搜档网
当前位置:搜档网 › 高阶导数教案A班

高阶导数教案A班

高阶导数教案A班
高阶导数教案A班

高等数学II 教案

1.2导数的计算第3课时 精品教案

1.2导数的计算 【课题】:1.2.3导数的运算法则 【教学目标】: (1)知识与技能:掌握一个函数的和、差、积、商的求导法则并能求某些简单函数的导数;通过实例,理解复合函数的求导法则。 (2)过程与方法:利用学生已掌握的导数的定义,得出一个简单的两个函数的和的导数,从而提出问题,引入新课,通过学生的猜想,尝试探究出函数的和、差、积、商的求导法则,使学生加深对求导法则的理解. (3)情感、态度与价值观:通过学生的主动参与,师生、生生的合作交流,,提高学生的学习兴趣,激发学生的求知欲,培养探索精神. 【教学重点】:掌握函数的和、差、积、商的求导法则以及复合函数的求导法则. 【教学难点】:学生对积和商的求导法则的理解和运用以及复合函数的求导法则. 【课前准备】:课件 这种商品的价格上涨的速度大约是多少?根据上一节课的内容,我们知道,求在第)()]g x f ='')()]f x g =

u. x .求下列函数的导数: ;(2)y

练习与测试: A .基础题 1.函数2 (1)y x x =+的导数是( ) (A)2 1x + (B)2 3x (C)2 31x + (D)2 3x x + 答案:C 2.函数1()2 x x y e e -=+的导数是( ) (A)1()2x x e e -- (B)1()2 x x e e -+ (C)x x e e -- (D)x x e e -+ 答案:A 3.若2 ' ()(2),(2)20,f x x a f a =+==且则 . 答案:1 4.某汽车启动阶段的路程函数为3 2 ()2(1)10s t t t =+-,则汽车在1t =秒时的瞬时速度为 . 答案:4 5.求下列函数的导数: (1)3 cos y x x =- (2)( )()2325y x x =+- (3)sin x y x = (4)()8 57y x =- 答案:(1)' 2 3sin y x x =+ (2) ' 2 9302y x x =-+ (3) ' 2 cos sin x x x y x -= (4) '7 40(57)y x =- B .难题 1.已知曲线4 3 2 :3294C y x x x =--+ (1)求曲线C 在点()1,4-的切线方程; (2)对于(1)中的切线与曲线C 是否还有其他公共点?若有,求出公共点;若没有,说明理由.

高中导数及其应用教案

教育教师备课手册 教师 姓名 学生姓名填写时间2012.2.1 学科数学年级高三上课时间 10:00-12:00 课时 计划 2小时 教学目标 教学内容中考复习三角形 个性化学习问题解决基础知识回顾,典型例题分析 教学重点、难点 教学过程 导数及其运用 知识网络 第1讲导数的概念及运算 ★知识梳理★ 1.用定义求函数的导数的步骤. (1)求函数的改变量Δy;(2)求平均变化率 x y ? ? .(3)取极限,得导数f'(x0)= lim → ?x x y ? ? . 2.导数的几何意义和物理意义 几何意义:曲线f(x)在某一点(x0,y0)处的导数是过点(x0,y0)的切线的 物理意义:若物体运动方程是s=s(t),在点P(i0,s(t0))处导数的意义是t=t0处 的 解析:斜率.;瞬时速度. 导数的概念 基本初等函数的导数公式 导数 函数的单调性研究 函数的极值与最值研究 导数的定义 导数的物理及几何意义 导数的运算 导数的四则运算法则及复合函数的导数 导数的应用 最优化问题 计算定积分 定积分与微积分 的基本定理 定积分的应用

3. 几种常见函数的导数 'c =0(c 为常数);()n x '=1 n nx -(R n ∈); '(sin )x = ;'(cos )x = ; (ln )x '= 1x ; (log )a x '=1 log a e x ; '()x e =x e ;'()x a =ln x a a . 解析:cos ;sin ;x x - 4.运算法则 ①求导数的四则运算法则: ' ()u v ±=' ' u v ±;' ()uv = ;' u v ?? = ??? (0)v ≠. 解析:' ' u v uv +; '' 2 u v uv v - ②复合函数的求导法则:'(())x f x ?=''()()f u x ?或x u x u y y '''?= ★ 重 难 点 突 破 ★ 1.重点:理解导数的概念与运算法则,熟练掌握常见函数的计算和曲线的切线方程的求法 2.难点:切线方程的求法及复合函数求导 3.重难点:借助于计算公式先算平均增长率,再利用函数的性质解决有关的问题. (1)平均变化率的实际含义是改变量与自变量的改变量的比。 问题1.比较函数()2x f x =与()3x g x =,当[1,2]x ∈时,平均增长率的大小. 点拨:解题规律技巧妙法总结: 计算函数的平均增长率的基本步骤是 (1)计算自变量的改变量21x x x ?=- (2)计算对应函数值的改变量22()()y f x f x ?=- (3)计算平均增长率: 2121 ()()f x f x y x x x -?=?- 对于()2x f x =,2111223,21y x ?-==?-又对于()3x g x =,212 233821 y x ?-==?- 故当[1,2]x ∈时, ()g x 的平均增长率大于()f x 的平均增长率. (2)求复合函数的导数要坚持“将求导进行到底”的原则, 问题2. 已知2 )2cos 1(x y +=,则='y . 点拨:复合函数求导数计算不熟练,其x 2与x 系数不一样也是一个复合的过程,有的同学忽视了,导致

北师大版计算导数教案

计算导数(2) 一、教学目标:掌握初等函数的求导公式,并能熟练运用。 二、教学重难点:用定义推导常见函数的导数公式. 三、教学方法:探析归纳,讲练结合 四、课时安排:1课时 四、教学过程 (一)、复习 1、导数的定义; 2、导数的几何意义; 3、导函数的定义; 4、求函数的导数的流程图。 (1)求函数的改变量)()(x f x x f y -?+=? (2)求平均变化率 x x f x x f x y ?-?+=??) ()( (3)取极限,得导数/ y =()f x '=x y x ??→?0lim 本节课我们将学习常见函数的导数。首先我们来求下面几个函数的导数。 (1)、y=x (2)、y=x 2 (3)、y=x 3 问题:1-=x y ,2-=x y ,3-=x y 呢? 问题:从对上面几个幂函数求导,我们能发现有什么规律吗? (二)、新课探析 1、基本初等函数的求导公式: ⑴ ()kx b k '+= (k,b 为常数) ⑵ 0)(='C (C 为常数) ⑶ ()1x '= ⑷ 2 ()2x x '= ⑸ 32 ()3x x '= ⑹ 2 11()x x '=- ⑺ '= 由⑶~⑹你能发现什么规律? ⑻ 1 ()x x α αα-'= (α为常数) ⑼ ()ln (01)x x a a a a a '=>≠, ⑽ a a 11(log x)log e (01)x xlna a a '= =>≠,且

⑾ x x e )(e =' ⑿ x 1 )(lnx = ' ⒀ cosx )(sinx =' ⒁ sinx )(cosx -=' 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。 2、例题探析 例1、求下列函数导数。 (1)5-=x y (2)x y 4= (3)x x x y = (4)x y 3log = (5)y=sin( 2π+x) (6) y=sin 3 π (7)y=cos(2π-x) (8)y=(1)f ' 例2、已知点P 在函数y=cosx 上,(0≤x ≤2π),在P 处的切线斜率大于0,求点P 的横坐标的取值范围。 例3、若直线y x b =-+为函数1 y x = 图象的切线,求b 的值和切点坐标. 变式1、求曲线y=x 2 在点(1,1)处的切线方程. 总结切线问题:找切点 求导数 得斜率 变式2、求曲线y=x 2 过点(0,-1)的切线方程 变式3、求曲线y=x 3过点(1,1)的切线方程 变式4、已知直线1y x =-,点P 为y=x 2 上任意一点,求P 在什么位置时到直线距离最短. (三)、课堂小结:(1)基本初等函数公式的求导公式(2)公式的应用 导数公式表 (四)、课堂练习:假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与

导数的应用(习题课)优秀教学设计

§1.3 导数的应用(习题课)教学设计 【教材分析】 本节课是人教A版选修2-2第一章第三节内容,前面已经学习了利用导数求解函数的单调性、极值、最值、零点等问题,本节课是在前节内容的基础上,进一步学习如何利用导数研究不等式恒成立问题。这个问题属于高考压轴题的范畴,本节主要从“套路”和“模型”的角度出发,体现导数的工具性特征。 【学情分析】 学生已经学习了导数的基础知识,知道了一些解题的基本思路,但如何利用导数来解决一些较难的问题,完成对压轴题的“破冰”,学生还是无能为力,这是本节课的困难,需要进行不断的引导与强化。 【教学目标】 1、知识与技能: (1)能利用导数研究函数的单调性、极值、最值、零点等问题及不等式恒成立问题; (2)能够利用导数作图,反之可以利用图像来研究函数的性质; 2、过程与方法: 导数作为一种工具,是高中数学诸多知识的一个交汇点。通过教师思路上的引导,小组合作探究,能让学生从诸多条件中抽丝剥茧,发现解决方法,从而提高学生发现问题、解决问题的能力,深化对问题的认识,在过程中获得思维能力的提高。 3、情感与价值观: 培养学生主动学习,合作交流的意识,互相启发,相互促进,充分发挥各自的主观能动性,激发学生的学习兴趣,完善学习成果。 【教学重点】 利用“套路”和“模型”来研究导数研究不等式恒成立问题。 【教学难点】 (1)基本模型的熟悉与应用;(2)问题如何转化成“模型”来处理。 【课时设计】 两个课时,其中一个0.5个课时完成课堂练习,1.5个课时完成后面内容。 【教学策略】 采用练、评、讲的教学方法,利用几何画板、多媒体投影仪辅助教学。

【教学过程】 一、课堂练习(提前印发给学生) 问题 设计意图师生活动1、解决导数在函数中的应用问题的一般步骤:构造函数 求 求导 求 →→→ 求极值、最值 求问题的解 →→回顾定义,明确方法。 学生自主完成。 2、曲线在处的切线方程为 .x x y ln 2=e x =3、函数的单调递减区间为 . 1ln -=x x y 4、函数的极小值点为( ) x x e y x 2-=A. 1 B. C. D.2-e )2,1(-e ) ,1(e 5、函数的零点个数为( )x xe y =A. 0 B. 1 C. 2 D. 3 6、若不等式恒成立,则实数的取值范围为0ln >-x ax a ( ) A. B. C. D.??????+∞,1e [)+∞,e ??? ??+∞,1e ??? ? ? ∞-e 1,左边5个题均是导数应用中的基础题型, 练习的目的如下:1、巩固求解切线、单调区间、极值点、 零点的一般步骤;2、熟练掌握简单复合函数的求导,并能根据导函数画出原函数图像,深化对导数的理解。 学生自主完成,并 总结求解步骤,注意事项。 二、列表比较常考函数的图像与性质:(课堂完成) 教师:通过以上5个题目我们发现,含对数指数的复合函数出现的频率很高,事实上在高考中考查的也很频繁,下面我们对这几类函数进行单独研究,后期就会有意想不到收获。 学生:独立完成下表,小组内部讨论结论是否正确。 设计意图:针对高考的热点问题进行练习,先追根溯源,找到构成问题的“基本元素”,再由简到繁,引导学生体会解题思路,有意识去提炼总结,提高学生解题能力的同时增强自信心。原函数 x xe y =x e y x = x e x y = x x y ln =x x y ln = x x y ln = 定义域

2020版高中数学高二选修1-1教案及练习归纳整理70知识讲解导数的综合应用题基础

《导数及其应用》全章复习与巩固 编稿:李 霞 审稿: 张林娟 【学习目标】 1. 会利用导数解决曲线的切线的问题. 2. 会利用导数解决函数的单调性等有关问题. 3. 会利用导数解决函数的极值、最值等有关问题. 4. 能通过运用导数这一工具解决生活中的一些优化问题:例如利润最大、用料最省、效率最高等问题 【要点梳理】 要点一:有关切线问题 直线与曲线相切,我们要抓住三点: ①切点在切线上; ②切点在曲线上; ③切线斜率等于曲线在切点处的导数值. 要点诠释: 通过以上三点可以看出,抓住切点是解决此类题的关键,有切点直接求,无切点则设切点,布列方程组. 要点二:有关函数单调性的问题 设函数()y f x =在区间(a,b)内可导, (1)如果恒有'()0f x >,则函数()f x 在(a,b)内为增函数; (2)如果恒有'()0f x <,则函数()f x 在(a,b)内为减函数; (3)如果恒有'()0f x =,则函数()f x 在(a,b)内为常数函数. 要点诠释: (1)若函数()f x 在区间(a,b)内单调递增,则'()0f x ≥,若函数()f x 在(a,b)内单调递减,则 '()0f x ≤. (2)'()0f x ≥或'()0f x ≤恒成立,求参数值的范围的方法: ① 分离参数法:()m g x ≥或()m g x ≤. ② 若不能隔离参数,就是求含参函数(,)f x m 的最小值min (,)f x m ,使min (,)0f x m ≥.

(或是求含参函数(,)f x m 的最大值max (,)f x m ,使max (,)0f x m ≤) 要点三:函数极值、最值的问题 函数极值的问题 (1)确定函数的定义域; (2)求导数)(x f '; (3)求方程0)(='x f 的根; (4)检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点诠释: ①先求出定义域 ②一般都要列表:然后看在每个根附近导数符号的变化:若由正变负,则该点为极大值点; 若由负变正,则该点为极小值点. 注意:无定义的点不用在表中列出 ③根据表格给出结论:注意一定指出在哪取得极值. 函数最值的问题 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内所有使0)(='x f 的的点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数()y f x =在闭区间],[b a 上的最小值. 要点诠释: ①求函数的最值时,不需要对导数为0的点讨论其是极大还是极小值,只需将导数为0的点和端点的函数值进行比较即可. ②若)(x f 在开区间),(b a 内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值.

12 导数的概念及运算

【2021高考数学理科苏教版课时精品练】 第九节 导数的概念及运算 1.(2011年苏南四市联考)曲线y =2x -ln x 在点(1,2)处的切线方程是________. 解析:由y ′=(2x -ln x )′=2-1x ,当x =1可得k =2-11 =1,即得在点(1,2)处的切线方程是y -2=x -1,即x -y +1=0. 答案:x -y +1=0 2.设直线y =-3x +b 是曲线y =x 3-3x 2的一条切线,则实数b 的值是________. 解析:∵y =x 3-3x 2,∴y ′=3x 2-6x ,令y ′=3x 2-6x =-3可解得x =1,即得切点的坐标为(1,-2),且该切点在切线y =-3x +b 上,于是可得b =3x +y =3×1+(-2)=1. 答案:1 3.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于________. 解析:f ′(x )=4ax 3+2bx 为奇函数, ∴f ′(-1)=-f ′(1)=-2. 答案:-2 4.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为________. 解析:∵y =x 3-10x +3,∴y ′=3x 2-10.由题意,设切点P 的横坐标为x 0,且x 0<0, 即3x 20-10=2,∴x 20=4,∴x 0=-2,∴y 0=x 30-10x 0+3=15.故点P 的坐标为(-2,15). 答案:(-2,15) 5.(2011年苏南四市调研)在平面直角坐标系xOy 中,点P (0,1)在曲线C :y =x 3-x 2-ax +b (a 、b 为实数)上,已知曲线C 在点P 处的切线方程为y =2x +1,则a +b =________. 解析:把(0,1)代入曲线方程可得b =1,又y ′=3x 2-2x -a ,得-a =2,即有a =-2,∴a +b =-1. 答案:-1 6.已知曲线f (x )=x sin x +1在点(π2,π2 +1)处的切线与直线ax -y +1=0互相垂直,则实数a =________. 解析:因为f ′(x )=sin x +x cos x ,得f ′(π2)=sin π2+π2·cos π2=1,所以曲线在点(π2,π2 +1)处切线的斜率为1,据切线与直线ax -y +1=0垂直,得1×a =-1,求出a =-1. 答案:-1 7.(2011年苏北四校联考)设函数f (x )=13 ax 3+bx (a ≠0),若f (3)=3f ′(x 0),则x 0=________. 解析:由已知得,f ′(x )=ax 2+b ,又f (3)=3f ′(x 0),则有9a +3b =3ax 20+3b ,所以x 20= 3,则x 0=±3. 答案:±3 8.已知函数f (x )=x 3-3x 2+a ,若f (x +1)是奇函数,则曲线y =f (x )在点(0,a )处的切线方程是________. 解析:∵f (x +1)是奇函数,∴f (x )的图象关于点(1,0)成中心对称,∴a =2,而f ′(0)=0,所以切线是过(0,2)点且平行于x 轴的直线,方程为y =2. 答案:y =2 9.求曲线f (x )=x 3-3x 2+2x 过原点的切线方程.

导数及其应用 复习课 教案

导数及其应用复习课教案 【教材分析】 导数及其应用内容分为三部分:一是导数的概念;二是导数的运算;三是导数的应用. 先让学生通过大量实例,经历有平均变化率到瞬时变化率刻画现实问题的过程,理解导数的概念及其几何意义,然后通过定义求几个简单函数的导数,从而得出导数公式及四则运算法则,最后利用导数的知识解决实际问题. 该部分共分三节,第三节则是“导数的应用”,内容包括利用导数求切线方程;判断函数的单调性;利用导数研究函数的最值、极值;导数的实际应用. 在“利用导数求切线方程”中介绍了利用导函数的几何意义求切线的斜率,进而求解切线方程;在“利用导数判断函数的单调性”中介绍了利用求导的方法来判断函数的单调性;在“利用导数研究函数的极值”中介绍了利用函数的导数求极值和最值的方法;在“导数的实际应用”中主要介绍了利用导数知识解决实际生活中的最优化问题. 【考纲解读】 导数的概念及其运算是导数应用的基础,这是高考重点考查的内容.考查方式以客观题为主,主要考查: 1.导数的几何意义,导数的四则运算及利用导数研究函数的单调性,求函数的极值、最值等. 2.与直线、圆锥曲线、分式、含参数的一元二次不等式等结合在一起考查,题型多样,属中高档题目. 【教学目标】 1.能熟练应用导数的几何意义求解切线方程 2.掌握利用导数知识研究函数的单调性及解决一些恒成立问题 【教学重点】 理解并掌握利用导数知识研究函数的单调性及解决一些恒成立问题 【教学难点】 原函数和导函数的图像“互译”,解决一些恒成立问题 【学法】 本节课是在学习了导数的概念、运算、导数的应用的基础上来进行小结复习,学生已经了解了一些解题的基本思想和方法,应用导数的基本知识来解决实际问题对学生来说应该不会很陌生,所以对本节的学习应让学生能够多参与、多思考,培养他们的分析解决问题和解决问题的能力,提高应用所学知识的能力。 在课堂教学中,应该把以教师为中心转向以学生为中心,把学生自身的发展置于教育的中心位置,为学生创设宽容的课堂气氛,帮助学生确定适当的学习目标和达到目标的最佳途径,指导学生形成良好的学习习惯、掌握学习策略和发展原认知能力,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探究的方式学习。【教法】 数学是一门培养人的思维、发展人的思维的重要学科,本节课的内容是导数的应用的复习课,所以应让学生多参与,让其自主探究分析问题、解决问题,尝试归纳总结,然后由老

最新2.12导数的应用(一)汇总

2.12导数的应用(一)

第十二节导数的应用(Ⅰ) [备考方向要明了] [归纳·知识整合] 1.函数的单调性与导数

[探究] 1.若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0吗?f′(x)>0是否是f(x)在(a,b)内单调递增的充要条件? 提示:函数f(x)在(a,b)内单调递增,则f′(x)≥0, f′(x)>0是f(x)在(a,b)内单调递增的充分不必要条件. 2.函数的极值与导数 (1)函数的极小值: 若函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,且f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则a点叫做函数的极小值点,f(a)叫做函数的极小值. (2)函数的极大值: 若函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,且f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则b点叫做函数的极大值点,f(b)叫做函数的极大值,极大值和极小值统称为极值. [探究] 2.导数值为0的点一定是函数的极值点吗?“导数为0”是函数在该点取得极值的什么条件? 提示:不一定.可导函数的极值点导数为零,但导数为零的点未必是极值点;如函数f(x)=x3,在x=0处,有f′(0)=0,但x=0不是函数f(x)=x3的极值点;其为函数在该点取得极值的必要而不充分条件. 3.函数的最值与导数 (1)函数f(x)在[a,b]上有最值的条件: 一般地,如果在区间[a,b]上,函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.

高阶偏导数(教案)

高阶偏导数(教案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高阶偏导数 韩桂玲 教学目标: 1.掌握二元函数的二阶偏导数及高阶偏导数的定义 2.会求二元函数的二阶偏导数 3..理解二阶连续混合偏导数相等的定理证明 教学重点: 1.掌握二元函数的二阶偏导数及高阶偏导数的定义 2.会恰当的用定义法和公式法求二元函数的二阶及高阶偏导数 教学难点: 二阶连续混合偏导数相等的定理证明 教学方法: 讲授法 教学过程: 引入:若二元函数),(y x f z =在区域D 存在x 与y 的一阶偏导数,对D y x ∈?),( x y x f y x x f y x f x z x x ?-?+='=??→?),(),(lim ),(0 (把y 看作常数) y y x f y y x f y x f y z y y ?-?+='=??→?),(),(lim ),(0 (把x 看作常数) 1.二阶偏导数定义 若二元函数),(y x f z =在区域D 存在x 与y 的(一阶)偏导数),(y x f x z x '=??与),(y x f y z y '=??则在D 内它们都是x 与y 的二元函数。若它们关于x 与y 的偏导数存在,即 ),()(22y x f x z x z x xx ''=??=????x y x f y x x f x x x ?'-?+'=→?),(),(lim 0 (把y 看作常数) 定义法表出 ),()(2y x f y x z x z y xy ''=???=????y y x f y y x f x x y ?'-?+'=→?),(),(lim 0 (把x 看作常数) 定义法表出 ),()(2y x f x y z y z x yx ''=???=????x y x f y x x f y y x ?'-?+'=→?),(),(lim 0(把y 看作常数) 定义法表出 ),()(22y x f y z y z y yy ''=??=????y y x f y y x f y y y ?'-?+'=→?),(),(lim 0(把x 看作常数) 定义法表出

高中数学导数及其应用电子教案

高中数学导数及其应用一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。

三、知识要点 (一)导数 1、导数的概念 (1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可 正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果 时,有极限,则说函数在点处可导,并把这个极限叫做在点 处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间() 内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间() 内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数 是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量;

②求平均变化率; ③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时, 记 ,则有即在点处连续。 (Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。 反例:在点处连续,但在点处无导数。

导数的计算(教)新课教案

导数的计算 一、考点热点回顾 教学目标: 1.使学生应用由定义求导数的三个步骤推导四种常见函数y c =、y x =、2 y x =、1 y x =的导数公式; 2.掌握并能运用这四个公式正确求函数的导数. 教学重点:四种常见函数y c =、y x =、2 y x =、1 y x = 的导数公式; 教学难点:四种常见函数y c =、y x =、2 y x =、1y x =的导数公式. 几个常见函数的导数 探究1.函数()y f x c ==的导数 根据导数定义,因为 ()()0y f x x f x c c x x x ?+?--===??? 所以00 lim lim 00x x y y ?→?→?'=== 0y '=表示函数y c =图像(图3.2-1)上每一点处的切线的斜率都为0.若y c =表示路程关于时间 的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态. 探究2.函数()y f x x ==的导数 因为 ()()1y f x x f x x x x x ?+?-+?-===?所以00lim lim11x x y y x ?→?→?'=== 1y '=表示函数y x =图像(图3.2-2)上每一点处的切线的斜率都为1.若y x =表示路程关于时间 的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速运动.

探究3.函数2 ()y f x x ==的导数 因为22()()()y f x x f x x x x x x x ?+?-+?-==???222 2()2x x x x x x x x +?+?-==+?? 所以00 lim lim(2)2x x y y x x x x ?→?→?'==+?=? 2y x '=表示函数2y x =图像(图3.2-3)上点(,)x y 处的切线的斜率都为2x ,说明随着x 的变化, 切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2 y x =减少得越来越慢;当0x >时,随着x 的增加,函数2 y x =增加得越来越快.若 2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度 为2x . 探究4.函数1 ()y f x x == 的导数 因为11 ()()y f x x f x x x x x x x - ?+?-+?== ???2() 1()x x x x x x x x x x -+?==-+??+?? 所以220011 lim lim()x x y y x ?→?→? '==-=-? 探究5.函数()y f x == 的导数 因为 ()()y f x x f x x x x ?+?-== ?? ? = = 所以0lim lim x x y y x ?→?→?'===?

12导数的计算练习题(可编辑修改word版)

x x x x 一、知识自测:基本初等函数的导数公式及导数的运算法则 一、知识自测: 基本初等函数的导数公式及导数的运算法则 1、几个常用函数的导数: (1)f(x)=C,则f’(x)= (4)f(x)= 1 ,则f’(x)= x 2、基本初等函数的导数公式:(2)f(x)=x,则f’(x)= (5)f(x)= ,则f’(x)= (3)f(x)= x2,则f’(x)= 1、几个常用函数的导数: (1)f(x)=C,则f’(x)= (4)f(x)= 1 ,则f’(x)= x 2、基本初等函数的导数公式: (2)f(x)=x,则f’(x)= (5)f(x)= ,则f’(x)= (3)f(x)= x2,则f’(x)= (1)f(x)=C (C 为常数),则f’(x)=(3)f(x)=sinx,则f’(x)= (5)f(x)= a x,则f’(x)= (7)f(x)= log a x ,则f’(x)= 3、导数的运算法则:(2)f(x)= x a(a Q) ,则f’(x)= (4)f(x)=cosx,则f’(x)= (6)f(x)= e x ,则f’(x)= (8)f(x)= ln x ,则f’(x)= (1)f(x)=C (C 为常数),则f’(x)= (3)f(x)=sinx,则f’(x)= (5)f(x)= a x,则f’(x)= (7)f(x)= log a x ,则f’(x)= 3、导数的运算法则: (2)f(x)= x a (a Q) ,则f’(x)= (4)f(x)=cosx,则f’(x)= (6)f(x)= e x,则f’(x)= (8)f(x)= ln x ,则f’(x)= 已知f ( x), g( x) 的导数存在,则:(1)[f(x)g(x)]已知f ( x), g( x) 的导数存在,则:(1)[f(x)g(x)] (2)[ f ( x) g( x)](3)[ f ( x) ] g( x) (2)[ f ( x) g( x)](3)[ f ( x) ] g( x) 二、典型例题: (一)利用求导公式和运算法则求导数二、典型例题: (一)利用求导公式和运算法则求导数 1、y 5 4 x3 2、y 3 x2x sin x 3、y e x ln x 4、y ln x x 1 2x1、y 5 4 x32、y 3 x2x sin x3、y e x ln x 4、y ln x x 1 2 x 5、y ( x 1)( x 2)( x 3) 6、y ( 1)( 1 1)7、y ( 2)2sin x cos x 2 2 5、y ( x 1)( x 2)( x 3) 6、y ( 1)( 1 1)7、y ( 2)2sin x cos x 2 2 x x x x

高阶偏导数(教案)

高阶偏导数 韩桂玲 教学目标: 1.掌握二元函数的二阶偏导数及高阶偏导数的定义 2.会求二元函数的二阶偏导数 3..理解二阶连续混合偏导数相等的定理证明 教学重点: 1.掌握二元函数的二阶偏导数及高阶偏导数的定义 2.会恰当的用定义法和公式法求二元函数的二阶及高阶偏导数 教学难点: 二阶连续混合偏导数相等的定理证明 教学方法: 讲授法 教学过程: 引入:若二元函数),(y x f z =在区域D 存在x 与y 的一阶偏导数,对D y x ∈?),( x y x f y x x f y x f x z x x ?-?+='=??→?),(),(lim ),(0 (把y 看作常数) y y x f y y x f y x f y z y y ?-?+='=??→?),(),(lim ),(0 (把x 看作常数) 1.二阶偏导数定义 若二元函数),(y x f z =在区域D 存在x 与y 的(一阶)偏导数),(y x f x z x '=??与),(y x f y z y '=??则在D 内它们都是x 与y 的二元函数。若它们关于x 与y 的偏导数存在,即 ),()(22y x f x z x z x xx ''=??=????x y x f y x x f x x x ?'-?+'=→?),(),(lim 0 (把y 看作常数) 定义法表出 ),()(2y x f y x z x z y xy ''=???=????y y x f y y x f x x y ?'-?+'=→?),(),(lim 0 (把x 看作常数) 定义法表出 ),()(2y x f x y z y z x yx ''=???=????x y x f y x x f y y x ?'-?+'=→?),(),(lim 0(把y 看作常数) 定义法表出 ),()(22y x f y z y z y yy ''=??=????y y x f y y x f y y y ?'-?+'=→?),(),(lim 0(把x 看作常数) 定义法表出 则称它们是二元函数),(y x f z =的二阶偏导数,其中第二、三个二阶偏导数称为混合偏导数。 2.二元函数),(y x f z =的n 阶偏导数:二元函数),(y x f z =的1-n 阶偏导函数的偏导数 例如符号k k n n y x z ???-或),()(y x f n y x k k n -表示),(y x f z =的n 阶偏导数(先对x 求k n -阶偏导数,再对y 求k 阶偏导数) 3.高阶偏导数:二阶及二阶以上的偏导数统称为高阶偏导数

高中数学第一章导数及其应用1.1.1平均变化率教案

§1.1.1平均变化率 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. (一)、探究新知,揭示概念 教学过程设计 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. (二)、探究新知,揭示概念 实例一:气温的变化问题 现有南京市某年3月18日-4月20日每天气温最高温度统计图: (注:3月18日 为第一天) 1、你从图中获得了哪些信息? 2 、在“4月18日到20日”,该地市民普遍感觉“气温骤增”,而在“3月18日到4月18日”却没有这

样的感觉,这是什么原因呢? 3、 怎样从数学的角度描述“气温变化的快慢程度”呢? 师生讨论,教师板书总结: 分析:这一问题中,存在两个变量“时间”和“气温”, 当时间从1到32,气温从3.5o C 增加到18.6o C ,气温平均变化 当时间从32到34,气温从18.6o C 增加到33.4o C ,气温平均变化 因为7.4>0.5, 所以,从32日到34日,气温变化的更快一些。 【教师过渡】:“ 18.6 3.5 0.5321 -≈- 表示时间从“3月18日到4月18日”时,气温的平均变化率。 提出问题:先说一说“平均”的含义,再说一说你对 “气温平均变化率”的理解。 实例二:气球的平均膨胀率问题。 【提出问题】:回忆吹气球的过程,随着气球内空气容量的增加,气球半径增长的快慢相同吗? 学生思考回答。 假设每次吹入气球内的空气容量是相等的,如何从数学的角度解释“随着气球内空气容量的增加,气球半径增长的越来越慢”这一现象呢? 思考: 1、 这一问题与“气温的变化问题”有哪些相同的地方?你打算怎样做呢? 2、如何从数学的角度解释“随着气球内空气容量的增加,气球半径增长的越来越慢”这一现象呢?先独立思考,再在小组内交流你的想法。 学生讨论,小组交流,教师巡视。 学生充分讨论后,指名不同学生上台演示交流。 【教师过渡】:“在小组交流中,同学们采用了不同的方法解决这一问题,一部分从图形的角度入手,另一部分通过计算进行具体的量化,下面我们借助Excel 的自动计算功能与插入图表功能来研究这一问题。” (1)、观察表格,你发现了什么?(教师操作,Excel 演示) 18.6 3.50.5 321 -≈-33.418.6 7.4 3432-≈-

(完整word版)导数计算(2)

(理)1.2 导数的计算 1.2.1 基本初等函数的导数公式及导数的运算法则 (文)3.2 导数的计算 3.2.1 基本初等函数的导数公式及导数的运算法则 [素养目标] 1.能利用导数的四则运算法则和复合函数的求导法则求解导函数,培养数学运算的核心素养。 2.导数的应用让学生进一步理解导数的几何意义及其应用,达成逻辑推理的核心素养。 【课前·预习案】 [问题导学] 知识点1. 导数的运算法则 【思考1】一个函数可以求其导数,那么两个函数加、减、乘、除能求导吗? 【提示】能. 〖梳理〗导数的运算法则 设两个函数f (x ),g (x )可导,则 (1)和(差)的导数 符号表示:[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)积的导数 符号表示:[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). 特别地,当g (x )=c (c 为常数)时,[cf (x )]′=cf ′(x ). (3)商的导数 符号表示:????f (x )g (x )′=f′(x )g (x )-f (x )g′(x ) g 2(x ) (g (x )≠0). (理)知识点2. 复合函数的导数 【思考2】如何求y =cos ????3x -π 4的导数. 【提示】令u =g (x )=3x -π 4 ,y =f (u )=cos u , ∴y =f (u )=f (g (x ))=cos ? ???3x -π4. 〖梳理〗复合函数的导数 复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为y x ′=y u ′· u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. [达标自评] 1.判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”: (1)和的导数就是导数的和,差的导数就是导数的差.( ) (2)积的导数就是导数的积,商的导数就是导数的商. ( ) (3)(x 2cos x )′=-2x sin x .( ) 解析:(1)正确.和、差的导数就是导数的和、差;(2)错.根据导数的运算法则知积的导数不是导数的积,商的导数也不是导数的商;(3)错. (x 2cos x )′= (x 2)′·cos x +x 2·(cos x )′=2x cos x -x 2sin x . 答案:(1)√ (2)× (3)× 2.已知函数f(x)=cos x +ln x ,则f ′(1)的值为( ) A .1-sin 1 B .1+sin 1 C .sin 1-1 D .-sin 1

2014年人教A版选修1-1教案 3.2.2 基本初等函数的导数公式及导数的运算法则

3.2.2基本初等函数的导数公式及导数的运算法则 教学目标: 1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。 教学重难点: :基本初等函数的导数公式、导数的四则运算法则 教学过程: 检查预习情况:见学案 目标展示: 见学案 合作探究: 复习1:常见函数的导数公式: (1)基本初等函数的导数公式表 (2)根据基本初等函数的导数公式,求下列函数的导数. (1)2y x =与2x y = (2)3x y =与3log y x =

2.(1 推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数) 提示:积法则,商法则, 都是前导后不导, 前不导后导, 但积法则中间是加号, 商法则中间是减号. (2)根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+ (2)sin y x x =?; (3)2(251)x y x x e =-+?; (4)4x x y = . 【点评】 ① 求导数是在定义域内实行的. ② 求较复杂的函数积、商的导数,必须细心、耐心. 典型例题 例1 假设某国家在20年期间的年均通贷膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?

解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t = 所以'10(10) 1.05ln1.050.08p =≈(元/年) 因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例 2 日常生活中的饮用水通常是经过净化的. 随着水纯净度的提高,所需净化费用不 断增加. 已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为5284()(80100)100c x x x =<<-. 求净化到下列纯净度时,所需净化费用的瞬时变化率: (1)90%; (2)98%. 解:净化费用的瞬时变化率就是净化费用函数的导数. '' ' '252845284(100)5284(100)()()100(100)x x c x x x ?--?-==-- 20(100)5284(1)(100) x x ?--?-=-25284(100)x =- (1) 因为' 25284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨. (2) 因为'2 5284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨. 函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快. 反思总结 1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数. 2.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.

相关主题