搜档网
当前位置:搜档网 › 酶法生产r-氨基丁酸工艺实验

酶法生产r-氨基丁酸工艺实验

酶法生产r-氨基丁酸工艺实验
酶法生产r-氨基丁酸工艺实验

生物工程工艺大实验

——酶法生产r-氨基丁酸工艺实验

一、实验目的与原理

1、实验目的

实验设置涉及生物产品氨基丁酸生产过程的基本单元操作和方法,强调锻炼基本操作能力,学习控制发酵培养基的配制与发酵罐的操作。掌握各种发酵实验仪器的使用方法及注意事项;掌握r-氨基丁酸酶法生产工艺,熟悉用浓缩等电法等从发酵液中提取氨基丁酸的基本流程。

实验原理

本实验利用酶法即用大肠杆菌对L-谷氨酸进行发酵,在L-谷氨酸脱羧酶作用下脱羧生成GABA和二氧化碳来制备GABA。

高压灭菌的原理是:在密闭的蒸锅内,其中的蒸汽不能外溢,压力不断上升,使水的沸点不断提高,从而锅内温度也随之增加。在0.1MPa的压力下,锅内温度达121℃。在此蒸汽温度下,可以很快杀死各种细菌及其高度耐热的芽孢。

离心原理:利用超高速的离心机将菌体与菌液分离。

活性炭脱色:利用活性碳的吸附能力将溶液中的杂质吸附除去。

抽滤:减压过滤也就是抽滤,利用抽气泵使抽滤瓶中的压强降低,达到固液分离的目的。

减压浓缩:使用抽真空的方式降低水的沸腾温度使水蒸发干燥。

乙醇沉淀:伽马-氨基丁酸易容与水而不溶于乙醇,所以利用乙醇沉淀。

2、实验流程

二、材料与方法

1、菌种

大肠杆菌GABA1210

2、主要仪器

HYG-Ⅱ迴转式恒温调速摇瓶柜 GZX-9140 ME数显鼓风干燥箱

LDZX-50KBS立式压力蒸汽灭菌器 KQ-C型全自控蒸汽发生器

BIOTECH-2002 BIOPROCESS CONTROLLER PA98-2空气压缩机

RS-232Ⅱ精密电子天平 YP1200电子天平

FORMA 700 SERIES-80℃冷藏箱 DINGLI LD5-10离心机

LDH系列生化培养箱 SHB-Ⅲ循环水式多用真空泵

Heidolph G3减压浓缩机

试管若干、锥形瓶、烧杯、玻璃棒、移液管、酒精灯、量筒

3、主要试剂

葡萄糖,玉米浆,氯化钠,磷酸二氢钾,硫酸镁,乳糖,酵母粉,VH,青霉素,琼脂条,氢氧化钠固体,氢氧化钠溶液,活性炭,无水乙醇,L-谷氨酸

4、分析方法

4.1、菌种培养过程

首先进行菌种活化,然后将大肠杆菌接种到固体斜面培养基(LB培养基+100mg/L 青霉素)进行一代培养(37℃。12h),其后将固体斜面培养基上的菌种再进行二代培

养(37℃,12h),再将二代菌种接种到种子培养基(葡萄糖0.3%,玉米浆3%,氯化钠

0.5%,磷酸二氢钾0.1%, pH7.0,121℃15min)进行摇床培养,最后将种子培养基中的菌种接种到发酵罐(葡萄糖0.3%,乳糖1.6%,玉米浆3%,酵母粉0.3%,氯化钠0.5%,磷酸二氢钾0.1%,硫酸镁0.05%,VH 1 mg/L, pH7.0,115℃15min。)进行发酵培养,培养条件为pH7.0,温度34-36℃培养至OD600nm*20=10-15,培养时间8-10h。

4.2、谷氨酸测定

将反应结束后的发酵液放入离心管中进行离心,然后取离心管中的上清液放入仪器中用酶膜法进行谷氨酸的测定。

4.3、残糖测定

在大肠杆菌生长至对数生长末期至稳定期时,离心,过0.22 um膜。取不含菌体的滤出液用三五二硝基水杨酸比色法测定还原糖含量。

4.4、pH测定

在配置培养基过程中要用pH6.4-8.0精密pH试纸测定培养基pH。发酵过程中,要用广泛pH试纸对发酵液的pH进行测定。酶促反应过程中,用pH6.4-8.0精密试纸对pH进行检测。

4.5、吸光度测定

1.接通电源,打开仪器开关,掀开样品室暗箱盖,预热10分钟。

2.将灵敏度开关调至“1”档(若零点调节器调不到“0”时,需选用较高档。)

3.根据所需波长转动波长选择钮至600nm处。

4.将空白液即蒸馏水及测定液分别倒入比色杯3/4处,用擦镜纸擦清外壁,放入样品室内,使空白管对准光路。

5.在暗箱盖开启状态下调节零点调节器,使读数盘指针指向t=0处。

6.盖上暗箱盖,调节“100”调节器,使空白管的t=100,指针稳定后逐步拉出样品滑竿,分别读出测定管的光密度值,并记录。

7.比色完毕,关上电源,取出比色皿洗净,样品室用软布或软纸擦净。

4.6、氨基丁酸的测定

用活性炭吸附溶液中的蛋白,加入无水酒精沉淀,其后减压浓缩结晶、抽滤得晶体9.1g,理论收率为65%。

三、实验过程与结果

1、发酵培养

1.1、摇瓶种子培养记录

种子接种量:100ml×5 pH<6.4 培养时间:21:30-8:00共10.5h、

OD600*20:0.258 转速:172r/min 测量温值PV:28.9 设定温值SV:30.0 1.2、发酵培养记录

批号:20141225

30L发酵罐发酵记录

时间/h pH 溶氧/% 转速/rpm OD600风量L/min 罐压/MPa 温度/℃

0.14 8.52 177.7 300 0.061 5.7 0.069 33.2

1.00 6.17 139.2 300 O.059 3.8 0.032 35.8

2.00 6.20 122.8 300 0.081 2.3 0.024 35.9

3.00 6.45 91.7 300 0.116 2.2 0.023 36.0

4.00 6.31 6

5.3 350 0.148 2.4 0.023 3

6.0

5.00

6.31 52.8 410 0.204 2.4 0.023 36.0

6.00 6.31 48.5 450 0.298 2.3 0.023 36.0

7.00 6.61 76.7 500 0.397 2.0 0.023 36.0

8.00 6.63 41.7 419 0.447 0.8 0.015 36.0

9.00 6.70 58.9 419 0.730 0.8 0.015 35.9

10.00 6.81 84.1 399 0.608 0.8 0.015 35.8

过程:每隔一小时取少量发酵液于试管中,取0.5ml发酵液与9.5ml水混合,测OD值。PH、溶氧均可用电极直接测出。当溶氧低于30%,要适当提高转速以增加溶氧。

2、菌体收集

项目体积菌体OD

过滤前发酵液3L 0.258

过滤后发酵液2L 0.608

过程:发酵完成后,将发酵液进行过滤并测量OD值。

3、酶催化反应

菌体量反应液体积投料谷氨酸量反应温度反应pH 反应时间

0.5L 0.65L 100g <36℃ 4.0 4h

过程:取冷冻后的菌液进行离心,分离菌体与上清液,将谷氨酸加至上清液进行酶促反应,在恒温条件下谷氨酸转化为伽马-氨基丁酸,因为脱羧产生二氧化碳,反应时会有大量气泡产生。

4、氨基丁酸的提取

4.1离心

料液体积离心时间转速离心后体积

500ml 10min 3500r/min 450ml

过程:将反应液置于离心机中,经高速离心,得上清液。

4.2 脱色实验

批次发酵液体积活性炭用量脱色时间pH

1 450ml 4.5g 6min 7.0

过程:因为溶液中任含有杂质,加入活性炭进行吸附,将有色物质除去,得到澄清的伽马-氨基丁酸溶液。

4.3 浓缩结晶实验

批次浓缩前发酵液

体积含量浓缩后体

加酒精体

产品质量纯度收率

1 400ml 200ml 75ml 300 48.36g 100% 80.6%

计算过程:400ml反应液γ-氨基丁酸的理论质量为60g

200ml反应液γ-氨基丁酸的理论质量为30g

实际产品质量为48.36g实际收率:(48.36÷60)×100%=80.6%

误差分析:

1.谷氨酸经酶促反应并未反应完全,所以导致产率低下。

2.离心分离不彻底,菌体与溶液分离不彻底,导致抽滤时不够彻底,少量伽马-氨基丁酸溶液未被抽滤完全,导致实际收率低。

3.结晶时酒精浓度不够纯,部分伽马-氨基丁酸晶体溶于酒精溶液中,使产率下降。

4.在浓缩过程中,因高温使部分伽马-氨基丁酸晶体析出附于浓缩烧瓶壁中,这些贴附于瓶壁的晶体无法取出,所以实际产率会略低。

四、收获与体会

通过这次实验,让我体会最深的就是,书面知识与实际操作的结合。感觉二者缺一不可,不具备完整的知识储备根本不知道从何下手,知道怎么做了再去实际操作又是一回事。而且实验中出现各种临时问题有事书面上不曾体现的,丰富的经验,扎实的基础相互结合才是最好的。

本次实验还体现出团队合作的关键,一个人的力量往往是弱小的,大家在一起拧成一条绳,团结就是力量。

生物工程工艺大实验——酶法生产r-氨基丁酸工艺实验

学院:生物工程

专业:生物化工

姓名:姚利成

学号:11043215

指导老师:徐庆阳张成林

(完整版)年产5000吨糖化酶发酵车间设计

南阳理工学院 本科生毕业设计 学院(系):生物与化学工程学院 专业:生物工程 学生: ******* 指导教师:李慧星 完成日期 2010 年 5 月

南阳理工学院本科生毕业设计 年产5000吨糖化酶发酵车间设计 The design of annual output of 5000 tons of glucoamylase fermentation factory workshop 总计:毕业设计(论文)28页 表格: 5 个 插图: 1 幅

南阳理工学院本科毕业设计 年产5000吨糖化酶发酵车间设计 The design of annual output of 5000 tons of glucoamylase fermentation factory workshop 学院(系):生物与化学工程学院 专业:生物工程 学生姓名:郭留洋 学号:***** 指导教师:****** 评阅教师: 完成日期:2010年5月 南阳理工学院 Nanyang Institute of Technology

年产5000吨糖化酶发酵车间的工艺设计 生物工程专业郭留洋 【摘要】糖化酶是工业生产的主要酶制剂之一,广泛用于酿酒、葡萄糖、果葡糖浆、抗菌素、乳酸、有机酸、味精、棉纺厂等各方面。本设计以玉米淀粉为主要原料,利用黑曲霉,采用机械搅拌通风罐进行发酵生产,完成生产5000吨糖化酶发酵车间工艺设计,通过工艺流程设计、工艺衡算、设备选型和车间布置设计,设计出生产5000吨糖化酶发酵车间采用3个75m3发酵罐和3个6m3种子罐等,并依据生物工程工厂车间布置原则,对发酵罐车间进行合理布置,绘制了工艺流程图和车间布置图,工艺设计的结果为糖化酶的生产提供一定参考。 【关键字】糖化酶工厂设计深层发酵黑曲霉

生产工艺流程图及说明

(1)电解 本项目电解铝生产采用熔盐电解法:其主要生产设备为预焙阳极电解槽,项目设计采用大面六点进电SY350型预焙阳极电解槽。铝电解生产所需的主要原材料为氧化铝、氟化铝和冰晶石,原料按工艺配料比例加入350KA 预焙阳极电解槽中,通入强大的直流电,在945-955℃温度下,将一定量砂状氧化铝及吸附了电解烟气中氟化物的载氟氧化铝原料溶解于电解质中,通过炭素材料电极导入直流电,使熔融状态的电解质中呈离子状态的冰晶石和氧化铝在两极上发生电化学反应,氧化铝不断分解还原出金属铝——在阴极(电解槽的底部)析出液态的金属铝。 电解槽中发生的电化学反应式如下: 2323497094032CO Al C O Al +?-+℃ ℃直流电 在阴极(电解槽的底部)析出液态的金属铝定期用真空抬包抽出送往铸造车间经混合炉除渣后由铸造机浇铸成铝锭。电解过程中析出的O 2同阳极炭素发生反应生成以CO 2为主的阳极气体,这些阳极气体与氟化盐水解产生的含氟废气、粉尘等含氟烟气经电解槽顶部的密闭集气罩收集后送到以Al 2O 3为吸附剂的干法净化系统处理,净化后烟气排入大气。被消耗的阳极定期进行更换,并将残极运回生产厂家进行回收处置。吸附了含氟气体的截氟氧化铝返回电解槽进行电解。 电解槽是在高温、强磁场条件下连续生产作业,项目设计采用大面六点进电SY350型预焙阳极电解槽,是目前我国较先进的生产设备。电解槽为6点下料,交叉工作,整个工艺过程均自动控制。电解槽阳极作业均由电解多功能机组完成。多功能机组的主要功能为更换阳极、吊运出铝抬包出铝、定期提升阳极母线、打壳加覆盖料等其它作业。 (2)氧化铝及氟化盐贮运供料系统 氧化铝及氟化盐贮运系统的主要任务是贮存由外购到厂的氧化铝和氟化盐 ,并按需要及时将其送到电解车间的电解槽上料箱内。

米曲霉生产糖化酶工艺

1.米曲霉是一种好气性真菌,菌丝一般呈黄绿色,米曲霉的菌丝由多细胞组成,是一类产复合酶的菌株,除产蛋白酶外,还可产淀粉酶、糖化酶、纤维素酶、植酸酶等。在淀粉酶的作用下,将原料中的直链、支链淀粉降解为糊精及各种低分子糖类,如麦芽糖、葡萄糖等;在蛋白酶的作用下,将不易消化的大分子蛋白质降解为蛋白胨、多肽及各种氨基酸,而且可以使辅料中粗纤维、植酸等难吸收的物质降解,提高营养价值、保健功效和消化率,广泛应用于食品、饲料、生产曲酸、酿酒等发酵工业。 米曲霉在工业上的应用:用于发酵生产豆豉、豆酱;与黑曲霉、绿色木霉复合发酵用于酱油生产;用于饲料工业;用于酿酒制曲、生产低醇乳糖饮料。 2.葡萄糖淀粉酶又称γ一淀粉酶, 简称糖化酶,糖化酶是一种含有甘露糖、葡萄糖、半乳糖和糖醛酸的糖蛋白,在工业中应用的糖化酶主要是从黑曲霉、米曲霉、根霉等丝状真菌和酵母中获得,从细菌中也分离到热稳定的糖化酶, 人的唾液、动物的胰腺中也含有糖化酶生产方法: a.黑曲霉固体发酵法 工艺流程:试管菌种→三角瓶款曲扩大培养→帘子曲种→通风制曲→成品。 b.液体深层发酵法. 工艺流程:试管斜面种子→种子扩大培养→发酵→过滤→浓缩→干燥→粗酶制剂。

糖化酶成品提取工艺 成品糖化酶可分为液体酶和固体酶2 种, 而固体酶的制备方法又可 分为盐析法、有机溶剂沉淀法和附吸法等, 采用一条合理的提取工艺, 可制备系列酶产品以满足不同行业的需求及降低成品的成本. 目前国外糖化酶生产一般采用液体深层培养, 发酵罐最大可达200m , 罐体都采用不锈钢制造, 冷却系统采用罐外冷却盘管关键阀门都采 用隔膜阀, 培养基可在罐内灭菌, 也可用薄板冷却器作连续灭菌, 并装有节能器, 发酵过程中的控制参数有搅拌功率、溶解氧、空气 中的二氧化碳与氧气量以及温度、P H 等。 糖化酶处理技术: 糖化酶的处理工艺过程分为预处理、固液分离、液体浓缩、酶的沉淀干燥四个工序。国外采用的无机絮凝剂有硫酸铝、碱式氯化铝、氯化铁、锌盐等能在水中形成各种氢氧化物凝胶;采用的有机高分子絮凝剂有聚苯乙烯磺酸、聚丙烯酸(或钠盐) 、聚甲基丙烯酸、聚丙烯酞胺等。国内外最普遍采用的固液分离设备是板框压滤机, 除此以外, 国外还有管式、多室式、碟式及篮式离心机, 国内主要采用篮式离心机, 也有少数管式离心机的厂家。国内外糖化酶的浓缩方式已从蒸发浓缩发展到超滤浓缩。目前采用的超滤装置有搅拌室式、浅道式系统、套筒膜式和中空纤维。沉淀酶方式, 国内外仍普遍用硫酸钱或硫酸钠等中性盐类盐析糖化酶。 3.植酸提高米曲霉产糖化酶能力:

米曲霉

1.菌种特点: 米曲霉( Asp.oryzae) 属于真菌菌落生长快,10d直径达5~6cm,质地疏松,初白色、黄色,后变为褐色至淡绿褐色。背面无色。分生孢子头放射状,一直径150~300μm,也有少数为疏松柱状。分生孢子梗2mm左右。近顶囊处直径可达12~25μm,壁薄,粗糙。顶囊近球形或烧瓶形,通常40~50μm。上覆小梗,小梗一般为单层,12~15μm,偶尔有双层,也有单、双层小梗同时存在于一个顶囊上。分生孢子幼时洋梨形或卵圆形,长大后多变为球形或近球形,一般4.5μm,粗糙或近于光滑。(半知菌亚门丝孢钢丝孢目从梗孢科曲霉属真菌中的一个常见种)。菌落生长较快,质地疏松。初呈白色、黄色,后转黄褐色至淡绿褐色,背面无色,分布甚广,主要在粮食、发酵食品、腐败有机物和土壤等处。是我国传统酿造食品酱和酱油的生产菌种。也可生产淀粉酶、蛋白酶、果胶酶和曲酸等。会引起粮食等工农业产品霉变。米曲霉(Aspergillus oryzae)具有丰富的蛋白酶系,能产生酸性、中性和碱性蛋白酶,其稳定性高,能耐受较高的温度,广泛地应用于食品、医药及饲料等工业中。米曲霉也是美国食品与药物管理局和美国饲料公司协会1989年公布的40余种安全微生物菌种之一。米曲霉 米曲霉 米曲霉是一类产复合酶的菌株,除产蛋白酶外,还可产淀粉酶、糖化酶、纤维素酶、植酸酶等。在淀粉酶的作用下,将原料中的直链、支链淀粉降解为糊精及各种低分子糖类,如麦芽糖、葡萄糖等;在蛋白酶的作用下,将不易消化的大分子蛋白质降解为蛋白胨、多肽及各种氨基酸,而且可以使辅料中粗纤维、植酸等难吸收的物质降解,提高营养价值、保健功效和消化率,广泛应用于食品、饲料、生产曲酸、酿酒等发酵工业,并已被安全地应用了1000多年。米曲霉是理想的生产大肠杆菌不能表达的真核生物活性蛋白的载体。米曲霉基因组所包含的信息可以用来寻找最适合米曲霉发酵

xxx酶制剂项目工艺说明

×××酶生物科技有限公司年产2000吨酶制剂项目工艺说明

一、项目简介 酶制剂工业是21世纪最具发展前景的新兴精细化工产业之一,是生物工程的重要组成部分,其应用领域遍及轻工、食品、化工、医药、农业、能源及环境保护等,在国民经济发展中起着重要的作用,产生了巨大的社会和经济效益。,我国自20世纪60年代起已开始生产酶制剂产品,几十年发展成绩喜人,在品种、产量及技术水平等方面都取得了长足的进步。目前全国共有50多家生产企业,年生产能力超过40万吨,产品品种达到20多种。特别是近10年间,年产量的平均增长率高达20%左右,远远高于国民经济的平均增长速度。随着国内对酶制剂需求的进一步提高,酶制剂行业将有一个非常广阔的市场发展空间。 本公司拟建设一条年产2000吨酶制剂生产线,其中液体酶制剂1000吨/年,固体酶制剂1000吨/年。酶制剂的包装及灌装均达到国家GMP生产标准。 二、产品工艺初步设计 项目采用具有细菌液态深层发酵工艺生产新型酶制剂。项目生产原料是玉米芯、麸皮、豆饼粉等农产品下脚物,生产过程采用液体深层发酵。最终成熟的发酵液在精制车间制成成品酶制剂。其中部分发酵液采用精滤、膜浓缩工艺制成液体成品酶制剂,其余发酵液通过精滤、膜浓缩、溶析、干燥后制成固体成品酶制剂。具体工艺流程如下图所示:

生产工艺流程图 三、设备的初步预算 本项目的主要设备一览表见下表:

四、项目人员构成 项目新增定员为31人,其中生产人员22人,技术人员6人,管理人员3人。劳动定员表如表所示: 五、原料估算 项目拟建设一条年产2000吨酶制剂生产线,其中液体酶制剂1000吨/年,固体酶制剂1000吨/年。主要产品的原料估算如下表所示:

包装机械生产工艺流程图及说明

钣金件工艺 机加工生产加工工艺 钣金车间工艺要求流程 (1)钣金车间可根据图纸剪板下料,在相应位置冲孔和剪角剪边。以前工序完成后进行折弯加工;第一步必须进行调整尺寸定位,经检查后进行下一步折弯工艺。折弯后经检查合格组焊;组焊要求必须在工装和模型具下进行组焊。根据图纸要求焊接深度和点处焊接。焊点高度不得超过设计要求、焊机工艺要求;2mm以下必须用二氧化碳保护焊和氩弧焊接。不锈钢板必须用氩弧焊。焊接件加工成形后进行校整,经检查符合图纸要求后进行下一步打磨拉丝。打磨必须以

量角样板进行打磨,不得有凸出和凹缺。拉丝面光吉度必须按图纸要求进行。 (2)外协碳钢件表面处理喷漆工艺要求:喷沙或氧化面积不得小于总面积的95%,除去沙和氧化液进行表面防锈喷漆和电镀处理。经底部处理后再进行表漆加工,表漆加工必须三次进行完成。喷塑厚度不得小于0.35mm。钣金件经检验合格后进厂入半成品库待装。 (3)入库件摆放要求:小件要求码齐入架存放。大件必须有间隔层,可根据种类整齐存放。 机加件加工流程: (1)机加工件工艺要求;原材料进厂由质检部进行检验,根据国家有关数据进行检测,进厂材料必须检测厚度、硬度、和其本几何尺寸。 (2)下料;根据图纸几何尺寸加其本加工量下料,不得误差太大。 (3)机床加工;根据零件图纸选择基本定位面进行粗加工、精加工,加工几何尺寸保留磨量。 (4)铣床加工;根据零件图纸选择基本刀具装入刀库,在加工过程中注意更换刀库刀具,工件要保整公差。 (5)钳工;机加件加工完成后根要求进行画线钳工制做,在加工过程中必须用中心尖定位。大孔首先打小孔定位再用加工大孔。螺纹加工要在攻丝机进加工,不得有角度偏差。螺纹孔加工后螺栓要保

味精的生产工艺流程简介教程文件

1味精的生产工艺流程简介 味精的生产一般分为制糖、谷氨酸发酵、中和提取及精制 等4个主要工序。 1.1液化和糖化 因为大米涨价,目前大多数味精厂都使用淀粉作为原材 料。淀粉先要经过液化阶段。然后在与B一淀粉酶作用进入糖 化阶段。首先利用一淀粉酶将淀粉浆液化,降低淀粉粘度并 将其水解成糊精和低聚糖,应为淀粉中蛋白质的含量低于原来 的大米,所以经过液化的混合液可直接加入糖化酶进入糖化阶 段,而不用像以大米为原材料那样液化后需经过板筐压滤机滤 去大量蛋白质沉淀。液化过程中除了加淀粉酶还要加氯化钙, 整个液化时间约30min。一定温度下液化后的糊精及低聚糖在 糖化罐内进一步水解为葡萄糖。淀粉浆液化后,通过冷却器降 温至60℃进入糖化罐,加入糖化酶进行糖化。糖化温度控制在60℃左右,PH值4.5,糖化时间18-32h。糖化结束后,将糖化罐加热至80 85℃,灭酶30min。过滤得葡萄糖液,经过压滤 机后进行油水分离(一冷分离,二冷分离),再经过滤后连续消 毒后进入发酵罐。 1.2谷氨酸发酵发酵 谷氨酸发酵过程消毒后的谷氨酸培养液在流量监控下进入谷氨酸发酵罐,经过罐内冷却蛇管将温度冷却至32℃,置入 菌种,氯化钾、硫酸锰、消泡剂及维生素等,通入消毒空气,经一

段时间适应后,发酵过程即开始缓慢进行。谷氨酸发酵是一个 复杂的微生物生长过程,谷氨酸菌摄取原料的营养,并通过体 内特定的酶进行复杂的生化反应。培养液中的反应物透过细胞 壁和细胞膜进入细胞体内,将反应物转化为谷氨酸产物。整个 发酵过程一般要经历3个时期,即适应期、对数增长期和衰亡期。每个时期对培养液浓度、温度、PH值及供风量都有不同的 要求。因此,在发酵过程中,必须为菌体的生长代谢提供适宜的生长环境。经过大约34小时的培养,当产酸、残糖、光密度等指标均达到一定要求时即可放罐。 1.3 谷氨酸提取与谷氨酸钠生产工艺 该过程在提取罐中进行。利用氨基酸两性的性质,谷氨酸 的等电点在为pH3.0处,谷氨酸在此酸碱度时溶解度最低,可经长时间的沉淀得到谷氨酸。粗得的官司谷氨酸经过于燥后分 装成袋保存。 1.4谷氨酸钠的精制 谷氨酸钠溶液经过活性碳脱色及离子交换柱除去C a 、 Mg 、F e 离子,即可得到高纯度的谷氨酸钠溶液。将纯净的 谷氨酸钠溶液导入结晶罐,进行减压蒸发,当波美度达到295 时放入晶种,进入育晶阶段,根据结晶罐内溶液的饱和度和结 晶情况实时控制谷氨酸钠溶液输入量及进水量。经过十几小时 的蒸发结晶,当结晶形体达到一定要求、物料积累到80%高度时,将料液放至助晶槽,结晶长成后分离出味精,送去干燥和筛

生产工艺流程图和工艺描述

生产工艺流程图和工艺描述 香肠工艺流程图 辅料验收原料肉验收 原料暂存肥膘解冻 精肉解冻水切丁辅料暂存分割热水漂洗1 漂洗2 加水绞肉 肠衣验收、暂存(处理)灌装、结扎 (包括猪原肠衣和蛋白肠衣) 咸水草、麻绳验收、暂存浸泡漂洗3 冷却 内包装 装箱、入库 出货

香肠加工工艺说明 加工步骤使用设备操作区域加工工艺的描述与说明 原料肉验收、暂存化验室、仓库 按照原料肉验收程序进行,并要求供应商 提供兽药残留达标保证函及兽医检疫检 验证明 辅料验收、暂 存 化验室、仓库按验收规程进行验收肥膘验收、暂 存 化验室、仓库按验收规程进行验收肠衣验收化验室按验收规程进行验收 肠衣处理腊味加工间天然猪肠衣加工前需用洁净加工用水冲洗,人造肠衣灌装前需用洁净加工用水润湿 咸水草、麻绳 验收 化验室按验收规程进行验收暂存仓库 浸泡腊味加工间咸水草、麻绳加工前需用洁净加工用水浸泡使之变软 解冻解冻间肉类解冻分 割间 ≤18℃、18~20h恒温解冻间空气解冻 分割分割台、刀具肉类解冻分 割间 将原料肉筋键、淋巴、脂肪剔除、并分割 成约3cm小肉块 加工步骤使用设备操作区域加工工艺的描述与说明 漂洗2 水池肉类解冻分 割间 加工用水漂洗,将肉的污血冲洗干净 绞肉绞肉机肉类解冻分 割间 12℃以下,采用Φ5mm孔板 肥膘切丁切丁机肉类解冻分 割间 切成0.5cm长的立方

漂洗1 水池肉类解冻分 割间 水温45-60℃,洗去表面游离油脂、碎肉 粒 灌装、结扎灌肠机香肠加工间按产品的不同规格调节肠体长度,处理量800~1200kg/h ,温度≦12℃ 漂洗3 水池香肠加工间水温45~60℃,清洗肠体表面油脂、肉碎 冷却挂肠杆预冷车间12℃下冷却0.5~1小时,中心温度≦25℃ 内包装真空机、电子 秤、热封口机 内包装间 将待包装腊肠去绳后按不同规格称重,装 塑料袋、真空包装封口 装箱、入库扣扎机、电子 秤 外包装间、成 品仓库 将真空包装的产品装彩袋封口,按不同规 格装箱、核重、扣扎放入成品库并挂牌标 识。

啤酒产糖化车间工艺流程设计

《发酵工艺设计》 30200t/a啤酒厂糖化车间工艺流程设计 设计人:汪海宾 学校:开封大学 专业:生物化工工艺 班级:09生化1 学号:2009051098 指导老师:胡斌杰 2011年10月

目录 一、绪论······················································ 1.1 设计的目的 1.2设计思想 1.3 啤酒酿造业存在的问题 二、设计任务书················································ 三、生产工艺流程图及生产过程·································· 3.1啤酒糖化的流程与说明 (5) 3.2 原辅料预处理 (6) 3.3麦芽汁的制备 (8) 3.3.1 糊 化 (8) 3.3.2 糖 化 (9) 3.3.3 过 滤 (10) 3.3.4 麦汁煮沸与酒花的添 加 (10) 3.3.5 麦汁热凝固物的沉 淀 (11) 3.3.6 麦芽汁冷 (11)

四、30200t/a啤酒厂糖化车间的物料衡算······················· 4.1工艺技术指标及基础数据11 4.2 100kg原料(75%麦芽,25%大米)生产12°淡色啤酒的物料衡算 (12) 4.3生产100L 12°淡色啤酒的物料衡算 (13) 4.4.30200t/a啤酒厂糖化车间的物料衡算 五、啤酒厂糖化车间生产设备的设计与选型························ 5 1.啤酒厂糖化设备的组合方式 5.2.糊化设备 5.2.1.功能用途 5.2.2糊化锅容积的确定 5.2.3糊化锅的主要尺寸 5.2.4换热面积 5.3糖化设备 5.3.1糖化锅容积的确定 5.3.2糖化锅的主要尺寸 5.3.3加热面积 5.4过滤槽 5.5煮沸锅 5.6回旋沉淀槽 ········································ 六、环境保护(啤酒工厂三废处理)········································ 6.1、三废概况················································

黑曲霉生产糖化酶及酶活测定_单海艳

第19卷 第7期 牡丹江大学学报 Vol.19 No.7 2010年7月 Journal of Mudanjiang University Jul. 2010 92 文章编号:1008-8717(2010)07-0092-03 黑曲霉生产糖化酶及酶活测定 单 海 艳 (牡丹江大学,黑龙江 牡丹江 157000) 摘 要:本文对黑曲霉突变株Uv11-48生产糖化酶液体深层发酵进行了全程生产工艺的研究,证实了黑曲霉突变株是一种产孢力强、抗污染能力强、易培养的糖化酶生产菌,经液体深层通风发酵可得出:只要充分利用突变株的有利条件,掌握好菌种特性,合理配制营养,控制好发酵条件,便可获得高酶活力的高产糖化酶。本实验还运用了几种酶活力测定方法,以资进行优劣探讨。 关键词:黑曲霉;液体通风发酵;糖化酶;酶活力 中图分类号:Q-331 文献标识码:B 一、前言 (一)黑曲霉菌种特性 1.黑曲霉的分类地位 黑曲霉在分类学上处于:真菌门、半知菌亚门、丝孢纲、丝孢目、丛梗孢科、曲霉属、黑曲霉群,拉丁学名:Aspergillus niger 。 2.黑曲霉形态、生理、生态特性 孢子头呈暗黑色,菌丝体由具横隔的分枝菌丝构成,菌丝黑褐色,顶囊球形,小梗双层,分生孢子球形,平滑或粗糙。一般进行无性生殖,其可育细胞称足细胞。 3.黑曲霉突变株的形态、生理、生态、特征 在查氏培养基上菌落曲型为炭黑色,有辐射沟纹,从菌落边缘向中心,分化为伸长部位,活性部位,成熟部位,老化部位几个区域即孢子萌发最早出现于中心部位是伸展部位,并逐渐形成密生部位,分生孢子部位,最后在中心出现的是成熟部位,菌落背面无色或稍黄。 (二)糖化酶的分类、地位、性质及用途 1.糖化酶在国际酶学委员会,在系统命名法中的地位 糖化酶是淀粉酶,在系统命名法中属水解酶类。 2.糖化酶的性质 糖化酶(glucamylase )又名糖化型淀粉酶(glueoamylase )或淀粉葡萄糖苷酶。其系统名称为淀粉α1.4-葡萄聚糖水解酶。糖化酶是一种胞外外切酶,但其专一性低,主要是从淀粉链的非还原性末端切开α-1.4-键。一般淀粉水解程度达80%。 (1)糖化酶中糖和蛋白组成 糖化酶是一种糖蛋白,通常碳水化合物占4%-18%,这些碳水化合物主要是半乳糖、葡萄糖、葡萄糖胺和甘露糖,糖化酶残基的排列在其热和酸碱稳定性上有特殊意义。 (2)糖化酶组分多型性 真菌产生的糖化酶组分多型性是常见的,市售的糖化酶中可分离出葡萄糖酶?和葡萄糖酶И两种组分。而市售黑曲霉生产的糖化酶曾分离出六种活性组分,每种均可从可溶性淀粉中释放出单一的β-D-葡萄糖。这六种组分的分子量,沉淀系数,化学组分,等电点,酶的动力学及其它性质各异。培养基成分和的生产条件对糖化酶组分多型性也有影响,天然糖化酶在微生物培养或酶的制备过程中可能受葡萄糖苷酶和蛋白酶的作用而成多型性的酶类。 (3)糖化酶的热稳性 工业用的糖化酶都是利用它的热稳性,α-环状糊精可提高糖化酶的热稳性,最适温度范围一般为50℃~60℃。 (4)从酶PH 稳定性上看: 糖化酶具较宽的PH 值适应范围,但最适PH 为4-5。 (5)Ca 离子与酶结合后可使结构变得松散些,更有利于催化反应。 (6)糖化酶与底物亲和性 收稿日期:2009-11-26 作者简介:单海艳(1977—),女,牡丹江大学化工系讲师,研究方向:生物教学。 DOI:10.15907/https://www.sodocs.net/doc/a45480560.html,ki.23-1450.2010.07.036

啤酒生产流程图及说明

啤酒生产工艺流程 啤酒生产工艺流程可以分为制麦、糖化、发酵、包装四个工序。现代化的啤酒厂一般已经不再设立麦芽车间,因此制麦部分也将逐步从啤酒生产工艺流程中剥离。) 一个典型的啤酒生产工艺流程图如下(不包括制麦部分): 注:本图来源于中国轻工业出版社出版管敦仪主编《啤酒工业手册》一书。 图中代号所表示的设备为: 1、原料贮仓 2、麦芽筛选机 3、提升机 4、麦芽粉碎机 5、糖化锅 6、大米筛选机 7、大米粉碎机 8、糊化锅 9、过滤槽 10、麦糟输送 11、麦糟贮罐 12、煮沸锅/回旋槽 13、外加热器 14、酒花添加罐 15、麦汁冷却器 16、空气过滤器 17、酵母培养及添加罐 18、发酵 罐 19、啤酒稳定剂添加罐 20、缓冲罐 21、硅藻土添加罐 22、硅藻土过滤机 23、啤酒精滤机 24、清酒罐 25、洗瓶机 26、灌装机 27、杀菌机 28、贴标机 29、装箱机 (一)制麦工序 大麦必须通过发芽过程将内含的难溶性淀料转变为用于酿造工序的可溶性糖类。大麦在收获后先贮存2-3月,才能进入麦芽车间开始制造麦芽。 为了得到干净、一致的优良麦芽,制麦前,大麦需先经风选或筛选除杂,永磁筒去铁,比重去石机除石,精选机分级。 制麦的主要过程为:大麦进入浸麦槽洗麦、吸水后,进入发芽箱发芽,成为绿麦芽。绿麦芽进入干燥塔/炉烘干,经除根机去根,制成成品麦芽。从大麦到制成麦芽需要10天左右时间。 制麦工序的主要生产设备为:筛(风)选机、分级机、永磁筒、去石机等除杂、分级设备;浸麦槽、发芽箱/翻麦机、空调机、干燥塔(炉)、除根机等制麦设备;斗式提升机、螺旋/刮板/皮带输送机、除尘器/风机、立仓等输送、储存设备。 (二)糖化工序 麦芽、大米等原料由投料口或立仓经斗式提升机、螺旋输送机等输送到糖化楼顶部,经过去石、除铁、定量、粉碎后,进入糊化锅、糖化锅糖化分解成醪液,经过滤槽/压滤机过滤,然后加入酒花煮沸,去热凝固物,冷却分离 麦芽在送入酿造车间之前,先被送到粉碎塔。在这里,麦芽经过轻压粉碎制成酿造用麦芽。糊化处理即将粉碎的麦芽/谷粒与水在糊化锅中混合。糊化锅是一个巨大的回旋金属容器,装有热水与蒸汽入口,搅拌装置如搅拌棒、搅拌桨或

葡萄糖生产工艺流程图和工艺说明

葡萄糖生产工艺流程图和工艺说明

葡萄糖生产工艺说明 1、第一关键步骤是液化,目的是将水解淀粉的α一1,4糖苷键,属于随机剪切模式,反应后形成麦芽糊精。由于液化酶耐高温,PH 值位于5.5-7之间,因此液化之前需要提高温度到105摄氏度左右,太高温度不划算,太低温度不利于液化酶的效率,105摄氏度最为合适。由于淀粉乳加工过程中,使用了过量的酸,在液化前的调乳阶段需要加入纯碱。 2、第二关键步骤是糖化,目的是将麦芽糊精继续剪切成葡萄糖,使用的淀粉酶是糖化酶,其不仅可以水解淀粉的α一1,4糖苷键,还可以水解淀粉的α一1,6糖苷键,由于糖化酶的最佳温度是55-60摄氏度,PH好滋味4.0-4.5,因此在糖化工艺中,需要进行降温,并加入盐酸以调整PH值到合理的区间。值得注意的是:糖化步骤前需要降温,而液化步骤前需要升温,因此液化工艺和糖化工艺之间有一个换热的过程,糖化降温的热量为液化升温的物料进行预热。 3、第三个关键步骤是过滤脱色,严格来说这是一个步骤,转鼓过滤机的转鼓上涂布了硅藻土,葡萄糖浆经过转鼓时,大部分杂质被硅藻土吸附,葡挞糖浆得以净化,除去了大颗粒的杂质。小颗粒带颜色的杂质继续进入脱色反应釜进行脱色处理,使用活性炭吸收小颗粒颜色杂质后,对活性炭进行过滤。 4、第四个关键步骤是离子交换。对前期加入的氯化钠、盐酸等所含的钠离子、氯离子进行脱离,使用离交柱子,离交柱子吸附钠离子和氯离子之后会失效,这时候需要停止进料,使用备用离交柱子走料,失效的离交柱子使用盐酸和液碱(火碱)进行再生处理。 5、第五个关键步骤是蒸发浓缩,利用蒸汽通入真空蒸发器,进行物料浓缩处理,使得物料达到结晶前粘稠状态。 6、提溜个关键步骤是结晶和离心。投入晶种的目的是为了诱导粘稠物料结晶成型,降温的目的是诱导物料中的晶型在达到结晶温度的同时逐步析出,达到离心的条件。需要注意的是,离心后的母液仍然含有大量的糖,同时,有可能含有部分离子,因此配置在立交之前,而洗水是离心中对晶体洗涤用水,含有离子和过程杂质较少,所以配置在蒸发浓缩工艺中继续回收利用。

米曲霉在食品中的应用

米曲霉在食品中的应用 摘要:介绍了米曲霉的生物学特性,并综述了它在调味品、饲料、生产曲酸、消除乳糖不耐症、酿酒等方面的应用,提出了其发 展前景。 关键词:米曲霉;工业:应用;展望 1米曲霉的生物学特征 米曲霉CAs ) 是一种好气性真菌,属于半知菌亚门、曲霉属,菌丝一般呈黄绿色,后为黄褐色,分生孢子梗生长在厚壁的足细胞上,分生孢子头呈放射形,项囊球形或瓶形,小梗一般为单层,分生孢子球形平滑,少数有刺,培养适温为37度。米曲霉的菌丝由多细胞组成,是一类产复合酶的菌株,除产蛋白酶外,还可产淀粉酶、糖化酶、纤 维素酶、植酸酶等。在淀粉酶的作用下,将原料中的直链、支链淀粉降解为糊精及各种低分子糖类,如麦芽糖、葡萄糖等;在蛋白酶的作用下,将不易消化的大分子蛋白质降解为蛋白胨、多肽及各种氨基酸, 而且可以使辅料中粗纤维、植酸等难吸收的物质降解,提高营养价值、保健功效和消化率,广泛应用于食品、饲料、生产曲酸、酿酒等发酵业。 2米曲霉在工业上的应用 2.1用于发酵生产 豆豉、豆酱豆豉是我国古老的大豆发酵制品之一,营养丰富,药食兼用,对我国人民的饮食文化和医疗保健发 挥着重大作用。在传统豆豉酿造工艺中,米曲霉酿造豆豉在我国应用最早、最广。《食经》等历史文献记载作豉法大都是米曲霉豆豉。当时先人们能够巧妙地控制米曲霉的最适温度,不超过37℃,“温如人腋下”,直到“后着黄衣,色均足”。由于没有显微镜,看不到微生物的个体形态,但能通过微生物的群体形态“黄农”来控制微生物的生长繁殖。成曲以米曲霉为主,兼有其它霉菌、酵母和细菌等稳定的群 体。随着科学发展,在前人基础上相继出现改良的多菌制曲和无盐固态发酵工艺,己达到相当高的水平,在生产实践中产生了良好的效果。 随着人们对食品的营养结构及保健性要求的提高,虽然酱具特有的色、香、味,然而已满足不了人民生活水平不断提高的需求。最近,日本研制了保健酱一荞麦豆酱,其除了含有17种氨基酸外,还含有 其它酱品没有的芦丁(2.4rag/lOOg),在保持原有豆酱生理机能的同时,又增加了荞麦的保健性,是一种多功能的保健调味品。鞠洪荣等[3]研究表明,在传统工艺和日本工艺的基础上进行改进,即按一定比例如入米曲霉酿造的荞麦豆酱,酱香较浓,与传统豆酱相比具有独特的醇香味,且提高了营养价值和保健效果,有潜在的市场前景。 2.2与黑曲霉、绿色木霉复合发酵 用于酱油生产酱油酿造主要靠米曲霉的作用。在米曲霉生过程中能分泌多种酶系,其中最重要的是蛋白酶、淀粉酶和酯酶等。天然发酵酱油是利用蛋白酶的水解作用,将豆类中的蛋白质降解成多肽、氨基酸等可溶性含氮物,且口味好,营养丰富,是营养性风味调料的发展方向[4]。而淀粉酶的作用是将制曲后原料中的淀粉或经糖化后糖浆中残留的淀粉进一步彻底糖化降解,糖化后生成的单糖类如葡萄糖、果糖、多缩戊糖等,对酱油的色、香、味、体有重要影响。因此,米曲霉所产淀粉酶的性质与酱油质量好坏密切相关。吕嘉枥等[5]对分离纯化的米曲霉(今野菌株)所产.淀粉酶进行了研究,探索出了该菌株产淀粉酶的培养温度和最佳培养时间。米曲霉酶系活性的高低将直接影响到原料的利用率及产品的产率,影响酱油中可溶性含氮物的含量,从而也会影响酱油的品质;而米曲霉产孢子能力的强弱则会影

酶制剂工业化可行性报告

发酵制品蛋白酶生产可行性报告 一、项目简介: 1、酶制剂发展现状: 现在酶制剂已发展成为一种重要的工业产品,它广泛应用于食品工业、医药工业、纺织业、酿酒业、洗衣粉、制革以及造纸--纸浆加工业等各行各业。酶制剂市场年增长率平均为5%左右。据统计,占酶制剂市场总量95%的酶为大宗工业酶,其中主要是洗衣粉专用酶(如蛋白酶、脂肪酶和淀粉酶等),食品工业用酶(如焙烤食品用酶、啤酒、白酒等发酵酒的酿酒用酶、果汁加工用酶--果胶酶、肉类加工用酶、玉米淀粉加工"果葡糖浆"专用淀粉酶、葡萄糖异构酶等等)、纺织品加工专用酶(其中用量最大的一种酶是可使纤维织物手感柔软光滑的"纤维素酶")和林产品加工专用酶(如可分解木质素的"木质素酶"等等)。这体现了高技术(生物工程技术)产品的市场价值远远胜过常规产品的价值。 现在世界各国投入大量人力、物力和财力进行生物酶制剂的研究,在发达国家,特别是丹麦、美国、日本、芬兰等已经形成商品化、系列化的酶制剂。 2、酶制剂的用途广泛: 在饲料工业中,在食品应用中,在日用化工生产中,造纸工业中、医药工业中,生物酶制剂都具有广泛的用途。 在印染行业中,酶制剂洗涤去除浮色,提高牢度,并可以达到降低皂洗温度、浮色洗除容易的目的,适用于各种纤维和染料。它具有

成本低,反应快、节能、节水、不损伤纤维和避免染色不匀、提高给色量和染色牢度等优点。减少烧碱、染料等强污染物质的使用量,降低废水排放量,有利于实现洁净化生产,有助于保护生态化境。二、项目技术工艺 公司与山东大学生命科学学院、山东农业大学生命科学学院紧密合作,技术上总结出一套完整的以纺织印染用酶为核心的生物酶制剂固体发酵技术,使生产的酶制剂活性高,性能稳定,工业化发酵产酶制剂水平均居国内领先地位。通过固体发酵法生产,可较快地实现产业化生产。生产工艺: 1.生产菌株的选育 枯草芽孢杆菌菌株,由山东农业大学生命科学学院生物工程实验室选育。 2 原料 麸皮、豆饼粉、菜籽饼粉等。 3 斜面种子培养基(三角瓶) 马铃薯200 g/L,蔗糖20 g/L ,琼脂18 g/L,自然pH;121℃灭菌20 min,放置斜面;冷却后接种枯草芽孢杆菌菌株,于(32±0.5)'C 培养96 h。 4 麸曲种子制备 4.1 一级麸曲种子(500ml三角瓶) 4.2 二级麸曲种子(曲盘) 5 .固态发酵培养

液体葡萄糖的生产工艺流程

液体葡萄糖的生产工艺流程
主要淀粉糖品的生产工艺流程: 主要淀粉糖品的生产工艺流程:液体葡萄糖 一、性质及应用 液体葡萄糖是我国目前淀粉糖工业中最主要的产品,广泛应用于糖果、糕点、饮料、冷饮、 焙烤、罐头、果酱、果冻、乳制品等各种食品中,还可作为医药、化工、发酵等行业的重要原料。 该产品甜度低于蔗糖,黏度、吸湿性适中。用于糖果中能阻止蔗糖结晶,防止糖果返砂, 使糖果口感温和、细腻。 葡萄糖浆杂质含量低,耐储存性和热稳定性好,适合生产高级透明硬糖; 该糖浆黏稠性好、渗透压高,适用于各种水果罐头及果酱、果冻中,可延长产品的保存期。 液体葡萄糖浆具有良好的可发酵性,适合面包、糕点生产中的使用。 二、主要生产工艺 工艺有酸法、酸酶法和双酶法。 工艺有酸法、酸酶法和双酶法。 1、酸法工艺 酸法工艺是以酸作为水解淀粉的催化剂,淀粉是由多个葡萄糖分子缩合而成的碳水化合 物,酸水解时,随着淀粉分子中糖苷键断裂,逐渐生成葡萄糖、麦芽糖和各种相对分子质量较低 的葡萄糖多聚物。该工艺操作简单,糖化速度快,生产周期短,设备投资少。 1) 工艺流程 酸法工艺流程如图所示: 淀粉——调浆——糖化——中和——第一次脱色过滤——离子交换—— 第一次浓缩——第二次脱色——过滤——第二次浓缩——成品

图 2) 操作要点 (1)淀粉原料要求
酸法工艺流程
常用纯度较高的玉米淀粉,次之为马铃薯淀粉和甘薯淀粉。
(2)调浆在调浆罐中,先加部分水,在搅拌情况下,加入粉碎的干淀粉或湿淀粉,投料完 毕,继续加入 80℃左右的水,使淀粉乳浓度达到 22~24 波美度(生产葡萄糖淀粉乳浓度为 12~ 14 波美度),然后加入盐酸或硫酸调 pH 值为 1.8。调浆需用软水,以免产生较多的磷酸盐使糖 液混浊。 (3)糖化调好的淀粉乳,用耐酸泵送入耐酸加压糖化罐。边进料边开蒸汽,进料完毕后, 升压至(2.7~2.8)×104pa(温度 142~144℃),在升压过程中每升压 0.98×104pa,开排气阀 约 0.5 min,排出冷空气,待排出白烟时关闭,并借此使糖化醪翻腾,受热均匀,待升压至要 求压力时保持 3~5 min 后,及时取样测定其 DE 值,达 38~40 时,糖化终止。 (4)中和糖化结束后,打开糖化罐将糖化液引人中和桶进行中和。用盐酸水解者,用 10% 碳酸钠中和,用硫酸水解者用碳酸钙中和。前者生成的氯化钙,溶存于糖液中,但数量不多,影 响风味不大,后者生成的硫酸钙可于过滤时除去。 糖化液中和的目的,并非中和到真正的中和点 pH 值 7,而是中和大部分盐酸或硫酸,调节 pH 值到蛋白质的凝固点,使蛋白质凝固过滤除去,保持糖液清晰。糖液中蛋白质凝固最好 pH 值 为 4.75,因此,一般中和到 pH 值 4.6~4.8 为中和终点。中和时,加入干物质量 0.1%的硅 藻土为澄清剂,硅藻土分散于水溶液中带负电荷,而酸性介质中的蛋白质带正电荷,因此澄清效 果很好。 (5)脱色过滤 中和糖液冷却到 70~75℃,调 pH 值至 4.5,加入于物质量 0·25%的粉末
活性炭,随加随搅拌约 5 min,压人板框式压滤机或卧式密闭圆桶形叶滤机过滤出清糖滤液。 (6)离子交换 盐提纯。 (7)第一次浓缩 将提纯糖液调 pH 值至 3.8~4.2,用泵送入蒸发罐保持真空度 66. 661 将第一次脱色滤出的清糖液,通过阳一阴一阳一阴 4 个离子交换柱进行脱
Pa 以上,加热蒸汽压力不超过 0.98×10。Pa,浓缩到 28~31 波美度,出料,进行第二次脱色。 (8)第二次脱色过滤第二次脱色与第一次相同。第二次脱色糖浆必须反复回流过滤至无活

米曲霉

米曲霉( Asp.oryzae) 属于真菌菌落生长快,10d直径达5~6cm,质地疏松,初白色、黄色,后变为褐色至淡绿褐色。背面无色。分生孢子头放射状,一直径150~300μm,也有少数为疏松柱状。分生孢子梗2mm左右。近顶囊处直径可达12~25μm,壁薄,粗糙。顶囊近球形或烧瓶形,通常40~50μm。上覆小梗,小梗一般为单层,12~15μm,偶尔有双层,也有单、双层小梗同时存在于一个顶囊上。分生孢子幼时洋梨形或卵圆形,长大后多变为球形或近球形,一般4.5μm,粗糙或近于光滑。(半知菌亚门丝孢钢丝孢目从梗孢科曲霉属真菌中的一个常见种)。菌落生长较快,质地疏松。初呈白色、黄色,后转黄褐色至淡绿褐色,背面无色,分布甚广,主要在粮食、发酵食品、腐败有机物和土壤等处。是我国传统酿造食品酱和酱油的生产菌种。也可生产淀粉酶、蛋白酶、果胶酶和曲酸等。会引起粮食等工农业产品霉变。米曲霉(Aspergillus oryzae)具有丰富的蛋白酶系,能产生酸性、中性和碱性蛋白酶,其稳定性高,能耐受较高的温度,广泛地应用于食品、医药及饲料等工业中。米曲霉也是美国食品与药物管理局和美国饲料公司协会1989年公布的40余种安全微生物菌种之一。 米曲霉是一类产复合酶的菌株,除产蛋白酶外,还可产淀粉酶、糖化酶、纤维素酶、植酸酶等。在淀粉酶的作用下,将原料中的直链、支链淀粉降解为糊精及各种低分子糖类,如麦芽糖、葡萄糖等;在蛋白酶的作用下,将不易消化的大分子蛋白质降解为蛋白胨、多肽及各种氨基酸,而且可以使辅料中粗纤维、植酸等难吸收的物质降解,提

高营养价值、保健功效和消化率,广泛应用于食品、饲料、生产曲酸、酿酒等发酵工业,并已被安全地应用了1000多年。米曲霉是理想的生产大肠杆菌不能表达的真核生物活性蛋白的载体。米曲霉基因组所包含的信息可以用来寻找最适合米曲霉发酵的条件,这将有助于提高食品酿造业的生产效率和产品质量。米曲霉基因组的破译,也为研究由曲霉属真菌引起的曲霉病提供了线索。曲霉(Aspergillus oryzae)具有丰富的蛋白酶系,能产生酸性、中性和碱性蛋白酶,其稳定性高,能耐受较高的温度,广泛地应用于食品、医药及饲料等工业1.1影响米曲霉系的因素 影响米曲霉酶系形成、作用的因素主要有: 1.曲料:曲料米曲霉的菌丝由多细胞组成,具有产酶功能,菌丝体在曲料上生长好坏直接关系到其酶系的形成和酶活性的强弱。酱油制曲过程的实质就是要创造米曲霉生长的最适宜条件,保证米曲霉充分发育繁殖,分泌出酿造酱油所需的各种酶类。所以制曲原料的选择、处理和配比要严格把关。曲料要以蛋白质含量较高、碳水化合物适量为原则进行选择配比。曲料的处理要注意以下几点:1。粉碎要适度。颗粒太粗,会减少米曲霉生长繁殖的总面积,降低酶活力;颗粒太细,润水后容易结块,蒸料时会产生夹心,导致制曲通风不畅,不利于米曲霉的生长。 2.蒸煮要适度。控制蛋白质的适度变性,蛋白质的变性过程对米曲霉生长极其重要。 3.温度酱油发酵的过程就是各种酶促反应的过程,温度越高,酶

生物工程设备设计任务书---年产X吨糖化酶发酵车间工艺设计

生物工程设备课程设计任务书 -----年产X吨糖化酶发酵车间工艺设计一、课程教学目标 生物工程课程设计是生物工程专业学生在毕业设计(论文)前进行的一次综合训练。通过本课程设计培养学生综合运用所学知识解决工程问题的能力,为毕业设计(论文)打好应有的理论基础。通过生物工程课程设计的训练,学生要达到的基本要求如下: 1、进一步巩固加深所学《生物工艺学》、《生物工程设备》、《生物分离工程》、《生物工程设备及工厂设计》、《机械制图》、《化工原理》等专业课程的基本理论和知识,使之系统化、综合化。树立正确的设计思想,掌握生物工程设备及工厂设计的基本方法和步骤,为今后创造性设计生物工程设备和相关技术改造工作打下一定的基础。 2、培养学生综合运用基础理论和专业知识解决工程实际问题的能力。 3、培养学生熟悉、查阅并综合运用各种有关的设计手册、规范、标准、图册等设计技术资料;进一步培养学生识图、制图、运算、编写设计说明书等基本技能;完成作为工程技术人员在机械设计方面所必备的设计能力的基本训练。二、课程设计题目(任选一) 年产X吨味精发酵车间设计:2000吨、3000吨、4000吨、5000吨、6000吨 三、课程设计任务: 1、根据设计任务,查阅有关资料、文献,搜集必要的技术资料及工艺参数,进行生产方法的选择与比较,工艺流程与工艺条件的确定和论证,确定工艺过程的重要参数。 2、工艺流程图,按工艺流程图绘制要求完成有一定控制工点的流程详图,包括设备、物料管线、主要管件、控制仪表等内容。 3、发酵罐主要结构尺寸、搅拌装置及冷却装置计算,根据工艺要求选取相应发酵罐类型,进行发酵罐种子罐数量计算,发酵罐几何结构尺寸计算,同时完成发酵罐搅拌装置及冷却装置的选型和计算。 4、根据计算结果按相应比例尺寸绘制发酵罐及冷却装置示意图,并完成发酵

生产工艺流程图和工艺说明

1 9 10 12 2 11 13 3 14 4 15 5 16 17 8 7 6 18 至提升机工艺流程设备编号及名称 编号名称 1 永磁筒 2 圆筒初清筛 3 电动三通 4 锤片粉碎机 5 吸尘罩 6 栅筛 7 下料斗 8 斗式提升机 9 风帽 10 组合脉冲除尘器 11 叶轮式闭风机 12 双轴桨叶混合机 13 自动闸门 14 料位器 15 手动闸门 16 螺旋喂料器 17 电子秤 18 刮板输送机 工艺流程图

19 23 20 24 21 25 22 26 工艺流程设备编号及名称编号名称 19 环模制粒机 20 空压机 21 双层冷却器 22 对辊破碎机 23 振动分级筛 24 离心通风机 25 离心集尘器 26 自动打包机 集尘袋

生产流程图工艺说明 一.原料粉碎 需粉碎原料经栅筛除去较大杂质后,投放到下料斗经吸尘罩吸,其目的是降低粉尘浓度。由提升机送到永磁筒除去磁性铁杂质,再经圆筒初清筛得到合格的原料经粉碎储备仓进入粉碎机粉碎至需要大小粒度的粉料 小学少先队组织机构 少先队组织由少先队大队部及各中队组成,其成员包括少先队辅导员、大队长、中队长、小队长、少先队员,为了健全完善我校少先队组织,特制定以下方案: 一、成员的确定 1、大队长由纪律部门、卫生部门、升旗手、鼓号队四个组织各推荐一名优秀学生担任(共四名),该部门就主要由大队长负责部门内的纪律。 2、中、小队长由各班中队公开、公平选举产生,中队长各班一名(共11名),一般由班长担任,也可以根据本班的实际情况另行选举。小队长各班各小组先选举出一名(共8个小组,就8名小队长)然后各班可以根据需要添加小队长几名。 3、在进行班级选举中、小队长时应注意,必须把卫生、纪律部门的检查学生先选举在中、小队长之内,剩余的中、小队长名额由班级其他优秀学生担任。 4、在班级公开、公平选举出中、小队长之后,由班主任老师授予中、小队长标志,大队长由少先队大队部授予大队长标志。 二、成员的职责及任免 1、大、中、小队长属于学校少先队组织,各队长不管是遇见该班的、外班的,不管是否在值勤,只要发现任何人在学校内出现说脏话、乱扔果皮纸屑、追逐打闹、攀爬栏杆、乱写乱画等等一些违纪现象,都可以站出来制止或者报告老师。 2、班主任在各中队要对中、小队长提出具体的责任,如设置管卫生的小队长,管纪律的小队长,管文明礼貌的、管服装整洁的等等,根据你班的需要自行定出若干相应职责,让各位队长清楚自己的职权,有具体可操作的事情去管理,让各位队长成为班主任真正的助手,让学生管理学生。各中队长可以负责全班的任何违纪现象,并负责每天早上检查红领巾与校牌及各小队长标志的佩戴情况。 3、大、中、小队长标志要求各队长必须每天佩戴,以身作则,不得违纪,如有违纪现象,班主任可根据中、小队长的表现撤消该同学中、小队长的职务,另行选举,大队长由纪律、卫生部门及少先队大队部撤消,另行选举。 4、各班中、小队长在管理班级的过程中负责,表现优秀,期末评为少先队部门优秀干部。

相关主题