搜档网
当前位置:搜档网 › ANSYS 二十多种材料特性

ANSYS 二十多种材料特性

ANSYS 二十多种材料特性
ANSYS 二十多种材料特性

二十多种材料特性

Isotropic Elastic: High Carbon Steel MPMOD,1,1

MP,ex,1,210e9 ! Pa

MP,nuxy,1,.29 ! No units

MP,dens,1,7850 ! kg/m3

Orthotropic Elastic: Al203 MPMOD,1,2

MP,ex,1,307e9 ! Pa

MP,ey,1,358.1e9 ! Pa

MP,ez,1,358.1e9 ! Pa

MP,gxy,126.9e9 ! Pa

MP,gxz,126.9e9 ! Pa

MP,gyz,126.9e9 ! Pa

MP,nuxy,1,.20 ! No units

MP,nuxz,1,.20 ! No units

MP,nuyz,1,.20 ! No units

MP,dens,1,3750 ! kg/m3

Anisotropic Elastic: Cadmium MPMOD,1,3

MP,dens,3400 ! kg/m3

TB,ANEL,1

TBDATA,1,121.0e9 ! C11 (Pa) TBDATA,2,48.1e9 ! C12 (Pa) TBDATA,3,121.0e9 ! C22 (Pa) TBDATA,4,44.2e9 ! C13 (Pa) TBDATA,5,44.2e9 ! C23 (Pa) TBDATA,6,51.3e9 ! C33 (Pa) TBDATA,10,18.5 ! C44 (Pa) TBDATA,15,18.5 ! C55 (Pa) TBDATA,21,24.2 ! C66 (Pa)

Blatz-K Rubber

MPMOD,1,5

MP,gxy,1,104e7 ! Pa

Mooney-Rivlin: Rubber MPMOD,1,8

MP,dens,1,.0018 ! lb/in3

MP,nuxy,1,.499 ! No units

TB,MOONEY,1

TBDATA,1,80 ! C10 (psi)

TBDATA,2,20 ! C01 (psi)

Viscoelastic: G-11 Glass

MPMOD,1,18

MP,dens,1,2390 ! kg/m3

TB,EVISC,1

TBDATA,46,27.4e9 ! Go (Pa)

TBDATA,47,0.0 ! (Pa)

TBDATA,48,60.5e9 ! Bulk modulus (Pa)

TBDATA,61,.53 ! 1/

Bilinear Isotropic Plasticity: Nickel Alloy

MPMOD,1,6

MP,ex,1,180e9 ! Pa

MP,nuxy,1,.31 ! No units

MP,dens,1,8490 ! kg/m3

TB,BISO,1

TBDATA,1,900e6 ! Yield stress (Pa)

TBDATA,2,445e6 ! Tangent modulus (Pa)

Transversely Anisotropic Elastic Plastic: 1010 Steel

MPMOD,1,10

MP,ex,1,207e9 ! Pa

MP,nuxy,1,.29 ! No units

MP,dens,1,7845 ! kg/m3

TB,PLAW,,,,7

TBDATA,1,128.5e6 ! Yield stress (Pa)

TBDATA,2,202e5 ! Initial strain at failure

TBDATA,3,1.41 ! r-value

TBDATA,4,1 ! Yield stress vs. plastic strain curve (see EDCURVE below) Strain(1) = 0,.05,.1,.15,.2

YldStres(1)=207e6,210e6,214e6,218e6,220e6 ! yield stress EDCURVE,ADD,1,Strain (1),YldStres(1)

Rate Sensitive Powerlaw Plasticity: A356 Aluminum

MPMOD,1,17

MP,ex,1,75e9 ! Pa

MP,nuxy,1,.33 ! No units

MP,dens,1,2750 ! kg/m3

TB,PLAW,,,,4

TBDATA,1,1.002 ! k (MPa)

TBDATA,2,.7 ! m

TBDATA,3,.32 ! n

TBDATA,4,5.0 ! Initial strain rate (s-1)

Plastic Kinematic: 1018 Steel

MPMOD,1,19

MP,ex,1,200e9 ! Pa

MP,nuxy,1,.27 ! No units

MP,dens,1,7865 ! kg/m3

TB,PLAW,,,,1

TBDATA,1,310e6 ! Yield stress (Pa) TBDATA,2,763e6 ! Tangent modulus (Pa) TBDATA,4,40.0 ! C (s-1)

TBDATA,5,5.0 ! P

TBDATA,6,.75 ! Failure strain

Bilinear Kinematic Plasticity: Titanium Alloy MPMOD,1,33

MP,ex,1,100e9 ! Pa

MP,nuxy,1,.36 ! No units

MP,dens,1,4650 ! kg/m3

TB,BKIN,1

TBDATA,1,70e6 ! Yield stress (Pa)

TBDATA,2,112e6 ! Tangent modulus (Pa)

Powerlaw Plasticity: Aluminum 1100 MPMOD,1,21

MP,ex,1,69e9 ! Pa

MP,nuxy,1,.33 ! No units

MP,dens,1,2710 ! kg/m3

TB,PLAW,,,,2

TBDATA,1,0.598 ! k

TBDATA,2,0.216 ! n

TBDATA,3,6500.0 ! C (s-1)

TBDATA,4,4.0 ! P

3 Parameter Barlat Plasticity: Aluminum 5182 MPMOD,1,22

MP,ex,1,76e9 ! Pa

MP,nuxy,1,.34 ! No units

MP,dens,1,2720 ! kg/m3

TB,PLAW,,,,3

TBDATA,1,1 ! Hardening rule of 1 (yield stress) TBDATA,2,25e6 ! Tangent modulus (Pa) TBDATA,3,145e6 ! Yield stress (Pa) TBDATA,4,0.170 ! Barlat exponent, m TBDATA,5, .73 ! R00

TBDATA,6,.68 ! R45

TBDATA,7,.65 ! R90

TBDATA,8,0 ! CSID

Barlat Anisotropic Plasticity: 2008-T4 Aluminum

MPMOD,1,23

MP,ex,1,76e9 ! Pa

MP,nuxy,1,.34 ! No units

MP,dens,1,2720 ! kg/m3

TB,PLAW,,,,6

TBDATA,1,1.04 ! k (MPa)

TBDATA,2,.65 ! Initial strain at failure

TBDATA,3,.254 ! n

TBDATA,4,11 ! Barlat exponent, m

TBDATA,5, 1.017 ! a

TBDATA,6,1.023 ! b

TBDATA,7,.9761 ! c

TBDATA,8,.9861 ! f

TBDATA,9,.9861 ! g

TBDATA,9,.8875 ! h

Strain Rate Dependent Plasticity: 4140 Steel

MPMOD,1,24

MP,ex,1,209e9 ! Pa

MP,nuxy,1,.29 ! No units

MP,dens,1,7850 ! kg/m3

TB,PLAW,,,,5

TBDATA,1,1 ! LCID yield stress vs. strain rate (see first EDCURVE command below) TBDATA,2,22e5 ! Tangent modulus (Pa)

TBDATA,3,2 ! LCID Elastic modulus vs. strain rate (see second EDCURVE command below) StrnRate(1) = 0,.08,.16,.4,1.0

YldStres(1) = 207e6,250e6,275e6,290e6,300e6

ElasMod(1) = 209e9,211e9,212e9,215e9,218e9

EDCURVE,ADD,1,StrnRate(1),YldStres(1)

EDCURVE,ADD,2,StrnRate(1),ElasMod(1)

Piecewise Linear Plasticity: High Carbon Steel

MPMOD,1,28

MP,ex,1,207e9 ! Pa

MP,nuxy,1,.30 ! No units

MP,dens,1,7830 ! kg/m3

TB,PLAW,,,,8

TBDATA,1,207e6 ! Yield stress (Pa)

TBDATA,3,.75 ! Failure strain

TBDATA,4,40.0 ! C (strain rate parameter)

TBDATA,5,5.0 ! P (strain rate parameter)

TBDATA,6,1 ! LCID for true stress vs. true strain (see EDCURVE below) TruStran(1)=0,.08,.16,.4,.75

TruStres(1)=207e6,250e6,275e6,290e6,3000e6

EDCURVE,ADD,1,TruStran (1),TruStres(1)

Johnson-Cook Linear Polynomial EOS: 1006 Steel

MPMOD,1,30

MP,ex,1,207e9 ! Pa

MP,nuxy,1,.30 ! No units

MP,dens,1,7850 ! kg/m3

TB,EOS,1,,,1,1

TBDATA,1,350.25e6 ! A (Pa)

TBDATA,2,275e6 ! B (Pa)

TBDATA,3,.36 ! n

TBDATA,4,.022 ! c

TBDATA,5,1.0 ! m

TBDATA,6,1400 ! Melt temperature (oC)

TBDATA,7,30 ! Room temperature (oC)

TBDATA,8,10 ! Initial strain rate

TBDATA,9,4500 ! Specific heat

TBDATA,10,240e6 ! Failure stress

TBDATA,11,-.8 ! Failure value D1

TBDATA,12,2.1 ! Failure value D2

TBDATA,13,-.5 ! Failure value D3

TBDATA,14,.0002 ! Failure value D4

TBDATA,15,.61 ! Failure value D5

TBDATA,17,20e5 ! EOS linear polynomial term

Johnson-Cook Gruneisen EOS: OFHC Copper

MPMOD,1,31

MP,ex,1,138e9 ! Pa

MP,nuxy,1,.35 ! No units

MP,dens,1,8330 ! kg/m3

TB,EOS,1,,,1,2

TBDATA,1,89.63e6 ! A (Pa)

TBDATA,2,291.64e6 ! B (Pa)

TBDATA,3,.31 ! n

TBDATA,4,.025 ! c

TBDATA,5,1.09 ! m

TBDATA,6,1200 ! Melt temperature (oC)

TBDATA,7,30 ! Room temperature (oC)

TBDATA,8,10 ! Initial strain rate

TBDATA,9,4400 ! Specific heat

TBDATA,10,240e6 ! Failure stress

TBDATA,11,-.54 ! Failure value D1

TBDATA,12,4.89 ! Failure value D2 TBDATA,13,-3.03 ! Failure value D3 TBDATA,14,.014 ! Failure value D4 TBDATA,15,1.12 ! Failure value D5 TBDATA,16,.394 ! C

TBDATA,17,1.489 ! S1

TBDATA,18,0.0 ! S2

TBDATA,19,0.0 ! S3

TBDATA,20,2.02 ! 0

TBDATA,21,.47 ! A

Null Material Linear Polynomial EOS: Brass MPMOD,1,32

MP,ex,1,200e9 ! Pa

MP,nuxy,1,.3 ! No units

MP,dens,1,7500 ! kg/m3

TB,EOS,1,,,2,1

TBDATA,1,0.0 ! Pressure cut-off

TBDATA,3,1.5 ! Relative volume in tension TBDATA,4,.7 ! Relative volume in compression TBDATA,17,16e5 ! EOS linear polynomial

Null Material Gruneisen EOS: Aluminum MPMOD,1,29

MP,ex,1,100e9 ! Pa

MP,nuxy,1,.34 ! No units

MP,dens,1,2500 ! kg/m3

TB,EOS,1,,,2,2

TBDATA,1,-10000 ! Pressure cut-off (Pa) TBDATA,3,2.0 ! Relative volume in tension TBDATA,4,.5 ! Relative volume in compression TBDATA,16,.5386 ! C

TBDATA,17,1.339 ! S1

TBDATA,18,0.0 ! S2

TBDATA,19,0.0 ! S3

TBDATA,20,1.97 ! 0

TBDATA,21,.48 ! A

Rigid Material: Steel

MPMOD,1,7

MP,ex,1,207e9 ! Pa

MP,nuxy,1,.3 ! No units

MP,dens,1,7580 ! kg/m3

EDMP,rigid,1,7,7

Cable Material: Steel

MPMOD,1,27

MP,ex,1,207e9 ! Pa

MP,nuxy,1,.3 ! No units

EDMP,cable,1,1 ! See EDCURVE below

EngStran(1) = .02,.04,.06,.08

EngStres(1) = 207e6,210e6,215e6,220e6

EDCURVE,ADD,1,EngStran (1),EngStres(1)

Transversely Anisotropic FLD: Stainless Steel

MPMOD,1,54

MP,ex,1,30e6 ! Pa

MP,nuxy,1,.29 ! No units

MP,dens,1,.00285 ! kg/m3

TB,PLAW,1,,,10

TBDATA,1,20e3 ! Initial yield stress (Pa)

TBDATA,2,5000 ! Tangent modulus (Pa)

TBDATA,3,.2 ! Hardening parameter

TBDATA,5,1 ! Maximum yield stress curve (see EDCURVE below) mnstrn(1) = -30,-10,0,20,40,50

mjstrn(1) = 80,40,29,39,45,44

EDCURVE,ADD,1,mnstrn (1),mjstrn(1)

Steinberg Gruneisen EOS: Stainless Steel

MPMOD,1,52

MP,gxy,1,11.16e6 ! (Pa)

MP,dens,1,.285 ! (kg/m3)

TB,EOS,1,,,5,2

TBDATA,1,49.3e3 ! Initial yield stress (Pa)

TBDATA,2,43 ! Hardening coefficient

TBDATA,3,.35 ! n

TBDATA,5,.36e6 ! Maximum yield stress (Pa)

TBDATA,10,32 ! Atomic weight

TBDATA,11,2380 ! Absolute melting temp.

TBDATA,15,2 ! Spall type

TBDATA,16,1 ! Cold compression energy flag

TBDATA,17,-50 ! Min. temp. parameter

TBDATA,18,200 ! Max. temp. parameter

TBDATA,29,.457 ! C

TBDATA,30,1.49 ! S1

TBDATA,31,0.0 ! S2

TBDATA,32,0.0 ! S3

TBDATA,33,1.93 ! 0

TBDATA,34,1.4 ! A

Midas截面特性计算器的使用详细说明

midas允许用户自定义截面形式,不管那种形式的截面,都要先绘制然后在section的generate 里面用plane形式或line形式进行截面特性的计算。 绘制截面前事先根据单位和截面大小设置grid size大小,auto fit选择开,这点非常重要,有时需要关闭坐标系和线宽的显示。 方式一 1. point绘制, 在point设定起始点,让后tanslate里面的copy,connect by line这样可以实现线的绘制. 2. 绘制完成截面后使用而且必须使用section的generate里面用plane形式完成截面网格划分和特性的计算. 注意:此时线宽width是无效的 方式二: 1.curve方式绘制 在line里绘制,用线宽选项生成有宽度的线条,程序根据这个宽度计算截面特性,对于薄壁截面几乎可以准确计算其抗扭刚度,所以不是薄壁界面的闭合截面,应尽量不使用line 方式计算其特性. 2. 绘制完成截面后使用而且必须使用section的generate里面用plane形式完成截面网格划分和特性的计算. 注意:此时线宽width是必须的.使用镜像功能时,可能要指定其对齐方式,此时需要用到model,curve里面的change width。 curve方式绘制的截面必须闭合,(model---curve--closed loop--regester),选择要闭合的线条(此时可能要关闭线宽显示以方便选中该线)之后才能进行section--line方式生成截面。 注: 1. SPC可以在一个窗口里任意的建立很多个截面,使用钝化、和激活可以分别绘制不同截面,并分别进行分析,且可根据名称、位置、截面特性值等可以很方便地对截面进行搜索及排列。 2. AutoCAD DXF 文件 在SPC里建立的截面形状可以输出DXF格式的文件。在截面的形心位置会自动生成点。 3. 欲将AutoCAD DXF 文件正常的导入(Import),DXF的截面必须是在x-y平面内,也就是说所有点的坐标在z轴上的值必须都为0。另外在导入前,需在Tool/Setting里调整单位体系,使其与在AutoCAD里所使用的单位一致。 4. 联合截面只能以Plane截面形式表示, curve生成截面后用section的plane方式,此时不选择立即计算特性选项,生成联合截面. 用model--->curve--->assign domain materia指定每一部分域材料弹性模量和泊松比,然后计算联合截面的特性。 mesh size部分和ansys有相似之处,一般可由滑块调节,如果划分不好,可以手动,一般size 为5即可,太小会导致错误。

ANSYS中单元类型介绍和单元的选择原则

ANSYS中单元类型介绍和单元的选择原则 ANSYS中单元类型的选择 初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。 类型的选择,跟你要解决的问题本身密切相关。在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。 1.该选杆单元(Link)还是梁单元(Beam)? 这个比较容易理解。杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。 梁单元则既可以承受拉,压,还可以承受弯矩。如果你的结构中要承受弯矩,肯定不能选杆单元。 对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于: 1)、beam3是2D的梁单元,只能解决2维的问题。 2)、beam4是3D的梁单元,可以解决3维的空间梁问题。 3)、beam188是3D梁单元,可以根据需要自定义梁的截面形状。(常规是6个自由度,比如是用于桁架等框架结构,如鸟巢,飞机场的架构) 2.对于薄壁结构,是选实体单元还是壳单元? 对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。 实际工程中常用的shell单元有shell63,shell93。shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,

ansys各种结构单元介绍

一、单元分类 MP - ANSYS/Multiphysics DY - ANSYS/LS-Dyna3D FL - ANSYS/Flotran ME - ANSYS/Mechanical PR - ANSYS/Professional PP - ANSYS/PrepPost ST - ANSYS/Structural EM - ANSYS/Emag 3D ED - ANSYS/ED

LINK1 —二维杆单元 单元描述: LINK1单元有着广泛的工程应用,比如:桁架、连杆、弹簧等等。这种二维杆单元是杆轴方向的拉压单元,每个节点有2个自由度:沿节点坐标系x、y方向的平动。就象在铰接结构中的表现一样,本单元不承受弯矩。单元的详细特性请参考理论手册。三维杆单元的描述参见LINK8。 下图是本单元的示意图。 PLANE2 —二维6节点三角形结构实体单元 单元描述: PLANE2是与8节点PLANE82单元对应的6节点三角形单元。单元的位移特性是二次曲线,适合于模拟不规则的网格(比如由不同的CAD/CAM系统得到的网格)。 本单元由六个节点定义,每个节点有2个自由度:沿节点坐标系x、y 方向的平动。本单元可作为平面单元(平面应力或平面应变)或者作为轴对称单元使用。本单元还具有塑性、蠕变、膨胀、应力刚化、大变形、大应变等功能。详细特性请参考理论手册。 下图是本单元的示意图。

BEAM3二维弹性梁单元 BEAM3是一个轴向拉压和弯曲单元,每个节点有3个自由度:沿节点坐标系x、y方向的平动和绕z轴的转动。单元的详细特性请参考理论手册。其它的二维梁单元是塑性梁单元(BEAM23)和变截面非对称梁单元(BEAM54)。 下图是本单元的示意图。 BEAM4三维弹性梁单元 单元描述: BEAM4是一个轴向拉压、扭转和弯曲单元,每个节点有6个自由度:沿节点坐标系的x、y、z方向的平动和绕x、y、z轴的转动。本单元具有应力刚化和大变形功能。在大变形(有限转动)分析中允许使用一致切线刚度矩阵选项。本单元的详细特性请参考理论手册。变截面非对称弹性梁单元的描述参见BEAM44,三维塑性梁单元的描述参见BEAM24。

ANSYS建模两种方法和给材料添加材料属性

ansys 实体建模详细介绍3--体 用于描述三维实体,仅当需要体单元的时候才需要定义体。生成体时自动生成低级别的对象,如点、线、面等。 Main menu / preprocessor / modeling / create / volumes 展开体对象创建菜单 1.1 Arbitrary :定义任意形状 a) Through kps :通过关键点定义体 b) By areas :通过边界面生成体 1.2 Block :定义长方体 a) By 2 corners & Z :通过一角点和长、宽、高来确定长方体。 b) By center,corner,Z:用外接圆在工作平面定义长方体的底,用Z方向的坐标定义长方体的厚度。 c) By dimensions :通过指定长方体对角线两端点的坐标来定义长方体。 1.3 Cylinder :定义圆柱体 a)solid cylinder :圆柱体,通过圆柱底面的圆心和半径,以及圆柱的长度定义圆柱 b)hollow cylinder(空心圆柱体):通过空心圆柱体底面圆心和内外半径,以及长度定义空心圆柱 c)partial cylinder(部分圆柱):通过空心圆柱底面圆心和内外半径,以及圆柱开始和结束角度,长度来定义任意弧长空心圆柱。 d)by end pts&Z :通过圆柱体底面直径两端的坐标和圆柱长度来定义圆柱 e)By dimensions:通过圆柱内外半径、圆柱两底面Z坐标、起始和结束角度来定义圆柱。 1.4 Prism :棱柱体 a) Triangular:通过定义正三棱柱底面外接圆圆心与棱柱高度来定义正三棱柱 b) Square、pentagonal、hexagonal、septagonal、octagonal分别为正四棱柱、五棱柱、六棱柱、七棱柱、八棱柱。其体操作与正三棱柱生产方法类似。 c) By inscribed rad:通过正棱柱底面内切圆和棱柱高来定义正棱柱。 d) By circumscr rad:通过正棱柱底面外接圆和棱柱高来定义正棱柱。 e) By side length:通过正棱柱底面边长、边数、棱柱高来定义正棱柱。 f) By vertices :通过棱柱底面多边形定点和棱柱高来定义不规则的棱柱。 1.5 Sphere :球体 a) Solid sphere(实心球体):通过球心和半径来定义实心球体。 b) Hollow sphere(空心球体):通过球心和内外球半径来定义空心球体。 c) By end points:通过球直径定义球体。 d) By dimensions:通过球的尺寸定义球体。 1.6 Cone :圆锥体 a) By picking:通过在工作平面上定位圆锥体底部圆的圆心和半径以及圆锥体的高来定义圆锥体。 b) By dimensions:通过圆锥体尺寸定义圆锥体 1.7 Torus :圆环体

最新ansys单元类型汇总

a n s y s单元类型

在结构分析中,“结构”一般指结构分析的力学模型。 按几何特征和单元种类,结构可分为杆系结构、板 壳结构和实体结构。 杆系结构:其杆件特征是一个方向的尺度远大于其它两个方向的尺度,例如长度远大于截面高度和宽度的 梁。单元类型有杆、梁和管单元(一般称为线单元)板壳结构:是一个方向的尺度远小于其它两个方向尺度的结构,如平板结构和壳结构。单元为壳单元 实体结构:则是指三个方向的尺度约为同量级的结构,例如挡土墙、堤坝、基础等。单元为3D实体单元和2D 实体单元 杆系结构: ①当构件15>L/h≥4时,采用考虑剪切变形的梁单元。 ②当构件L/h≥15时, 采用不考虑剪切变形的梁单元。 ③BEAM18X系列可不必考虑的上限,但在使用时必须 达到一定程度的网格密度。 对于薄壁杆件结构,由于剪切变形影响很大,所以必 须考虑剪切变形的影响。 板壳结构: 当L/h<5~8时为厚板,应采用实体单元。 当5~8<L/h<80~100时为薄板,选2D体元或壳元 当L/h>80~100时,采用薄膜单元。 对于壳类结构,一般R/h≥20为薄壳结构,可选择薄 壳单元,否则选择中厚壳单元。 对于既非梁亦非板壳结构,可选择3D实体单元。 杆单元适用于模拟桁架、缆索、链杆、弹簧等构件。该类单元只承受杆轴向的拉压,不承受弯矩,节点只有 平动自由度。不同的单元具有弹性、塑性、蠕变、膨胀、 大转动、大挠度(也称大变形)、大应变(也称有限应变)、应力刚化(也称几何刚度、初始应力刚度等)等 功能 ⑴杆单元均为均质直杆,面积和长度不能为零(LINK11 无面积参数)。仅承受杆端荷载,温度沿杆元长线性变 化。杆元中的应力相同,可考虑初应变。 ⑵LINK10属非线性单元,需迭代求解。LINK11可作用线 荷载;仅有集中质量方式。 ⑶LINK180无实常数型初应变,但可输入初应力文件, 可考虑附加质量;大变形分析时,横截面面积可以是变 化的,即可为轴向伸长的函数或刚性的。 ⑷通常用LINK1和LINK8模拟桁架结构,如屋架、网架、 网壳、桁架桥、桅杆、塔架等结构,以及吊桥的吊杆、 拱桥的系杆等构件,必须注意线性静力分析时,结构

第七章 ansys梁单元分析和横截面形状

第七章梁分析和横截面形状 7.1 梁分析概况 梁单元用于生成三维结构的一维理想化数学模型。与实体单元和壳单元相比,梁单元求解效率更高。 本章的内容只适用于 BEAM44(三维变截面单元)和另两种有限元应变单元 BEAM188 和 BEAM189 (三维梁单元)。这些梁单元与ANSYS 的其他梁单元相比,提供了更健壮的非线性分析能力,显著地改进了截面数据定义功能和可视化特性。参阅《ANSYS Elements Reference》中关于 BEAM44、BEAM188 和 BEAM189 单元的描述。 注意--如要对 BEAM44 单元采用本章论述的横截面定义功能,必须清楚不能应用这些功能来定义斜削的截面。此外,本章所述的后处理可视化功能不能应用于 BEAM44 单元。 注意--用户定义横截面功能可能不能应用CDWRITE命令。 7.2 何为横截面 横截面定义为垂直于梁轴的截面的形状。ANSYS提供有11种常用的梁横截面库,并支持用户自定义截面形状。当定义了一个横截面时,ANSYS 建立一个9节点的数值模型来确定梁的截面特性(Iyy,Izz 等),并求解泊松方程得到扭转特征。 图7-1是一个标准的Z型横截面,示出了截面的质心和剪切中心,以及计算得到的横截面特性。 图7-1 Z型横截面图

横截面和用户自定义截面网格将存储在横截面库文件中。如果用BEAM44、BEAM188、BEAM189 单元来模拟线实体,可用LATT命令将梁横截面属性赋予线实体。 7.3 如何生成横截面 用下列步骤生成横截面: 1、定义截面并与代表相应截面形状的截面号(Dection ID)关联。 2、定义截面的几何特性数值。 ANSYS 提供了表7-1 所列出的命令,可以完成横截面生成、查看、列表和操作横截面库的功能。 表7-1 ANSYS 横截面命令 命令GUI菜单路径目的 PRSSOL MainMenu>GeneralPostproc>ListRes ults> SectionSolutionUtilityMenu> List>Results>SectionSolution 打印梁截面结果 (BEAM44不支持) SECTYP E MainMenu>Preprocessor>Sections>- Beam-CommonSectnsMainMenu> Preprocessor>Sections>-Beam-Cust omSectns>ReadSectMesh 用SEID关联截面子类 型 SECDAT A MainMenu>Preprocessor>Sections>- Beam-CommonSectns 定义截面几何数据 SECOFF SET MainMenu>Preprocessor>Sections>- Beam-CommonSectnsMainMenu> Preprocessor>Sections>-Beam-Cust omSectns>ReadSectMesh 定义梁截面的截面偏 离 SECCON TROLS MainMenu>Preprocessor>Sections>- Beam-Add/Edit 覆盖程序计算的属性 值 SECNUM MainMenu>Preprocessor>-Attribute s-Define>DefaultAttribsMainMenu> Preprocessor>-Modeling-Create>El ements>ElemAttributes 识别关联到一个单元 的SECID

ANSYS单元特性之命令流算例

EX1.1 (LINK1) (1)进入后处理模块,显示节点位移和杆件内力 MID_NODE = NODE (A/2,-B,0 )! 寻找距离位置(A/2,-B,0)最近的点,存入MID_NODE *GET,DISP,NODE,MID_NODE,U,Y!提取节点MID_NODE上的位移UY,若果已知要求的节点,直接提取即可。 LEFT_EL = ENEARN (MID_NODE)! 需找距离节点MID_NODE最近的单元,存入LEFT_EL ETABLE,STRS,LS,1! 用轴向应力SAXL的编号“LS,1”定义单元表STRS *GET,STRSS,ELEM,LEFT_EL,ETAB,STRS! 从单元表STRS中提取LEFT_EL单元的应力结果,存入变量STRSS。注意:提取的轴向应力结果具体到指定的单元。 (2)申明数组,提取计算结果,并比较计算误差 *DIM,LABEL,CHAR,2!定义2个元素的字符型数组LABEL *DIM,V ALUE,,2,3!定义2*3的数值型数组V ALUE LABEL(1) = 'STRS_MPa','DEF_mm' ! 给字符型数组的第1个元素赋值 *VFILL,V ALUE(1,1),DATA,1,-0.05498 ! 给其他数值型数组中的元素赋值 *VFILL,V ALUE(1,2),DATA,STRSS,DISP *VFILL,V ALUE(1,3),DATA,ABS(STRSS /1 ) ,ABS( DISP /0.05498 ) /OUT,EX1_1,out !将输出内容重定向到文件EX1_1.out /COM ! 以注释形式输出内容 /COM,------------------- EX1.1 RESULTS COMPARISON --------------------- /COM, /COM, | TARGET | ANSYS | RATIO /COM, *VWRITE,LABEL(1),V ALUE(1,1),V ALUE(1,2),V ALUE(1,3) (1X,A8,' ',F10.3,' ',F10.3,' ',1F5.3) /COM,---------------------------------------------------------------- /OUT ! 结束数据重定向,关闭输出文件 FINISH *LIST,EX1_1,out ! 列表显示文件EX1_1.out的内容 EX1.2 (LINK1) /PNUM, NODE,1!打开节点编号显示 /NUMBER, 2!只显示编号,不使用色彩 列表显示节点位移和单元的计算结果 PRDISP! 列表显示节点位移值计算结果 ETABLE, MFORX,SMISC,1!以杆单元的轴力为内容,建立单元表MFORX ETABLE, SAXL, LS, 1 !以杆的轴向应力为内容,建立单元表SAXL ETABLE, EPELAXL, LEPEL, 1! 以杆单元的轴向应变为内容,建立单元表EPELAXL PRETAB! 显示单元表中的计算结果

ansys实常数

定义实常数 实常数用于描述那些用单元几何形状不能完全确定的几何参数。壳单元通过四边形和三角形定义了壳的表面,实常数用来定义其厚度;而梁单元的实常数相对复杂。主要包括截面积、截面对zz轴、yy轴的惯性短、沿z轴、y轴的厚度(最大应力发生在离轴最远点)等。 对于简单截面梁,其几何特性这里不再赘述。但对于实体结构复杂的复合梁,其截面特性的定义具有技巧。在有限元建模过程中,为简化结构,减少单元数量,通常将其简化为单根梁。如下图所示结构,经过受力分析可知,主要承力构件为4根立柱,其余斜杆只是起辅助支撑作用,因此其截面应简化如右图所示。但是,经过计算会发现,计算结果数据中位移和应力明显偏小,与实际情况有出入。经过分析不难发现,造成这种情况的原因是截面的选择只考虑了截面积和惯性矩,忽视了梁单元的质量,从而造成重力变形减小。解决这个问题,不能简单增大截面积,那样会使计算应力不可信。我们可以采取2种方法: (1)沿梁轴线均匀加载一个沿重力方向的线性载荷; (2)将梁单元材料密度乘一个系数。 上述2种方法均切实可行,也得到了工程实践的验证。 单元的材料特性定义 绝大多数单元类型都需要材料特性。根据应用的不同,材料特性可以是线性或非线性。与单元类型、实常数一样,ANSYS软件对每一组材料特性有一个材料参考号。但值得注意的是,材料库中的特性值是为了方便而提供的,这些数值是材料的典型值,供用户进行基本分析及一般应用场合,特殊情况用户应自己输人数据。 线性材料特性可以是常数或温度相关的,各向同性或正交异性的,对各向同性材料只需指定其一个方向的特性。非线性材料特性通常是表格数据,如塑性数据、磁场数据、蛹变数据、膨胀数据、超弹性材料数据等。材料特性主要由材料本身物理特性决定,在此不再赞述。

ansys workbench 常见材料设置

Ansys workbench常用材料属性 1. isotropic secant coefficient of expansion 各向同性的热胀系数 需要输入基准温度、热膨胀系数。 基准温度,默认22度热膨胀系数 2. orthotropic secant coefficient of expansion 各向异性的热胀系数 需要输入基准温度、三个方向的热膨胀系数。 3. isotropic instantaneous coefficient of expansion 各向同性的热胀系数(随温度变化)需要输入基准温度、热膨胀系数。(随温度变化)

4. orthotropic instantaneous coefficient of expansion 各向异性的热胀系数(随温度变化)需要输入基准温度、三个方向的热膨胀系数。(随温度变化) 5. 阻尼系数、质量阻尼、刚度阻尼

6.Isotropic elasticity 各项同性的线弹性材料 需要输入弹性模量与泊松比 7.orthotropic elasticity 各项异性的线弹性材料 需要输入各方向的弹性模量与泊松比 8 Bilinear isotropic/kinematic hardening 双线性材料(非线性材料)需要输入屈服强度及切向模量,需要配合isotropic elasticity使用。

9.multilinear isotropic/kinematic hardening 多线性材料(非线性材料,应力应变曲线)需要配合isotropic elasticity使用,输入应力应变曲线。

ANSYS中单元类型介绍和单元的选择原则

ANSYS中单元类型介绍和单元的选择原则ANSYS中单元类型的选择 初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。 类型的选择,跟你要解决的问题本身密切相关。在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。 1.该选杆单元(Link)还是梁单元(Beam)? 这个比较容易理解。杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。 梁单元则既可以承受拉,压,还可以承受弯矩。如果你的结构中要承受弯矩,肯定不能选杆单元。 对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于: 1)、beam3是2D的梁单元,只能解决2维的问题。 2)、beam4是3D的梁单元,可以解决3维的空间梁问题。 3)、beam188是3D梁单元,可以根据需要自定义梁的截面形状。(常规是6个自由度,比如是用于桁架等框架结构,如鸟巢,飞机场的架构) 2.对于薄壁结构,是选实体单元还是壳单元? 对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。 实际工程中常用的shell单元有shell63,shell93。shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。对于一般的问题,选用shell63就足够了。

曲线梁桥ANSYS计算命令流

!****************************************************************************** *********************** ! case2:无偏载(以跨径布置30m+40m+30m,桥宽8.5为例) ! 上海城市设计研究院L1+L2+L3预应力混凝土曲线连续梁桥结构分析 ! 两端为抗扭支座,中间支座为点铰支座 ! 每次要记得修改横隔梁的参数,即Mass21单元的实常数 !****************************************************************************** *********************** FINI /CLE /prep7 !DEFINE THE ELEMENTARY PARAMETERS *DIM,L,ARRAY,10 *DIM,H,ARRAY,10 *DIM,CITA,ARRAY,10 !*****以下参数均可修改*************** N=3 !跨数 L(1)=30 !第一跨 L(2)=40 !第二跨 L(3)=30 !第三跨 e1=1.25 !1#墩处内支座到中心线的间距 e2=1.25 !1#墩处外支座到中心线的间距 e3=0 !2#墩处的支座偏心距(正的表示外偏) e4=0 !3#墩处的支座偏心距 e5=1.25 !4#墩处内支座到中心线的间距 e6=1.25 !4#墩处外支座到中心线的间距 R=10000 !曲线桥半径 H0=1.0 !梁底到截面形心处的高度 M=16146 !mass21单元质量 J=27246.38 !mass21单元转动惯量 !************************************* LL=0.0 *DO,I,1,N LL=LL+L(I) CITA(I)=L(I)/R/3.1415925*180 *ENDDO CITA0=LL/R/3.1415925*180

ANSYS命令流解释大全

A N S Y S命令流解释大 全 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

一、定义材料号及特性 mp,lab, mat, co, c1,…….c4 lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens) ex: 弹性模量 nuxy: 小泊松比 alpx: 热膨胀系数 reft: 参考温度 reft: 参考温度 prxy: 主泊松比 gxy: 剪切模量 mu: 摩擦系数 dens: 质量密度 mat: 材料编号(缺省为当前材料号) c 材料特性值,或材料之特性,温度曲线中的常数项 c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数二、定义DP材料: 首先要定义EX和泊松比:MP,EX,MAT,…… MP,NUXY,MAT,…… 定义DP材料单元表(这里不考虑温度):TB,DP,MAT 进入单元表并编辑添加单元表:TBDATA,1,C TBDATA,2,ψ TBDATA,3,…… 如定义:EX=1E8,NUXY=,C=27,ψ=45的命令如下:

MP,EX,1,1E8 MP,NUXY,1, TB,DP,1 TBDATA,1,27 TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,deg 三、单元生死载荷步 !第一个载荷步 TIME,... !设定时间值(静力分析选项) NLGEOM,ON !打开大位移效果 NROPT,FULL !设定牛顿-拉夫森选项 ESTIF,... !设定非缺省缩减因子(可选) ESEL,... !选择在本载荷步中将不激活的单元 EKILL,... !不激活选择的单元 ESEL,S,LIVE !选择所有活动单元 NSLE,S !选择所有活动结点 NSEL,INVE !选择所有非活动结点(不与活动单 元相连的结点) D,ALL,ALL,0 !约束所有不活动的结点自由度(可 选) NSEL,ALL !选择所有结点 ESEL,ALL !选择所有单元

(仅供参考)ANSYS软件中常用的单元类型

ANSYS软件中常用的单元类型 一、单元 (1)link(杆)系列: link1(2D)和link8(3D)用来模拟珩架,注意一根杆划一个单元。 link10用来模拟拉索,注意要加初应变,一根索可多分单元。 link180是link10的加强版,一般用来模拟拉索。 (2)beam(梁)系列: beam3(2D)和beam4(3D)是经典欧拉梁单元,用来模拟框架中的梁柱,画弯据图用etab 读入smisc数据然后用plls命令。注意:虽然一根梁只划一个单元在单元两端也能得到正确的弯矩图,但是要得到和结构力学书上的弯据图差不多的结果还需多分几段。该单元需要手工在实常数中输入Iyy和Izz,注意方向。 beam44适合模拟薄壁的钢结构构件或者变截面的构件,可用"/eshape,1"显示单元形状。 beam188和beam189号称超级梁单元,基于铁木辛科梁理论,有诸多优点:考虑剪切变形的影响,截面可设置多种材料,可用"/eshape,1"显示形状,截面惯性矩不用自己计算而只需输入截面特征,可以考虑扭转效应,可以变截面(8.0以后),可以方便地把两个单元连接处变成铰接(8.0以后,用ENDRELEASE命令)。缺点是:8.0版本之前beam188用的是一次形函数,其精度远低于beam4等单元,一根梁必须多分几个单元。8.0之后可设置“KEYOPT(3)=2”变成二次形函数,解决了这个问题。可见188单元已经很完善,建议使用。beam189与beam188的区别是有3个结点,8.0版之前比beam188精度高,但因此建模较麻烦,8.0版之后已无优势。 (3)shell(板壳)系列 shell41一般用来模拟膜。 shell63可针对一般的板壳,注意仅限弹性分析。它的塑性版本是shell43。加强版是shell181(注意18*系列单元都是ansys后开发的单元,考虑了以前单元的优点和缺陷,因而更完善),优点是:能实现shell41、shell63、shell43...的所有功能并比它们做的更好,偏置中点很方便(比如模拟梁板结构时常要把板中面望上偏置),可以分层,等等。 (4)solid(体)系列 土木中常用的就solid45、solid46、solid65、solid95等。 solid45就不用多说了,solid95是它的带中结点版本。

ansys关于薄板、厚板、壳单元的特性区别要点

一、板壳弯曲理论简介 1. 板壳分类 按板面内特征尺寸与厚度之比划分: 当L/h < (5~8) 时为厚板,应采用实体单元。 当(5~8) < L/h < (80~100) 时为薄板,可选2D 实体或壳单元 当L/h > (80~100) 时为薄膜,可采用薄膜单元。 壳类结构按曲率半径与壳厚度之比划分: 当R/h >= 20 时为薄壳结构,可选择薄壳单元。 当6 < R/h < 20 时为中厚壳结构,选择中厚壳单元。 当R/h <= 6 时为厚壳结构。 上述各式中h 为板壳厚度,L 为平板面内特征尺度,R 为壳体中面的曲率半径。2. 薄板理论的基本假定 薄板所受外力有如下三种情况: ①外力为作用于中面内的面内荷载。弹性力学平面应力问题。 ②外力为垂直于中面的侧向荷载。薄板弯曲问题。 ③面内荷载与侧向荷载共同作用。 所谓薄板理论即板的厚度远小于中面的最小尺寸,而挠度又远小于板厚的情况,也称为古典薄板理论。 薄板通常采用Kirchhoff-Love 基本假定: ①平行于板中面的各层互不挤压,即σz = 0。 ②直法线假定:该假定忽略了剪应力和所引起的剪切变形,且认为板弯曲时沿板厚方向各点的挠度相等。 ③中面内各点都无平行于中面的位移。 薄板小挠度理论在板的边界附近、开孔板、复合材料板等情况中,其结果不够精确。 3. 中厚板理论的基本假定 考虑横向剪切变形的板理论,一般称为中厚板理论或Reissner(瑞斯纳)理论。该理论不再采用直法线假定,而是采用直线假定,同时板内各点的挠度不等于中面挠度。 自Reissner 提出考虑横向剪切变形的平板弯曲理论后,又出现了许多精化理论。但大致分为两类,如Mindlin(明特林)等人的理论和Власов(符拉索夫)等人的理论。 厚板理论是平板弯曲的精确理论,即从3D 弹性力学出发研究弹性曲面的精确表达式。 4. 薄壳理论的基本假定 也称为Kirchhoff-Love(克希霍夫-勒夫)假定: ①薄壳变形前与中曲面垂直的直线,变形后仍然位于已变形中曲面的垂直线上,且其长度保持不变。

ansys材料定义

混凝土 $ *MAT_ELASTIC_PLASTIC_HYDRO $1,2.3,0.13,3.2E-4,,-5.E-5,1. $,,3 2,2.4,0.126,2.5E-4,,-5.E-5,0.4 ,,3. *EOS_GRUNEISEN 2,0.2500,1.0,0.,0.,1.9,0.0 0.,1. $ $国际单位 *MAT_ELASTIC_PLASTIC_HYDRO_SPALL $1,2.3,0.13,3.2E-4,,-5.E-5,1. $,,3 2,2.4E+03,0.126E+11,2.5E+7,,-5.E+6,0.4E+11 ,,3. *EOS_GRUNEISEN 2,0.2500E+4,1.0,0.,0.,1.9,0.0 0.,1. $ 混凝土参数 密度 2.4g/cm剪切模量 12.6Cpa屈服应力 25Mpa抗拉强度 5Mpa失效应变 0.4 GRUNEISEN状态方程参数 C=2500m/s S1=1.0 S2=0 S3=0 ω=1.9 A=0 E0=0 V0=1 sdyyds混凝土随动硬化模型 *mat_plastic_kinematic 3 2100 3.00e+10 0.18 2.0e+07 0 0 0.002 *mat_plastic_kinematic 2 2600 4.75e+10 0.18 6.0e+07 4.75e+09 0 99.3 1.94 0.004

取自龚自明防护工程混凝土靶体尺寸及边界约束对侵彻深度影响的数值模拟*MAT_JOHNSON_HOLMQUIST_CONCRETE 4,2.4,0.123,0.79,1.60,0.007,0.61,2.4E-4 2.7e-5,1.0e-6,0.01,7.0,8.0e-5,5.6e-4,1.05e-2,0.1 0.04,1.0,0.174,0.388,0.298 取自龚自明防护工程 BLU-109B侵彻厚混凝土靶体的计算与分析 *MAT_JOHNSON_HOLMQUIST_CONCRETE 4,2.4,0.132,0.79,1.60,0.007,0.61,3.22E-4 3.15e-5,1.0e-6,0.01,7.0,1.08e-4,7.18e-4,1.05e-2,0.1 0.04,1.0,0.174,0.388,0.298 取自蔡清裕国防科技大学学报模拟刚性动能弹丸侵彻混凝土的FE-SPH方法*MAT_JOHNSON_HOLMQUIST_CONCRETE mid RO G A B C N FC 1, 2.2,0.164,0.75,1.65,0.007,0.61,4.4e-4 T EPS0 EFMIN SFMAX PC UC PL UL 2.4e-5,1.0e-6,0.01,11.7,1.36e-4,5.8e-4,1.05e-2,0.1 D1 D2 K1 K2 K3 FS 0.03,1.0,0.174,0.388,0.298 取自凤国爆炸与冲击《大应变。高应变率及高压下混凝土的计算模型〉 *MAT_JOHNSON_HOLMQUIST_CONCRETE 2,2.44,0.1486,0.79,1.60,0.007,0.61,4.8E-4 4.0e-5,1.0e-6,0.01,7.0,1.6E-4,0.001,8.0E-3,0.1 0.04,1.0,0.85,-1.71,2.08 取自宋顺成爆炸与冲击弹丸侵彻混凝土的SPH算法 *MAT_JOHNSON_HOLMQUIST_CONCRETE 1,2.4,0.1486,0.79,1.60,0.007,0.61,1.4e-4 4.0e-5,1.0e-6,0.01,7.0,1.6e-4,0.001,8.0E-3,0.1 0.04,1.0,0.174,0.388,0.298 *Mat_johnson_holmquist_concrete

ANSYS中单元的选择

在结构分析中,“结构”一般指结构分析的力学模型。按几何特征和单元种类,结构可分为杆系结构、板壳结构和实体结构。杆系结构:其杆件特征是一个方向的尺度远大于其它两个方向的尺度,例如长度远大于截面高度和宽度的梁。元类型有杆、梁和管单元(一般单称为线单元)。板壳结构:是一个方向的尺度远小于其它两个方向尺度的结构,如平板结构和壳结构。单元为壳单元。实体结构:则是指三个方向的尺度约为同量级的结构,例如挡土墙、堤坝、基础等。单元为3D实体单元和2D 实体单元。 杆系结构: ①当构件15>L/h≥4时,采用考虑剪切变形的梁单元。(h为杆系的高度) ②当构件L/h≥15时, 采用不考虑剪切变形的梁单元。 ③BEAM18X系列可不必考虑L/h的值,但在使用时必须达到一定程度的网格密度。对于薄壁杆件结构,由于剪切变形影响很大,所以必须考虑剪切变形的影响。 板壳结构: 当L/h<5~8时为厚板,应采用实体单元。(h为板壳的厚度)当5~880~100时,采用薄膜单元。

对于壳类结构,一般R/h≥20为薄壳结构,可选择薄壳单元,否则选择中厚壳单元。 对于既非梁亦非板壳结构,可选择3D实体单元。 杆单元适用于模拟桁架、缆索、链杆、弹簧等构件。该类单元只承受杆轴向的拉压,不承受弯矩,节点只有平动自由度。不同的单元具有弹性、塑性、蠕变、膨胀、大转动、大挠度(也称大变形)、大应变(也称有限应变)、应刚化(也称几何刚度、初始应力刚度等)等功能 ⑴杆单元均为均质直杆,面积和长度不能为零(LINK11无面积参数)。仅承受杆端荷载,温度沿杆元长线性变化。杆元中的应力相同,可考虑初应变。 ⑵LINK10属非线性单元,需迭代求解。LINK11可作用线荷载;仅有集中质量方式。 ⑶LINK180无实常数型初应变,但可输入初应力文件,可考虑附加质量;大变形分析时,横截面面积可以是变化的,即可为轴向伸长的函数或刚性的。 ⑷通常用LINK1和LINK8模拟桁架结构,如屋架、网架、网壳、桁架桥、桅杆、塔架等结构,以及吊桥的吊杆、拱桥的系杆等构件,必须注意线性静力分析时,结构不能是几何可

ansys初学者最好了解的基础知识

1 做了布尔运算后要重画图形(删除实体)时:需拾取Utility Menu>Plot>Replot 2 标点的输入是在英文状态下,―,‖。 3 线段中点的建立:Modling>Creat>Keypoints>Fill between kps 4 还不会环形阵列。 5 所谓杆系结构指的是长度远远大于其他方向尺寸(10:1)的构件组成的结构,如连续梁,桁架,钢架等。 6 静力学分析的结果包括结构的位移,应变,应力和反作用力等,一般是使用POST1处理(普通后处理器)和查看这些结果。 7 干系结构的静力学分析—平面桁架的建模,用NODE(节点),ELEMENT(元素)创建。复杂体积的建模一般用KPS(关键点),LINE(Straight line—直线),再生成面,再生成体。 8 如果输入的数据单位是国际单位制单位,则输出的数据单位也是国际制单位。 9 创建正六边形:Creat>Areas>Polygon>Hexagon.指定中心和半径。 10 由面沿线挤出体:Modling>Operate>Extrude>Areas>Along Lines. 11 Ansys中没有Undo命令.需及时保存数据库文件. 12 Def Shape Only:只显示变形图.Def + Undeformed:显示未变形的图.Def + Udef egde: 显示未变形的图形的边界. 13 用等高线显示:Plot Results>Contour Plot>Nodal Solu. 14 模态分析用于分析结构的振动特性,即确定结构的固有频率和振型,它也是谐响应分析,瞬态动力学分析以及谱分析等其他动力学分析的基础。 15 Ansys的模态分析是线型分析。任何非线型分析,例如,塑性,接触单元等,即使被定 义了也将被忽略。 16 平面桁架:Beam(2D elastic 3) 厚壁圆筒:Solid(8 node 13)>Options(K3—Plane strain) 17 一般材料的弹性模量(EX):2e11.泊松比(PRXY):0.3.密度:7800 18 做完静力学分析后,再做模态分析时,要再次求解,同时预应力效果也应该打开(PSTRES,on).可以在命令行中输入:pstres,on 也可以用菜单路径: Solution>Analysis Type>Analysis Options. 19 弹簧阻尼器单元:Combination-Spring damper 14. 20 接触问题属于状态非线性问题,是一种高度非线性行为,需要较多的计算资源。接触问题有两个基本类型:刚体-柔体的接触,柔体-柔体的接触(许多金属成型的接触问题)。在刚体-柔体的接触问题中,有的接触面与它接触的变形体相比,有较大的刚度而被当做刚体。而柔体-柔体的接触,是一种更普遍的类型,此时两个接触体具有近似的刚度,都为变形体。 21 Ansys的接触方式: 1 点-点接触:过盈装配问题是用点点接触单元模拟面面接触的典型例子。 2 点-面接触:不必预先知道准确的接触位置,接触面之间也不需要保持一致的网格,并且允许有较大的变形和相对滑动。典型实例:模拟插头插入插座里。 3 面-面接触:刚性面作为目标面,柔性面作为接触面。 22 打开自动时间步长:Solution>Load Step Opts>Time Frequenc>Time And Substps. 23 屈曲分析是一种用于确定结构开始变得不稳定时的临界载荷和屈曲模态形状分析的技术。 24 打开预应力效果:Solution> Analysis Type>Analysis Options.在弹出的对话框中的 sstif pstres下拉列表框中选择Prestress ON.单击OK. 25 交叠面:Modling>Opreat>Boolearns>Overlap>Areas. 26 黏结体::Modling>Opreat>Boolearns>Glue>Volums. 27 黏结面:Modling>Opreat>Boolearns>Glue>Areas. 28 壳体有厚度:shell63(八节点),SHELL93(八节点)

相关主题