的学习,培养学生定性分析学习意识,使学生掌握理论结合生活 实际的分析能力。 二、教学重点 1、共发射极放大电路的组成元器件及各元器件作用; 2、共发射极放大电路的工作原理。 三、教学难点 1、共发射极放大电路的组成元器件及各元器件作用; 2、共发射极放大电路的工作原理。 四、教学方法及学时 1、讲授法 2、1个学时 五、教学过程 (一)导入新课 同学们,上节课我们已经学习了晶体管内部载流子运动的特性以及由此引起的晶体管的一些外部特性,比如说晶体管的输入输出特性等,在这里,我要强调一下,我们需要把更多的注意力放在关注晶体管的外部特性上,而没有必要细究内部载流子的特点。由晶体管的输出特性,我们知道,当晶体管的外部工作条件不同时,晶体管可以工作在三个不同的区间。分别为:放大区、截止区、饱与区,其中放大区就是我们日常生活中较为常用的一种工作区间。大家就是否还记得,晶体管工作在放大区时所需要的外部条件就是什么不(发射结正偏,集电结反偏)?这节课,我们将要进入一个晶体管工作在放大区时,在实际生活中应用的新内容学习。 2、4放大器的组成及工作原理 一、放大的概念 放大: 利用一定的外部工具,使原物体的形状或大小等一系列属性按一定的比例扩大的过程。日常生活中,利用扩音机放大声音,就是电子学中最常见的放大。其原理框图为: 声音声音 扩音器原理框图 由此例子,我们知道,放大器大致可以分为:输入信号、放大电路、直流电源、输出信号等四部分,它主要用于放大小信号,其输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。对放大电路的基本要求:一就是信号不失真,二就是要放大。 二、基本放大电路的组成

计数器原理分析及应用实例

计数器原理分析及应用实例 除了计数功能外,计数器产品还有一些附加功能,如异步复位、预置数(注意,有同步预置数和异步预置数两种。前者受时钟脉冲控制,后者不受时钟脉冲控制)、保持(注意,有保持进位和不保持进位两种)。虽然计数器产品一般只有二进制和十进制两种,有了这些附加功能,我们就可以方便地用我们可以得到的计数器来构成任意进制的计数器。下面我们举两个例子。在这两个例子中,我们分别用同步十进制加法计数器74LS160构成一个六进制计数器和一个一百进制计数器。 因为六进制计数器的有效状态有六个,而十进制计数器的有效状态有十个,所以用十进制计数器构成六进制计数器时,我们只需保留十进制计数器的六个状态即可。74LS160的十个有效状态是BCD编码的,即0000、0001、0010、0011、0100、0101、0110、0111、1000、1001[图5-1]。 图5-1 我们保留哪六个状态呢?理论上,我们保留哪六个状态都行。然而,为了使电路最简单,保留哪六个状态还是有一点讲究的。一般情况下,我们总是保留0000和1001两个状态。因为74LS160从1001变化到0000时,将在进位输出端产生一个进位脉冲,所以我们保留了0000和1001这两个状态后,我们就可以利用74LS160的进位输出端作为六进制计数器的进位输出端了。于是,六进制计数器的状态循环可以是0000、0001、0010、0011、0100和1001,也可以是0000、0101、0110、0111、1000和1001。我们不妨采用0000、0001、0010、0011、0100

和1001这六个状态。 如何让74LS160从0100状态跳到1001状态呢?我们用一个混合逻辑与非门构成一个译码器[图5.3.37b],当74LS160的状态为0100时,与非门输出低电平,这个低电平使74LS160工作在预置数状态,当下一个时钟脉冲到来时,由于等于1001,74LS160就会预置成1001,从而我们实现了状态跳跃。 图5.3.37b用置数法将74160接成六进制计数器(置入1001) 比这个方案稍微繁琐一点的是利用74LS160的异步复位端。下面这个电路中[图5.3.34],也有一个由混合逻辑与非门构成的译码器。 图5.3.34用置零法将74LS160接成六进制计数器

运算放大器的工作原理

运算放大器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括 一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 图1-1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正回

自举电路的应用

自举电路在电路设计中的应用 朱丽华 (福建信息职业技术学院福州, 350003) 摘要:在电路的设计中,常利用自举电容构成的自举电路来改善电路的某些性能指标,如利用自举提高射随器的输入阻抗、利用自举提高电路增益及扩大电路的动态范围等。本 文就自举电路的工作原理及典型应用作一介绍。 关键词:自举;自举电容;自举电路 在电路的设计中,常利用自举电容构成自举电路来改善电路的某些性能指标,如利用自举电路提高射随器的输入阻抗,利用自举电路提高放大器增益或扩大电路的动态范围等等。现就自举电路的工作原理及典型应用作一介绍。 一、自举电路的工作原理 自举电路的本质是利用电容两端电压瞬间不能突变的特点来改变电路中某一点的瞬时电位。图1是一射极跟随器电路,在偏置电路中加入电阻R3的目的在于提高输入电阻,因为输入电阻为 Ri = [R3+(R1//R2)]//[r be+(1+β)(R4//R L)] 只要将R3值取大,就可以使输入电阻增大。 但是R3取值是不能任意选大的,R3太大将使静态工作点偏离要求,因此,这种偏置方式虽然可以提高输入阻抗,但效能是有限的。 若在该电路中加一电容C3时(如图2所示),只要电容C3的容量足够大,则可认为B点的电压变化与输出端电压变化相同,R 两端的电压变化为-,此时流过R3的电流为 =(-)/ R 3=(-)/ R3 由于电路的跟随着变化而变化,即≈,所以流过R3的电流极小,说明R3此时对交流 呈现出极高的阻抗(比R3的实际阻值要大得多),这就使射极跟随器的输入阻抗得到极大提高。这种利用电容一端电位的提高来控制另一端电位的方法称为“自举”,所以称电容C3为自举电容。自举从本质上说是一种特殊形式的正反馈。 二、应用实例 1.利用自举电路提高射极跟随器的输入电阻 射随器具有输入阻抗高、输出阻抗低的特点,所以在电子线路中的应用是极为广泛的。图3是一典型射极跟随器电路,由于基极采用的是固定偏置电路,所以无法保证工点的稳定。如果将它改为如图4所示

起重机液压原理图及简要分析

起重机液压原理图及简 要分析 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

1—液压泵;2—滤油器;3—中央回转接头;4、9、13、18—多路阀组;5、8、15—平衡阀;6—吊臂液压缸;7—变幅液压缸;10—安全阀;11--油箱;12—回转液压马达;14—顺序阀;16—制动器液压缸;17—起升液压马达; 液压回路工作原理 根据液压静力压桩机起重机的作业要求,液压系统应完成下述工作:吊臂的变幅、伸缩,吊钩重物的升降,回转平台的回转。多路阀中的四联换向阀组成串联油路,变幅、伸缩、回转和起升各工作机构可任意组合同时动作,从而可提高工作效率。1.吊臂变幅、伸缩 吊臂变幅、伸缩是由变幅和伸缩工作回路实现。当这些机构均不工作即当所有换向阀都在中位时,泵输出的油液经多路阀后又流回油箱,使液压泵卸荷。 (1)操纵换向阀9处于左位,这时油液流动路线是:进油路:泵l—滤油器2一中心回转接头3—换向阀4中位—换向阀9左位—平衡阀8—变幅液压缸7大腔。 回油路:变幅液压缸7小腔—换向阀9左位—换向阀13、18中位—中心回转接头3—油箱。 此时,变幅液压缸活塞伸出,使吊臂的倾角增大。 当换向阀9处于右位时活塞缩回,吊臂的倾角减小。实际中按照作业要求使倾角增大或减小,实现吊臂变幅。

(2)操纵换向阀4处于左位,液压泵1的来油进入吊臂伸缩液压缸6的大腔,使吊臂伸出;换向阀4处于右位,则使吊臂缩回。从而实现吊臂的伸缩。 吊臂变幅和伸缩机构都受到重力载荷的作用。为防止吊臂在重力载荷作用下自由下降,在吊臂变幅和伸缩回路中分别设置了平衡阀5、8,以保持吊臂倾角平稳减小和吊臂平稳缩回。同时平衡阀又能起到锁紧作用,单向锁紧液压缸,将吊臂可靠地支承住。 2.吊重的升降 吊重的升降由起升工作回路实现。 当起升吊重时,操纵换向阀18处于左位。泵来油经换向阀18左位、平衡阀15进入起升马达17,同时液压油经过单向节流阀14进入制动液压缸小腔,制动松开,起升马达得以回转。而回油经换向阀18左位和中心回转接头3流回油箱。于是起升马达带动卷筒回转使吊重上升。 当下降吊重时,操纵换向阀18处于右位。泵1的来油使起升马达反向转动,回油经平衡阀15和换向阀18右位和中心回转接头3流回油箱。这时制动器液压缸16仍通入压力油,制动器松开,于是吊重下降。由于平衡阀15的作用,吊重下落时不会出现失速状况。 3.吊重回转 吊重的回转由回转工作回路实现。

自举电路

自举电路 编辑词条 自举电路也叫升压电路,利用自举升压二极管,自举升压电容等电子元件,使电容放电电压和电源电压叠加,从而使电压升高.有的电路升高的电压能达到数倍电源电压。 编辑本段原理 举个简单的例子:有一个12V的电路,电路中有一个场效应管需要15V的驱动电压,这个电压怎么弄出来?就是用自举。通常用一个电容和一个二极管,电容存储电压,二极管防止电流倒灌,频率较高的时候,自举电路的电压就是电路输入的电压加上电容上的电压,起到升压的作用。 自举电路只是在实践中定的名称,在理论上没有这个概念。自举电路主要是在甲乙类单电源互补对称电路中使用较为普遍。甲乙类单电源互补对称电路在理论上可以使输出电压Vo达到Vcc的一半,但在实际的测试中,输出电压远达不到Vcc的一半。其中重要的原因就需要一个高于Vcc的电压。所以采用自举电路来升压。 常用自举电路(摘自fairchild,使用说明书AN-6076《供高电压栅极驱动 器IC 使用的自举电路的设计和使用准则》) 编辑本段P 沟道高端栅极驱动器 直接式驱动器:适用于最大输入电压小于器件的栅- 源极击穿电压。 开放式收集器:方法简单,但是不适用于直接驱动高速电路中的MOSFET。 电平转换驱动器:适用于高速应用,能够与常见PWM 控制器无缝式工作。编辑本段N 沟道高端栅极驱动器 直接式驱动器:MOSFET最简单的高端应用,由PWM 控制器或以地为基准的驱动器直接驱动,但它必须满足下面两个条件: VCC

-放大电路的组成及工作原理

2.4 放大电路的组成及工作原理 参考教材:《模拟电子技术基础》孙小子张企民主编西安:西安电子科技大学出版社 一、教学目标及要求 1、通过本次课的教学,使学生了解晶体管组成的基本放大电路的三种类型, 掌握放大电路的组成元器件及各元器件的作用,理解放大电路的工作原理。 2、通过本节课的学习,培养学生定性分析学习意识,使学生掌握理论结合生 活实际的分析能力。 二、教学重点 1、共发射极放大电路的组成元器件及各元器件作用; 2、共发射极放大电路的工作原理。 三、教学难点 1、共发射极放大电路的组成元器件及各元器件作用; 2、共发射极放大电路的工作原理。 四、教学方法及学时 1、讲授法 2、1个学时 五、教学过程 (一)导入新课 同学们,上节课我们已经学习了晶体管内部载流子运动的特性以及由此引起的晶体管的一些外部特性,比如说晶体管的输入输出特性等,在这里,我要强调一下,我们需要把更多的注意力放在关注晶体管的外部特性上,而没有必要细究内部载流子的特点。由晶体管的输出特性,我们知道,当晶体管的外部工作条件不同时,晶体管可以工作在三个不同的区间。分别为:放大区、截止区、饱和区,其中放大区是我们日常生活中较为常用的一种工作区间。大家是否还记得,晶体管工作在放大区时所需要的外部条件是什么吗(发射结正偏,集电结反偏)?这节课,我们将要进入一个晶体管工作在放大区时,在实际生活中应用的新内容学习。 2.4放大器的组成及工作原理 一、放大的概念 放大:利用一定的外部工具,使原物体的形状或大小等一系列属性按一定的比例扩大的过程。日常生活中,利用扩音机放大声音,是电子学中最常见的放大。其原理框图为: 声音声音 扩音器原理框图 由此例子,我们知道,放大器大致可以分为:输入信号、放大电路、直流电源、输出信号等四部分,它主要用于放大小信号,其输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。对放大电路的基本要求:一是信号不失真,二是要放大。

液压基本回路原理与分析

液压基本回路原理与分析 液压基本回路是用于实现液体压力、流量及方向等控制的典型回路。它由有关液压元件组成。现代液压传动系统虽然越来越复杂,但仍然是由一些基本回路组成的。因此,掌握基本回路的构成,特点及作用原理,是设计液压传动系统的基础。 1. 压力控制回路 压力控制回路是以控制回路压力,使之完成特定功能的回路。压力控制回路种类很多。例如液压泵的输出压力控制有恒压、多级、无级连续压力控制及控制压力上下限等回路。在设计液压系统、选择液压基本回路时,一定要根据设计要求、方案特点,适当场合等认真考虑。当载荷变化较大时,应考虑多级压力控制回路;在一个工作循环的某一段时间内执行元件停止工作不需要液压能时,则考虑卸荷回路;当某支路需要稳定的低于动力油源的压力时,应考虑减压回路;在有升降运动部件的液压系统中,应考虑平衡回路;当惯性较大的运动部件停止、容易产生冲击时,应考虑缓冲或制动回路等。即使在同一种的压力控制基本回路中,也要结合具体要求仔细研究,才能选择出最佳方案。例如选择卸荷回路时,不但要考虑重复加载的频繁程度,还要考虑功率损失、温升、流量和压力的瞬时变化等因素。在压力不高、功率较小。工作间歇较长的系统中,可采用液压泵停止运转的卸荷回路,即构成高效率的液压回路。对于大功率液压系统,可采用改变泵排量的卸荷回路;对频繁地重复加载的工况,可采用换向阀的卸荷回路或卸荷阀与蓄能器组成的卸荷回路等。 1.1调压回路

液压系统中压力必须与载荷相适应,才能即满足工作要求又减少动力损耗。这就要通过调压回路实现。调压回路是指控制整个液压系统或系统局部的油液压力,使之保持恒定或限制其最高值。1.1.1用溢流阀调压回路 1.1.1.1远程调压回路 特点:系统的压力可由与先导式溢流阀1的遥控口相连通的远程调压阀2进行远程调节。远程调压阀2的调整压力应小于溢流阀1的调整压力,否则阀2不起作用。 特点:用三个溢流阀进行遥控连接,使系统有三种不同压力调

计数器工作原理的模式化分析

计数器工作原理的模式化分析 时序逻辑电路是《脉冲与数字电路》这门课程的重要组成部分,计数器是时序逻辑电路基础知识的实际应用,其应用领域非常广泛。计数器原理是技工学校电工电子专业学生必须重点掌握的内容,也是本课程的考核重点,更是设计计数器或其他电子器件的基础。 但近年来技校学生的文化理论基础和理解能力普遍较差,按照教材体系讲授计数器这个章节的知识,超过70%的学生听不懂。 我先后为四届学生讲授过这门课,在教学实践中摸索出一套分析计数器的方法——模式化分析,即把分析步骤模式化,引导学生按部就班地分析计数器。用这种方法分析,我只要以其中一种计数器(如异步二进制计数器)为例讲解,学生便可以自行分析其他计数器。 教学实践证明,用这种方法讲授计数器知识,学生比较感兴趣,觉得条理清晰,易于理解,掌握起来比较轻松。这种方法还有一个好处,不管是同步计数器还是异步计数器,不管是二进制计数器还是十进制计数器,不管是简单的计数器还是复杂的计数器,只要套用这种方法,计数器工作原理迎刃而解。即使是平时基础很差的学生,只要记住几个步骤,依葫芦画瓢,也能把计数器原理分析出个大概来。 一、明确计数器概念 分析计数器当然要先清楚什么是计数器啦。书上的概念是:计数器是数字系统中能累计输入脉冲个数的数字电路。我告诉学生,计数器就是这

样一种电子设备:把它放在教室门口,每个进入教室的同学都在一个按钮上按一下,它就能告诉你一共有多少位同学进入教室。其中,每个同学按一下按钮就是给这个设备一个输入信号,N个同学就给了N个信号,这N 个信号就构成计数器的输入CP脉冲,计数器要统计的就是这个CP脉冲系列的个数。当然,如果没有接译码器,计数器的输出端显示的是二进制数而非十进制数,比如有9位同学进入教室,它不显示“9”,而是显示“1001”。 随后,我简要介绍了计数器的构成和分类,并强调,计数器工作前必须先复位,即每个触发器的输出端均置零。 二、回顾基础知识 分析计数器要用到触发器的相关知识,其中JK触发器最常用,偶尔用到T触发器和D触发器。因此,介绍完计数器概念后,我不急于教学生分析其原理,而是先提问JK、T、D触发器的相关知识,包括触发器的逻辑符号、特性方程、特性表等。 由于计数器的控制单元由逻辑门电路构成,分析前还要简要回顾一下与、或、非等常用逻辑门电路的相关知识。另外,用模式化方法分析计数器还要用到逻辑代数的运算方法、逻辑函数的化简方法等相关知识。 三、画出解题模板 准备工作做完了,下面进入核心部分——列出分析计数器的9个步骤: 1.驱动方程(即触发器输入端的表达式,注意要化成最简式) 2.特性方程(即触发器的特性方程,计数器有几个触发器就写出几个 特性方程) 3.状态方程(把1代入2后得到的方程,注意要化成最简式)

光子计数器原理

光子计数器原理 现代光测量技术已步入极微弱发光分析时代。在诸如生物微弱发光分析、化学发光分析、发光免疫分析等领域中,辐射光强度极其微弱,要求对所辐射的光子数进行计数检测。对于一个具有一定光强的光源,若用光电倍增管接收它的光强,如果光源的输出功率及其微弱,相当于每秒钟光源在光电倍增管接收方向发射数百个光子的程度,那么,光电倍增管输出就呈现一系列分立的尖脉冲,脉冲的平均速率与光强成正比,在一定的时间内对光脉冲计数,便可检测到光子流的强度,这种测量光强的方法称为光子计数。 光子计数器是主要由光电倍增管、电源、放大系统、光源组成。 1.电倍增管的工作原理 光电倍增管是一个由光阴极、阳极和多个倍增极(亦称打拿极)构成的特殊电子管。它的前窗对工作在可见光区及近紫外区的用紫外玻璃:而在远紫外区则必须使用石英。 (1)光阴极:光阴极的作用是将光信号转变成电信号,当外来光子照射光阴极时,光阴极便可以产生光电子。产生电子的多少与照射光的波长及强度有关。当照射光的波长一定时,光阴极产生光电流的强度正比于照射光的强度,这是光电倍增管测定光强度的基础。各种不同的光电倍增管具有不同的光谱灵敏度。目前很少用单一元素制作光阴极,常用的有AgOCs、Cs3Sb、BiAgOCs、Na2KSb、K2CsSb等由多元素组成的光阴极材料。 (2)倍增极:倍增极也称打拿极,所用的材料与阴极相同。倍增极的作用实质上是放大电流,即在受到前一级发出的电子的打击后能放出更多的次级电子。普通光电倍增管中倍增极的数目,一般为11个,有的可达到20个。倍增极数目越大,倍增极间的电位降越大,PMT的放大作用越强。

(3)阳极:大部分由金属网做成,置于最后一级打拿级附近,其作用是接受最后一个倍增极发出的电子。但接受后,不象倍增极那样再射出电子,而是通导线以电流的形式输出。 光电倍增管的工作原理如图1所示,在光电倍增管的阴极和阳极间加一高电压,且阳极接地,阴极接在高压电源的负端。另外,在阳极和阴极之间串接一定数目的固定电阻,这样在每个倍增级上都产生一定的电位降(一般为50V到90V),使阴极最负(图中假定为·400V),每一倍增极-300V,顺次增高,至阳极时为 Jf0”V。当一束光线照射阴极时,假设产生一个光电子,这个光电子在电场的作用下,向第一倍增极射去。由于第一倍增极的电位比光阴极要正100V,所以电子在此期间会被加速。当其撞击第一倍增极时,会溅射出数目更多的二次电子(图中假定为2个)。依此类推,电子数目越来越多。目前,一般光电倍增管的电子数总增益G约为106,有的甚至高达108~101~,由于其放大作用很强,所以适用于微弱光信号的测量。这里 G=dN (1) 式中d是每一个入射光电子能打出的二次电子的平均数,叫做二次发射系数。此二次发射系数与倍增级材料及倍增极间的电位降有关,式中n为倍增极的数目。

直流升压电路原理图

几款直流升压电路 直流升压就是将电池提供的较低的直流电压,提升到需要的电压值,其基本的工作过程都是:高频振荡产生低压脉冲——脉冲变压器升压到预定电压值——脉冲整流获得高压直流电,因此直流升压电路属于DC/DC电路的一种类型。 在使用电池供电的便携设备中,都是通过直流升压电路获得电路中所需要的高电压,这些设备包括:手机、传呼机等无线通讯设备、照相机中的闪光灯、便携式视频显示装置、电蚊拍等电击设备等等。 一、几种简单的直流升压电路 以下是几种简单的直流升压电路,主要优点:电路简单、低成本;缺点:转换效率较低、电池电压利用率低、输出功率小。这些电路比较适合用在万用电表中,替代高压叠层电池。

二、24V供电CRT高压电源 一些照相机CRT使用11.4cm(4.5英寸)纯平面CRT作为显示部件,其高压部件的阳极电压为+20kV,聚焦极电压为+3.2kV,加速极电压为+1000V,高压部件供电为直流24V。以下电路是为替换维修这些显示器的高压部件而设计(电路选自网络文章,原作者不详)。该电路的设计也可为其他升压电路设计提供参考。 基本原理:NE555构成脉冲发生器,调节电位器VR2可使之产生频率为20kHz左右的脉冲,电位器VR1调脉宽。TR1为推动级,脉冲变压器T1采用反极性激励,即TR1导通时TR2截止,TR1截止时TR2导通,D3、C9、VR3、R7及D4、R6、TR3组成高压保护电路。VR2用于调频率,调节VR2可调整高压大小。 VR2选用精密可调电阻。T2可选用彩电行输出变压器变通使用。笔者选用的是东洋SE-1438G系列35cm(14英寸)彩电的行输出变压器,采用此变压器阳极电压可达20kV,再适当选取R8的阻值使加速极电压为+1000V、R9的阻值使聚焦极电压为+3.2kV即可。整个部件采用铝盒封装,铝壳接地,这样可减少对电路干扰。 直流升压电压电路图集锦: 三极管升压电路:

升压(自举)电路原理

自举电路也叫升压电路,利用自举升压二极管,自举升压电容等电子元件,使电容放电电压和电源电压叠加,从而使电压升高.有的电路升高的电压能达到数倍电源电压。 升压电路原理 举个简单的例子:有一个12V的电路,电路中有一个场效应管需要15V的驱动电压,这个电压怎么弄出来?就是用自举。通常用一个电容和一个二极管,电容存储电压,二极管防止电流倒灌,频率较高的时候,自举电路的电压就是电路输入的电压加上电容上的电压,起到升压的作用。 升压电路只是在实践中定的名称,在理论上没有这个概念。升压电路主要是在甲乙类单电源互补对称电路中使用较为普遍。甲乙类单电源互补对称电路在理论上可以使输出电压Vo达到Vcc的一半,但在实际的测试中,输出电压远达不到Vcc的一半。其中重要的原因就需要一个高于Vcc的电压。所以采用升压电路来升压。 开关直流升压电路(即所谓的boost或者step-up电路)原理 the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。基本电路图见图1. 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路。 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。

各种液压缸工作原理及结构分析(动画演示)

各种液压缸工作原理及结构分析(动画演示)

各种液压缸工作原理及结构分析(动画演示) 什么是液压缸液压缸是将液压能转变为机械能的、做直线往复运动(或摆动运动)的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸的结构液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。缸体组件缸体组件与活塞组件形成的密封容腔承受油压作用,因此,缸体组件要有足够的强度,较高的表面精度可靠的密封性。 (1)法兰式连接,结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用的一种连接形式。(2)半环式连接,分为外半环连接和内半环连接两种连接形式,半环连接工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。(3)螺纹式连接,有

外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。(4)拉杆式连接,结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的中、低压液压缸。(5)焊接式连接,强度高,制造简单,但焊接时易引起缸筒变形。液压缸的基本作用形式:标准双作用:动力行程在两个方向并且用于大多数应用场合:单作用缸:当仅在一个方向需要推力时,可以采用一个单作用缸;双杆缸:当在活塞两侧需要相等的排量时,或者当把一个负载连接于每端在机械有利时采用,附加端可以用来安装操作行程开关等的凸轮.弹簧回程单作用缸:通常限于用来保持和夹紧的很小的短行程缸。容纳回程弹簧所需要的长度使得它们在需要长行程时很讨厌;柱塞式单作用缸:仅有一个流体腔,这种类型的缸通常竖直安装,负载重置使缸内缩,他们又是被成为“排量缸”,并且对长行程是实用的;多级伸缩缸:最多可带4个套简,收拢长度比标准缸短.有单作用或双作用,它们与标准缸相比是比较贵的,通常用于安装空间较小但需要较大行程的场合, 串联缸:一个串联缸足由两个同轴安装的缸组成的,两个缸的活塞由一个公共活塞杆链接,在两缸之前设置杆密封件以便使每个缸都能双作用,当安装宽度或高度受限制时.串联

高压侧悬浮驱动的自举原理

---------高压悬浮驱动器IR2110的原理和扩展应用 ---------吴胜华,张成胜,钟炎平,吴保芳 ---------3高压侧悬浮驱动的自举原理 IR2110用于驱动半桥的电路如图2所示。图中C1、VD1分别为自举电容和二极管,C2为VCC的滤波电容。假定在S1关断期间C1已充到足够的电压(VC1≈VCC)。当HIN为高电平时VM1开通,VM2关断,VC1加到S1的门极和发射极之间,C1通过VM1,Rg1和S1门极栅极电容Cgc1放电,Cgc1被充电。此时VC1可等效为一个电压源。当HIN为低电平时,VM2开通,VM1断开,S1栅电荷经Rg1、VM2迅速释放,S1关断。经短暂的死区时间(td)之后,LIN为高电平,S2开通,VCC经VD1,S2给C1充电,迅速为C1补充能量。如此循环反复。 ---------4自举元器件的分析与设计 如图2所示自举二极管(VD1)和电容(C1)是IR2110在PWM应用时需要严格挑选和设计的元器件,应根据一定的规则进行计算分析。在电路实验时进行一些调整,使电路工作在最佳状态。 ---------4.1自举电容的设计 IGBT和PM(POWERMOSFET)具有相似的门极特性。开通时,需要在极短的时间内向门极提供足够的栅电荷。假定在器件开通后,自举电容两端电压比器件充分导通所需要的电压(10V,高压侧锁定电压为8.7/8.3V)要高;再假定在自举电容充电路径上有1.5V的压降(包括VD1的正向压降);最后假定有1/2的栅电压(栅极门槛电压VTH通常3~5V)因泄漏电流引起电压降。综合上述条件,此时对应的自举电容可用下式表示:C1=(1)工程应用则取C1>2Qg/(VCC-10-1.5)。 例如FUJI50A/600VIGBT充分导通时所需要的栅电荷Qg=250nC(可由特性曲线查得),VCC=15V,那么 C1=2×250×10-9/(15-10-1.5)=1.4×10-7F 可取C1=0.22μF或更大一点的,且耐压大于35V的钽电容。 ---------4.2悬浮驱动的最宽导通时间ton(max)当最长的导通时间结束时,功率器件的门极电压Vge仍必须足够高,即必须满足式(1)的约束关系。不论PM还是IGBT,因为绝缘门极输入阻抗比较高,假设栅电容(Cge)充电后,在VCC=15V时有15μA的漏电流(IgQs)从C1中抽取。仍以4.1中设计的参数为例,Qg=250nC,ΔU=VCC-10- 1.5=3.5V,Qavail=ΔU×C=3.5×0.22=0.77μC。则过剩电荷ΔQ=0.77-0.25=0.52μC, ΔUc=ΔQ/C=0.52/0.22=2.36V,可得Uc=10+2.36=12.36V。由U=Uc及栅极输入阻抗 R===1MΩ可求出t(即ton(max)),由===1.236可求出 ton(max)=106×0.22×10-6ln1.236=46.6ms ---------4.3悬浮驱动的最窄导通时间ton(min) 在自举电容的充电路径上,分布电感影响了充电的速率。下管的最窄导通时间应保证自举电容能够充足够的电荷,以满足Cge所需要的电荷量再加上功率器件稳态导通时漏电流所失去的电荷量。因此从最窄导通时间ton(min)考虑,自举电容应足够小。 综上所述,在选择自举电容大小时应综合考虑,既不能太大影响窄脉冲的驱动性能,也不

液压阀的基本结构及工作原理

液压阀的基本结构主要包括阀芯、阀体和驱动阀芯在阀体内做相对运动的操纵装置。阀芯的主要形式有滑阀、锥阀和球阀;阀体上除有与阀芯配合的阀体孔或阀座孔外,还有外接油管的进、出油口和泄油口;驱动阀芯在阀体内做相对运动的装置可以是手调机构,也可以是弹簧或电磁铁,有些场合还采用液压力驱动。 在工作原理上,液压阀是利用阀芯在阀体内的相对运动来控制阀口的通断及开口的大小,以实现压力、流量和方向控制。液压阀工作时,所有阀的阀口大小、阀进、出油口间的压差以及通过阀的流量之间的关系都符合孔口流量公式(q=KA·Δp m),只是各种阀控制的参数各不相同而已。

1.1液压阀块的结构特点 按照结构和用途划分,液压阀块有条形块、小板块,盖板、夹板、阀安装底板、泵阀块、逻辑阀块、叠加阀块、专用阀块、集流排管和连接块等多种形式。实际系统中的液压阀块是由阀块体以及其上安装的各种液压阀、管接头、附件等元件组成。 (1)阀块体 阀块体是集成式液压系统的关键部件,它既是其它液压元件的承装载体,又是它们油路连通的通道体。阀块体一般都采用长方体外型,材料一般用铝或可锻铸铁。阀块体上分布有与液压阀有关的安装孔、通油孔、连接螺钉孔、定位销孔,以及公共油孔、连接孔等,为保证孔

道正确连通而不发生干涉有时还要设置工艺孔。一般一个比较简单的阀块体上至少有40-60个孔,稍微复杂一点的就有上百个,这些孔道构成一个纵横交错的孔系网络。阀块体上的孔道有光孔、阶梯孔、螺纹孔等多种形式,一般均为直孔,便于在普通钻床和数控机床上加工。有时出于特殊的连通要求设置成斜孔,但很少采用。 (2)液压阀 液压阀一般为标准件,包括各类板式阀、插装阀、叠加阀等,由连接螺钉安装在阀块体上,实现液压回路的控制功能。 (3)管接头 管接头用于外部管路与阀块的连接。各种阀和阀块体组成的液压回路,要对液压缸等执行机构进行控制,以及进油、回油、泄油等,必须与外部管路连接才能实现。 (4)其它附件 包括管道连接法兰、工艺孔堵塞、油路密封圈等附件。 1.2液压阀块的布局原则

相关主题