搜档网
当前位置:搜档网 › 基于OpenFlow的SDN可靠性综述_张团利

基于OpenFlow的SDN可靠性综述_张团利

基于OpenFlow的SDN可靠性综述_张团利
基于OpenFlow的SDN可靠性综述_张团利

可靠性理论基础复习资料

可靠性理论基础复习资料 目 录 第一章 绪论 第二章 可靠性特征量 第三章 简单不可修系统可靠性分析 第四章 复杂不可修系统可靠性分析 第五章 故障树分析法 第六章 三态系统可靠性分析 第七章 可靠性预计与分配 第八章 寿命试验及其数据分析 第九章 马尔可夫型可修系统的可靠性 第一章:可靠性特征量 2.1 可靠度 2.2 失效特征量 2.3 可靠性寿命特征 2.4 失效率曲线 2.5 常用概率分布 2.1 可靠度 一、系统的分类:可修系统与不可修系统; 可修系统是指系统的组成单元发生故障后,经过维修能够使系统恢复到正常工作状态。 不可修系统是指系统或其组成单元一旦发生失效,不在修复,系统处于报废状态。 二、可靠性定义 产品在规定条件下,规定时间内,完成规定功能的能力。 1. 产品:可以是一个小零件,也可以指一个大系统。 2. 规定条件:主要是指使用条件和环境条件。 3. 规定时间:包括产品的运行时间、飞机起落架的起飞着陆次数、循环次数或旋转次数等。 产品可靠性是非确定性的,并且具有概率性质和随机性质。 广义可靠性与狭义可靠性 指可修复产品在使用中或者不发生故障(通过预防性维修),或者发生故障也易于维修,因而经常处于可用状态的能力。 广义可靠性 = 狭义可靠性 + 可维修性 广义可靠性典型事例:赛车 可靠性的分类:固有可靠性和使用可靠性 固有可靠性:通过设计、制造、管理等所形成的可靠性 (通常体现在产品的固有寿命上) 使用可靠性:产品在使用条件影响下,保证固有可靠性的发挥与实现的功能。 (通常体现在产品的实际使用寿命上) 使用条件:包括运输、保管、维修、操作和环境条件等。 例1:判断下面说法的正确性: 所谓产品的失效,即产品丧失规定的功能。对于可修复系统,失效也称为故障。( √ ) 例2:可靠度R(t)具备以下那些性质?(BCD) A .R(t)为时间的递增函数 B .0≤R(t)≤1 C .R(0)=1 D .R(∞)=0 若受试验的样品数是N 0个,到t 时刻未失效的有Ns(t)个;失效的有N f (t)个。则没有失效的概率估计值,即可靠度的估计值为 可靠度是一个时间的函数,随时间的变化而变化,其取值在0-1之间。 00)()()()()()(N t N N N t N t N t N t N t R f s f s s -==+=

船舶结构可靠性分析

大连海洋大学 船舶结构可靠性分析Analysis of the reliability of the ship structure 船舶结构可靠性分析研究综述 研究领域:船舶与海洋工程(专硕) 姓名:邓英杰 学号: 2015085223012

船舶结构可靠性分析研究综述 摘要:结构可靠性理论是60年代后才发展起来的一门新兴学科,作为结构强度理论与计算结构力学的一个新分支,具有工程实践和船舶安全评价的重大意义。本文就船舶结构可靠性分析近代的发展做了总结性的综述,从载荷、承载能力、可靠性分析方法三个角度出发,并对其今后的研究方向提出了建议。 关键词:船舶结构;可靠性;船舶安全评价;分析方法 1 前言 传统的船舶结构强度计算方法采用的是确定性方法,将船体载荷和材料力学特性等诸多因素都看做是确定性的单值量,这与实际不符,传统的确定性设计已不能满足现代船舶发展的需求,而采用概率统计的方法相比之下更为合理,进而诞生了船舶结构可靠性分析这一学科。 1969年,挪威学者Nordenstrom【1】发表船舶结构分析里程碑的一篇文章,率先将波浪载荷和船舶总纵强度的承载能力看做是随机分布的变量,进而分析船体的失效概率。1972年,美国学者对船体总纵强度的概率模型进行了系统的专题研究,船舶结构可靠性分析理论得到了进一步的发展。 上个世纪80年代中期,船舶可靠性分析方法已经建立了起来。目前,世界各大船级社都在制定以可靠性分析为基础的船舶结构设计规则。

2 载荷 对于船舶结构,静水载荷和波浪载荷是两种主要的载荷形式。 波浪载荷的理论计算是基于上个世纪50年代末的切片理论建立起来的。80年代后期,人们对波浪载荷的研究增加了许多新的内容。S.G.Stiansen【2】提出了波浪载荷的概率模型,研究了低频相应和高频效应的概率组合问题;美国学者 C.G.Soares 从当时的技术水平出发,提出了一个船舶波浪载荷效应的可靠性分析标准模式。该方法的创新性在于,在线性切片理论计算船体波浪弯矩的基础之上,将高频载荷以经验性影响因子的形式与低频波浪弯矩组合。 在早期, 波浪载荷计算中应用的大多是线性理论。随着研究的深入和实践经验的增加, 波浪载荷的非线性性质引起了人们的关注。大量的实船测量和船模试验表明, 行驶在汹涛中的高速舰船, 由于船体的非直舷, 以及底部砰击、外张砰击和甲板上浪等因素的影响, 导致舰船的运动, 特别是波浪载荷呈明显的非线性。这时, 在规则波中的运动不再具有简谐性质, 中垂波浪弯矩幅值明显大于中拱时的幅值。加突出的是, 由于底部砰击和外张砰击, 使船体剖面内出现高频振动弯矩。这种弹性振动是一种瞬态响应, 在高海况下, 两者迭加而成的中垂合成弯矩幅值将远大于线性理论的计算结果。 为了计算砰击振动弯矩,一种被称为“两步走”的方法被广泛使用,即先在刚体假设下计算船体运动和作用在其上的水动力,

浅谈可靠度理论

浅谈可靠度理论

浅谈可靠度理论 工程结构的安全性历来是工程设计中的重大问题,这是因为结构工程的建造耗资巨大,一旦失效不仅会造成结构本身和人民生命财产的巨大损失,还往往产生难以估量的次生灾害和附加损失。 结构可靠度理论的形成始于人们对结构工程中各种不确定性的认识,人们开始较为集中的讨论结构安全度问题,将概率分析和概率设计的思想引入实际工程。如果一种理论分析的结果能指导工程实践,或者说能为工程带来巨大的经济或社会效应,那么这种理论就具有强大的生命力。可靠性科学作为一门与应用紧密相连的基础学科,其生存的立足点就在于推广其应用于工程实际。 1.结构可靠度概述 1.1结构可靠度相关概念 结构所要满足的功能要求是指结构在规定的设计使用年限内应满足下列功能要求: 1、在正常施工和正常使用时,能承受可能出现的各种作用 2、在正常使用时具有良好的工作性能 3、在正常维护下具有足够的耐久性 4、在设计规定的偶然事件发生时及发生后,仍能保持必要的整体稳定性 在以上四项功能要求中,第1、4两项通常指结构的强度、稳定,即所谓的安全性;第2项是指结构的适用性;第3项是指结构的耐久性,三者总称为结构的可靠性,即结构可靠性,是指结构在规定的时间内,在规定的条件下,完成预定功能的能力。 在工程上,一般所说的可靠度,指的就是结构可信赖或可信任的程度。工程结构中的可靠度可表示为能承受在正常施工和正常使用时,可能出现的各种作用;在正常使用时,具有良好的作用性能;在正常维修和保护下,具有足够的耐久性能:在偶然事件(如地震,爆炸,撞击等)发生实际发生后,仍能保持所需的整体稳定性。度量结构可靠性的数量指标称为结构可靠度即为:结构在规定的时间内,在规定的条件下,完成预定功能的概率。 结构的设计、施工和使用过程中存在大量的随机不确定性因素;荷载及结构

机械可靠性习题

机械可靠性习题Newly compiled on November 23, 2020

第一章 机械可靠性设计概论 1、为什么要重视和研究可靠性 可靠性设计是引入概率论与数理统计的理论而对常规设计方法进行发展和深化而形成的一种新的现代设计方法。1)工程系统日益庞大和复杂,是系统的可靠性和安全性问题表现日益突出,导致风险增加。2)应用环境更加复杂和恶劣3)系统要求的持续无故障任务时间加长。4)系统的专门特性与使用者的生命安全直接相关。5)市场竞争的影响。 2、简述可靠性的定义和要点 可靠性定义为:产品在规定的条件下和规定的时间区间内完成规定功能的能力。主要分为两点:1)可靠度,指产品在规定条件下和规定时间内,完成规定功能的概率。1)失效率,定义为工作到时可t 时尚未失效的产品,在时刻t 以后的单位时间内发生失效的概率。 第二章 可靠性的数学基础 1、某零件工作到50h 时,还有100个仍在工作,工作到51h 时,失效了1个,在第52h 内失效了3个,试求这批零件工作满50h 和51h 时的失效率)50(-λ、)51(-λ 解:1)1,100)(, 1)(=?==?t t t n n s f 2)2,100)(, 3)(=?==?t t t n n s f 2、已知某产品的失效率14103.0)(---?==h t λλ。可靠度函数t e t R λ-=)(,试求可靠度 R=%的相应可靠寿命、中位寿命和特征寿命1-e t 解:可靠度函数 t e t R λ-=)( 故有 R t R e R t λ-=)( 两边取对数 t t R R R λ-=)(ln

则可靠度寿命 =?-=-=-h R t t 4999.0999.0103.0999.0ln )(ln λ 33h 中位寿命 =?-=- =-h R t t 45.0999.0103.05.0ln )(ln λ23105h 特征寿命 =?-=-=--h R e t 41999.010 3.03679.0ln )(ln λ33331h 第三章 常用的概率分布及其应用 1、次品率为1%的的大批产品每箱90件,今抽检一箱并进行全数检验,求查出次品数不超过5的概率。(分别用二项分布和泊松分布求解) 解:1)二项分布:3590559055901087.199.001.0! 85!5!90)5(---?=???===q p C x P 2)泊松分布:取9.001.090=?==np μ 2、某系统的平均无故障工作时间t=1000h ,在该系统1500h 的工作期内需要备件更换。现有3个备件供使用,问系统能达到的可靠度是多少 解:应用泊松分布求解5.115001000 1=?==t λμ 3、设有一批名义直径为d=的钢管,按规定其直径不超过26mm 时为合格品。如果钢管直径服从正态分布,其均值u=,标准差S=,试计算这批钢管的废品率值。 解:所求的解是正态概率密度函数曲线x=26以左的区面积,即: 变为标准型为1.13.04 .2526=-=-=σ μx z 由正态分布表查的1.1<<∞-z 的标准正态分布密度曲线下区域面积是 864.0)1.1(=Φ,所以: 136.0864.01)26(=-=

可靠性理论基础知识

可靠性理论基础知识 1.可靠性定义 我国军用标准GIB 451A-2005《可靠性维修性保障性术语》中,可靠性定义 为:产品在规定的条件下,规定的时间内,完成规定功能的能力。 “规定条件”包括使用时的环境条件和工作条件。 “规定时间”是指产品规定了的任务时间。 “规定功能”是指产品规定了的必须具备的功能及其技术指标。 可靠性的评价可以使用概率指标或时间指标,这些指标有:可靠度、失效率、平均无故障工作时间、平均失效前时间、有效度等。典型的失效率曲线是浴盆曲线,其分为三个阶段:早期失效期、偶然失效期、耗损失效期。早期失效期的失效率为递减形式,即新产品失效率很高,但经过磨合期,失效率会迅速下降。偶然失效期的失效率为一个平稳值,意味着产品进入了一个稳定的使用期。耗损失效期的失效率为递增形式,即产品进入老年期,失效率呈递增状态,产品需要更新。 1.1可靠性参数 1、失效概率密度和失效分布函数 失效分布函数就是寿命的分布函数,也称为不可靠度,记为)(t F 。它 是产品或系统在规定的条件下和规定的时间内失效的概率,通常表示为 )()(t T P t F ≤= 失效概率密度是累积失效概率对时间t 的倒数,记为f(t)。它是产品在 包含t 的单位时间内发生失效的概率,可表示为)() ()('t F dt t dF t f ==。 2、可靠度 可靠度是指产品或系统在规定的条件下,规定的时间内,完成规定功能的概率。可靠度是时间的函数,可靠度是可靠性的定量指标。可靠度是时间的函数,记为 )(t R 。通常表示为?∞ =-=>=t dt t f t F t T P t R )()(1)()( 式中t 为规定的时间,T 表示产品寿命。 3、失效率 已工作到时刻t 的产品,在时刻t 后单位时间内发生失效的概率成为该产品时刻 t 的失效率函数,简称失效率,记为)(t λ。) (1) ()()()()()(''t F t F t R t F t R t f t -===λ。 4、不可修复的产品的平均寿命是指产品失效前的平均工作时间,记为MTTF (Mean Time To Failure)。?∞ =0)(dt t R MTTF 。 5、平均故障间隔时间(MTBF )

第1章 可靠性工程概述

工业工程专业《可靠性工程》第1章可靠性工程概述 讲授人:吴泽 E-mail: wuze@https://www.sodocs.net/doc/a75030216.html, 机械工程学院工业工程系

Chapter 1 Introduction to Reliability Engineering 2 ?可靠性基本概念 ?可靠性研究与应用的目的和意义 ?可靠性工程的发展 ?可靠性工程的内涵 ?可靠性工程面临的问题 ?可靠性工作要求 内容提要

Chapter 1 Introduction to Reliability Engineering 3 ?可靠性:产品在规定条件下、规定时间内完成规定功能的能力 ?对象:元件、组件、零件、部件、机器、设备、系统?使用条件:环境、操作、使用方法、运行条件等?规定时间:时间或等价于时间的衡量指标 ?规定功能:在规定参数下正常运行 ?可靠度:可靠性的概率表达 1.1 可靠性基本概念 ?可靠性的分类 ?固有可靠性和使用可靠性 ?广义可靠性(包含可靠性和维修性)和狭义可靠性

Chapter 1 Introduction to Reliability Engineering 4 ?维修性:故障部件在规定条件下、规定时间内,按照规定程序和方法进行维修,修复到指定状态的概率?维修时间:固有维修时间、维修延误、供应延误?可用性:部件在规定时间点、规定条件下完成规定功能的概率 ?与可靠性区别:可用性表示部件处于非故障状态的概率,同时考虑部件的可靠性与维修性 ?可靠性与质量 ?质量:依赖于制造过程和制造精度 ?可靠性:同时受质量和工作条件影响 1.1 可靠性基本概念

Chapter 1 Introduction to Reliability Engineering 5 ?为什么要搞可靠性? 1.2 可靠性研究与应用的目的和意义?世界上没有永恒的事物 ?产品故障会造成巨大的损失 ?经济损失 ?人员安全 ?武器装备丧失战斗力 ?政治、社会问题

可靠性理论模拟题

《可靠性理论》模拟题(补) 一.名词解释 1.可靠性:产品在规定的条件下和规定的时间内完成规定功能的能力。 2. 可靠性设计:系统可靠性设计是指在遵循系统工程规范的基础上,在系统设计过程中,采用一些专门技术,将可靠性“设计”到系统中去,以满足系统可靠性的要求。 3. 最小割集和最小径集:最小割集就是引起顶上事件发生所必需的最低限度的割集。最小径集就是顶上事件不发生所需的最低限度的径集。 4. 网络:连接不同点之间的路线系统或通道系统。 5.广义可靠性:广义可靠性是指产品在其整个寿命期限内完成规定功能的能力,它包括可靠性(即狭义可靠性)与维修性。 6.可靠性指标分配:指根据系统设计任务书中规定的可靠性指标(经过论证和确定的可靠性指标),按照一定的分配原则和分配方法,合理的分配给组成该系统的各分系统、设备、单元和元器件,并将它们写入相应的设计任务书或经济技术合同中。 7. 降额设计:使元器件或设备工作时所承受的工作应力(电应力或温度应力),适当低于元器件或设备规定的额定值,从而达到降低基本故障率、提高使用可靠性的目的。 8. 人机系统:指人与其所控制的机器相互配合,相互制约,并以人为主导而完成规定功能的工作系统。 二.填空题 1.可靠性的定义包含有五个方面的内容,它们是:对象、使用条件、使用期限、规定的功能、概率等。 2.由三种失效率曲线所反应,表现产品在其全部工作过程中的三个不同时期分别是:早期失效期、偶然失效期、耗损失效期。 3.对于可修复的产品,其平均无故障工作时间或平均故障间隔称为平均寿命。 4.失效率函数为常数λ时,可靠度函数表达式可写为: t e t Rλ- = )(。 5.系统进行可靠度分配时,若已知各元件的预计失效率,而进行分配的方法称为阿林斯分配法。 6.简单求解网络可靠度的常用方法有状态枚举法、全概率分解法、最小割集法、最小径集法、不交布尔代数运算规则。 7.割集和径集中反应导致顶上事件发生所必需的最低限度的是最小割集;反应顶上事件不发生所需的最低限度的是最小径集。 8.常用的可靠性特征量有:可靠度、失效率、平均寿命、可靠寿命等。 9.产品失效率曲线一般可分为:递减型失效率曲线、恒定型失效率曲线、递增型失效率曲线。

机械可靠性综述

机械可靠性设计综述 摘要:可靠性优化设计是在常规优化设计的基础上,结合可靠性设计理论发展起来的一种有效的优化设计方法。本文在总结现有文献的基础上对机械可靠性优化设计进行了综述,系统阐述了机械可靠性、可靠性设计、可靠性优化设计及可靠性试验的理论及方法。 关键词:可靠性;优化设计;可靠性试验 Review of Optimization Design of Mechanical Reliability REN Ju-peng (School of Mechanical Engineering and Automation, Northeastern University, Student ID: 1270174) Abstract:On the basis of traditional optimization design, combined with the theory of reliability design, reliability optimization design is an effective optimization design method. In this paper, the existing literatures are firstly summarized, then the theory and method of mechanical reliability, reliability design, reliability optimization design and reliability test are systematically reviewed. Key words:reliability; optimization design; reliability test 随着现代工业技术的飞速发展,机械产品日趋复杂化、大型化、高参数化,使产品发生故障的机会增多,因而,可靠性作为产品质量的主要指标,愈来愈受到工程界的重视。机械可靠性,是指机械产品在规定的使用条件、规定的时间内完成规定功能的能力。机械的可靠性是机械设计的主要目的之一,有效地增强产品质量、降低产品成本、减轻整机质量、提高可靠性和作业效率是可靠性设计的主要目标。随着工业技术的发展,机械产品性能参数日益提高,结构日趋复杂,使用场所更加广泛,产品的性能和可靠性问题也就越来越突出。机械可靠性设计的基本任务是在故障物理学研究的基础上,结合可靠性试验以及故障数据的统计分析,提供实际计算的数学力学模型和方法及实践。 科技研究人员和工程设计人员积极投入到可靠性工程的研究与实践之中,取得了可喜的成果。张义民[1]结合现代数学力学理论,系统地阐明机械可靠性设计、机械动态可靠性设计、机械可靠性优化设计、机械可靠性灵敏度设计、机械可靠性稳健设计等可靠性设计理论与方法内涵与递进。陈静等[2]阐述了机械产品优化设计及可靠性的相关理论,介绍了可靠性优化设计的应用及发展现状,并介绍了机械行业相关的软件应用情况。喻天翔等[3]对当前机械可靠性的特点和争议进行介绍,从Bayesian理论、FMECA和疲劳可靠性试验三个方面总结了机械可靠性试验技术相关的重要理论问题及其发展,并阐述了可靠性增长试验、加速试验和微机械可靠性试验技术的国内外发展,总结了机械可靠性试验技术研究存在的问题及其发展趋势。 本文将在上述文献的基础上对机械可靠性优化设计进行综述,系统阐述机械可靠性、可靠性设计、可靠性优化设计及可靠性试验的理论及方法。 1可靠性设计 1.1 可靠性设计 传统的机械设计方法认为零件的强度和应力都是单值,只要计算出的安全系数大于规定的安全系数,就认为零件是安全的,因而设计过程中忽略了各设计参数的随机性。可靠性设计将零件的应力和强度作为随机变量,认为应力受到各种环境因素(温度、腐蚀、粒子辐射等)的影响,具有一定的分布规律;强度受材料的性能、工艺环节的波动和加工精度等的影响,也是具有一定的分布规律。可靠性设计认为所设计的任一机械存在着一定的失效可能性,设计时根据需要预先控制的失效概率或可靠度,考虑各参数的随机性及分布规律,以反映出零部件的实际工作状况。 产品的可靠性表示产品在规定使用条件和使用期限内,保持其正常技术性能完成规定功能的能力。可靠性设计的一个目标是计算可靠度,可靠度是指产品在规定的条件下和规定的时间内,完成规定功能的概率。其表达式为: ()0 () x g X R f X dX > =? 式中f x(X)为基本随机参数向量 T 12 (,,) n X X X X =???的联合概率密度;g(X)为状态函数,可表示零件的不同状态:g(X)>0为安全状态,

可靠性理论

可靠性理论 一、单项选择题(只有一个选项正确,共10道小题) 1. 失效率的浴盆曲线的三个时期中,不包括下列的() (A) 早期失效期 (B) 随机失效期 (C) 多发失效期 (D) 耗损失效期 正确答案:C 解答参考: 2. 指数分布具有的特点中,不包括下列的() (A) 失效率为常数 (B) 概率密度函数单调下降 (C) 无记忆性 (D) 多适用于机械产品 正确答案:D 解答参考: 3. 可靠性的特征量中,不包含下列的() (A) 可靠度 (B) 失效率 (C) 平均寿命 (D) 性价比 正确答案:D 解答参考: 4. 失效率为常数的可靠性分布是() (A) 威布尔分布 (B) 指数分布 (C) 正态分布 (D) 二项分布 正确答案:B 解答参考: 5. 可靠性特征量失效率的单位可以是() (A) 菲特 (B) 小时

(C) 个 (D) 秒 正确答案:A 解答参考: 6. 常见的冗余系统结构中,不包含下列的() (A) 串联结构 (B) 并联结构 (C) n中取k结构 (D) 冷储备系统结构 正确答案:A 解答参考: 7. 三参数威布尔分布的三个参数中,不包含下列的() (A) 位置参数 (B) 特征参数 (C) 尺度参数 (D) 形状参数 正确答案:B 解答参考: 8. 一个由三个相同的单元组成的3中取2系统,若该单元的可靠度均为0.8,则系统的可靠度为:() (A) 0.512 (B) 0.992 (C) 0.896 (D) 0.764 正确答案:C 解答参考: 9. 有四个相同的单元组成的系统中,其可靠度最高的系统结构是:() (A) 四个单元串联 (B) 四个单元并联 (C) 两两串联后再互相并联 (D) 两两并联后再互相串联 正确答案:B 解答参考: 10. 故障树分析方法的步骤不包括以下的:() (A) 系统的定义

结构可靠性理论的现状与发展

结构可靠性理论的现状与发展 1.引言 工程结构设计的主要目的在于以最经济的途径来满足建筑物的功能要求,而可 靠度是满足这一目的的有效控制参数。可靠度理论是在20世纪40年代开始提出的。最早源于军事需要用来提高电子元件的可靠度。将可靠度理论引入结构工程并加以发展无疑是结构工程学科的重大进展之一,并在许多方面得到成功应用。我国对结构可靠度理论的研究工作开展得较晚。20世纪60年代土木工程界曾广泛开展过结构安全度的研究和讨论;20世纪70年代把半经验半概率的方法用于结构设计规范中,并于1980年提出《结构设计统一标准》,从此,结构可靠度理论的应用才在国内开展。 结构可靠性通常定义为:在规定的使用条件和环境下,在给定的使用寿命期间,结构有效地承受载荷和耐受环境而正常工作的能力。结构可靠性的数t指标通常用概率表示,称为结构可靠度。结构可靠性是一个广义概念,通常包含结构的安全性、适用性和耐久性三个方面。 为保证结构的可靠性,首先要研究建造结构所使用材料的各项力学性能,结构上各种作用的特性,结构的内力分析方法及结构的破坏机理,除此之外,还要做到精心设计,选取合理的结构布置方案和保证结构具有明确的传力路径;精心施工,严格按照施工规程进行操作;正常使用,按设计要求使用结构并进行正常维护。然而,即便如此,也不能保证结构绝对的安全或可靠,这是因为在结构的设计、建造和使用过程中,还存在着种种影响结构可靠性的不确定性。即随机性、模糊性和知识的不完善性,合理、正常的设计、施工和使用只是保证结构具有一定可靠性的前提和基本条件。 自20世纪20年代起,国际上开展了结构可靠性基本理论的研究,并逐步扩展到结构分析和设计的各个方面,包括我国在内,研究成果已应用于结构设计规范,促进了结构设计基本理论的发展。本文将基于大量的研究文献,从结构可靠性分析方法、结构体系可靠度、结构承载能力与正常使用极限状态可靠度、结构疲劳与动力可靠度、钢筋混凝土结构施工期与老化期可靠度五个方面对国内外工程结构可靠度理论和应用的发展现状作概括性地介绍, 2.结构可靠性分析方法 2.1 一次二阶矩法 在实际工程中,占主流的一次二阶矩法应用相当广泛,已成为国际上结构可靠度分析和计算的基本方法。其要点是非正态随机变量的正态变换及非线性功能函数的线性化由于将非线性功能函数作了线性化处理,所以该类方法是一种近似的计算方法,但具有很强的适用性,计算精度能够满足工程需求。均值一次二阶矩法、改进的一次二阶矩法、Jc法、几何法都是以一次二阶矩法为基础的可靠度计算方法。 (1)均值一次二阶矩法。早期结构可靠度分析中,假设线性化点x 0t 就是均值点 m ,而由此得线性化的极限状态方程,在随机变量X t (i=1,2,?,n)统计独立的条 件下,直接获得功能函数z的均值m x 及标准差σ x ,由此再由可靠指标β的定义求取 β= m x/σx。该方法对于非线性功能函数,因略去二阶及更高阶项,误差将随着线

可靠性理论试卷

《可靠性理论》试卷 一.名词解释(本大题共5小题,每小题2分,共10分) 1.可靠性 2.失效率 3.可靠性设计 4. 最小割集和最小径集 5. 网络 二. 填空题(本大题共8小题,每空1分,共20分) 1. 常用的可靠性特征量有:___________,____________,____________,____________等。 2.产品失效率曲线一般可分为:____________,____________,____________。 3. 对于不可修复的产品,该产品从开始使用到失效前的工作时间(或工作次数)的平均值称为____________。 4. 失效率函数为常数 时,可靠度函数表达式可写为:____________。 5. 为了使系统达到规定的可靠度水平,不考虑各单元的重要度等因素而给所有的单元分配相等的可靠度,这种分配方法称为____________。 6. 简单求解网络可靠度的常用方法有____________,____________,____________,____________,____________。 7. 故障树中表示事件之间逻辑关系的符号最基本的两种是:____________,____________。 8. 常用的漂移设计方法有____________,____________,______________。 三. 简答题(本大题共4小题,每小题5分,共20分) 1.概述广义可靠性的定义和意义。 2.概述并举例说明系统的工程结构图和可靠性框图间的关系。 3.概述可靠性指标分配的准则。 4.化简图1的故障树并做出等效图。

图1 四. 计算题(本大题共3小题,第1、2小题各10分,第3小题20分,共40分) 1. 在一个正处于基坑施工阶段的建筑工地,新近送来一批钢材,钢材的失效率为常数, 4104.0)(-?==λλt ,试求可靠度为R=99.9%的可靠寿命t(0.999),以及中位寿命t(0.5)和特征寿命)(1 -e t 。 2. 试比较分析下列四个系统的可靠度,设各单元的可靠度相同,均为R 0=0.99。 (1) 四个单元构成的串联系统 (2) 四个单元构成的并联系统 (3) 串并联系统(m=2,n=2) (4) 并串联系统(m=2,n=2) 3. 已知系统的可靠性框图2,它们的预计可靠度为:R 1=0.60,R 2=0.50,R 3=0.70,R 4= 0.50,求: (1) 试预测系统的可靠度; (2) 求相应的故障树; (3) 故障树的最小割集; (4) 每个底事件的概率重要度; 图2 五. 论述题(本大题共10分) 论述故障树分析的步骤。 T

工程结构可靠度理论的研究现状与展望

工程结构可靠度理论的研究现状与展望 刘玉彬 (大连民族学院土木建筑工程学院,辽宁大连 116605) 摘 要:对结构可靠度理论及应用的国内外研究现状进行了概括性总结;简要叙述了可靠度理论在我 国工程结构设计规范的发展中所起的推动作用;提出结构可靠度理论将朝着正常使用极限状态结构的可靠度、结构的疲劳可靠度、结构的模糊可靠度、结构的动力可靠度、结构的体系可靠度等方向进行研究,以期为我国在这方面研究的进一步发展提供参考1 关键词:工程结构;可靠度;研究现状;设计标准;发展趋势中图分类号:T U3文献标识码:A 文章编号:1009-315X (2006)05-0001-03 工程结构可靠度是指结构在规定的时间内, 在规定的条件下,完成预定功能的能力1“规定的时间”,是指分析结构可靠度时考虑各项基本变量与时间关系所取用的时间参数,即设计基准期;“规定的条件”是指结构设计时所确定的正常设计、正常施工和正常使用的条件,即不考虑人为过失的影响;“预定功能”是指以下4种功能:(1)能承受在正常施工和正常使用期间可能出现的各种作用(荷载);(2)在正常使用时,结构及其组成构件具有良好的工作性能;(3)在正常维护下具有足够的耐久性;(4)在发生规定的偶然事件情况下,结构能保持必要的整体稳定性1 1 工程结构可靠度的研究现状 111 在役结构的可靠度评估和维修决策问题 对在役建筑结构的可靠度评估与维修决策已 成为建筑结构学的边缘学科1它不仅涉及结构力学、断裂力学、建筑材料科学、工程地质学等基础理论,而且与施工技术、检测手段和建筑物的 维修使用情况等有着密切的关系[1] 1对已有结构可靠度的评估采用的方法属于“实用分析法”,是在传统经验方法的基础上,结合现代检测手段和计算技术的一种评估方法1目前,对已有结构的可靠度分析方法,是以当时实测的结构材料强度和构件截面尺寸为依据,没有考虑腐蚀环境中 材料性能的变化1如何根据已有结构本身材料性能的实测结果,来推断该结构的抗力随时间的变化而变化的规律,进而计算该结构继续使用期内的可靠度或评估该结构的使用寿命,是已有结构可靠度研究的一项重要内容1 随着使用年限的增长,混凝土的老化问题日益突出1对于耐久性不足或老化的结构,存在一个最佳维修决策的问题1在目前的研究中,有些内容过于理论化,与实际工程问题相差较远1另外,对处于不同环境下建筑物使用寿命的安全性评估问题,在结构设计的工作寿命期如何通过正常使用和必要的维护保证结构应有的可靠度,超过正常使用年限后如何安全地继续服役等都应是可靠度研究的重要方面1 112 腐蚀环境下结构可靠度的分析 对于钢筋混凝土结构,其常见的腐蚀失效模式为:混凝土的碳化作用引起钢筋腐蚀、氯离子侵蚀引起钢筋局部腐蚀、硫酸盐或硫酸溶液对混凝土的腐蚀破坏1对腐蚀环境中混凝土结构的可靠度分析,目前国内外的研究多数集中在氯离子侵蚀环境中钢筋混凝土结构可靠度的变化,对硫酸盐腐蚀地下混凝土结构使混凝土体积膨胀,从而使其瓦解方面的研究还不是很多1在现今的这些研究中,有的并未考虑结构设计参数对混凝土中钢筋腐蚀起始时间和钢筋锈蚀速度的影响,有的虽做了考虑,但并没有考虑二者之间的相关性[2] 1因此,结果不尽合理1 ? 1?收稿日期:2006-06-251 作者简介:刘玉彬(1964-),男,吉林通榆人,大连民族学院土木建筑工程学院教授,博士,学校优秀学科带 头人1研究方向:工程结构广义可靠性理论、工程结构设备理论1 2006年第5期(总第34期)刘玉彬:工程结构可靠度理论的研究现状与展望 9月15日出版

可靠性工程基本理论

编号:SM-ZD-19351 可靠性工程基本理论Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

可靠性工程基本理论 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1 可靠性(Reliability) 可靠性理论是从电子技术领域发展起来,近年发展到机械技术及现代工程管理领域,成为一门新兴的边缘学科。可靠性与安全性有密切的关系,是系统的两大主要特性,它的很多理论已应用于安全管理。 可靠性的理论基础是概率论和数理统计,其任务是研究系统或产品的可靠程度,提高质量和经济效益,提高生产的安全性。 产品的可靠性是指产品在规定的条件下,在规定的时间内完成规定功能的能力。 产品可以是一个零件也可以是一个系统。规定的条件包

括使用条件、应力条件、环境条件和贮存条件。可靠性与时间也有密切联系,随时间的延续,产品的可靠程度就会下降。 可靠性技术及其概念与系统工程、安全工程、质量管理、价值工程学、工程心理学、环境工程等都有十分密切的关系。所以,可靠性工程学是一门综合性较强的工作技术。 2 可靠度(Reliablity) 是指产品在规定条件下,在规定时间内,完成规定功能的概率。 可靠度用字母R表示,它的取值范围为0≤R≤1。因此,常用百分数表示。 若将产品在规定的条件下,在规定时间内丧失规定功能的概率记为F,则R=1-F。其中F称为失效概率,亦称不可靠度。

结构可靠性理论与应用的国内外研究现状

结构可靠性理论与应用的国内外研究 现状 摘要:自20世纪20年代以来,工程结构可靠性理论和应用的研究已取得了重大进展。许多国家开始研究在结构设计规范中的应用。从结构可靠性理论的发展历史、国内外科学家对结构可靠性理论所做的工作及成果、与目前此问题存在的一些不足之处。 关键词:工程结构可靠性理论发展 结构可靠性理论是随着人们对工程中各种不确定性认识的发展建立并逐步完善起来的一门新兴学科,它对结构的分析与设计具有重要指导意义。自20世纪20年代以来,结构可靠性的理论和应用的研究取得了重大发展。本文从结构可靠性理论的发展历史、国内外科学家对结构可靠性理论所做的工作及成果、与目前此问题存在的一些不足之处这三方面进行了简单的总结。 1 结构可靠性理论的发展历史 结构系统可靠性理论是一门新兴的边缘学科。它以概率论、数理统计方法和随机过程理论为基础,以结构分析的有限元法和网络分析技术为工具,从系统角度出发,将结构系统的设计、分析、评价、检测和维护等融为一体。作为一种科学分析方法和实用技术,狭义地讲,它研究结构系统在规定的使用条件与环境下,在给定的使用寿命期间,能有效地承受载荷和耐受环境影响而正常工作的概率。 将概率论和数理统计方法应用于结构可靠性分析的最早尝试可以追溯到20世纪初Forsell和Mayer等人的工作。尽管这些早期研究工作富有创造性,但由于当时的科技发展水平和实际需要,结构系统可靠性作为一种新的设计思想和分析方法并未引起社会的足够重视。第二次世界大战期间及随后的岁月中,有关机电设备、船舶、压力容器、飞行装置和海上石油勘探平台等,在设计使用寿命期限内,在规定的荷载条件与环境下,不能预期正常工作的事例不断增多和日趋严重。这说明了以安全系数法为代表的传统设计方法对环境条件和结构特性的决定论假设是不适当的。必须从概率论的观点出发,对有关的设计参量进行统计分析,研究它们的分布规律和相关特性,从而制订出一整套新的合理的设计规范。 因为采用全概率分析方法,研究了传统的安全系数和结构破坏概率之间的内在关系,提出了考虑多种因素,主要是有初始损伤条件下的结构系统可靠性分析的数学模型。正是由于此项工作,才促成了结构系统可靠性分析理论由经典向现代的过渡。 而后又有科学家建议根据失效面而不是失效函数定义失效模式的可靠指标β。对于同一失效面,这样定义的β不会由于选择不同的等价失效函数而发生变化。从而提出了一种有效的算法使得任何非正态随机变量都能够在设计点处转化为正态随机变量,从而使计算由非正态随机变量和非线性极限承载状态构成的失效模式的失效概率成为可能。弗罗伊登彻尔差不多和尔然尼钦等人同时展开了结构可靠性的研究工作。他提出的在随机荷载作用下结构安全度的基本问题首次得到工程界的赞同和接受。1947他发表了“结构安全度”一文

工程结构可靠性理论发展综述

工程结构可靠性理论发展综述 摘要:自20世纪20年代以来,工程结构可靠性理论和应用的研究已取得了重大进展。许多国家开始研究在结构设计规范中的应用。本文从结构可靠性基本理论和方法、结构体系可靠度、结构可靠度的Monte-Carlo模拟方法、结构承载能力与正常使用极限状态可靠度、结构疲劳和抗震可靠度、钢筋混凝土结构施工期和老化期可靠度等六个方面,分三部分对结构可靠性理论和应用国内外研究的现状进行了概括性总结。分析了工程结构可靠性理论的发展现状,并对其规范使用提出了建议。 关键词:工程结构可靠性理论发展 Abstract:Great progress has been achieved in the research of structural reliability theories and its applications since 1920s. Many countries in the world have started trying to revise structural design codes or specification based on reliability theory. In this article we can divide the six aspects that the fundamental theories and approaches of structural reliability, structural system reliability, Monte-Carlo modeling in structural reliability analysis, a ultimate and serviceability limit state reliability, fatigue and a seismic reliability as well as construction and wear-out period reliability of reinforced concrete structures into three parts. The paper analysis project structure reliability theory development present situation, and put forward some advice about the standard. 工程结构的安全性历来是设计中的重大问题,这是因为结构工程的建造耗资巨大,一旦失效不仅会造成结构本身和人民生命财产的巨大损失,还往往产生难以估量的次生灾害和附加损失。因此保证结构在规定的使用期内能够承受设计的各种作用,满足设计要求的各项使用功能及具有不需过多维护而能保持其自身工作性能的能力是至关重要的。结构安全性的设定是一个涉及国家政策、经济发展水平、社会文化背景、历史传统等多方面的问题,在相当程度上反映在一个国家的设计规范中。 结构设计规范是众多科技工作者智慧的结晶,代表着一个国家结构设计理论发展的水平。作为标准它不是一成不变的而是随着科学技术的不断发展和对客观世界的新认识,在继承旧规范合理部分的同时不断吸收新的研究成果逐步修订和完善。结构安全性控制方法的发展也是如此,先是由定值设计法发展为半概率法,目前正由半概率法逐步向概率极限状态设计法(可靠度设计方法)过渡。同结构设计规范的发展过程一样,概率极限状态设计方法本身也是由简单到复杂,需要不断完善的过程。 结构可靠性理论的发展历史。 结构可靠性理论的产生,是以20世纪初期把概率论及数理统计学应用于结构安全度分析为标志,在结构可靠度理论发展初期,只有少数学者从事这方面的研究工作,如1911年匈牙利布达佩斯的卡钦奇就是提出用统计数学的方法研究荷载及材料强度问题。1926年德国的迈耶提出了基于随机变量均值和方差的设计方法,这是最早提出应用概率理论进行结构安全度分析的学者之一。1926~1929年,前苏联的哈奇诺夫和马耶罗夫制定了概率设计的方法,但当时方法不够严格,因此并未付诸实施。1935年斯特列律斯基,1947年尔然尼钦和苏拉等人相继发表了这方面的文章,结构安全度的研究逐渐开始进入了应用概率论和数理统计学的阶段。值得提出的是弗罗伊登彻尔差不多和尔然尼钦等人同时展开了结构可靠

可靠性技术发展简介概述

西北工业大学航空学院 可靠性技术发展简介 01041201

摘要 可靠性理论是近30年来发展起来的一门新兴学科,它对现代军事、宇航、电子等工业的发展起了重要作用。从六十年代开始逐渐发展到研究结构、机械、机电系统及由上述系统组成的综合系统的可靠性问题。其应用范围也从比较尖端的工业部门扩展到一般工业部门。目前,可靠性设计和分析技术已成为许多工业部门中产品发展工作不可缺少的一环。但在现代科技飞速发展的时期,系统可靠性在理论和研究模式上还有欠缺,需要结合其他理论如模糊理论、人工智能等,是可靠性理论、试验和管理能够更成熟、更完美。 关键词:可靠性工程航空工业电子工业宇航工业核工业机械和非电子产品人可靠性现代化

可靠性技术发展简介 二十世纪以前 可靠性是伴随着兵器的发展而诞生和发展的,在人类文明经历了4000多年发展成长的漫长过程中,人类已经对当时所制作的石兵器进行了简单检验。在殷商时代已有的文字记载中,就有关于生产状况和产品质量的监督和检验,对质量和可靠性方面已有了朴素的认识。与可靠性工程学有关的数学理论早就发展起来了,可靠性工程最主要的理论基础——概率论早在十七世纪就由伽利略、巴斯卡、费米、惠更斯、伯努利、德·莫根、高斯、拉普拉斯、泊松等人逐步确立。布尼科夫斯基在十九世纪写了第一本概率论教程,他的学生切比雪夫发展了大数定律,他的另一个学生马尔科夫创立了随机过程论,这是可修系统最重要的理论基础。可靠性工程另一门主要的基础理论——数理统计学在本世纪三十年代初也得到了迅速发展。 二十世纪三十至四十年代,可靠性工程的准备和萌芽阶段 除了三、四十年代提出的机械维修概率、长途电话强度的概率分布、更新理论、试件疲劳与极限理论的关系外,1939 年瑞典人威布尔为了描述材料的疲劳强度而提出了威布尔分布,后来成为可靠性最常用的分布之一。 美国 最早的可靠性概念来源于航空。二战期间,因可靠性引起的飞机损失惨重,损失飞机2100架,是被击落飞机的1.5倍。1939年,美国航空委员会出版的《适航性统计学注释》中,提出了飞机由于各种失效造成的事故率不应超过0.00001/小时,相当于飞机在一小时飞行中的可靠度为0.99999,尽管这里并未明确提出“可靠度”的概念。现在所用的“可靠性”定义是在1952年美国的一次学术会议上提出来的。电子管的可选性太差是导致美国航空无线电设备可靠性问题的最大因素,美国当时的航空无线电设备有60%不能正常工作,其电子设备在规定的使用期限内仅有30%的时间能有效工作。为了解决这一问题,美国国防部组织人力,开始对电子管的可靠性进行研究,在1934年成立电子管开发委员会(VTD),1946年成立电子管专业小组(PET)和航空无线小组(ARINC)。这标志着可靠性的起步。 在美国,四十年代改进可靠性的努力集中于质量的提高方面。更好的设计、更强的材料、更坚硬更光滑的摩擦表面、先进的检验仪器等等——强调这一切都是为了延长零件或组合件的使用寿命。例如,通用汽车公司的电动分布通过使用更好的绝缘,高温和试验,和改进了的锥-球形滚柱轴承等办法,把机车所使用的牵引马达的使用寿命从25万英里延长到100万英里。通过对曲轴和凸轮轴的轴承表面进行新式的TOCCO硬化处理大大延长了柴油发动机的寿命。可靠性工程在易维护型设计、以及为预防性的维护安排规划、设施、技术和进度等方面都取得了进展。四十年代展现的其他显著的进步还有管理部门对于检验抽样方案,高生产率机床的生产控制图,估算水平和促进购买优质产品

相关主题