搜档网
当前位置:搜档网 › EEMD能量熵分析及在齿轮箱故障诊断中的应用

EEMD能量熵分析及在齿轮箱故障诊断中的应用

EEMD能量熵分析及在齿轮箱故障诊断中的应用
EEMD能量熵分析及在齿轮箱故障诊断中的应用

基于经验模态分解能量熵和人工神经网络的滚动轴承的故障诊断

基于经验模态分解能量熵和人工神经网络的 滚动轴承的故障诊断 摘要 根据滚动轴承故障振动信号的非平稳特性,本文提出基于经验模态分解(EMD)能量熵的滚动轴承故障诊断方法。首先,原有加速度振动信号分解成有限数目个固有模态函数(IMF分量),然后引入EMD能量熵的概念。从不同的振动信号的EMD能量熵分析结果表明,轴承故障发生时,不同频带的振动信号的能量会发生改变。因此,要识别滚动轴承的故障类型,从众多的IMF分量中选取最具代表性的能量特征,提取其故障信息可以作为人工神经网络的输入向量。对滚动轴承内圈和外圈信号的分析结果表明,基于神经网络的诊断方法,通过使用EMD提取不同频带的能量作为特征值可以准确有效地识别滚动轴承的故障类型,优于基于小波包分解和重构。 1.介绍 当滚动轴承带故障运行时,将呈现非平稳振动信号特点,如何提取故障特征信息的非平稳振动信号,是滚动轴承故障诊断的关键。传统的诊断技术依托时域或频域的故障振动信号的波形,从而构造标准函数识别滚动轴承的工作状态。然而,由于滚动轴承构造和工作环境的复杂性,非线性因素如负载,间隙,摩擦,刚度等对振动信号有显著的影响,很难通过时域或频域准确分析滚动轴承的工作状态。小波分析可以提供信号在时域和频域的局部特征,因此它已被广泛应用与滚动轴承的故障诊断中。然而,小波分析本质上是一个可调窗傅里叶变换。由于小波基能量长度的限制,在小波变换中会发生能量泄露,此外,一旦小波基和分解尺度确定,小波变换将遵循固定的尺度,其频率分量只取决于采样频率,而非信号本身。因此,小波分析本质上并不是一个自适应信号处理方法。最近,由Huang等人开发出一种新的信号分析方法,名为经验模态分解(EMD的定义,第1节),它基于信号的局部特征时间尺度,可以将复杂的信号分解成一个固有模态函数(IMF的定义,第1节)。通过分析每个包含信号局部特征的IMF分量,原始信号的特征信息可以准确、有效地提取出来。此外,每一个IMF分量中包含的频率分量不仅与信号本身的采样频率有关,还随信号的变化而变化,因此,EMD是一种自适应信号处理方法,可以完美应用于非线性和非平稳过程,同时克服了傅里叶变换的限制和具有高信噪比等缺点。在本文中,EMD被应用于滚动轴承故障诊断。首先,原始加速度振动信号经EMD分解得到IMF分量,然后

500kV输电线路故障诊断方法综述_魏智娟

2012年第2期 1 500kV 输电线路故障诊断方法综述 魏智娟1 李春明2 付学文1 (1.内蒙古工业大学电力学院,呼和浩特 010080;2.内蒙古工业大学信息学院,呼和浩特 010080) 摘要 对近几年国内外具有代表的中外文献进行了学习研究,重点论述了输电线路故障诊断的四种方法:阻抗法,神经网络和模糊理论等智能算法,小波理论,行波法。综合输电线路的四种故障诊断方法,建议采用小波熵原理对输电线路故障模型进行故障类型识别,运用基于小波熵的单端行波测距方法实现故障定位。 关键词:故障诊断;阻抗法;智能算法;小波理论;行波法 The Survey on Fault Diagnosis in the 500kV Power Transmission Lines Wei Zhijuan 1 Li Chunming 2 Fu Xuewen 1 (1.The Power College of Inner Mongolia University of Technological, Inner Mongolia, Hohhot 010080; 2.The Information College of Inner Mongolia University of Technological, Inner Mongolia, Hohhot 010080) Abstract Based on the overview of typical literatures at home and abroad, this research focused on the four methods of failure diagnosis of transmission lines, namely, Impedance method, Intelligent method such as Neural Network Theory and Fuzzy Theory, Wavelet Theory and Traveling Wave method. And based on the synthesis of the four methods, this research suggested that simulation should be conducted to the failure models of transmission line by applying Wavelet Entropy Principle and the results of the simulation should be analyzed in order to identify the failure types; and the failure simulation should be conducted by the single traveling wave distance-testing method of wavelet entropy, and the results of the simulation should be analyzed in order to realize failure location. Key words :failure diagnosis ;impedance method ;intelligent algorithm ;the Wavelet Theory ;the traveling wave method 超高压输电线路是电力系统的命脉,它担负着传送电能的重任,其安全可靠运行是电网安全的根本保证。输电线路在实际运行中经常发生各种故障,如输电线路的鸟害故障[1]、输电线路的风偏故障等[2],及时准确地对输电线路进行故障诊断就显得非常重 要。国家电网公司架空送电线路运行规程明确规定 “220kV 及以上架空送电线路必须装设线路故障测 距装置”[3-4]。由于我国幅员辽阔,地形地貌的多样 性致使输电线路工作环境极为恶劣,输电线路发生 故障导致线路跳闸、电网停电,对电力系统安全运 行造成了很大威胁,所以,在线路发生故障后迅速 准确地进行故障诊断,减少因故障引起的停电损失, 降低寻找故障点的劳动强度,尽最大可能降低对整 个电力系统的扰动程度,确保电力系统的安全可靠稳定运行具有十分重要的意义。本文在总结前人的基础上,重点论述了超高压输电线路的4种故障诊断方法,建议采用小波熵原理对输电线路故障类型 进行故障识别,利用基于小波熵的单端行波测距方法实现故障定位。 1 输电线路故障诊断 当输电线路发生故障时,早先的故障定位通常是由经验丰富的运行人员在阅读故障录波图的基础上,综合电力用户提供的信息,进行预测、判断可能出现的故障位置,然后派巡线人员通过查线确认故障位置并及时排除故障。在电力市场竞争日渐激

物理化学上册部分内容填空题及答案

一、选择题) 1. 关于偏摩尔量,下面的叙述中不正确的是: (A) 偏摩尔量的数值可以是正数、负数和零 (B) 溶液中每一种广度性质都有偏摩尔量,而且都不等于其摩尔量 (C) 除偏摩尔吉布斯自由能外,其他偏摩尔量都不等于化学势 (D) 溶液中各组分的偏摩尔量之间符合吉布斯-杜亥姆关系式 二、填空题 2. 300 K 时,将2 mol Zn 片溶于过量的稀硫酸中,若反应在敞口容器中进行时放热Q p , 在封闭刚性容器中进行时放热Q V ,则Q V -Q p = _______ J 。 3. 当一个不可逆过程发生之后, 增加了,而 的可用性减少了。 4. 已知Cl 2的共价半径为1.988?10-10 m, k =1.38123K J 10 --??, h =6.6s J 1034??-, Cl 原子的相对摩尔质量为35.0,235Cl 的第一激发态的能量等于kT 时转动运动对配分函数的贡献 变得重要,则此时的温度T = 。 5.热力学封闭体系与环境之间的界面所起的作用为: (1) ; (2) 。 6. CO 晶体的标准摩尔残余熵是由于 ____________________ 而产生的,其S m $残余 =_______________ 。 7. 双原子分子在温度很低时且选取振动基态能量为零,则振动配分函数值为 。 8.在一绝热刚性容器中进行某一化学反应,该体系的内能变化为 ______ ,焓变化为 _______ 。 9. 对于封闭体系 W f = 0 的化学反应和相变化,若用B d μ∑n B ≤ 0 公式判断过程的方向和限度,其适用条件是 ______,或 ______,______,______ 。 10. N 2的振动频率v =6.98?1013 s -1,在25℃时,ν=1和ν=0能级上粒子数之比为 N ν=1/N ν=0= 。 11. 某气体服从状态方程 pV m = RT + αp (α> 0的常数),若该气体经恒温可逆膨胀,其 热力学能变化ΔU m = _________ J 。 12. 当多孔硅胶吸附水达到饱和时,自由水分子与吸附在硅胶表面的水分子比较,μ(自 由水分子)将 μ(吸附在硅胶表面的水分子)。 13. I 2分子的振动能级间隔为 0.43×10-20 J ,在 25℃时,某一能级与其较低能级上分子数的比值N i+1/N i = ___________________ 。 14. 理想气体向真空膨胀,体积由V 1变到V 2,其ΔU _____ ,ΔS _____ 。 15. 对一单组分、单相、各向同性的封闭体系而言,等压条件下只做体积功时,其吉布斯自由能值将随温度的升高而 。 16. 300 K 时,分布在J =1转动能级上的分子数是J =0能级上的3exp(-0.1)倍,则该分子转动特征温度r Θ= 。 17. 选择“>”、“<”、“=”中的一个填入下列空格: 实际气体绝热自由膨胀,ΔU 0,ΔS _____ 0。 18. 理想气体等温 (T = 300 K) 膨胀过程中从热源吸热 600 J ,所做的功仅是变到相同终态

故障诊断理论方法综述

故障诊断理论方法综述 故障诊断的主要任务有:故障检测、故障类型判断、故障定位及故障恢复等。其中:故障检测是指与系统建立连接后,周期性地向下位机发送检测信号,通过接收的响应数据帧,判断系统是否产生故障;故障类型判断就是系统在检测出故障之后,通过分析原因,判断出系统故障的类型;故障定位是在前两部的基础之上,细化故障种类,诊断出系统具体故障部位和故障原因,为故障恢复做准备;故障恢复是整个故障诊断过程中最后也是最重要的一个环节,需要根据故障原因,采取不同的措施,对系统故障进行恢复一、基于解析模型的方法 基于解析模型的故障诊断方法主要是通过构造观测器估计系统输出,然后将它与输出的测量值作比较从中取得故障信息。它还可进一步分为基于状态估计的方法和基于参数估计的方法,前者从真实系统的输出与状态观测器或者卡尔曼滤波器的输出比较形成残差,然后从残差中提取故障特征进而实行故障诊断;后者由机理分析确定系统的模型参数和物理元器件之间的关系方程,由实时辨识求得系统的实际模型参数,然后求解实际的物理元器件参数,与标称值比较而确定系统是否发生故障及故障的程度。基于解析模型的故障诊断方法都要求建立系统精确的数学模型,但随着现代设备的不断大型化、复杂化和非线性化,往往很难或者无法建立系统精确的数学模型,从而大大限制了基于解析模型的故障诊断方法的推广和应用。 二、基于信号处理的方法 当可以得到被控测对象的输入输出信号,但很难建立被控对象的解析数学模型时,可采用基于信号处理的方法。基于信号处理的方法是一种传统的故障诊断技术,通常利用信号模型,如相关函数、频谱、自回归滑动平均、小波变换等,直接分析可测信号,提取诸如方差、幅值、频率等特征值,识别和评价机械设备所处的状态。基于信号处理的方法又分为基于可测值或其变化趋势值检查的方法和基于可测信号处理的故障诊断方法等。基于可测值或其变化趋势值检查的方法根据系统的直接可测的输入输出信号及其变化趋势来进行故障诊断,当系统的输入输出信号或者变化超出允许的范围时,即认为系统发生了故障,根据异常的信号来判定故障的性质和发生的部位。基于可测信号处理的故障诊断方法利用系统的输出信号状态与一定故障源之间的相关性来判定和定位故障,具体有频谱分析方法等。 三、基于知识的方法 在解决实际的故障诊断问题时,经验丰富的专家进行故障诊断并不都是采用严格的数学算法从一串串计算结果中来查找问题。对于一个结构复杂的系统,当其运行过程发生故障时,人们容易获得的往往是一些涉及故障征兆的描述性知识以及各故障源与故障征兆之间关联性的知识。尽管这些知识大多是定性的而非定量的,但对准确分析故障能起到重要的作用。经验丰富的专家就是使用长期积累起来的这类经验知识,快速直接实现对系统故障的诊断。利用知识,通过符号推理的方法进行故障诊断,这是故障诊断技术的又一个分支——基于知识的故障诊断。基于知识的故障诊断是目前研究和应用的热点,国内外学者提出了很多方法。由于领域专家在基于知识的故障诊断中扮演重要角色,因此基于知识的故障诊断系统又称为故障诊断专家系统。如图1.1

工程机械故障诊断方法综述

工程机械故障诊断方法综述 谢祺 机0801-1 20080534 【摘要】:机械设备的检测诊断技术在现代工业生产中的作用不可忽视,从设备诊断的基本方法、内容和技术手段等多方面对我国机械设备诊断技术的现状进行了综述,并在此基础上分析并提出了该技术在今后的发展趋势。 【关键字】:机械设备诊断技术发展趋势 引言 随着科学技术的发展,机械设备越来越复杂,自动化水平越来越高,机械设备在现代工业生产中的作用和影响越来越大,与其有关的费用越来越高,机器运行中发生的任何故障或失效不仅会造成重大的经济损失,甚至还可能导致人员伤亡。通过对设备工况进行检测,对故障发展趋势进行早期诊断,找出故障原因,采取措施避免设备的突然损坏,使之安全经济地运转,在现代工业生产中起着重要的作用。开展机械设备故障检测与诊断技术的研究具有重要的现实意义。本文试图对机械设备故障监测诊断的内容、方法的现状及发展趋势进行探讨。 1机械故障诊断技术的历史 早在60年代末,美国国家宇航局(NASA)就创立美国机械故障预防MFPG(Machinery Fault Prevention Group),英国成立了机械保健中心(UK,Machineral Health Monitoring Center)。由于诊断技术所产生的巨大的经济效益,从而得到迅速发展。但各个工程领域对故障诊断的敏感程度和需求迫切性并不相同。例如一台机械设备因故障停机检修并不导致全厂生产过程停顿,或对产品质量产生严重的影响,它对故障诊断的需求性就不那么迫切。反之,就非要有故障诊断技术不可。目前监视诊断技术主要用于连续生产系统或与产品质量有直接关系的关键设备。 机械故障诊断技术发展几十年来,产生了巨大的经济效益,成为各国研究的热点。从诊断技术的各分支技术来看,美国占有领先地位。美国的一些公司,如 Bently,HP等,他们的监测产品基本上代表了当今诊断技术的最高水平,不仅具有完善的监测功能,而且具有较强的诊断功能,在宇宙、军事、化工等方面具有广泛的应用。美国西屋公司的三套人工智能诊断软件(汽轮机TurbinAID,发电机GenAID,水化学ChemAID)对其所产机组的安全运行发挥了巨大的作用。还有美国通用电器公司研究的用于内燃电力机车故障排除的专家系统DELTA;美国NASA研制的用于动力系统诊断的专家系统;Delio Products公司研制的用于汽车发动机冷却系统噪声原因诊断的专家系统ENGING COOLING ADCISOR等。近年来,由于微机特别是便携机的迅速发展,基于便携机的在线、离线监测与诊断系统日益普及,如美国生产的M6000系列产品,得到了广泛的应用[2]。 英国于70年代初成立了机器保健与状态监测协会,到了80年代初在发展和推广设备诊断技术方面作了大量的工作,起到了积极的促进作用。英国曼彻斯特大学创立的沃森工业维修公司和斯旺西大学的摩擦磨损研究中心在诊断技术研究方面都有很高的声誉。英国原子能研究机构在核发电方面,利用噪声分析对炉体进行监测,以及对锅炉、压力容器、管道得无损检测等,起到了英国故障

人生与熵(究竟的开始)

人生与熵(究竟的开始) 物理学有一个高度概括的定律,就是关于熵的定理,大意是这样的:任何物体(物质)在没有吸收外界能量的条件下,总是朝熵增加的方向变化。所谓熵,指的就是无序的程度。无序的程度越高,熵值越大。这个熵的定律通俗地解读,就是说,任何物体想提高其有序性,必须吸收更多的能量。之所以说这是一个高度概括的定律,是因为这个定律反映了宇宙界的一个普遍的现象,适合于有机界、无机界,适合于自然界,也适合于社会,适合于生命物质,也适合于非生命物质。与“物质是运动的”,“物质运动具有波动性”诸如此类的哲学例题有点类似,具有高度的概括性和普适性。所以,把关于熵的定律提高到哲学定律的高度也未尝不可。 将这个定律换一种说法,就是你想把某个东西变得更高级(更好,更有序),你得对它做功!更为通俗的说法还有:天上不会掉馅饼下来;世上没有免费的午餐;想要收获,必须有付出;天道酬勤;等等。 反过来说,你不想对它做功,它会自然向熵增大的方向发展。 所以,自然界就存在下面司空见惯的现象: 打碎一只碗比烧制一只碗容易得多; 把一堆码好的积木踢散比收拢它们并码放整齐容易得多; 一个人死去并腐烂只要几天时间,但长成人却要几十年时间;

学好三年,学坏三天; 建好一幢大厦要几年,烂毁它只要几秒; 搞好一个企业要数十年持之以恒,但搞垮它也许只要几十天。 事实上,世界的物质存在两种变化,一种是向有序方向发展,另一种相反。两种变化相互转化。打一个比方:一粒种子可以发芽生长成一棵大树,这是朝着熵变小的方向发展,但有一天开始,这棵树开始枯萎,最后死亡,腐烂成泥,这是朝熵增大的方向发展。这种相互之间的变化周而复始,构成了一个基本的运动周期。 那么为什么有的时候或有的物质能够向有序化发展,而有的时候或其它物质却相反呢?物理学家发现,要想使物质朝有序化方向发展,这个物质必须具备一种特殊的结构,即耗散结构:即具备能够吸收外界能量并实现能量有效转化的结构。一个最为简单的耗散结构包括以下几个基本组成部分:入口结点、能量转化功能、出口结点。打一个比方,健康的人个体就是一个耗散结构:嘴为能量入口,体内器官为能量转化功能器,肛门等排泄器官则为出口。一个耗散结构能够实现吸收外界能量,将一部分转化为提高自身能级的能量留在体内,剩余的能量则通过出口排出体外。 所以,从熵的定律及耗散结构理论角度来说,生命的本质就是耗散结构。如果耗散结构遭到了破坏,个体无法实吸收外界能量的功能,则意味着生命的终结!

齿轮箱故障诊断

风力发电机组齿轮箱故障诊断 摘要: 通过对不同齿轮箱振动频谱的检测结果的分析,论述了判断齿轮箱由于长期处于某些恶劣条件下,如交变载荷或润滑油失效,引起的齿轮和轴承损坏的检测方法。分析了齿轮箱出现故障的原因以及应采取的措施。 关键词:风电机齿轮箱轴承状态检测 一、风电机组齿轮箱的结构及运行特征 我国风电场中安装的风电机组多数为进口机组。近几年来,一批齿轮箱发生故障,有些由厂家更换,也有的由国内齿轮箱专业厂进行了修理。有的风场齿轮箱损坏率高达40~50%,极个别品牌机组齿轮箱更换率几乎接近100%。虽然齿轮箱发生损坏不仅仅在我国出现,全世界很多地方同样出现过问题,但在我国目前风电机组运行出现的故障中已占了很大比重,应认真分析研究。 1) 过去小容量风电机组齿轮箱多采用平行轴斜齿轮增速结构,后来为避免齿轮箱造价过高、重量体积过大,500kW以上的风电机组齿轮箱多为平行轴与行星轮的混合结构。由于风电机组容量不断增大,轮毂高度增加,齿轮箱受力变得复杂化,这样就造成有些齿轮箱可能在设计上就存在缺陷。 2) 由于我国有些地区地形地貌、气候特征与欧洲相比有特殊性,可能对标准设计的齿轮箱正常运行有一定影响。我国风电场多数处于山区或丘陵地带,尤其是东南沿海及岛屿,地形复杂造成气流受地形影响发生崎变,由此产生在风轮上除水平来流外还有径向气流分量。我国相当一部分地区气流的阵风因子影响较大,对于风电机组机械传动力系来说,经常出现超过其设计极限条件的情况。作为传递动力的装置-齿轮箱,由于气流的不稳定性,导致齿轮箱长期处于复杂的交变载荷下工作。由于设备安装在几十米高空,不可能容易地送到工厂检修,因此经常进行状态监视可以及时发现问题,及时处理,还可以分析从出现故障征兆到彻底失效的时间,以便及时安排检修。

机械故障诊断综述

中国自动化学会中南六省(区)2010年第28届年会?论文集 机械故障诊断综述 Survey on Faults Diagnosis of Machine 赵宏伟1,2,张清华1,夏路易2,邵龙秋1(1广东石油化工学院 计算机与电子信息学院,广东 茂名525000;2太原理工大学 信息工程学院,山西 太原030024)摘要:本文较系统的介绍了故障诊断的基本过程、原理,在此基础上对故障诊断方法做了详细、系统的论述,并进一步对故障诊断技术的发展做了展望。 关键词:故障诊断;诊断原理;维修制度 Abstract: In this paper, the basic process and principle of fault diagnosis are introduced. On that basis, the main method of fault diagnosis isintroduced in detail. Finally, the development on technique of faults diagnosis is looked forward. Key Words: Faults Diagnosis; Diagnosis Principle; maintenance 1 引言 七十年代以来,计算机和电子技术飞跃发展,促使工业生产向现代化、机器设备向大型化、连续化、高速化、自动化发展。与此同时,现代化机械设备的应用一方面大大促进了生产的发展;另一方面也潜伏着一个很大的危机,即一旦发生故障所造成的直接和间接的损失将是十分严重。为解决这一问题,机械故障诊断技术孕育而出。这门新技术也是一门以高等数学、物理、化学、电子技术、机电设备失效学为基础的新兴学科。它的宗旨就是运用当代一切科技的新成就发现设备的隐患,以期对设备事故防患于未然。如今它已是现代化设备维修技术的重要组成部分,并且成了设备维修管理工作现代化的一个重要标志。 2 设备维修制度 目前,与故障诊断技术紧密相关的设备维修制度共有三种: (1)事后维修制度(POM):这是一种早期的维修制度。主要特点是“不坏不修,坏了再修。”这种维修制度对发生事故难以预料,并往往会造成设备的严重损坏,既不安全且又延长了检修时间。 (2)预防维修制度(PM):又称以时间为基础的设备维修制度(TBM)或计划维修制度。这是一种静态维修制度,主要特点是当设备运行达到计划规定的时间或吨公里时便进行强制维修。它比前一种维修制度大大前进了一步,对于保障设备和人身安全,起到了积极作用。同时,这种维修制度也存在明显的缺陷,即过剩维修和失修的问题。以滚动轴承为例,同一型号的滚动轴承,其实际的使用寿命有时相差达数十倍。在预防维修制度行监测与诊断故障的方法,具体包括声音监听法、频谱分析法和声强法。 温度信号监测诊断技术包括物体温度的直接测量和热红外分析技术。实际工业中不恰当的温度变化往往意味着热故障的发生。从被测设备的某一部分的温 130

EEMD联合能量熵及小波阈值的语音去噪方法

2016年3月第37卷 第3期计算机工程与设计COMPUTERENGINEERINGANDDESIGNMar.2016Vol.37 No.3 EEMD联合能量熵及小波阈值的语音去噪方法 张 雪,龚晓峰 (四川大学电气信息学院,四川成都610065) 摘 要:针对传统语音信号去噪方法可能滤除了有效信号且信噪比尚可提升的问题,提出一种基于集合经验模态分解(EEMD)的联合能量熵与小波阈值的自适应去噪方法。基于对语音信号的EEMD分解结果,利用能量熵确定高频部分与低频部分的分界并计算阈值,对高频部分采用小波阈值降噪后与低频部分重构信号。MATLAB仿真结果表明,在低信噪比条件下,采用该方法能显著提高信噪比,减小均方根误差,与EMD法、小波阈值降噪相比,缓解了EMD分解的模态混叠现象,有效解决了小波分解中需要预先设定小波基及分解层数的问题,达到了良好的抑制噪声效果。 关键词:语音信号;集合经验模态分解;能量熵;阈值;信噪比 中图法分类号:TP393 文献标识号:A 文章编号:1000‐7024(2016)03‐731‐06doi:10.16208/j.issn1000‐7024.2016.03.033 收稿日期:2015‐04‐26;修订日期:2015‐07‐10作者简介:张雪(1990),女,四川乐山人,硕士研究生,研究方向为检测技术与自动化装置;龚晓峰(1965),男,浙江金华人,博士,教授,硕士生导师,研究方向为检测技术与自动化装置。E‐mail:zhangxue_scu@sina.comMethodofspeechdenoisingbasedonEEMDcombiningenergyentropywithwaveletthreshold ZHANGXue,GONGXiao‐feng(CollegeofElectricalEngineeringandInformation,SichuanUniversity,Chengdu610065,China) Abstract:Tosolvetheproblemsoftheimprovablesignal‐noiserate(SNR)andwronglyfilteringtheefficientsignalswhenusingtraditionalde‐noisingmethodstodealwithspeechsignals,aself‐adaptivede‐nosingmethodbasedonensembleempiricalmodedecomposition(EEMD)combiningenergyentropywithwaveletthresholdwaspresented.BasedontheresultsoftheEEMDofthespeechsignal,thehighandlowfrequencysignalsweredistinguishedusingtheenergyentropyandthethresholdwascalcula‐ted.Thehighfrequencysignalwasreconstructedtogetherwiththelowfrequencysignalafterbeingde‐noisedusingwaveletthreshold.TheMATLABsimulationresultsconfirmthatthismethodcansignificantlyimprovetheSNRandreducetherootmeansquareerror(RMSE)underthelowSNRcondition.ComparedwiththeEMDandwaveletthresholddenoising,thepro‐ posedmethodrelievesthemodelmixsuperpositionphenomenoncausedbytheEMDandremovestheunnecessaryprocessofpre‐settingthewaveletbasisandthedecompositionlevelsinwaveletdecomposition,whichshowsgooddenoisingperformance.Keywords:speechsignal;EEMD;energyentropy;threshold;SNR0 引 言 针对语音信号去噪问题,国内外研究者提出了多种方 法:①小波阈值去噪。不少文献[1‐6]对小波阈值去噪做出 了改进。文献[1]提出了一种基于小波熵的语音信号去噪 方法,文献[2‐6]提出了改进阈值函数的去噪方法,但是 上述文献依然没有解决小波基选取、分解层数确定的问题; ②经验模态分解(empiricalmodedecomposition,EMD)。 文献[7]提出了基于改进小波阈值和EMD的语音去噪方 法,解决了小波分解存在的不足,但由于EMD分解,去噪 后的信号出现模态混叠的现象;③针对EMD存在的模态混叠问题,Wu和Huang提出了集合经验模态分解方法(en‐sembleempiricaldecomposition,EEMD)。文献[8]分析了模态混叠问题在小波去噪中的影响,通过仿真实验得出结论:EEMD能有效缓解模态混叠问题。因此EEMD方法在故障诊断[9‐11]、信号去噪[12‐15]、医疗[16‐17]等领域得到广泛应用。虽然目前语音信号的去噪方法不同程度地加强了去噪效果,但依然存在着小波基选取、分解层数确定、阈值选取、模态混叠等问题。针对上文提到的语音信号去噪中尚未解决的问题以及

机械故障诊断的发展现状与前景

《机械故障诊断技术》读书报告 MAO pei-gang 南阳理工机械与汽车工程学院 473004 动平衡诊断案例分析综述 Diagnosis of dynamic balance Case Analysis were Review 摘要 简要阐述组动平衡故障诊断中所使用的现代测试与分析技术。通过五个动不平衡故障的诊断与处理实例,指出了波德图、频谱图等现代分析技术对于组动平衡故障诊断的价值和意义;总结了基于现代测试与分析技术的动平衡故障的主要特征。;验证了影响系数法对于动平衡故障处理的准确性及实用性。对于提高动平衡故障诊断的准确性及其精度具有推广和借鉴意义。 关键词:动平衡故障诊断振动分析 Abstract The modern measuring and analyzing technologies applied in the dynamic balance fault diagnoses are described briefly。In view of five dynamic unbalance fault diagnoses and treatments。the significance and purpose of the modern analyzing technologies such as Bode Plot,Spectrum Plot for the dynamic balance fault diagnoses are put forward,and its characteristics based on testing and analyzing technologies are summarized.The accuracy and practicability of the influence coefficient method for its treatment are proved.The instructions and experiences of improving the

电力系统故障的智能诊断综述

电力系统故障的智能诊断综述 发表时间:2016-06-30T14:34:41.580Z 来源:《电力设备》2016年第9期作者:李艳君蒋杰李玉玲李飞翔 [导读] 在电力系统中,设备故障诊断和厂站级的故障诊断经过了几十年的发展和改革,现今已经较为成熟,而电力系统层面的故障才刚刚开始。 李艳君蒋杰李玉玲李飞翔 (国网新疆检修公司新疆乌鲁木齐 830000) 摘要:常用的智能故障诊断技术有专家系统、人工神经网络、决策树、数据挖掘等,专家系统技术应用最广,最为成熟,但是也需要结合使用其他智能技术来克服专家系统技术自身的缺点。智能故障诊断技术的发展趋势主要有多信息融合、多智能体协同、多种算法结合等,并向提高智能性、快速性、全局性、协同性的方向发展。基于此,本文就针对电力系统故障的智能诊断进行分析。 关键词:电力系统;故障;智能诊断 引言 文章对电力系统故障的智能诊断进行了详细的阐述,通过对电力系统的简介,和对故障诊断的发展阶段进行了简要的分析,并阐述了电力系统故障的智能诊断实际应用存在的问题及对策,文章最后指出了电力系统故障的智能诊断的发展趋势。望文章的阐述推动电力系统故障的智能诊断的发展。 1电力系统概述 电力系统是由发电厂、送变电线路、供配电所和用电等环节组成的电能生产与消费系统。电力系统的主要功能是将自然界中的能源,通过先进的发电动力装置,将能源转换为电能。在通过输电线路和变压系统,将电能传送到各个用户。为了实现这一功能,电力系统在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、优质的电能。 2电力系统故障智能诊断技术及发展现状 2.1智能故障诊断技术 传统的故障诊断方法分为基于信号处理和基于数据模型,均需要人工进行信息的处理和分析,缺乏自主学习能力。随着人工智能技术这一新方法的产生及发展,为故障诊断提供了初步的自动分析和学习的途径。人工智能技术能够存储和利用故障诊断长期积累的专家经验,通过模拟人大脑的逻辑思维进行推理,从而解决复杂的诊断问题。 目前在电网故障诊断领域出现了包括专家系统、人工神经网络、决策树理论、数据挖掘、模糊理论、粗糙集理论、贝叶斯网络、支持向量机及多智能体系统等技术以及上述方法的综合应用。 目前,在对电网故障智能诊断领域的研究中,依靠单一智能技术的系统多,信息的综合利用研究较少,协同技术的研究应用更少;投入运行的诊断系统多为专家系统,但是离线运行的多,在线运行的很少。即使广泛投入使用的专家系统也同样存在着:(1)知识的获取和管理问题,难以获取较高适应度和准确度的知识。(2)推理的效率问题。(3)故障诊断的在线应用问题,目前仅限于离线故障诊断,该结论不能指导对电网的实际控制。(4)故障诊断的动态分析问题,缺乏故障的动态分析,从而屏蔽了很多有用的细节,尤其是各元件之间的相互关联关系等。基于以上问题,采用决策树方法可以对系统信息进行归类梳理,可以提高专家系统的速度;通过粗糙集方法建立清晰的数学模型;采用数据挖掘和关联性规则可以提高故障诊断分析的准确度。这几种方法的结合应用有助于提高故障诊断的智能水平、效率和准确度。 2.2电力系统故障智能诊断发展现状 电力系统连锁故障分析理论与应用中提到,电力系统故障智能诊断是相对传统的故障诊断而言的。在传统的故障诊断方法可划分为两类。其一是关于信号出路的方法。其二是数学模型的方法。这些都需要人为地区判断和分析,这些方法应用是没有自动化的处理能力。故障的智能诊断是将传统的方法,与当下先进的计算机技术有效的结合,形成的人工智能技术的新方法,对电力系统的故障进行智能的诊断,这是故障诊断技术发展的新时期。 3智能故障诊断面临的问题和对策 3.1智能故障诊断面临的问题 知识的获取和管理问题,也可以说是规则的表达和维护问题。知识是专家系统行为的核心,如何根据系统的变化,获取具有较高适应度和准确度的知识(规则)。对知识的一致性、冗余性、矛盾性和完备性进行检验、维护和管理,是专家系统亟需解决的首要问题。 推理的效率问题,也可以说是如何解决规则组合爆炸的问题。规则库的规模增大以后,搜索的运算量迅速增长,尽管人们提出了许多算法,规则组合爆炸的问题还是没有得到满意的解决。 故障诊断的在线应用问题。以往的故障诊断离线运行,只能告诉调度员已有故障是如何发展的,因为运行方式的多变性,离线故障诊断结论不一定能够指导调度员对电网的实际控制;只有做到在线运行,才能及时帮助调度员进行控制决策。 故障诊断的动态分析问题。以往的故障诊断只能进行静态分析,忽略了故障动态过程的大量有用的细节,尤其是采用了高速保护的大型电网,更加需要分析动态过程,例如快速相继开断过程中的顺序和相互关系、复杂故障中各元件之间的相互影响、电压崩溃的动态过程、运行方式切换或调度控制过程对电网的影响等。 3.2智能故障诊断面临问题的解决对策 对于知识的获取和管理问题,可以采用提高故障诊断系统的学习能力的方法,如 ANN、数据挖掘、仿生学方法等。这些智能方法都有其优点和局限性,需要有针对性地应用。 对于推理的效率问题,可以采用计算速度更快的计算机硬件和软件算法,通信速度更快的数据采集和传输手段;数据挖掘是从各种复杂故障中发现最常见的故障或分解出简单故障的有力手段;建立系统的故障案例库,可以降低决策分析的计算量,提高诊断推理的效率。 对于故障诊断的在线应用和动态分析问题,可以采用更能够反映电网实时运行状态的信息,如广域量测系统、高速保护信息系统和故障录波信息系统、稳定控制系统等提供的动态数据;实时进行电网的灵敏度分析,动态分析电网的健康状况;增量挖掘技术只处理实时的

齿轮故障诊断方法综述

齿轮故障诊断方法综述 摘要齿轮是机械设备中常用的部件,而齿轮传动也是机械传动中最常见的方式之一。在许多情况下,齿轮故障又是导致设备失效的主要原因。因此对齿轮进行故障诊断具有非常重要的意义。介绍了故障的特点和几种诊断方法,并比较了基于粒子群优化的小波神经网络,基于相关分析与小波变换,基于小波包和BP神经网络和基于小波分析等故障诊断方法的优缺点,并提出了齿轮故障诊断的难点和发展方向。 关键字齿轮故障诊断诊断方法分析比较发展

目录 第一章齿轮故障诊断发展及故障特点..................... 错误!未定义书签。齿轮故障诊断的发展................................... 错误!未定义书签。 1. 2齿轮故障形式与震动特征 ........................... 错误!未定义书签。第二章齿轮传动故障诊断的方法......................... 错误!未定义书签。 2. 1高阶谱分析........................................ 错误!未定义书签。 参数化双谱估计的原理 .............................. 错误!未定义书签。 试验装置与信号获取 ................................ 错误!未定义书签。 故障诊断 ......................................... 错误!未定义书签。 应用双谱分析识别齿轮故障 ........................ 错误!未定义书签。基于边频分析的齿轮故障诊断............................ 错误!未定义书签。 分析原理 .......................................... 错误!未定义书签。 铣床振动测试 ...................................... 错误!未定义书签。 边频带分析 ...................................... 错误!未定义书签。 故障诊断 ........................................ 错误!未定义书签。 2. 3时域分析.......................................... 错误!未定义书签。

熵和焓的理解

熵 entropy 描述的重要态函数之一。熵的大小反映系统所处状态的稳定情况,熵的变化指明热力学过程进行的方向,熵为提供了定量表述。 为了定量表述热力学第二定律,应该寻找一个在可逆过程中保持不变,在不可逆过程中单调变化的态函数。克劳修斯在研究卡诺热机时,根据卡诺定理得出,对任意循环过程都有,式中 Q是系统从温度为T的热源吸收的微小热量,等号和不等号分别对应可逆和不可逆过程。可逆循环的表明存在着一个态函数熵,定义为 对于绝热过程Q=0,故S≥0,即系统的熵在可逆绝热过程中不变,在不可逆绝热过程中单调增大。这就是熵增加原理。由于孤立系统内部的一切变化与外界无关,必然是绝热过程,所以熵增加原理也可表为:一个孤立系统的熵永远不会减少。它表明随着孤立系统由非平衡态趋于平衡态,其熵单调增大,当系统达到平衡态时,熵达到最大值。熵的变化和最大值确定了孤立系统过程进行的方向和限度,熵增加原理就是热力学第二定律。 能量是物质运动的一种量度,形式多样,可以相互转换。某种形式的能量如内能越多表明可供转换的潜力越大。熵原文的字意是转变,描述内能与其他形式能量自发转换的方向和转换完成的程度。随着转换的进行,系统趋于平衡态,熵值越来越大,这表明虽然在此过程中能量总值不变,但可供利用或转换的能量却越来越少了。内能、熵和热力学第一、第二定律使人们对与热运动相联系的能量转换过程的基本特征有了全面完整的认识。 从微观上说,熵是组成系统的大量微观粒子无序度的量度,系统越无序、越混乱,熵就越大。热力学过程不可逆性的微观本质和统计意义就是系统从有序趋于无序,从概率较小的状态趋于概率较大的状态。 在信息论中,熵可用作某事件不确定度的量度。信息量越大,体系结构越规则,功能越完善,熵就越小。利用熵的概念,可以从理论上研究信息的计量、传递、变换、存储。此外,熵在控制论、概率论、数论、天体物理、生命科学等领域也都有一定的应用。 注:熵的增加系统从几率小的状态向几率大的状态演变,也就是从有规则、有秩序的状态向更无,更无秩序的演变。 焓 enthalpy

故障诊断技术综述

故障诊断技术综述 一引言 故障诊断技术是一门紧密结合生产实际的工程科学,是现代化生产发展的产物。随着现代科学技术在设备上的应用,设备的结构越来越复杂,功能也越来越完善,自动化程度越来越高,由于许多无法避免的因素影响,会导致设备出现各种故障,从而降低或失去预定的功能,甚至会造成严重的乃至灾难性的事故。不言而喻,机械故障诊断技术在工业生产中起着越来越重要的作用,生产实践证明,研究故障诊断技术具有重要的现实意义。 二故障诊断技术的定义 故障诊断技术就是在设备运行中或基本不拆卸设备的情况下,掌握设备的运行状况,根据对被诊断对象测试所取得的有用信息进行分析处理,判断被诊断对象的状态是否处于异常状态或故障状态,判断劣化状态发生的部位或零部件,并判定产生故障的原因,以及预测状态劣化的发展趋势等。其目的是提高设备效率和运行可靠性,防患于未然,避免故障的发生。 三故障诊断技术的构成环节 从故障诊断的流程看,通常诊断系统由信号采集、信号处理、状态识别和诊断决策四大部分构成。其中,信号采集是基础,信号分析和处理是关键,状态识别(包括判断和预报)是核心,决策与管理是最终目标。前3个环节是基本环节。 1.信号采集 信息采集的基本任务是获取有用的信息。这是故障诊断的基础和前提,监测获取到的有用信息越多,监测数据越真实,越容易判断出故障原因。在运行过程中,必然会有力、热、振动及能量等各种量的变化,由此会产生各种不同的信息,根据不同的诊断需要,选择能表征设备工作状态的不同信息,如振动、压力及温度等,是十分必要的。这些信号一般是用不同的传感器来拾取的。只有采集到反映设备实际状态的信号,诊断的后续工作才有意义,因而信号采集是故障诊断技术中不可缺少的重要环节。 (1) 常用的设备状态监测技术分类 1) 振动信号监测技术 对设备的振动信号测试和分析,能获得机体、转子或其他零部件的振动幅值、频率和相位3个基本要素,经过对信号的分析、处理与识别,可了解到设备的振动特点、结构强弱、振动来源、故障部位和故障原因,为诊断决策提供依据。故利用振动信号诊断故障的技术较为普遍。 2) 声信号监测诊断技术 声信号监测诊断技术包括:噪声诊断、超声波诊断和声发射诊断技术。其中噪声的分析与诊断通常有两个目的:一是寻找机器发出噪声的主要声源,以便采取相应措施降低噪声;二是利用噪声信号判别故障。从噪声信号中提取特征信号,可以检测出故障的原因和发生故

相关主题