搜档网
当前位置:搜档网 › 眼图知识

眼图知识

眼图知识
眼图知识

眼图常用知识介绍

关于眼图及其测量大家已经做了较多的讨论传输指标测试大全其侧重于眼图的定义和测量光眼图分析张轩/22336著

以及色散对长距离传输后的眼图的影响

如下降时间消光比信噪比以及如何从各个方面来衡量一个眼图的优劣

现在我们公司常用的测量眼图的仪器为CSA8000

1眼图与常用指标介绍

下图为一个10G光信号的眼图右边一栏为这个光信号的一些测量值ExdB交叉点比例QF平均光

功率Rise下降时间峰值抖动

RMSJ

消光比定义为眼图中电平比电平的值传输距离又不同的要求G.957的建议

衡量器件是否符合要求除了满足建议要求之外

一般的对于FP/DFB直调激光器要求EML电吸收激光器消光比不小于10dBμ?ê??a2¢2?òa??×???1a±è

可以无限大将导致激光器的啁啾系数太大不利于长距传

输与速率的最低要求消光比大0.5~1.5dB???ùò???3??a?′ò???êy?μê?o|????1a±èì???á?

μ????ó??2úéú?òí¨μà′ú??3?±ê??óD2úéú?ó??2¢?òí¨μà′ú???ú×???±êòa?ó?à′ó???éò?

óéóú′?ê?1y3ì?Dμ????óê?2àμ???2?μ??à??óú·¢?í2àé?ò?±£?¤?óê?2àμ???2?μ?±èày?ú′ó??50ê1μ??óê?2àμ?áé???è×???ò?°?·¢?í2à??2?μ?±èày?¨òé?????ú4045

Q因子综合反映眼图的质量问题表明眼图的质量越好

光功率一般来说1???????ú2??ó1a?¥??μ??é????越高越好越高越好

如果需要准确地测量光功率

信号的上升时间下降的快慢

的变化的时间下降时间不能大于信号的周期的40如9.95G信号要求其上升

峰可以定性反映信号的抖动大小这两个测量值是越小越好如Agilint 的37718

在测量抖动的时候才能保证测量值相对准确

做为一个比较参考一般在发送侧的测量值都大于30dB

2典型的眼图介绍

接下来我们来看一些典型的较好的眼图和一些有问题的眼图

以下的为一个较好的622M的眼图眼线很细

Q因子很高

以下为不加STM-4滤波器的622M的眼图特别是上升电平有点波纹信号的高频谐波没有被虑掉

我们看到即使电平不平坦

以下为一个较好的2.5G的眼线比较细0电平都比较平滑Q因子较高

以下为较好的10G的眼图眼图比较细0电平下降沿稍粗一点消光比适中交叉点稍高可以将交叉点调低一点点

总的来说眼图质量将越差第一是抖动

抖动越难控制由于测试过程一般都要加相应的低通滤波器

622M信号的低通滤波器的带宽大约为500MHz8GHz这个频率范围的噪声却没有被10G信号的滤波器滤掉

10G信号的噪声更大一下

3有问题的眼图分析

以下为一个有问题的622M眼图我们来一一分析

眼图有非常明显的两个上升俗称双眼皮电平1

D?o?óD1y3???1a±è??μí??óD4.1dB

μ???D?o?μ?1y3??a????í??1?μ?÷á?áíò????êìa

??2?ê??¨ò?μ?òa?ó?a????í?μ?±?μ?à??£°??1ê?óDò??¨μ?óàá?μ??ò???ùà′?′?′ò???622M眼图估计是信号的滤波没有处理好

以下为2.5G 眼图存在的问题是眼图有点歪这个跟激光器的调

制特性有一定的关系

以下2.5G 眼图

注意与上一个眼图比较下降沿都较粗

均方根抖动

部门内公开

眼图常用知识介绍

以下2.5G的眼图就比较糟糕上升信号质量不好消光比也很低其原因可能是驱动器或者阻抗非常不匹配

以下一个为2.5G眼图可能两个原因引起的

第二是直调激光器的张驰振荡引起的振铃

以下为10G 眼图第一消光比太低眼图电平很粗

可能

的原因是

以下10G 眼图没有其测量数据下降沿比较粗可以看出来

部门内公开

眼图常用知识介绍

以下为10G眼图这从那里看出来呢眼图的上升电平都比较粗很不干净

以上三个眼图我们分析了导致眼图不好的三种情况抖动这三种情况如何从眼图看出来呢

12???ì1?a???êìaòa′ó±£?¤′óê???μ?????×è?1?¥??

如果眼图的上升中间那么就是抖动引起的

如合理设计锁相环

如果眼图的都比较粗一般来说是电源噪声

解决问题也是要从这几方面着手

不能以一把尺子来衡量眼图质量越难保证要求的眼图质量也好时钟输入的光模块比只有数据输入的光模块的眼图质量会更好一些EA调制方式的眼图比直接调制方式的眼图表现会好一些

4CSA8000简介与使用注意事项

4.1CSA8000简介

CSA8000为TEKTRONIX公司最新的通讯分析仪同时可以测量信号的其他一些指标消光比信噪比CSA8000为WINDOWS界面支持鼠标面板按键操作界面方便快捷拷贝CSA8000仪表包括主机以及测量模块

80C01-CR光测量模块即

带宽为20GHz2?Dèòaía?ó′¥·¢ê±?ó 2.488G信号2.488G10.66G滤波器的可以选择622M9.95G三种

输入光功率不能超过7dBm5mW建议输入光功率在0dBm左右可以以时钟恢复方式测量

9.95G信号或者以外触发方式测试10.66G??2¨?÷??óD9.95G一种

输入光功率不能超过7dBm5mW在测量过程中输出光可以直接输入给测量模块可以以时钟恢复方式

测量1.063G 2.488G滤波器的可以选择1.063G

2.488G三种

输入光功率不能超过7dBm5mW建议输入光功率在0dBm左右可以以时钟恢复方式测量9.95G?ò??ò?ía′¥·¢·?ê?2aê?10.71G信号10.66G两种

输入光功率不能超过7dBm5mW建议输入光功率在0dBm左右可以以时钟恢复方式测量9.95G?ò??ò?ía′¥·¢·?ê?2aê? 10.66G信号10.71G两种

80C06为高带宽光测量模块80C07为多速率光测量模块622M这些模块我们暂时没有这里不做更进一步的介绍

用与测量电信号眼图建议输入信号幅度为500mV左右带宽高达50G

ì?±e×¢òaμ?ê?Dèòaר??μ?×a?óí·2??üê1ó?

ó?ó?2aá?μ?D?o???í?建议输入信号幅度为500mV左右其带宽为20G80E04模块还有一个独特的功能

另外还有80E02???üêμ??μ?1|?ü2?μ¥?à?ééü

光测量模块的输入光功率不能超过允许的范围

否则可能造成测量模块的永久损坏

使用中要注意防静电特别是以外触发方式测量的时候

为了测量的数据准确可靠包括暗电流校正和温度补偿校正

首先把测量模块的光接口盖上

首先要将测量仪表打开然后对仪表进行温度补偿校正注意校正过程较长具体操作如下

 要选择选择好相应的速率的滤波器和模板

GE信号就选择GE的滤波器与模板交叉点比例等数值时候

选择滤波器操作步骤如下

选择正确的滤波器

Setup-->Mask-->选择正常的通道C8

(完整word版)SerDes知识详解

SerDes知识详解 一、SerDes的作用 1.1并行总线接口 在SerDes流行之前,芯片之间的互联通过系统同步或者源同步的并行接口传输数据,图1.1演示了系统和源同步并行接口。 随着接口频率的提高,在系统同步接口方式中,有几个因素限制了有效数据窗口宽度的继续增加。 ?时钟到达两个芯片的传播延时不相等(clock skew) ?并行数据各个bit的传播延时不相等(data skew) ?时钟的传播延时和数据的传播延时不一致(skew between data and clock) 虽然可以通过在目的芯片(chip #2)内用PLL补偿时钟延时差(clock skew),但是PVT变化时,时钟延时的变化量和数据延时的变化量是不一样的。这又进一步恶化了数据窗口。 源同步接口方式中,发送侧Tx把时钟伴随数据一起发送出去, 限制了clock skew对有效数据窗口的危害。通常在发送侧芯片内部,源同步接口把时钟信号和数据信号作一样的处理,

也就是让它和数据信号经过相同的路径,保持相同的延时。这样PVT变化时,时钟和数据会朝着同一个方向增大或者减小相同的量,对skew最有利。 我们来做一些合理的典型假设,假设一个32bit数据的并行总线, a)发送端的数据skew = 50 ps ---很高的要求 b)pcb走线引入的skew = 50ps ---很高的要求 c)时钟的周期抖动jitter = +/-50 ps ---很高的要求 d)接收端触发器采样窗口= 250 ps ---Xilinx V7高端器件的IO触发器 可以大致估计出并行接口的最高时钟= 1/(50+50+100+250) = 2.2GHz (DDR)或者1.1GHz (SDR)。 利用源同步接口,数据的有效窗口可以提高很多。通常频率都在1GHz以下。在实际应用中可以见到如SPI4.2接口的时钟可以高达DDR 700MHz x 16bits位宽。DDR Memory接口也算一种源同步接口,如DDR3在FPGA中可以做到大约800MHz的时钟。 要提高接口的传输带宽有两种方式,一种是提高时钟频率,一种是加大数据位宽。那么是不是可以无限制的增加数据的位宽呢?这就要牵涉到另外一个非常重要的问题-----同步开关噪声(SSN)。 这里不讨论SSN的原理,直接给出SSN的公式:SSN = L *N* di/dt。 L是芯片封装电感,N是数据宽度,di/dt是电流变化的斜率。 随着频率的提高,数据位款的增加,SSN成为提高传输带宽的主要瓶颈。图1.2是一个DDR3串扰的例子。图中低电平的理论值在0V,由于SSN的影响,低电平表现为震荡,震荡噪声的最大值达610mV,因此噪声余量只有1.5V/2-610mV=140mV。

眼图常用知识介绍

眼图常用知识介绍 关于眼图及其测量大家已经做了较多的讨论传输指标测试大全其侧重于眼图的定义和测量光眼图分析张轩/22336著 以及色散对长距离传输后的眼图的影响 如下降时间消光比信噪比以及如何从各个方面来衡量一个眼图的优劣 现在我们公司常用的测量眼图的仪器为CSA8000 1眼图与常用指标介绍 下图为一个10G光信号的眼图右边一栏为这个光信号的一些测量值ExdB交叉点比例QF平均光 功率Rise下降时间峰值抖动 RMSJ 消光比定义为眼图中电平比电平的值传输距离又不同的要求G.957的建议 衡量器件是否符合要求除了满足建议要求之外 一般的对于FP/DFB直调激光器要求EML电吸收激光器消光比不小于10dBμ?ê??a2¢2?òa??×???1a±è

可以无限大将导致激光器的啁啾系数太大不利于长距传 输与速率的最低要求消光比大0.5~1.5dB???ùò???3??a?′ò???êy?μê?o|????1a±èì???á? μ????ó??2úéú?òí¨μà′ú??3?±ê??óD2úéú?ó??2¢?òí¨μà′ú???ú×???±êòa?ó?à′ó???éò? óéóú′?ê?1y3ì?Dμ????óê?2àμ???2?μ??à??óú·¢?í2àé?ò?±£?¤?óê?2àμ???2?μ?±èày?ú′ó??50ê1μ??óê?2àμ?áé???è×???ò?°?·¢?í2à??2?μ?±èày?¨òé?????ú4045 Q因子综合反映眼图的质量问题表明眼图的质量越好 光功率一般来说1???????ú2??ó1a?¥??μ??é????越高越好越高越好 如果需要准确地测量光功率 信号的上升时间下降的快慢 的变化的时间下降时间不能大于信号的周期的40如9.95G信号要求其上升 峰可以定性反映信号的抖动大小这两个测量值是越小越好如Agilint 的37718 在测量抖动的时候才能保证测量值相对准确 做为一个比较参考一般在发送侧的测量值都大于30dB

信号完整性分析基础系列之一——眼图测量

信号完整性分析基础系列之一 ——关于眼图测量(上) 汪进进美国力科公司深圳代表处 内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。全分为上、下两篇。上篇包括一、二部分。下篇包括三、四部分。 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基 于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基 于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是 可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”, 看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然 没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰 对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元 定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两 只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码

眼图测量

眼图——概念与测量(摘记) 中文名称: 眼图 英文名称: eyediagram;eye pattern 定义: 示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。 一.概述 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出: (1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 (4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。 (5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。 (6)横轴对应判决门限电平。” 二、眼图的一些基本概念 —“什么是眼图?” “眼图就是象眼睛一样形状的图形。 图五眼图定义” 眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。眼图上通常显示的是1.25UI的时间窗口。眼睛的形状各种各样,眼图的形状也各种各样。通过眼图的形状特点可以快速地判断信号的质量。 图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。 图六“双眼皮”眼图 图七的眼图“眼睛里布满血丝”,这表明信号质量太差,可能是测试方法有错误,也可能是PCB布线有明显错误。

通信基础学习知识原理实验-数字解调与眼图

实验名称数字解调与眼图 学院信息科学与工程学院专业班级 姓名 学号

数字解调与眼图 一、实验目的 1. 掌握2DPSK相干解调原理。 2. 掌握2FSK过零检测解调原理。 二、实验内容 1. 用示波器观察2DPSK相干解调器各点波形。 2. 用示波器观察2FSK过零检测解调器各点波形。 3.用示波器观察眼图。 三、基本原理 可用相干解调或差分相干解调法(相位比较法)解调2DPSK信号。在相位比较法中,要求载波频率为码速率的整数倍,当此关系不能满足时只能用相干解调法。本实验系统中,2DPSK载波频率等码速率的13倍,两种解调方法都可用。实际工程中相干解调法用得最多。2FSK信号的解调方法有:包络括检波法、相干解调法、鉴频法、过零检测法等。 图4-1 数字解调方框图 (a)2DPSK相干解调(b)2FSK过零检测解调 本实验采用相干解调法解调2DPSK信号、采用过零检测法解调2FSK信号。2DPSK模块内部使用+5V、+12V和-12V电压,2FSK模块内部仅使用+5V电压。图4-1为两个解调器的原理方框图,其电原理图如图4-2所示(见附录)。

2DPSK解调模块上有以下测试点及输入输出点: ? MU 相乘器输出信号测试点 ? LPF 低通、运放输出信号测试点 ? Vc 比较器比较电压测试点 ? CM 比较器输出信号的输出点/测试点 ? BK 解调输出相对码测试点 ? AK-OUT 解调输出绝对码的输出点/测试点(3个) ? BS-IN 位同步信号输入点 2FSK解调模块上有以下测试点及输入输出点: ? FD 2FSK过零检测输出信号测试点 ? LPF 低通滤波器输出点/测试点 ? CM 整形输出输出点/测试点 ? BS-IN 位同步信号输入点 ? AK-OUT 解调输出信号的输出点/测试点(3个) 2DPSK解调器方框图中各单元与电路板上元器件的对应关系如下: ?相乘器U29:模拟乘法器MC1496 ?低通滤波器R31;C2 ?运放U30:运算放大器UA741 ?比较器U31:比较器LM710 ?抽样器U32:A:双D触发器7474 ?码反变换器U32:B:双D触发器7474;U33:A:异或门7486 2FSK解调器方框图中各单元与电路板上元器件对应关系如下: ?整形1 U34:A:反相器74HC04 ?单稳1、单稳2 U35:单稳态触发器74123 ?相加器U36:或门7432 ?低通滤波器U37:运算放大器LM318;若干电阻、电容 ?整形2 U34:B:反相器74HC04 ?抽样器U38:A:双D触发器7474 在实际应用的通信系统中,解调器的输入端都有一个带通滤波器用来滤除带外的信道白噪声并确保系统的频率特性符合无码间串扰条件。本实验系统中为简化实验设备,发端即数字调制的输出端没有带通滤波器、信道是理想的,故解调器输入端就没加带通滤波器。 下面对2DPSK相干解调电路中的一些具体问题加以说明。 ? MU的波形接近图4-3所示的理论波形,略有区别。 ?信源是周期为24bit的周期信号,当24bit的相对码BK中“1”码和“0”码个数不相等时,相乘器U29的输出信号MU及低通滤波器输出信号LPF是正负不对称的信号。在实际的2DPSK通信系统中,抽样判决器输入信号是一个均值为0且正负对称的信号,因此最佳判决电平为0。本实验系统中,Vc决定判决电平。当Vc=0而相对码BK中“1”码和“0”码个数差别太大时,可能出现误判决,即解调器出现误码。因为此时LPF信号的正电平或负电

信号完整性分析基础系列之一__关于眼图测量(全)

信号完整性分析基础系列之一_——关于眼图测量(全) 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest 的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

眼图有关知识详细解释

眼图综述报告 -----------李洋 目录 1. 眼图的形成 (2) 1.1 传统的眼图生成方法 (2) 1.2 实时眼图生成方法 (3) 1.3 两种方法比较 (4) 2. 眼图的结构与参数介绍 (4) 2.1 眼图的结构图 (4) 2.2 眼图的主要参数 (5) 2.2.1 消光比 (5) 2.2.2 交叉点 (5) 2.2.3 Q因子 (6) 2.2.4 信号的上升时间、下降时间 (6) 2.2.5 峰—峰值抖动和均方根值抖动 (6) 2.2.6 信噪比 (6) 3. 眼图与系统性能的关系 (7) 4. 眼图与BER的关系 (7) 4. 如何获得张开的眼图 (8) 5. 阻抗匹配的相关知识 (9) 5.1 串联终端匹配 (9) 5.2 并联终端匹配 (10) 6. 眼图常见问题分析 (10) 7. 总结 (17)

1.眼图的形成 眼图是一系列数字信号在示波器上累积而显示的图形,其形状类似于眼睛,故叫眼图。 在用余辉示波器观察传输的数据信号时,使用被测系统的定时信号,通过示波器外触发或外同步对示波器的扫描进行控制,由于扫描周期此时恰为被测信号周期的整数倍,因此在示波器荧光屏上观察到的就是一个由多个随机符号波形共同形成的稳定图形。这种图形看起来象眼睛,称为数字信号的眼图。 示波器测量的一般信号是一些位或某一段时间的波形,更多的反映的是细节信息。而眼图则反映的是链路上传输的所有数字信号的整体特性。如下图: 1.1 传统的眼图生成方法 采样示波器的CLK通常可能是用户提供的时钟,恢复时钟,或者与数据信号本身同步的码同步信号.

图:采样示波器眼图形成原理 1.2 实时眼图生成方法 实时示波器通过一次触发完成所有数据的采样,不需附加的同步信号和触发信号.通常通过软件PLL方法恢复时钟。 图:实时示波器眼图形成原理 另一种示意图:

眼图形成及其基本知识归纳

1眼图基本概念 1.1 眼图的形成原理 眼图是一系列数字信号在示波器上累积而显示的图形,它包含了丰富的信息,从眼图上可以观察出码间串扰和噪声的影响,体现了数字信号整体的特征,从而估计系统优劣程度,因而眼图分析是高速互连系统信号完整性分析的核心。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰,改善系统的传输性能。 用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形就称为眼图。示波器一般测量的信号是一些位或某一段时间的波形,更多的反映的是细节信息,而眼图则反映的是链路上传输的所有数字信号的整体特征,如下图所示: 图示波器中的信号与眼图 如果示波器的整个显示屏幕宽度为100ns,则表示在示波器的有效频宽、取样率及记忆体配合下,得到了100ns下的波形资料。但是,对于一个系统而言,分析这么短的时间

内的信号并不具有代表性,例如信号在每一百万位元会出现一次突波(Spike),但在这100ns时间内,突波出现的机率很小,因此会错过某些重要的信息。如果要衡量整个系统的性能,这么短的时间内测量得到的数据显然是不够的。设想,如果可以以重复叠加的方式,将新的信号不断的加入显示屏幕中,但却仍然记录着前次的波形,只要累积时间够久,就可以形成眼图,从而可以了解到整个系统的性能,如串扰、噪声以及其他的一些参数,为整个系统性能的改善提供依据。 分析实际眼图,再结合理论,一个完整的眼图应该包含从“000”到“111”的所有状态组,且每一个状态组发生的次数要尽量一致,否则有些信息将无法呈现在屏幕上,八种状态形成的眼图如下所示: 图眼图形成示意图 由上述的理论分析,结合示波器实际眼图的生成原理,可以知道一般在示波器上观测到的眼图与理论分析得到的眼图大致接近(无串扰等影响),如下所示:

信号完整性分析:关于眼图测量

关于眼图测量 作者:汪进进美国力科公司深圳代表处 信号完整性分析基础系列之一——关于眼图测量(上) 眼图的历史可以追溯到大约47年前。在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用"万能"的Sigtest软件测量出来的眼图给出的Pass or Fail 结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google"眼图",看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google"眼图",仍然没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 "在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只"眼睛",当传输三元码时,会显示两只"眼睛"。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的"眼睛","眼"开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起"眼"部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,"眼"开启得小了,因此,"眼"张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,

眼图测量方法A

您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年‐2002的40年间,眼图的测量是基于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest 的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。 图一眼图 (3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在

眼图测量分析

眼圖之量測分析 引言 眼圖是一項時間分析工具,讓使用者能夠清楚看見時間和強度的誤差。在真實生活中,諸如抖動之類的誤差非常難以量化,因為經常改變,而且非常小。因此,眼圖非常利於尋找最大抖動以及電壓強度的誤差,如圖一所示。 圖一、眼圖檢視的抖動和電壓雜訊示意圖 誤差增加時,眼圖中心的白色空間就會縮小。那個空間由兩項特性所定義:眼寬(Eye Width)和眼高(Eye Height)。圖二中白色空間的寬度就稱為眼寬。因此,眼圖由數量足夠的樣本構成(數百萬個時間段落轉換),眼寬就是用來度量在任何指定的時間期間內、資料線穩定的時間長度的良好工具。這樣可以了解可允許的保存時間和建立時間有多少。 最後完成的眼圖中的白色空間的高度就稱為眼高。如果眼圖由數量足夠的樣本構成(數百萬個時間段落轉換),眼高可以指出接收器的VIH和VIL必須位於何處,才能正確地對資料取樣。數位訊號轉換的品質越好,眼圖中的開放白色空間越大。換言之,眼寬和眼高應該盡可能地大。 圖二、眼圖的高度及寬度示意圖

實驗原理 其形狀似人的眼睛,因此被稱爲眼圖。而檢視數位傳輸器的輸出三個時間段落,即可建構出眼圖。圖三中的眼圖是將所有可能的0與1的組合疊在一條線段上,而完成建構。 圖三、數位訊號對應之眼圖 在數位系統中,時間是最重要的因素之一。數位通訊的可靠性和準確性都是根據其時間功能的品質而定。在真實世界的數位通訊系統中,有許多時間上的誤差,其中最重要的兩個是抖動(Jitter)和飄移(Drift)。分別以抖動(Jitter)及飄移(Drift)敘述之: 一、抖動(Jitter) 抖動(Jitter)是指與事件的理想時間的誤差,通常是從參考訊號的過零點(Zero-Crossing)進行測量。抖動通常歸因於串音(Cross-Talk)、同時切換輸出,以及其它週期性發生的干擾訊號。由於抖動會隨著時間而變化,如圖四所示,因此對抖動的測量及量化有多種進行方式,從目測幾秒鐘內的抖動範圍,到以數據進行的測量(例如根據長時間的標準誤差)。 圖四、訊號之抖動

眼图的定义与测量方法

眼图的测量 内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。全分为上、下两篇。上篇 包括一、二部分。下篇包括三、四部分。 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采 样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地 准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可 以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反 复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”,看 到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然没 有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能

眼图基本知识总结

通常定义: 在实际数字互连系统中 完全消除码间串扰是十分困难的 而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律 还不能进行准确计算。为 了衡量基带传输系统的性能优劣 在实验室中 通常用示波器观察接收信号形的方法来分析码间串扰和噪声对系统性能的影响 这就是眼图分析法。 如果将输入波形输入示波器的Y轴 并且当示波器的水平扫描周期和码元定时同步时 适当调整相位 使波形的中心对准取样时刻 在示波器上显示的图形很象人的眼睛 因此被称为眼图 Eye Map 。 二进制信号传输时的眼图只有一只“眼睛” 当传输三元码时 会显示两只“眼睛”。眼图是由各段码元波形叠加而成的 眼图中央的垂直线表示最佳抽样时刻位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下 波形无失真 每个码元将重叠在一起最终在示波器上看到的是迹线又细又清晰的“眼睛”“眼”开启得最大。当有码间串扰时 波形失真 码元不完全重合 眼图的迹线就会不清晰 引起“眼”部分闭合。若再加上噪声的影响 则使眼图的线条变得模糊 “眼”开启得小了 因此 “眼”张开的大小表示了失真的程度 反映了码间串扰的强弱。由此可知眼图能直观地表明码间串扰和噪声的影响 可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整 以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述。由此图可以看出 1 眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然最佳抽样时刻应选在眼睛张开最大的时刻。 2 眼图斜边的斜率 表示系统对定时抖动或误差的灵敏度斜率越大系统对定时抖动越敏感。 3 眼图左右角阴影部分的水平宽度表示信号零点的变化范围称为零点失真量在许多接收设备中定时信息是由信号零点位置来提取的对于这种设备零点失真量很重要。 4 在抽样时刻 阴影区的垂直宽度表示最大信号失真量。 5 在抽样时刻上、下两阴影区间隔的一半是最小噪声容限噪声瞬时值超过它就有可能发生错误判决。 6 横轴对应判决门限电平。 串行数据测试点: 串行数据的测试点包括了芯片的发送端和接收端等不同节点。描述串行数据的常用单位是波特率和UI 譬如3.125Gb/s表示为每秒传送的数据比特位是3.125G比特(bit) 对应的一个单位间隔 1UI 表示为一个比特位的宽度是波特率的倒数 1UI=1/ 3.125Gb/s =320ps。现在比较常见的串行信号码形是NRZ 码。正电平表示”1” 负电平表示“0”。 沿途测量方法: 眼图测量方法有两种 2002年以前的传统眼图测量方法和2002年之后力科发明的现代眼图测量方法。传统眼图测量方法可以用两个英文关键词来表示 “Triggered Eye”和“Single-Bit Eye”。现代眼图测量方法用另外两个英文关键

信号完整性基础系列之关于眼图测量资料

信号完整性分析基础系列之关于眼图测量 (上) 作者:汪进进来源:不详发布时间:2010-3-17 11:47:24 [收藏] [评论] 信号完整性分析基础系列之关于眼图测量(上) 眼图的历史可以追溯到大约47年前。在力科于2002年发明基于连续比特位的方法来测量眼图之前,19 62年-2002的40年间,眼图的测量是基于采样示波器的传统方法。 在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一 项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读 兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻 应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

眼图的形成——超详细解释

眼图(Eye Diagram)超详细解释(FromNI) 眼图(Eye Diagram)可以显示出数字信号的传输质量,经常用于需要对电子设备、芯片中串行数字信号或者高速数字信号进行测试及验证的场合,归根结底是对数字信号质量的一种快速而又非常直观的观测手段。消费电子中,芯片内部、芯片与芯片之间经常用到高速的信号传输,如果对应的信号质量不佳,将导致设备的不稳定、功能执行错误,甚至故障。眼图反映的是数字信号受物理器件、信道的影响,工程师可以通过眼图,迅速得到待测产品中信号的实测参数,并且可以预判在现场可能发生的问题。 1 眼图的形成 对于数字信号,其高电平与低电平的变化可以有多种序列组合。以3个bit为例,可以有000-111共8中组合,在时域上将足够多的上述序列按某一个基准点对齐,然后将其波形叠加起来,就形成了眼图。如图1。对于测试仪器而言,首先从待测信号中恢复出信号的时钟信号,然后按照时钟基准来叠加出眼图,最终予以显示。 图1. 眼图的形成 2 眼图中包含的信息 ? 对于一幅真实的眼图,如图2,首先我们可以看出数字波形的平均上升时间(Rise Time)、下降时间(Fall Time)、上冲(Overshoot)、下冲(Undershoot)、门限电平(Threshold/Crossing Percent)等基本的电平变换的参数。

图2. 电平变换参数 ? 信号不可能每次高低电平的电压值都保持完全一致,也不能保证每次高低电平的上升沿、下降沿都在同一时刻。如图3,由于多次信号的叠加,眼图的信号线变粗,出现模糊(Blur)的现象。所以眼图也反映了信号的噪声和抖动:在纵轴电压轴上,体现为电压的噪声(Voltage Noise);在横轴时间轴上,体现为时域的抖动(Jitter)。 图3. 噪声和抖动 ? 由于噪声和抖动,眼图上的空白区域变小。如图4,在除去抖动和噪声的基础上,眼图上空白的区域在横轴上的距离称为眼宽(Eye Width),在眼图上叠加的数据足够多时,眼宽很好的反映了传输线上信号的稳定时间;同理,眼图上空白的区域在纵轴上的距离称为眼高(Eye Height),在眼图上叠加的数据足够多时,眼高很好的反映了传输线上信号的噪声容限,同时,眼图中眼高最大的地方,即为最佳判决时刻。

眼图分析方法

信号完整性分析基础系列之一 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。 通常眼图可以用下图所示的图形来描述,由此图可以看出: (1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。 图一眼图 (3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 (4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。

SI-list【中国】详解眼图(下)

SI-list【中国】详解眼图(下) 2.4 眼图时间(X轴)相关定义与幅度相似,在时间轴上与失真有关的指标也可从眼图中找到。大家普遍知道这些指标大多是通过脉冲图形来确定的,但也可以使用从眼图获得的直方图来确定。 2.4.1. 单位时间间隔在对该术语进行定义前,本节要先介绍一下单位时间间隔(UI)的概念。在理解单位时间间隔的基础后,可以更容易地定义与眼图的时间轴上的失真相关的术语。例如:在描述规范标准和数据表中的抖动特性时,通常使用术语“单位时间间隔”。 如图12所示,不论数据速率如何,“单位时间间隔”被定义为归一化的数据位宽度。由于单位时间间隔基本上与比特数相同,1个数据位的宽度为1个单位时间间隔。水平时间轴可以以1秒或单位时间间隔为单位来表示。例如:在25.78125 Gbps的数据流中,1个单位时间间隔为38.79ps;而在10.3125 Gbps的数据流中,1个单位时间间隔为96.97ps。由于单位时间间隔与数据速率无关,有时在水平时间轴上以单位时间间隔为单位会更容易理解。例如:如图13所示,在水平轴(而不是时间轴)上使用单位时间间隔单位,通过为不同数据速率的眼图显示相同的单位时间间隔计数,使其更容易比较。2.4.2. 抖动抖动是数据位事件与理想时

序间的时间漂移,它是在高速数字信号中使用的重要术语。如图14所示,抖动是在时间轴上位于眼交叉点的波动,抖动量是通过对时间轴直方图的分析来求出的。峰峰值(PP)抖动覆盖所述直方图的整个宽度,也可换句话说,它被定义为所有现存数据点的范围。均方根抖动被定义为直方图的一个标准偏差。图15显示了通过手动测得的抖动测量结果(左)和使用自动直方图处理功能所获得的自动直方图测量结果(右)的比较。在手动测量结果的左侧,在交叉点处的细直方图位置表示显示在眼图下方的抖动rms(0.893 ps)和抖动p-p(5.368 ps)值。在右侧的自动测量屏幕相应的数字数据值是抖动rms = 0.893 ps 和抖动p-p = 4.841 ps,其结果大致类似于手动测量。包括由被测装置(JDUT)所产生的抖动,抖动测量结果也包括测量仪器的固有抖动。如果固有数据的比例大,则该固有抖动可对测量结果产生很大的影响。固有抖动的比例由以下公式进行计算。该公式对于峰峰值抖动(抖动p-p)和均方根抖动(抖动rms)是不同的。数据表中描述了示波器的固有抖动。2.4.3. 上升和下降时间如图16所示,上升时间为眼图数据位在过渡到眼图的右上方所需时间的平均值,上升时间从所指示的两个直方图和眼图中可求得。细直方图是在20%电平处为该眼交叉点的左侧和在80%电平处为该眼交叉点的右侧水平所绘制的。根据逻辑电平1和0来确定20%和80%电平,并可从以下

眼图测量

信号完整性分析基础系列之一——关于眼图测量(上) https://www.sodocs.net/doc/a75524382.html,/frankie_wang/blog/09-05/170437_fb918.html#articletop 时间:2010-03-17 09:55:14 来源:作者:汪进进 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优

相关主题