搜档网
当前位置:搜档网 › 一种简易水力水泵

一种简易水力水泵

一种简易水力水泵
一种简易水力水泵

一种简易水力水泵

下面介绍一种利用水位差来提水的简易装置——水力水泵,它几乎全部由管道和水箱构成。具有结构简单,成本低,寿命长,维护成本少,安装简便,可以利用微小水流和微小水头提水的优点,具有广阔的应用前景。构造图如下。

水箱蓄水状态图:

水箱放水状态图:

图中A为敞口水箱,B为密度大于水的柱体,C为较大的水箱。B、C分别悬挂于杠杆两端,可做上下运动,杠杆两臂长分别为a、b;A、B、C均为各自在水平方向上横截面恒定的结构,其横截面分别为Sa、Sb、Sc,且满足等式(1/Sb- 1/Sa)*Sc =a/b,这样忽略摩擦阻力及管路重力,C内水面距上游水面的高程h0恒定。

D为小水箱,内盛大半箱水,可做90度翻转,从而能呈现出两种不同状态,分别对应阻止和允许一定负压的气体通过。E为既可没入又可提出水面的管路末端,分别对应阻止和允许一定负压的气体通过。连接E的管路和连接D出流方向的管路内径不应过小,应满足不会形成静态“气体活塞”,以便状态切换时管路中的水能顺利回流,保证正常功能。D和E的状态切换由C拉动提线实现,图中未画出该提线。具体步骤:

①蓄水状态时水箱C蓄水,并向下移动,当蓄满水时刚好拉动第一组提线,先拉动D再

拉动E,使之切换到如放水状态图所示。

②水箱C开始放水并向上移动,当放完水时刚好拉动第二组提线,先拉动E再拉动D,

使之切换到如蓄水状态图所示。

③重复步骤①。

hc为上、下游水位差;h0为水箱内水位距上游水面的高程,为恒定值;h1、h2分别为动力管路加气点距上、下游水位的高程;h3、h4、h5满足h3>h0,h4>h0,h5>(h1+h2)/2。从上游汲水的两粗管端口安有逆止阀。动力管路加气点以后的部分应保持直线,以便平稳地提供动力。

为保证提水能正常进行应满足等式0

水力特性曲线绘制方法

1、将需要绘制的数据列入excel表格中(如图1)。 图1 2、然后打开Grapher,进入界面(如图2)。 图2

3、点击左上角工具栏的“折线/散点图”,并进入如图3界面,找到你需要绘制的工作表(我的工作表就是Book1),打开,然后进入图4界面,选择你需要绘制的两列数据(一次只能绘制一条曲线),点击确定就可以得到一条曲线了(如图5)。 第一个按钮就是“折线/散点图”了哈。 图3 图4

图5 4、选中Y轴,双击,得到图6界面,修改坐标轴长度和起点(X、Y轴都可以一 起改)、线条粗细、线条样式等,然后确定,得到你想要的图片尺寸,如图7。 图6

图7 5、点击左上角的“文件”,选择“导出”,进入界面如图8,选择保存路径、输入文件名、选择保存类型(文件名要加后缀“.dxf”,即将导出的图形为DXF格式),点击“确定”,进入如图9界面,选择“保存”“二进制”,单击“确定”。 完成图形的导出过程。重复上面的方法,得到所有你需要的曲线。 图8

图9 6、找到你保存的导出文件,用CAD方式打开,将所有曲线复制到一个CAD图里面。移动曲线和Y轴,画上箭头,写好文字,调整好格式,如图10。然后选中调整好的图形,点击“文件”选择“输出”,进入如图11界面,选择保存路径、输入文件名后点击“确定”。图像的输出完成。 图10

图11 7、在word里面插入你保存的图像就,修改图片大小,ok了! 进入word,点击“插入”,然后选择“图片”,然后选择“来自文件”,找到你CAD 输出的图像,就完成插入过程了。图片大小的修改用图片工具修改哈(选中图片,右键,选择“显示图片工具栏”)。 8、好,大功告成了哈!

自喷系统水力计算

自喷系统水力计算应注意的几个问题 蓝为平 摘要:对自动喷水灭火系统水力计算过程中最不利点喷头工作压力、管径等几个问题进行探讨,并提出一些建议,以便确定合理的计算结果。 关键词:自动喷水灭火系统水力计算工作压力 在自动喷水灭火系统工程设计中,设计人员对火灾危险级别选定、喷头布置、报警阀控制喷头数量等很重视,但往往忽视了水力计算,主要有以下几个问题:一是没有根据规范的流量公式计算,而是以旧规范的作用面积乘以喷水强度来估算系统设计流量;二是系统压力仅根据建筑高度加上估计的水头损失,而不是根据喷头进行逐点计算;三是认为最不利点喷头压力应为0.05MPa(规范要求的最小压力);四是一味强调配水支管压力不能超过0.4MPa。但笔者在工作中发现,根据现行规范公式进行计算得出的压力、流量数值与经验估算或老规范计算方法均相差较大,最不利点喷头压力也不应简单定为0.05MPa,配水管压力并非不能超过0.4MPa。 现对自喷系统水力计算进行举例说明,因出现分歧的地方主要是作用面积内的计算结果,所以本文仅比较作用面积内的计算过程。首先按理论间距布置喷头,再根据计算结果对管径、喷头压力进行比较、调整,最后以实际工程进行核算,以期找出合理的管径、压力。根据不同建筑类型,自喷系统分为6个危险级别,民用建筑设计中经常遇到的有轻危险级、中危险级Ⅰ级、Ⅱ级。 现以中危险级Ⅱ级为例,其设计参数为:喷水强度8L/(min.m2),计算作用面积160 m2,最不利点喷头工作压力不小于0.05MPa,正方形布置喷头间距不大于3.4m。先按标准间距布置喷头,且以规范建议的喷头数采用管径,喷头布置如下图(配水管两边喷头对称布置,实际作用面积为173m2):

水力计算

梁山前能生物电力有限公司梁山生物质发电项目 水泵C 和D 水力计算书 为校核水泵扬程计算如下: (1)单台水泵设备进水管路单位长度沿程阻力损失i (进) =85.187.485.1105g j h q d C --,式中d j 是管道计算内径(m ),q g 给水设计流量(m 3/s ),C h 是海澄-威廉系数。 本项目水泵进水管路内径为0.1063m ,给水设计流量为45m 3/h 即0.0125 m 3/s,管路管材选用的是普通钢管海澄-威廉系数为100。 故i=10585.187.485.10125.01063.0100???--=0.3477kPa/m,本工程C 水泵进设备PM 进水管长度大约为60m ,沿程阻力损失为2.0m 。 (2)单台水泵设备回水管路单位长度沿程阻力损失i (回) =85.187.485.1105g j h q d C --,式中d j 是管道计算内径(m ),q g 给水设计流量(m 3/s ),C h 是海澄-威廉系数。 本项目水泵回水管路内径为0.1593m ,回水设计流量为90m 3/h 即0.025 m 3/s,管路管材选用的是普通钢管海澄-威廉系数为100。 故i=10585.187.485.1025.01593.0100???--=0.1748kPa/m,本工程C 水泵进设备PM 进水管长度大约为65m ,沿程阻力损失为1.1m 。 (3)局部损失按沿程损失的20%计,为(2.0+1.1)×0.2=0.62m (4)设备内部阻力PM 为6m (5)冷却塔进水压力要求不小于3.5m (6)水泵出口和管线最高点的高度差按4m 计 (7)水泵C 和D 单台水泵的扬程选取要大于前六项之和,即h (总)

多孔出流管水力特性研究

多孔出流管水力特性研究 山地自压滴灌支管水力设计中,不可避免地要涉及到同径及变径多出流管的水力计算,而其计算精度取决于其水头损失计算的准确性。多孔出流支管水头损失计算包括两部分:沿程水头损失和局部水头损失。 对于多孔出流支管沿程水头损失,前人研究已经非常成熟且提出的经验计算公式计算精度较高。对于多孔出流支管局部水头损失,常按沿程水头损失的一定比例进行估算。 但在进行管网水力计算时,节点处局部水头损失对管网中各管段流量分配和压力分布等具有显著影响,忽略局部水头损失或采用固定的局部能量损失系数可能导致较大的计算误差,其计算误差直接影响到多孔出流管节点压强水头的计算,进而影响到多孔出流管的水力设计精度。因此,为了提高多孔出流管的水力计算精度,本文通过理论分析、试验研究和数值模拟相结合的研究方法,对多孔出流管水头损失变化规律及压强水头分布规律进行了系统研究。 本文得到以下结论:(1)光滑紊流区内,T型三通管(同径多孔出流管局部水头损失主要发生位置)局部水头损失系数1随雷诺数的增大而变化很小,随分流比的增大而增大,随断面比的增大而不断减小;局部水头损失系数2随雷诺数的增大而减小,随分流比的增大而先减小后增大,随断面比的增大而变化很小;并提出了局部水头损失系数1和2的经验计算公式。由T型三通管流动特征分析可知:主管至直管流向的局部水头损失主要是由分流处突然扩散时的冲击损失、直管的突然收缩损失及由侧管中流体的转向引起的流速梯度变化产生的损失组成,主管至侧管流向的局部水头损失主要是由流体的转向损失和侧管弯头内的损失组成。

(2)与实测值对比得出:本文提出的局部水头损失系数1和2的经验公式具有较高的计算精度。采用本文计算公式进行模拟计算,分析了等距、等流量多孔出流管沿程压强水头变化规律,结果表明其沿程节点压强水头随孔口流量、孔数及孔距的增大均不断减小,随坡度的增大均增大。 (3)光滑紊流区内,异径接头(变径多孔出流管局部水头损失主要发生位置之一)局部水头损失系数随着雷诺数的增大而变化很小,随着断面比的增大而减小;并提出了异径接头局部水头损失系数的经验计算公式。由异径接头流动特征分析可知:在收缩管段近壁面处处产生漩涡,流线发生弯曲且流速有明显的梯度变化;水流在刚进入下游直管段时,在近壁面有明显的压力梯度,这主要是由于水流进入下游直管时产生了流动脱离壁面的现象。 随着断面比的减小,在收缩管段近壁面处产生的漩涡不断增加,流速梯度越来越明显,流线弯曲越来越严重。(4)与实测值对比得出:本文提出变径多孔出流管沿程压强水头经验计算公式具有较高的计算精度。 采用本文计算公式进行模拟计算,分析了等距、等流量变径多孔出流管沿程压强水头变化规律,结果表明其沿程节点压强水头随着坡度的增大均增大,随孔口流量及孔距的增大均减小。

离心泵技术参数(重量)

ISW卧式离心泵排水泵增压泵循环泵 永嘉县泉顿泵业制造厂 ISW管道泵采用先进水力模型,运行平衡,噪音低,密封可靠,无泄漏,结构合理占地面积小,寿命长是IH泵基础上改良起来 应用范围供输送不含固体颗粒具有腐蚀性、粘度类似水的液体。其标记、额定性能和尺寸等效采用国际标准ISO2858,具有性能范围广、效率高、“三化”水平高和维修方便,是国家推广的节能产品。 化工泵输送介质温度为-20℃~105℃,需要时采用冷却措施可输送更高温度的介质,适用于化工、石油、冶金、电力、造纸、食品、制药、环保、废水处理和合成纤维等行业用于输送各种腐蚀的或不允许污染的类似于水的介质。 食品工业化工企业和城市给水污水排放,自来水网增压,建筑生活用水,建筑消防用水,中央空调系统,其它冷热清洁介质,循环增压。 技术参数 流量:6.3-1500m3/h 扬程:5-150m 转速:980-2900r/min 口径:φ40-φ500 工作压力:1·6.MPa 介质温度:≤0~+180℃

型号意义 型号流量Q 扬程(m) 效率(%)转速(r/min)电机功率(kW)必需汽蚀余量(NPSH)r 重量(kg)(m3/h) (L/S) 15-80 1.5 0.42 8 34 2800 0.18 2.3 17 20-110 2.5 0.69 15 34 2800 0.37 2.3 25 20-160 2.5 0.69 32 25 2900 0.75 2.3 29 25-110 4 1.11 15 42 2900 0.55 2.3 26 25-1254 4 1.11 20 36 2900 0.75 2.3 28

水力发电主要特点

水力发电原理及特点 把天然水流蕴藏的力学能转换成电能的发电方式。是水能利用的主要形式。天然水流所蕴藏的力学能称为水力资源,是人类可以利用的重要能源之一。在自然状态下,河川水流的这种潜在能量以克服摩擦、冲刷河床、挟带泥沙等形式消耗掉。兴建水电站可利用这部分能量。1878年在德国建成世界上第一座水电站。此后,1880年制成了冲击式水轮机,1918年制成了轴流式转桨水轮机,1957年制成了斜流式水轮机,并开始出现可逆式抽水蓄能机组。尤其是在第二次世界大战以后,随着机械制造业和超高压输电技术的发展,世界各国的水力资源得到大力开发。80年代最大的水轮发电机的单机容量已超过了70万千瓦,最大的水电站装机容量已达1050万千瓦。 由于天然水流有着明显的季节性,而大量的电能又是无法贮存的,因此,开发河川水电一般都必须首先把天然河川水流的潜在能量蓄集起来,然后再根据用电需要对其进行时间上的再分配。另外,也只有把河川水流的能量蓄集起来,才便于完成水能到电能的集中转换,如图所示。河面上A、B两点的水位差H 称为河段Ⅰ~Ⅱ的落差。如在Ⅱ断面附近筑坝拦水并

兴建电站,则Ⅰ~Ⅱ河段的落差就被集中到电站附近。这一集中的落差称为水电站的水头,其物理意义为电站上、下游单位质量水体的势能差。它由河川水流的动能转换而来。通过压力水管向水轮发电机组供水,水轮机接收水流的能量并将其转变成自身旋转的机械能,然后再带动发电机旋转,完成力学能到电能的转换。当供水量为Q米3/秒),水的密度为ρ≈1000千克/米3,考虑到102千克力·米/秒=1千瓦,则水轮发电机组的输入功率为:Nh=9.81QH(千瓦)。由于在整个能量转换过程中不可避免地存在着各种能量损失,因此水电站的输出功率N最后可按下式估算: N=9.81QHη(千瓦) [attachment=14313] 上式称为水力发电或水能利用基本方程式。式中η为水力发电的效率。大型水电站η高达90%以上。 [b]水力发电有如下特点:[/b] ①能源的再生性。由于水流按照一定的水文周期不断循环,从不间断,因此水力资源是一种再生能源。所以水力发电的能源供应只有丰水年份和枯水年份的

有植被河道水流特性研究进展

王莹莹赵振兴 (河海大学 环境科学与工程学院 南京 210098) 摘要:近年来,生态修复一直是学者探讨的热门课题,河岸种植植被能固滩固岸,保护岸坡不受侵蚀,但也有专家提出植被会降低河道的泄洪能力。如何布置,使植被更大限度地发挥“固滩护堤”的作用,是生产实际中提出的新问题。于是研究植被对水流特性的影响越来越重要。本文详细回顾了前人对有植被河道水流特性问题的研究状况,综合评述了已有研究的局限性,提出今后研究的重点与方向。 关键词:生态护岸河道 刚性植被 柔性植被 1. 背景 河流的开发利用带来了一定的经济效益,为经济的繁荣做出了很大的贡献。但与此同时,也带来了不少负面影响,许多河道的岸坡受到不同程度的破坏,生态也严重受损,导致了河流的行洪能力大大降低,洪灾总体风险不断增加,城市洪涝灾害的发生日渐频繁且强度加甚。 这种人为造成的自然灾害不得不越来越引起人们的广泛关注,于是乎近年来河道的生态修复已提上日程并在许多实际工程中得到应用,也已经普遍得到专家人士的认可。其中,植物护坡技术在国内外堤防工程中更是被广泛采用。河岸种植植被,植被的根系可以保护土壤,防止水土流失,能切实可行地做到“固滩固岸”,保护岸坡不受侵蚀。采用种植植被护坡技术投资少,技术简单,又可以绿化自然,美化环境,有利于生态的良性循环。此又可谓之“生态护岸工程”,生态护岸能达到加固河岸,防止河道淤积、侵蚀和下切的目的。然而,另一方面,我们还不得不考虑到,水中种植植被增大了河流的阻力,减缓了河流的流速,导致河道水位的攀升,甚至引起部分泥沙的淤积;另外,河道水流部分能量被迫转换成植被附近产生的紊流脉动动能,使水流动能得到消耗。从这方面考虑,种植植被则降低了河道的泄洪能力。因此,我们要从各方面综合考虑这种植物护坡技术的可行性,分析其利弊,因地制宜,找出最合理的种植植被的方案,使其扬利除弊,更好地发挥作用,保证行洪的安全,并能起到保护生态环境的作用。这正是生产实际中面临的新问题,因此,弄清河道中种植植被对水流的阻力影响、水流的紊动结构等是非常有必要的。 2. 国内外研究进展 有植被的河道水流问题是一门多学科交叉问题,该项目涉及到水流、植被、泥沙、地貌、河道演变、水土流失以及环境生态等诸多领域。研究有植被水流的紊流结构,对河道中泥沙的输运与沉降、河床的淤积与堤岸的侵蚀、河道中污染物的扩散以及生态环境的优化都有很重要的现实意义及其广阔的应用前景。因此,对种植植被的河道水流特性的研究 1

水泵模型

无体泵模型 无体泵是一种简易的离心式水泵。它省去了水泵的外壳,只保留泵轴和叶轮,简化了密封装置,不仅易于制作,而且便于观察,用于演示离心式水泵的工作原理,十分方便。 【制作方法】 模型主要由水槽、水池、阀门、叶轮、泵轴、支架等部件构成,如图5.17-1所示。 水槽和水池:取一个500毫升无色玻璃瓶(如输液瓶),从中部截断,上半部作为水池(瓶口朝下),下半部分作为水槽。按玻璃瓶外径,用宽20毫米的铁片焊一个圆环,环上焊一个出水口;将环紧紧套在水池口上。朝下的瓶口配上一个带孔的胶塞,将一段厚壁玻璃管(铁管、硬塑料管亦可)插 在胶塞里,作为进水管(见图5.17-1)。

阀门:如图5.17-2所示,取一个铁皮香脂盒,在盒底、盒盖的中心分别钻直径10毫米和8毫米的圆孔。取一块直径略小于盒内径的圆橡皮片,一侧用强力胶粘在盒底作为活动阀,再用铁片做一个内径8毫米、长20毫米的小铁管,焊在盒盖孔上。然后用一段套在小铁管上的胶管将所做阀门和上述水槽内的进水管连装起来。 叶轮和泵轴:叶轮用两块铁片和六片弧形叶片焊成,见图5.17-3。叶片焊在上方圆铁片上;叶轮下方铁片略呈漏斗形,其中心焊有一个高5毫米的铁管作为进水口。铁管外径的大小以能伸进水池里的进水管为宜。 取一段车辐条(一端带螺纹),将没有螺纹的一端焊在叶轮上方铁片中心,作为泵轴。泵轴的另一端用辐条帽做联轴器与小电动机的机轴相接。 支架:取一块中心带有圆孔的圆木板,放在水槽上作为井台,支持着放水池。用三根粗铁丝作为支架,将一个“131”型玩具电机固定在水池的正上方。支架底脚固定在圆木板上,且使叶轮的进水口伸进水池的进水管里面(图5.17-1)。 【使用方法】 向水池和水槽内注入清水,使水池里的水面高出叶轮,水槽里的水面保持浸没底阀。然后接通电源,使电动机带动叶轮旋转。水槽里的水即被“吸”到水池里,通过出水口源源不断地流出(只要底阀始终浸没在水面以下)。 轴流泵模型 轴流泵也是常见的一种水泵,它结构简单,流量大,扬程低,适用于水

轴流泵叶轮水力模型设计参数

1 轴流泵叶轮水力模型设计参数 叶轮直径D=300mm ; 转速n=1450r/min ; 流量Q=380L/s ; 扬程H=6.0m ; 空化余量NPSHre<7.0m 2 叶轮设计流程 第一、确定转速n 和比转速n s 第二、估算泵的效率 第三、确定叶轮主要结构参数 (1)确定叶轮的轮毂比h d ;(2)叶片数Z ;(3)外径D 。 第四、叶片的设计(流线法、升力法、……) 第五、叶片的绘型 3 叶轮基本参数的选择 3.1 比转速的确定 已知转速n 后,就可根据公式计算出比转速来。轴流泵的比转速ns 一般为500-1200,但根据需要,可以超出此范围,有些资料介绍ns 的范围为400-2000. 851≈851.02=65.34 3H Q n n s = 3.2 叶轮外径D 和轮毂直径d h 的确定 叶轮直径D 和轮毂直径d h 应根据轴面速度Vm 的大小来确定。轴面速度Vm 的可按下面式计算: 式中 Q ——设计流量 n ——转速 Vm ——液体进入转轮以前的轴面速度 轮毂比D d h 与比转速s n 有关,其值根据表1或图 1选取: 表1 轮毂比D d h 与比转速s n 的关系 s m Q n m V /495.6380.0145007.0307.03 22 =?? ==

图 1 轮毂比D h d 与比转速s n 的关系曲线 从图及表中可看出,轮毂比D d h 随比转速s n 的减小而增大,这是因为:为了减小叶片在液流中的迎面阻力,必须使叶片后面不产生漩涡层,必须要使每一计算截面上围绕翼型流动的速度环量Γ1相等。 所以根据以上叙述,选择轮毂比为 3.3 叶片数Z 的选择 轴流泵叶轮的叶片数Z 与比转速s n 有关,其统计数据列于表2 表2 叶片数Z 与比转速s n 的关系 根据上表选择叶片数Z=4 4 叶片各截面的叶栅计算(流线法) 如果用半径为r 和(r+dr )的两个同心圆柱面去切割轴流泵的叶轮,则得到一个包括翼型在内的液体圆环,如图2所示,如将这个圆环剖开并展开于平面上,则得到一个无限直列叶栅,如图3所示。 。 0.45=D d h () 。。m d m D d Vm Q D H h 13111.00.30m ≈29136.035.01495.6380 .0414222 ==-???=? ?? ? ??-= ππ

急流弯道的水力特性试验研究

第!"卷第!期#$$$年%月 陕西水力发电 &’()*+,’-./++*012+34)5’24) 6789!":79!; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;<=>9#$$$ 文章编号?!$$#@!A B "C #$$$D $!@$$$A @$% 急流弯道的水力特性试验研究 田嘉宁 C 西安理工大学E 陕西西安B !$$F A D 摘 要?通过模型试验E 进一步揭示了急流弯道中G H !和H $I J 对K 及L #I L !的影响E 提出了防止弯道出现干底现象的界限E 并给出了波角M !的经验公式N 关键词?弯道O 水力特性O 试验研究中图分类号?P 6! %%9!文献标识码?Q 水利工程中的急流曲线型渠道R 无压明流泄水隧洞和溢洪道E 受离心力和扰动波的共同作用E 从而使弯道段的水流流态变得非常复杂N 该问题自%$年代提出以来E 虽然经过广大科技工作者的努力E 取得了许多成果E 但由于流量变化大R 流态复杂E 至今仍受到人们的关注N 本文在总结前人研究成果的基础上E 对中半径大偏转角明渠弯道的急流水力特性作了一些试验研究N S 急流弯道中水流的基本特征 在矩形断面渠槽的圆弧形急流弯道中E 由于外侧边壁向水流方向改变E 水流的惯性便对边墙产生冲击作用E 边墙对水流施加反力E 迫使水流沿边墙转向E 水流产生动量变化E 造成水面局部壅高N 反之当边墙向水流外部偏转时E 由于水流失去边墙的依托E 水流扩散E 产生水面跌落N 因槽内水流流速大于波的传播速度E 当扰动到达时E 水流已经前进一段距离E 因此E 扰动的影响范围必然在扰动开始发生的下游E 其扰动波随着水流流动距边墙越远E 越靠近下游N 水面不仅沿纵向起伏变化大E 而且在横断面上的水深也发生局部壅高和降低E 平面上形成菱形的波C 图!D N 发生冲击波后E 流速变化及波角大小和扰动前来流的G H !及边墙偏转角TE 槽的半径等因素有关N 实验及理论计算表明E 扰动水流的波动周期为#K E 在K R %K R U K 等处沿外边墙水面出现最大值L V =W E 在#K R F K R "K 等处E 内边墙处水面取最大值L V =W N 因此E 确定急流弯道的K 值和L V =W 值E 对工程设计是非常有用的N 关于急流弯道的K 值与L V =W 值E 前人已经给出了近似的估算公式E 如?K X =>Y Z =[ J C H $\J I #D Z =[M ! L X ]# ^ _‘[# C M !\K I #D C ! D 图!弯道水流示意图 收稿日期?!a a a @!!@$# 作者简介?田嘉宁C !a U U @D E 男E 甘肃西峰人E 西安理工大学副教授E 工学硕士E 从事水工水力学研究N 万方数据

枝状管网水力计算

9)4.10 3.88 单定压节点树状管网水力分析 某城市树状给水管网系统如图所示,节点(1)处为水厂清水池,向整个管网供水,管段[1]上设有泵站,其水力特性为:s p1=311、1(流量单位:m 3/S,水头单位:m),h e1=42、6,n=1、852。根据清水池高程设计,节点(1)水头为H1=7、80m,各节点流量、各管段长度与直径如图中所示,各节点地面标高见表,试进行水力分析,计算各管段流量与流速、各节点水头与自由水压。 以定压节点(1)为树根,则从离树根较远的节点逆推到离树根较近的节点的顺序就是:(10),(9),(8),(7),(6),(5),(4),(3),(2);或(9),(8),(7),(10),(6),(5),(4),(3),(2);或(5),(4),(10),(9),(8),(7),(6),(3),(2)等,按此逆推顺序求解各管段流量的过程见下表。 ,即: q 1+Q 1=0,所以,Q 1=- q 1=-93、21(L/s) 根据管段流量计算结果,计算管段流速及压降见表。计算公式与算例如下: 采用海曾威廉-公式计算(粗糙系数按旧铸铁管取C w =100)

管道摩阻系数 管段水头损失 泵站扬程按水力特性公式计算: 管段编号[1][2][3][4][5][6][7][8][9] 管段长度(m) 600 300 150 250 450 230 190 205 650 管段直径(mm) 400 400 150 100 300 200 150 100 150 管段流量(L/s) 93、21 87、84 11、04 3、88 60、69 18、69 11、17 4、1 11、26 管段流速(m/s) 0、74 0、70 0、63 0、49 0、86 0、60 0、63 0、52 0、64 管段摩阻系数109、72 54、86 3256、05 39093、49 334、04 1229、92 4124、33 32056、66 14109、56 水头损失(m) 1、35 0、61 0、77 1、34 1、86 0、77 1、00 1、22 3、48 泵站扬程(m) 38、76 0 0 0 0 0 0 0 0 管段压降(m) -37、41 0、61 0、77 1、34 1、86 0、77 1、00 1、22 3、48 以定压节点(1)为树根,则从离树根较近的管段顺推到离树根较远的节点的顺序就是:[1],[2],[3],[4],[5],[6],[7],[8],[9]; 或[1],[2],[3],[4],[5],[9],[6],[7],[8]; 或[1],[2],[5],[6],[7],[8],[9],[3],[4]等,按此顺推顺序求解各定流节点节点水头的过程见下表。 步骤树枝管段号管段能量方程节点水头求解节点水头(m) 1 [1]H 1-H 2 =h 1 H 2 =H 1 -h 1 H 2 =45、21 2 [2]H 2-H 3 =h 2 H 3 =H 2 -h 2 H 3 =44、60 3 [3]H 3-H 4 =h 3 H 4 =H 3 -h 3 H 4 =43、83 4 [4]H 4-H 5 =h 4 H 5 =H 4 -h 4 H 5 =42、49 5 [5]H 3-H 6 =h 5 H 6 =H 3 -h 5 H 6 =40、63 6 [6]H 6-H 7 =h 6 H 7 =H 6 -h 6 H 7 =39、86 7 [7]H 7-H 8 =h 7 H 8 =H 7 -h 7 H 8 =38、86 8 [8]H 8-H 9 =h 8 H 9 =H 8 -h 8 H 9 =37、64 9 [9]H 6-H 10 =h 9 H 10 =H 6 -h 9 H 10 =34、16 节点编号i 1 2 3 4 5 6 7 8 9 10 地面标高(m) 9、80 11、50 11、80 15、20 17、40 13、30 12、80 13、70 12、50 15、00 节点水头(m) 7、80 45、21 44、60 43、83 42、49 40、63 39、86 38、86 37、64 34、16 自由水头(m) —33、71 32、80 28、63 25、09 27、33 27、06 25、16 25、14 19、16

水泵选型计算公式

水泵选型计算公式 一、水泵选型计算 1、水泵必须的排水能力 Q B = 20 24max Q m 3/h 2、水泵扬程估算 H=K (H P +H X ) m H P :排水高度;H X :吸水高度;K :管路损失系数,竖井K=1.1—1.5;斜井?<20°时K=1.3~1.35;?=20°~30°时K=1.25~1.3;?>30°时K=1.2~1.25 二、管路选择计算 1、管径: ' 900'V Q d n π= m Qn :水泵额定流量;'V 经济流速m/s ; 'Vp =1.5~2.2m/s ;='Vx 0.8~1.5m/s ;'dx ='dp +0.025 m 2、管壁厚计算 ?? ? ???+----+ = C P d P P P p )65.0(230*)65.0(230211σσδ mm d P :标准管内径mm ;P :水管内部工作阻力P=0.11Hsy (测地高度m ) Kg/cm 2; σ:许用应力,无缝管σ=8Kg/mm 2,焊管σ=6 Kg/mm 2,C=1mm ; 3、流速计算 2 900d Q V n π= m/s 三、管路阻力损失计算 ∑+=g V g d LV h 22*22ξλ m ; 总阻力损失计算 h w =(h p +h x +g Vp 22 )*1.7 1.7:附加阻力系数 四、水泵工作点的确定 H=Hsy+RQ 2 m ; 22Q H Q H H R W SY =-= Hsy :测地高度 m 五、校验计算 ①吸水高度:Hx=Hs-h wx -g V x 22 m ;②η2=85%~90%ηmax ;③稳定性:Hsy ≤0.9H 0 六、电机容量计算 c m m m H Q K N ηηγ102*3600= Kw ;c η:传动效率,直联时c η=1,联轴节时 c η=0.95~0.98; K 备用系数Q m <20m 3/h ,K=1.5;Q m=20—80 m 3/h ,K=1.3—1.2;Q m=80—300 m 3/h ,K=1.2—1.1;Q m >300 m 3/h ,K=1.1;

曲线交汇条件下弯道水流水力特性试验研究-AtlantisPress

International Conference on Education, Management and Computer Science (ICEMC 2016) Bend Flow under the Conditions of Curve Intersection Study on Hydraulic Characteristics of the Curve Meng Jia College of Water Conservancy and Hydropower, Hebei University of Engineering, Water Conservancy Project, Handan, Hebei China 410664339@https://www.sodocs.net/doc/a74381190.html, Keywords: Curved corners junction; Model test; Inflow angle; Circulation intensity; The ratio of discharge Abstract.The flow structure is complex near the curved junction,in previous studies, relatively few studied tributary skew curve river and water sports is more complex due to the centrifugal force under this condition. In order to deeply understand the flow structure based on generalized model test, studied at the different of inflow angle and the ratio of discharge, the flow structure nearby curved corners junction area. Research results show that, when inflow angle is larger, effect of tributaries on the mainstream is getting stronger, vertical average velocity reaches the peak appears at the concave bank in downstream section. The more uneven the distribution of flow velocity becomes with an increase of inflow angle of the overall. When inflow angle becomes larger, Circulation intensity becomes more and more strength, the sections with the largest circulation intensity appears at the concave bank in downstream section is moving downward gradually. 曲线交汇条件下弯道水流水力特性试验研究 贾猛 1.河北工程大学水电学院、水利工程,中国河北邯郸 056038 a410664339@https://www.sodocs.net/doc/a74381190.html, 摘要:曲线交汇口附近水流结构复杂,在以往的研究中,对支流斜交曲线干流研究相对较少,而该条件下由于受离心力作用水流运动更为复杂。为探讨该区域水流特性,通过概化模型试验,研究了不同汇流比和入汇角时,弯道交汇口附近的水流结构特性。得出,支流入汇角逐渐增大时,其对干流影响也随之增强;交汇口下游断面垂线平均流速出现峰值且断面流速在交汇口处不均匀性增强;交汇口附近环流强度随之变大且入汇口下游环流旋度最值断面逐渐下移。 关键词:曲线型交汇;模型试验;入汇角;环流强度 1.引言 交汇型河流在我国各地区水系中普遍存在,邻近汇流口处水流结构复杂[1-5],呈现诸多水动力学特性:如支流对干流壅水作用,交汇口下游出现回流现象,流速带分布不均等[6-9]。这些特性受到很多因素控制,如交汇口形状、干支流河床高差、河床坡底、入汇角、汇流比等[10-11],其中汇流比和入汇角是影响弯道水力特性较为重要的因素。在以往研究中主要是探讨支流直线交汇于干流的水力学特性[12],但支流斜交曲线干流研究相对较少。为此,本文通过概化模型对支流交汇于弯道干流凸岸时的弯道水流特性展开研究与分析。

叶片式水力机械的全特性(Q-H)

叶片式水力机械的全特性(Q ~H 坐标) (1)转速为正(n >0)时轴流式机组特性曲线。如图3-3(a )所示,曲线AB 段的H 、Q 、n 、M 均为正值,则QH >0,ωM P =>0,由工况定义知,AB 为水泵工况。BC 段的Q 、n 、M 为正,H 为负,则QH <0,水流经过转轮后能量减少,ωM P =>0,转轮输入功率,此为制动工况。C 点M =0,亦即P =0,QH <0,为飞逸工况,水流流经转轮减少的能量用于克服飞逸时的机械损耗。C 点以下的Q 、n 为正,H 、M 为负,则QH <0,水流能量减少,ωM P =<0,转轮向外输出功率,此为水轮机工况。不过这时的水流由尾水管流向蜗壳,是倒冲式水轮机工况,一般称为反水轮机工况。A 点以左,Q 为负值,其它参数均为正值,则QH <0,ωM P =>0,亦为制动工况。所以n 为某一正值时,水力机组自左至右经历了制动工况、水泵工况、制动工况及反水轮机工况四个工作状态。 图3-3 三种转速下水力机组的全特性曲线 (2)转速为零(n =0)时轴流式机组的特性曲线。此时水力机组在循环管道上实际上就成为局部阻力,因此,不管流量是正还是负,水流流经转轮后能量总是减少的,也不管扭矩是正还是负,因为转速为零,所以功率也必为零。故当转速为零时,整个特 性曲线上的工况均为制动工况,转轮处的局部损失22 2KQ g v h ==?ζ,所以()Q f H =曲线亦为抛物线,又因QH <0,则H 为正时,Q 必为负,反之亦然,故()Q f H =曲线贯穿于Ⅱ、Ⅳ象限,如图3-3(b )所示,但此抛物线不是水力机组相似工况点的抛物线。水流对转轮的作用力矩等于水流进出转轮的动量(mv )的变化量,由此可知,力矩的大小与流量的平方成正比,所以()Q f M =亦是一抛物线,其方向当n =0时,水头为正,

9.水系统水力计算

9 空调水系统方案确定和水力计算 9.1 冷冻水系统的确定 9.1.1 冷冻水系统的基本形式 9.1.1.1 双管制、三管制和四管制系统 (1)双管制系统夏季供应冷冻水、冬季供应热水均在相同管路中进行。优点是系统简单,初投资少。绝大多数空调冷冻水系统采用双管制系统。但在要求高的全年空调建筑中,过渡季节出现朝阳房间需要供冷而背阳房间需要供热的情况,这时改系统不能满足要求。 (2)三管制系统分别设置供冷、供热管路,冷热回水管路共用。优点是能同时满足供冷供热的要求,管路系统较四管制简单。其最大特点是有冷热混合损失,投资高于两管制,管路复杂。 (3)四管制系统供冷、供热分别由供回水管分开设置,具有冷热两套独立的系统。优点是能同时满足供冷、供热要求,且没有冷热混合损失。缺点是初投资高,管路系统复杂,且占有一定的空间。 9.1.1.2 开式和闭式系统 (1)开式水系统与蓄热水槽连接比较简单,但水中含氧量较高,管路和设备易腐蚀,且为了克服系统静水压头,水泵耗电量大,仅适用于利用蓄热槽的低层水系统。 (2)闭式水系统不与大气相接触,仅在系统最高点设置膨胀水箱。管路系统不易产生污垢和腐蚀,不需克服系统静水压头,水泵耗电较小。 9.1.1.3 同程式和异程式系统 (1)同程式水系统除了供回水管路以外,还有一根同程管,由于各并联环路的管路总长度基本相等,各用户盘管的水阻力大致相等,所以系统的水力稳定性好,流量分配均匀。高层建筑的垂直立管通常采用同程式,水平管路系统范围大时宜尽量采用同程式 (2)异程式水系统管路简单,不需采用同程管,水系统投资较少,但水量分配。调节较难,如果系统较小,适当减小公共管路的阻力,增加并联支管的阻力,并在所有盘管连接支路上安装流量调节阀平衡阻力,亦可采用异程式布置。 9.1.1.4 定流量和变流量系统 (1)定流量水系统中的循环水量保持定值,负荷变化时可以通过改变风量或改变供回水温度进行调节,例如用供回水支管上三通调节阀,调节供回水量混合比,从而调节供水温度,系统简单操作方便,不需要复杂的自控设备,缺点是水流量不变输送能耗

管道水泵计算法

管道水泵计算法 默认分类2008-06-23 10:04:19 阅读538 评论0 字号:大中小订阅 目录 一、几点说明. 1 第一题这本书有什麽用处? (1) 第二题管道的直径怎样叫法? (1) 第三题怎样选择管道材料? (3) 二、管道水力计算. 5 第四题什麽叫做管道的流量?怎样计算管道的流量? (5) 第五题在流速相等的条件下,Dg200管子的流量是Dg100管子的流量的几倍? (6) 第六题有没有简单的方法,可以记住各种管子的大致流量? (7) 第七题管道里的流速有没有限制? (7) 第八题管道里的流量不变,他的流速会不会变化? (8) 第九题压力和流速究竟有什麽关系? (8) 第十题压力表上的压力大小用公斤表示(例如2公斤的压力),另外,我们又常说多少高水柱压力(例如5米高水柱的压力),它们之间有什么关系? (9) 第十一题压力差和管道的阻力有什么不同? (9) 第十二题管子的阻力怎样计算? (10) 第十三题怎样使用铸铁管水力计算表? (11) 第十四题表4的铸铁管水力计算表做了哪些简化,会不会影响计算的准确度? (13) 第十五题从铸铁管水力计算表可以找到那些规律?. 14 第十六题知道管道阻力的规律有什么用处? (15) 第十七题怎样具体利用表4进行计算? (15) 第十八题表4查不到的流量、流速和阻力,应该怎样计算? (16) 第十九题在实际工作中,究竟怎样体现一段管道的压力差产生一定的管道流速? (18) 第二十题管道的总阻力包括哪些部分? (19) 第二十一题管道的局部阻力应该怎样计算? (19) 第二十二题究竟实际管道的阻力应该怎样计算? (20) 第二十三题局部水头损失(局部阻力)的计算比较麻烦,有没有简化的计算方法? (24) 第二十四题在一条用口径的管道上,两头的压力差定了后,管道里的流量和流速也就定了。24 那么,管道两头真正的压力究竟反映什么要求? (24) 第二十五题钢管的阻力能不能用表4来计算? (25) 第二十六题小管径钢管的阻力怎样计算? (26) 第二十七题铸铁管水力计算表(表4)对于其它的管材和流动物资的阻力计算由没有用处?27 第二十八题蒸汽管的流量和阻力怎样计算? (28) 第三十题混凝土排水管道的流量和流速怎样计算? (31) 三、水泵选择. 33 第三十一题什么叫作水泵的总扬程? (33) 第三十二题什么叫作水泵的吸水扬程? (33) 第三十三题水泵的型号怎样表示法? (34) 第三十四题水泵的性能包括哪些项目? (35) 第三十五题怎样从水泵型号,估计出水泵的流量? (39)

离心泵水力设计

离心泵水力设计 课程设计及指导书 (一)离心泵水力设计任务书 1 设计目的 掌握离心式叶轮和进、出水室水力设计的基本原理和基本方法.加深对课堂知识的理解,培养学生进行产品设计、水泵改造及科学研究等方面的工作能力。 2 设计参数及有关资料 (1)泵的设计参数:(可自选一组参数设计,也可参照给出的参数变更局部参数设计,每个人必须选择不同的参数进行设计) 1. m h rpm n m H h m Q a 3.3,2900,60,/373=?=== 2. m h rpm n m H h m Q a 44.5,1450,16,/903=?=== 3. 900,1430,24,/663====C rpm n m H h m Q 4. 900%,80,2900,48,/1453=====C rpm n m H h m Q η 5. m 5,2970,5.18,/12====SZ H rpm n m H s l Q 泵的安装高度 6. m h rpm n m H s l Q r 13.2,2870,10,/3.2=?=== 7. m rpm n m H h m Q 6.2h ,1450,5.32,/170r 3=?=== 8. %60,2h ,2900,20,/20r 3==?===ηm rpm n m H h m Q (2)工作条件:抽送常温清水。 (3)配用动力:用电动机作为工作动力。 3 设计内容及要求 (1)设计内容。包括以下几个方面:

l )、离心泵结构方案的确定。 2)、离心泵水力过流部件(进水室、叶轮、压水室)主要几何参数的选择和计算。 3)、叶轮轴面投影图的绘制。 4)、螺旋形压水室水力设计。 (2)要求。包括以下几个方面: l )、用速度系数法和解析计算法进行离心泵水力设计。 2)、绘出压水室设计图。 3)、编写设计计算说明书。 4 设计成果要求 (1)计算说明书应做到字迹工整、书面整洁、层次分明、文理通顺。文中所引用的重要公式、论点及结论均应交待依据。 (2)设计说明书中应包括计算、表格和插图(图表统一编号)配以目录和参考文献目 录等内容统一装订成册。 (3)设计图纸要图面整洁、尺寸准确、线条匀称。 (4)手绘一张离心泵的总装简图,标注出主要的零部件的名称。 (二)离心泵水力设计指导书 设计者应根据设计任务书中给定的设计参数,参考有关设计资料,在规定的时间内完 成任务书中提出的具体要求。 提出以下设计步骤,供设计者参考。 (1)计算泵的比转数n s ,确定泵的结构方案。公式为 4 /365.3H Q n n s = (10-1) 式中 Q ——单吸叶轮泵的流量,m 3/s H ——单级叶轮泵的扬程,m 。 (2)确定泵的进出口直径 。吸入口直径D s 由进口流速v t (经济流速)决定,s t v Q D π4= 出口直径D t 按经验公式D t =(0.7~1.0)D s 确定。 D s 、D t 要求按标准直径选择。 (3)计算泵的允许汽蚀余量〔Δh 〕或允许吸上真空高度〔H s 〕.公式如下 3 /462.5??? ? ??=?c Q n h r (10-2) []k h h r +?=?(一般规定k =0.3m) [][]g v h g p g p H s v s 22 0+?--=ρρ (10—3) (4)泵转速n 的确定.按满足汽蚀要求校核转速.公式为

调节阀门的水力特性(2)

调节阀门的水力特性 ΔP = S · G2 λ S = A ( -----·L + ∑ζ) D 1 ζ= --------- A · K VS 2 几种典型的低阻两通恒温阀按K VS换算的ζ值如下表:

散热器进流系数 1 ω = ----------------------- 1 + [ S 1 / S 2 ]1/2? 当采用散热器的ζ= 2时 散热器通路为 S 1 跨越管通路为 S 2 DANFOSS RTD-G型

HONEYWEL—UBG型两通 采用DANFOSS RTD-G型两通阀加跨越管的散热器组的计算阻力特性S值

HONEYWEL—H型两通 采用HONEYWEL—H型两通阀加跨越管的散热器组的计算阻力特性S值-

采用ST-11型手动三通调节阀 散热器组的计算阻力特性S值 DN15 0.01850 DN20 0.00531 DN25 0.00187 三通恒温阀及散热器组 的计算阻力特性S值 是直接针对单管系统的,但水阻仍偏大,以HONEYWELL公司的产品为例,其数值为: DN15 K VS=2.16 ζ=20 全开时的旁通率约58% S=0.010460 DN20 K VS=3.10 ζ=32 全开时的旁通率约42% S=0.002274

恒流量调节阀 恒流量调节阀可在外网压差≧3m的条件下,在对应于一定口径阀门的允许流量范围内,手动设定被调节对象的额定流量。 当外网压差发生变化时,根据阀外的压差信号自力改变阀的开度,使包括被调节对象的系统和调节阀在内的总阻力特性S值,与阀外的压差ΔP等比变化,维持被调节对象的流量稳定。 由于调节阀内被调节对象系统的阻力特性是不变的,仅可改变阀的开度以改变总阻力特性S值,故只需取调节阀两端的压差信号,作为自力调节的依据,即使得调节阀两端的压差保持基本恒定。 调节原理可用下式说明: ΔP = S · G2 恒压差调节阀 恒压差调节阀可在外网压差≧3m的条件下,在对应于一定口径阀门的允许调节范围内,手动设定被调节对象阀后系统供回水的总压差。 由于末端设备采用自力式温控阀或其它调节构件时,阀

相关主题