搜档网
当前位置:搜档网 › 电磁兼容(EMC)试验问题总结

电磁兼容(EMC)试验问题总结

电磁兼容(EMC)试验问题总结
电磁兼容(EMC)试验问题总结

EMC 试验问题总结

电气、电子产品种类繁多,结构原理也不尽相同,对产品进行电磁兼容抗扰度试验时尽管试验方法有基础标准、产品标准可遵循,但是试验前对一些具体问题没有事先考虑到,试验时就可能因为受试产品本身的原因而导致试验设备损坏。

一、受试产品电源端口浪涌抗扰度试验时出现的问题

图1是用EMCPro抗扰度试验系统对受试产品电源端口进行试验的示意图。受试产品电源电路的最前端是电源变压器。在N-PE之间施加4kV浪涌试验电压时,如果变压器承受不了此高压冲击,变压器初级线圈与屏蔽层、变压器铁心对金属机壳就会发生瞬间击穿。在击穿的瞬间变压器对地绝缘电阻很小,此时相当于EMCPro抗扰度试验系统前面板EUT电源输出插座220V交流电压L端直接对PE端短路,造成插座的L、PE插孔内打火,严重时会烧坏抗扰度试验系统的电源输出插座和受试产品电源线插头,回路电流见图1中带虚线的箭头所示。为了避免打火现象发生,可从以下两个方面考虑:一是如果受试产品标准中规定有非工作状态条件下绝缘性能脉冲电压试验项目,应先作脉冲电压试验(如GB17215-2002中规定脉冲电压试验为6kV,电压波形1.2/50μs),脉冲电压试验合格后再作工作状态下的浪涌(冲击)抗扰度试验。对于产品标准中没有规定非工作状态下作脉冲电压试验项目的产品,生产厂家应对产品增设抗浪涌(冲击)功能。例如,可在电源变压器初级线圈两线之间、两线分别对金属机壳之间焊接合适的压敏电阻。采取了抗浪涌(冲击)保护措施后即可进行浪涌(冲击)抗扰度试验。

二、受试产品信号线端口浪涌抗扰度试验时出现的问题

图2是信号线浪涌试验系统示意图,由CM-I/OCD信号线耦合/去耦网络、EMCPro抗扰度试验系统中的浪涌波发生器、试验辅助设备(调压器)和直流电压源组成。受试产品需要的交流输入信号由调压器输出端提供。浪涌试验信号由EMCPro前面板上的浪涌输出插孔HI、LO提供。直流电压源输出接到“-、COM、+”端为保护电路提供保护偏压。如果此偏压接触不良,当受试产品的交流输入信号正半周由调压器输出端接至信号线耦合/去耦网络的

D1、D8插孔时,电流就通过D1端经正向二极管->U形连接器->1500μF电容->GND

端->受试产品金属外壳->保护接地端PE到地,见图中带虚线的箭头所示。由于调压器滑动接触点的电压基本上对地短路,回路电流很大,这时不仅调压器提供的交流信号加不到受试产品的输入端,还会烧坏调压器和信号线耦合/去耦网络。所以“-、COM、+”端必须可靠的接上直流保护偏压(此偏压的大小应根据辅助设备输出电压大小而定)。为了防止直流保护电压接触不良起不到保护作用,最好在调压器后接一个隔离变压器,它的次级线圈输出的电压再接到D1、D8插孔作为受试产品的交流输入信号。这样,即使保护偏压接触不上,由于隔离变压具有隔离作用,电流通过地无法形成回路,因此可避免调压器和信号线耦合/去耦网络的损坏。

三、受试产品无电源开关时出现的问题

有些受试产品是没有电源开关的,当它的电源线插头插入(或拔出)正在供电的EMCPro 抗扰度试验系统电源输出插座时,由于输出的220V交流电压直接接通受试产品电源变压器初级线圈(参考图1),就会造成插座孔内打火。所以对没有电源开关的产品使用软件操作试验时,应使计算机屏幕上的受试产品电源开关按钮处于“断开”位置,在EMCPro抗扰度试验系统电源输出插座插上受试产品电源线插头后,再使电源开关按钮处于“接通”位置(用鼠标单击计算机屏幕上的“EUTPOWER”按钮实现受试产品电源OFF-ON转换),然后进行试验,试验完毕,先断开电源再拔出受试产品电源线插头。如果手动操作试验,试验前应在受试产品电源进线中附加电源开关,并且电源开关打在“断开”位置,EMCPro抗扰度试验系统电源输出插座插上受试产品电源线插头后,再把附加电源开关打在“接通”位置为受试产品送电,试验完毕,先把附加电源开关打在“断开”位置,然后拔出受试产品的电源线插头(为了保护EMCPro抗扰度试验系统上的电源开关,不能用EMCPro前面板上“OUTPUTEUTPOWER”开关按钮代替附加电源开关)。

四、受试产品电源端口脉冲群抗扰度试验时出现的问题

如果EMCPro电源输出插座孔内曾经发生过打火现象,应及时用酒精清擦插座孔内烟灰、碳粒。否则,对受试产品进行脉冲群抗扰度试验时,由于高压脉冲群的作用会导致插座孔内打火甚至燃起火苗。如果插座孔内烟灰、碳粒不能清擦干净,最好更换一个新插座。

五、受试产品静电放电抗扰度试验时出现的问题

在对产品进行静电放电抗扰度试验时,静电模拟器放电回路电缆接触不良,放电电流就会通过操作者进行放电,可能导致手中的静电模拟器落地摔坏。所以,要经常注意检查静电模拟器与放电回路电缆连接的固定螺丝、放电回路电缆与接地参考平面连接的固定螺丝是否拧紧,确保连接可靠。

以上是我们从EMC抗扰度试验多次教训中总结出来的几条经验,作为一个合格的产品检验人员,不仅要严格执行产品检验标准,正确操作受试产品,更要保证试验设备的安全。

摘要:讨论电子式电能表的绝缘性能对EMC抗扰度试验的影响及改进措施。通过增大间隙或爬电距离能使电能表的绝缘性能符合要求,从而能够通过EMC抗扰度试验,而增加的成本最低。优化后的试验流程为优先通过6kV的脉冲电压试验,然后进行各项EMC抗扰度试验,可以达到事半功倍的效果。

关键词:电子式电能表;绝缘性能;EMC(电磁兼容);爬电距离;间隙

1 引言

电子式电能表(或称静止式电能表,以下简称电能表)绝缘性能和电磁兼容性能的好环,直接关系到人民生命财产的安全以及电能计量的准确性,因此,在国家标准中列为必须进行的试验项目。我们在电能表性能试验中发现,有相当数量的试验样品当其绝缘性能不符合要求时,对其进行EMC电磁兼容性能试验时会产生相当大的影响。本文就此现象进行分析并提出为消除这种影响而采取的措施,同时提出一个优先选择的试验顺序。

2 技术要求

GB/T 17215—20020级和2级静止式交流有功电能表》对绝缘性能的基本要求是:电子式电能表属于Ⅱ类防护绝缘包封仪表,采用绝缘材料表壳,无保护接地措施。其额定输人电压≤300V时,试验脉冲电压为6kV。电路结构最小间隙允许3.Omm;最小爬电距离6.3 mm(室内仪表)和lOmm(室外仪表)[1]。

3 绝缘性能对EMC抗扰度试验的影响

3.1 对电快速瞬变脉冲群试验影响

电能表性能试验中,我们发现凡绝缘性能不能通过6kV冲击电压试验的样品,绝大多数通不过4kV脉冲群试验。通过分析和对比试验,我们认为这种通不过,并不是由于电能表本身的原理设计问题,而是源于一个简单的、被忽视的事实——带电元器件空间间隙或印制电路板布线爬电距离不够造成的,是电路设计缺陷和制造工艺问题。从而造成试验时脉冲群试验设备保险丝烧坏,试验无法进行。

3.2 对浪涌试验的影响

其现象和产生原因同脉冲群试验。但由于电浪涌比群脉冲波具有更高的冲击能量,因此在对脉冲群试验不产生影响的场合,也可能对浪涌试验产生影响。

3.3 对静电放电试验的影响

在电能计量器具的性能试验中,曾发现过因绝缘问题而导致静电放电试验[2]通不过的例子(见表1)。

3.4 对电压跌落试验的影响

在我们的试验中,尚未发现由于绝缘问题而导致电压跌落试验不能进行或通不过的例子,但理论分析表明:存在绝缘问题的电能表,有可能改变跌落波波形,这直接导致了实际跌落试验波形不符合要求,从而带来试验的复现性和一致性问题。

4 原理性分析

(1)6kV冲击电压试验是为了确定电能表经受短时高压冲击而不损坏的能力。试验目的一方面是基本保证变压器(含电压互感器、电流互感器)的初、次级间,及其绕组匝间或层间的绝缘质量,另一方面是基本保证在正常工作中连接到电网不同相位导线的仪表的不同线路间的绝缘,这些线路是可能发生过电压的。6kV冲击电压试验是直接施加在电压线圈两端的,以此检验电能表电压线圈绝缘是否合格;同时脉冲电压也会耦合到变压器次级,形成对电能表低压电路的瞬态干扰。冲击电压试验过程中要求仪器不应产生飞弧、击穿放电现象。其试验波形:按GB/T 16927.1《高压试验技术》规定为1.2/5Otis脉冲;试验电压等级为6 kV[3]。

(2)电浪涌现象通常是指开关操作(包括设备和系统对地短路、飞弧故障)或雷击(含避雷器动作)会在电网或通信线上产生瞬态过电压或过电流。试验时通过耦合/去耦网络施加到电能表的被测端口。GB/T 17626.5规定了浪涌的试验波形参数按GB/T16927.1规定的1.2/5Oμs开路电压波和8/20μs短路电流波[4]。

比较上述两项试验,可见:二者试验目的不同,试验电压施加方式不同,试验电压等级前者为6kV,后者为4kV;浪涌试验还对短路电流波形有要求。其共同点是试验电压波形是一样的。而且直接施加在电能表电压线圈两端的6kV瞬态冲击电压也会耦合到变压器次级,形成浪涌试验的部分效果。

(3)电快速瞬变脉冲群试验是模拟电感性负载快速接通和断开,或触点弹跳时产生的暂态骚扰,这种暂态骚扰以脉冲群形式出现。GB/T 17626.4规定

了试验波形和试验等级l5]。由于电能表电压和电流线路要承受幅度为4kV,持续时间60s 的脉冲群试验,因此可以预见,绝缘强度不合格的电能表引起的内部放电、飞弧,击穿会造成该项试验不合格。

5 改进措施和试验结果

5.1 问题产生原因

由于市场对电子式电能表的功能要求不断增加,因此新技术、新型电子元器件更新速度很快,电路板设计不断更新,不少厂家对其性能尚未完全掌握。在电子式电能表新产品试制过程中,绝缘问题是普遍存在的;主要表现形式有以下几种:(a)线路板布线爬电距离不够(多见于光耦输入/输出部分及周围电路);(b)连线间绝缘不符合要求,焊接点质量不高,焊锡堆积,形成尖峰放电。(c)带电元器件空间距离不够,形成尖端放电;(d)变压器自身绝缘不符合要求;(e)脉冲输出电路过于复杂且不符合要求。以上以(a)情况较为多见。就绝缘性能而言,上述5种情况都可归结为间隙或爬电距离不够。

5.2 改进措施

(1)对于(a)情形,改进印制板布线;相关区域增大间距,增大爬电距离。

(2)对于(b)情形,加强连线绝缘强度或增大间距,提高焊接点焊接质量。

(3)对于(c)情形,增大元器件间的空间距离。

(4)对于(d)情形,选用质量好的变压器。

(5)对于(e)情形,简化脉冲输出电路,去掉多余部分电路(含元件)。

5.3 试验结果

部分典型实例和试验结果列于表1。

6 结束语

我们对国内众多电能表生产厂家的试验样品进行的成功整改说明,大多数情况下,国产电子式电能表在通过了试验成本相对较低的脉冲电压试验后,许多即可达到国家标准要求的电磁兼容性能指标。

因此,电子式电能表及其类似产品进行定型鉴定、样机性能试验时,试验程序可以优化为:首先通过6kV脉冲电压试验,再进行各项电磁兼容性能试验,可以节约时间、人工、仪器设备消耗等试验成本,取得事半功倍的效果。

参考文献

[1] GB/T 17215.2002,1级和2级静止式交流有功电度表[M].北京:中国标准出版社,2003.

[2] GB/T 17626.2-1998,静电放电抗扰度试验[s].北京:中国标准出版社,1999.

[3] GB/T 16927.1997,高压试验技术[S].北京:中国标准出版社,1999.

[4] GB/T 17626.5.1999,浪涌(冲击)抗扰度试验[S].北京:中国标准出版社,19 99.

[5] GB/T 17626.4-1998,电快速瞬变脉冲群抗扰度试验[s].北京:中国标准出版社,1999.

[6] 全国无线电干扰标准化委员会,等.电磁兼容标准实施指南[M].北京:中国标准出版社,1999.

相关主题