搜档网
当前位置:搜档网 › 纯碱轻质风化过程

纯碱轻质风化过程

纯碱轻质风化过程
纯碱轻质风化过程

纯碱轻质风化过程

【海之源纯碱轻质】纯碱轻质是纯碱的一种,虽然俗称纯碱,但它其实属于盐类物质,因其水溶液显弱碱性而称纯碱。其晶体含结晶水,化学式Na2CO3·10H2O。在空气里碳酸钠晶体很容易失去结晶水,并渐渐碎裂成粉末。失水以后的碳酸钠叫做无水碳酸钠。纯碱轻质在空气中很容易被风化,所以我们在存储是一定要多加注意,下面我们了解一下纯碱轻质的风化过程吧~

#详情查看#【海之源化工:纯碱轻质】

【氯化钙】【纯碱】【小苏打】【氯化镁】

【纯碱轻质对人体的危害】

工业纯碱轻质会对我们的身体带来危害,下面我们为大家介绍一下工业纯碱轻质对我们造成危害的四大途径:

1.在工业纯碱轻质加工的时候如果不带口罩,就会有细小的粉尘或者是加工过程中产生的烟雾通过鼻

腔吸入体内。

2.对于工业纯碱轻质水溶液接触的时间太长也引起各种皮肤病。

3.直接接触工业纯碱轻质的时候没有带防护手套,会造成皮肤的灼伤和腐烂。

4.有的儿童在不知情的情况下不小心食用了工业纯碱轻质,轻者可造成粘膜糜烂,重者会导致严重出血或休克。

以上就是工业纯碱轻质对我们造成危害的四大途径,希望对大家有所帮助。我们一定要注意安全呦~

【纯碱轻质的风化过程】

纯碱在储存的时候要放在阴凉、通风的环境中,储存的容器口一定要密封,这是因为纯碱在空气中易风化,下面我们为大家介绍一下纯碱的风化过程:

1.失去结晶水:其实风化就是一个化学变化过程。在日常生活中由纯碱块变成纯碱面,就是风化现象。碳酸钠晶体首先会风化也就是失去结晶水,而变成碳酸钠。

2.生成NaHCO3:由于碳酸钠又会在空气中变潮,又与空气中含有的CO2发生化学反应,最终生成NaHCO3,其方程式为:Na2CO3+H2O+CO2=2NaHCO3;Na2CO

3.10H2O=Na2CO3+10H2O。但是通过加热结晶水合物使它们失去结晶水的现象不叫风化,是失水。在风化过程中由于晶体结构的特点以及外界条件的影响,有的晶体只是失去一部分的结晶水,有的晶体可以失去全部结晶水,有的晶体先失去一部分结晶水,再逐渐失去全部结晶水。由此可见风化并不一定都是失去全部结晶水。因此,就有了十水合碳酸钠、七水合碳酸钠以及一水合碳酸钠的存

在。另外结晶水合物的风化与自然岩石的风化是不相同的,结晶水合物是失去结晶水,而自然岩石的风化是指岩石与空气、水、二氧化碳等物质在长期作用的情况下,发生了复杂的化学反应,或者是在温度、水以及生物等的影响下,地表以及接近地表的岩石发生的崩解和破碎,形成许多大小不等的岩石碎块或砂粒的作用产生风化。

以上就是纯碱的风化过程,希望对大家有所帮助。

油气田开发地质基础(完整版)

油气田开发地质基础 刘吉余主编黎文清主审石油工业出版社 第一章、地球概述 1.大气圈、水圈、生物圈。水圈的循环作用:(1)净化空气和大自然;(2)源源不断的制造淡水供给陆地;(3)通过河流将陆地表面的松散泥沙及溶解物送入海洋。 2.地壳、地幔、地核,其中地壳和地幔的分解面试莫霍界面,地幔和地核的分界线是古登堡界面。 3.地球的物理性质:重力、密度、压力、地球的磁性、地球的弹性和塑性。 4.地温梯度(地热增温率):在内热层中,深度每增加100米所升高的温度数值。一般为0.98~ 5.2℃,平均为2.5℃。 5.地温深度(地热增温级):在内热层中,温度每升高1℃所需加深的深度,以米表示。 6.地磁场由磁偏角、磁倾角和磁场强度三个地磁要素来表示。 7.固体潮:日月引力可以摄引地壳升降7~15cm,叫固体潮。 第二章、地质作用 8.地质作用:由自然动力引起地球的物质组成、内部结构、构造和地表形态变化和发展的作用。分为内力地质作用和外力地质作用。 9.内力地质作用:由地球内部能力引起的岩石圈甚至地球的物质成分、内部结构、构造和地表形态变化发展的作用。 10.内力地质作用

11.地壳运动:由地球内动力作用引起的地壳或岩石圈物质的机械运动,称为地壳运动或者构造运动。分为垂直运动和水平运动。 垂直运动系指地壳或岩石圈沿地球半径方向或者垂直于大地水准面的方向发生的大规模的升降运动。升降运动可以引起海陆变迁、地势高低的改变、岩石的垂直位移以及层状岩石形成大型平缓弯曲。 水平运动是指地壳或者岩石圈沿着大地水准面的切线方向的运动,表现为大规模的水平位移,主要引起地壳的拉张(大洋中脊的扩张)、挤压(板块的消减、碰撞)、平移甚至旋转,从而使岩层发生弯曲和断裂,地形上则形成山脉和盆地。 12.岩浆作用:地壳深部的高温高压的硅酸盐熔融体称为岩浆。当地下平衡破坏或者局部压力降低时,岩浆就会向着压力低的方向流动,侵入地壳上部或者喷出。在这个过程中岩浆与周围的岩石相互作用,改变着围岩和自身的化学成分和物理状态。这种从岩浆的形成、演化直至冷凝,岩浆本身发生的变化以及周围岩石影响的全部地质作用过程称为岩浆活动或岩浆作用。 岩浆从深部发源地上升但没有到达地表就冷凝形成岩石,这种作用称为侵入作用,冷凝形成的岩石称为侵入岩。 岩浆从深部发源地上升直至溢出地面,或者喷到空中,称为喷出作用或者火山作用。喷出地表后大部分挥发组分逸散后的熔融体,称为熔浆,冷却后形成的岩石称为熔岩。 13.变质作用:是指原岩处在特定的地质环境中,由于物理、化学条件的改

风化程度划分教学内容

风化程度划分

岩石风化程度 学科:工程地质学 词目:岩石风化程度 英文:degree of rock weathering 释文:岩石风化程度是风化作用对岩体的破坏程度,它包括岩体的解体和变化程度及风化深度。 岩石的解体和变化程度一般划分成:全风化、强风化、弱风化、微风化等四级。 确定岩石风化程度主要依据的是矿物颜色变化、矿物成分改变、岩石破碎程度和岩石强度变化四个方面的特征变化情况;根据对上述4个方面的判断,可以将岩石风化程度划分为未风化、微风化、弱风化、强风化和全风化。 四个方面的特征变化情况;根据对上述4个方面的判断,可以将岩石风化程度划分为未风化、微风化、弱风化、强风化和全风化。 如何确定基岩的风化程度 请大家来谈谈基岩风化程度的划分依据 1 沿海花岗岩地区分带明显且厚度大,具备定量划分的条件,其他岩性不好说 2 用标贯可确定。

n<30残积土,30<=n=<50全风化,n>50强风化 楼上给出的老岩土规范的划分标准,而且不修正的,实践中看,n>50不修正作为强风化上限多数是土状的东西 用标贯是不准确的,有两个方面:1、标贯操作有误差,工作人员一般不热心打标贯。2, 是标贯超过20米(有的说是25米),标贯数据误差比较大,通过修正也不能完全反应地层情况。 3根据钻孔用肉眼判定岩层的风化程度,各个行业应该是一致的。 如果岩芯呈土状或土柱状,或者大部分呈土状或土柱状,手可搓碎,即可判定是全风化。 如果岩芯大部分呈块状、碎块状,手不可掰开,或者用力才能掰开,锤击声闷,即可判定为强风化。 若岩芯颜色新鲜,很少矿物质,多呈柱状,锤击声脆,即可判定是弱风化或微风化。 4我想各个地质区域的岩性其划分条件是不一样的,比如花岗岩就可以用力学指标去判定,其它的大多数还是以经验判定。主要还是根据各类岩石岩性,其风化后所表现出的各种特征来判定。我在江西南昌,以泥质粉砂岩为主,其强风化就表现出泥土状及碎片状,强度很低,手可折断;中风化,裂隙较发育,层面多见Fe、Me质,而且泥质成分肉眼就可感觉偏多;余下划分的基本就需靠岩石强度去调整了。 5岩体风化程度划分分级 颜色光泽 岩体组织结构的变化及破碎情况

强风化花岗岩识别

强风化花岗岩识别 摘要:强风化花岗岩层往往是电力工程的目标层,本文在对花岗岩的风化过程、风化影响因素、风化地层分带特性进行分析的基础上,归纳了强风化花岗岩的识别方法。 关键词:花岗岩强风化识别方法 1 引言 在花岗岩地区修建电力工程,强风化层往往是目标层位。在上部土层无法满足天然地基条件的情况下,强风化层具有高承载力和低压缩性,对于电厂的重要建筑物和特高压输电线路而言,使其成为较好的桩端持力层。本文首先对花岗岩的风化特定进行了研究,在此基础上归纳总结了花岗岩强风化层识别方法 2花岗岩风化的特点 2.1 花岗岩风化过程 岩石风化首先经过崩解阶段(即物理风化),使矿物颗粒的比表面积逐步增大,加强了与水、氧、二氧化碳和生物的接触,经历溶解、水化、水解、碳酸化、氧化作用及生物风化等作用,由于不同深度风化条件的差异,使花岗岩不同深度的风化方式与程度有所不同,形成具有不同组分与结构特性的风化层,构成具有垂直分带性(即多层结构)的风化剖面,但这种风化剖面是在原地风化逐渐形成的,是一个有次序、连续的地质建造,在风化剖面上一般没有阶坎式的突变和跳跃式的风化,每层均具各自特性,层间是逐渐过渡的,故层间界面一般很难准确确定[1]。 2.2 花岗岩风化的影响因素: (1)矿物成分与结构 受地质构造条件、岩浆成分和围岩物质成分的控制和影响,不同时期的不同地区的花岗岩类在岩石矿物、成分、结构构造等方面存在着差异。总体而言,酸性矿物比碱性矿物抗风化能力强,细粒结构比粗粒结构抗风化能力强。对于花岗岩而言,石英稳定性最高,长石类风化稳定性由高到低的顺序是:钾长石、多钠的酸性斜长石、中性斜长石、多钙的基性斜长石,次之为黑云母、角闪石等。在花岗岩类岩石中最先发生水化作用的是黑色矿物及普通角闪石。偏中性的花岗闪长岩、二长花岗岩的黑色矿物大大超过酸性花岗岩,因此在同等条件下花岗闪长岩等偏中性岩的风化程度和风化土厚度大于酸性花岗岩,由于其

岩石级别 分类

岩石级别坚固程度代表性岩石 Ⅰ 最坚固最坚固、致密、有韧性的石英岩、玄武岩和其他各种特别坚固的岩石。(f=20) Ⅱ 很坚固很坚固的花岗岩、石英斑岩、硅质片岩,较坚固的石英岩,最坚固的砂岩和石灰岩.(f=15) Ⅲ坚固致密的花岗岩,很坚固的砂岩和石灰岩,石英矿脉,坚固的砾岩,很坚固的铁矿石.(f=10) Ⅲa 坚固坚固的砂岩、石灰岩、大理岩、白云岩、黄铁矿,不坚固的花岗岩。(f=8) Ⅳ比较坚固一般的砂岩、铁矿石(f=6) Ⅳa 比较坚固砂质页岩,页岩质砂岩。(f=5) Ⅴ中等坚固坚固的泥质页岩,不坚固的砂岩和石灰岩,软砾石。(f=4) Ⅴa 中等坚固各种不坚固的页岩,致密的泥灰岩.(f=3) Ⅵ比较软软弱页岩,很软的石灰岩,白垩,盐岩,石膏,无烟煤,破碎的砂岩和石质土壤.(f=2)

Ⅵa 比较软碎石质土壤,破碎的页岩,粘结成块的砾石、碎石,坚固的煤,硬化的粘土。(f=1.5) Ⅶ软软致密粘土,较软的烟煤,坚固的冲击土层,粘土质土壤。(f=1) Ⅶa 软软砂质粘土、砾石,黄土。(f=0.8) Ⅷ土状腐殖土,泥煤,软砂质土壤,湿砂。(f=0.6) Ⅸ松散状砂,山砾堆积,细砾石,松土,开采下来的煤(f=0.5) Ⅹ流沙状流沙,沼泽土壤,含水黄土及其他含水土壤. (f=0.3) A表示矿岩的坚固性的量化指标. 人们在长期的实践中认识到,有些岩石不容易破坏,有一些则难于破碎。难于破碎的岩石一般也难于凿岩,难于爆破,则它们的硬度也比较大,概括的说就是比较坚固。因此,人们就用岩石的坚固性这个概念来表示岩石在破碎时的难易程度。 坚固性的大小用坚固性系数来表示又叫硬度系数,也叫普氏硬度系数f 值)。 坚固性系数f=R/100 (R单位kg/cm2) 式中R——为岩石标准试样的单向极限抗压强度值。 通常用

花岗岩描述

研究目的:研究花岗岩残积土的岩性特性,探讨花岗岩残积土及全风化土 实测标贯击数N的概率分布,并计算其服从概率分布的概率密度函数.研 究结论:目前国内外对标贯实测击数进行杆长修正没有一致意见,建议使 用实测击数,可使野外编录、判别的操作性更强.通过实测结果来看,锤击 数在15≤N<30范围内可定名为残积土,锤击数在30<N≤50范围内可定 名为全风化土.经统计分析认为,深圳地区花岗岩残积土及全风化土实测 标贯击数N的概型分布为正态分布. 普17:52:21 花岗岩的残积土我们叫残积砂(砾)质粘性土: 为中粗粒花岗岩原地风化残留产物,以褐黄色为主,湿~饱和,可塑状。成份主要由长石风化的粘、粉粒,石英颗粒、少量云母碎屑及少量黑色风化矿物等组成,原岩残余结构仍清晰可辨,>2.00mm的颗粒约占5.90%~15.70%。粘性一般,韧性中等,干强度中等,切面稍光滑,无摇震反应。该土层属特殊性土,具有遇水易软化、崩解的特点。该土层在纵向上有随深度增加,风化程度逐渐减弱,强度逐渐增高的趋势。 祥虎2008-09-26 17:32:19 散体状强风化花岗岩:灰黄色、褐黄色,呈散体状,组织结构大部分破坏,矿物成分显著变化,除石英外,长石、云母、角闪石等其他矿物大部分风化为土状。土层具有泡水易软化、崩解,强度降低的特点,岩石坚硬程度属极软岩,岩石完整程度为极破碎,岩体基本质量等级为V类,岩石质量指标(RQD)为0,属极差的。 祥虎2008-09-26 17:35:01 都有了,你慢慢看,我要买菜了。 祥虎2008-09-26 17:33:01 碎裂状强风化花岗岩:褐黄色,岩石风化强烈,矿物成分由长石、石英、云母组成,钻进时拔钻声大,岩芯呈碎块状,手折可断。该层做点荷载试验7组(共90块),换算后抗压强度范围值为10.80~15.20MPa,平均值为13.11MPa,标准值为11.97MPa,岩石坚硬程度为软~较软岩,岩石完整程度为破碎,岩体基本质量等级为V类,岩石质量指标(RQD)为0,属极差的。工程地质性能良好,强度由上而下逐渐增大。 祥虎2008-09-26 17:33:43 中风化花岗岩:灰白、浅灰色,由长石、石英、云母、角闪石组成。中粗粒花岗结构,块状构造,节理、裂隙较发育,岩体完整性一般,岩芯多呈短柱状,RQD= 60~75。该层做岩石单轴抗压强度试验6件,单轴饱和抗压强度范围值为36.90~54.30MPa,平均值为46.87MPa,标准值为41.43MPa。岩石按坚硬程度属较硬岩,岩体完整程度属较完整~较破碎,岩体基本质量等级属Ⅲ~Ⅳ类,力学强度高。 祥虎2008-09-26 17:34:05 微风化花岗岩:灰白、浅灰色,由长石、石英、云母、角闪石组成。中粗粒花岗结构,块状构造,节理、裂隙不发育,岩体完整性较好,RQD= 80~90。该层做岩石单轴抗压强度试验6件,单轴饱和抗压强度范围值为66.10~95.20MPa,平均值为78.50MPa,标准值为70.09MPa。岩石按坚硬程度属坚硬岩,岩体完整程度属较完整,岩体基本质量等级属Ⅱ类,力学强度高。

岩体风化程度的判断

岩体风化程度的判别 1.岩体风化的基本特征 在各种风化营力作用下,岩石所发生的物理和化学变化过程称为岩石风化。其中影响岩石风化的风化营力主要是太阳热能、水溶液(地表、地下及空气中的水)、空气(氧气及二氧化碳等)及生物有机体等。同时按照风化营力的类型及引起岩石变化的方式,风化作用可以分为物理风化、化学风化和生物风化三种。 与原岩相比,风化使岩石发生了一系列的变化,从工程地质的角度出发,这些变化主要有以下几点:岩体结构构造发生变化,即其完整性遭到削弱和破坏;岩石矿物成分和化学成分发生变化;岩石工程地质性质恶化。 风化后的岩石在工程建筑上的优良性质削弱了,不良性质则增加了,使工程地质条件大为恶化。 2.岩石风化的判别 岩石风化程度的划分及工程特性研究,对于大型水利水电工程、高层建筑、道路桥梁等工程建基面的选择以及地基基础设计施工方案的确定起着关键性作用,对评价围岩的稳定和边坡工程亦具有重要意义。 影响岩石风化的因素有很多,其中最主要的有气候、岩性、地质构造、地形地貌和一些其他的因素。岩石的风化往往不是单因子作用的结果,而是由多种因素所共同控制的。 目前,岩石风化程度划分多采用工程地质定性评价方法,从岩石颜色、次生矿物的发生、节理裂隙发育情况、机械破碎程度、风化深度、以及岩石的物理、力学和水理性质变化等方面综合分析确定。关于岩石风化程度的定量评价,目前常采用的是对岩体工程地质性质比较敏感的一些物理力学性质指标,通过室内或现场测试岩石物理力学性质单项或综合指标进行风化程度分带。由于岩石类型的千差万别,影响岩石风化因素复杂,各种岩石风化速度和风化后形态的变化也各异。因此,很难建立岩石风化程度划分的统一、定量的标准。岩石风化程度划分应当采用定性描述和定量指标相结合的方法,两者互为印证以积累利用定量指标划分岩石风化程度的经验。

全风化花岗岩的结构性及压缩性试验研究

全风化花岗岩的结构性及压缩性试验研究 摘要:全风化花岗岩作为一种独特的花岗岩材质,已逐渐深入到现代化建设的各个领域。本文对全风化花岗岩受扰动的结构特性、取样的方法及扰动性进行细致的分析,并对取样试验及原位试验压缩性指标进行一系列深入的对比探究。 关键词:全风化花岗岩;结构性;压缩性 花岗岩类岩石是大陆上分布最广泛的岩石之一,是构成陆壳的基础。在陆壳形成过程中,花岗岩占十分重要的地位,花岗岩在我国东部沿海、东南部、海南省分布十分广泛,其地表出露面积约占这些地区总面积的五分之一。全风化花岗岩天然孔隙比差异性较大,此类土具有灰黄色、褐黄色、灰褐色夹灰白色物斑点,风化呈硬塑~坚硬土状、砂土状,有些呈硬塑偏软塑土状,结构松散,含水量较高,呈现黏土状,土样的粗细颗粒的差异比较大。地下孔隙水位埋藏较浅,在沟槽地段一般在0.5~3.0 m,主要受大气降水和地表水补给,水位随季节动态变化较明显。全风化岩“似土非岩”,其性质与原岩完全不同,但与一般沉积土体亦有很大差别。为能够准确把握其压缩特性及分析这些特性物理量间的关系,对深圳地铁5号线全风化花岗岩饱和地基土进行一维固结压缩试验,研究其应力与孔隙比减少量和应力—应变—时间之间关系。 1、全风化花岗岩研究现状 全风化花岗岩是花岗岩体在物理化学及生物等风化营力作用下,使其结构、成分性质等产生了不同程度变异的岩石。其矿物成分与原岩相比虽有本质的改变,但多保留在原位并具有它的原始性状,其原生矿物主要有石英、长石、云母等,原体矿物的晶体形状、硬度和力学强度不同,构成的砂粒形状有明显差别,不同大小、不同形状砂粒组成的砂土含有的孔隙大小和孔隙率显然也不相同。风化花岗岩的工程特性不仅与其母岩花岗岩而且与其受到的风化作用有关,因此,不同地区的风化花岗岩的工程性质存在较大差异,其土体的均一性差、结构性强(包括抗剪强度、压缩性、透水性、毛细性等的差异)。全风化花岗岩具有“似土非岩”的性质,其性质与原岩完全不同,但与一般沉积土体亦有很大差别。以往及当前对花岗岩全风化的研究主要集中在以下几个方面:全风化花岗岩的分类研究;全风化花岗岩的物理力学特性研究;作为建筑物持力层的研究;全风化花岗岩边坡治理方面的研究;全风化花岗岩作为填料的试验研究。 2、全风化花岗岩受扰动的结构特性 在静荷载作用下,全风化花岗岩石结构各层的应力、变形和基层底面的拉应变与荷载呈线性关系,且全风化花岗岩石和基层的回弹模量越小,应力和变形越大。在动荷载作用下,全风化花岗岩石结构各层的最大动应力、回弹变形以及基层底面的拉应变与荷载值呈线性关系,且全风化花岗岩石和基层的回弹模量越小,动应力越大。当静荷载与动荷载的峰值相同时,动荷载作用下全风化花岗岩石结构各层的应力、变形与底基层底面的拉应变均大于静荷载作用下的应力、变形和

岩石风化程度判断

岩石风化程度判断 1.岩石风化 岩石在各种风化营力作用下,发生的物理和化学变化的过程称为岩石风化。岩石风化是岩石在太阳辐射、大气、水和生物作用下出现破碎、疏松及矿物成分次生变化的现象。 常用分带标志主要有:颜色、岩体破碎程度、矿物成分的变化、水理性质及物理力学性质的变化、钻探掘进及开挖中的技术特性。 具体原则包括: (1)要充分反映各风化带岩石变化的客观规律,反映各带岩石因风化程度不同所具有的不同特性; (2)分带标志视具体条件选择,应既有代表性,又明确,便于掌握,尽量避免人为因素的影响; (3)将定性与定量研究、宏观与微观研究结合起来,综合各种标志进行分带; (4)分带数目要考虑工程建筑的实际需要,既不要过于繁琐,分级过多;也不要过于简略,致使同一带内的岩石特性差异过大。 2.岩石风化程度和各种性质变化 岩石风化程度的划分及工程特性研究,对于大型水利水电工程、高层建筑、道路桥梁等工程建基面的选择以及地基基础设计施工方案的确定起着关键性作用,对评价围岩的稳定和边坡工程亦具有重要意义。 影响岩石风化的因素有很多,其中最主要的有气候、岩性、地质构造、地形地貌和一些其他的因素。岩石的风化往往不是单因子作用的结果,而是由多种因素所共同控制的。 目前,岩石风化程度划分多采用工程地质定性评价方法,从岩石颜色、次生矿物的发生、节理裂隙发育情况、机械破碎程度、风化深度、以及岩石的物理、力学和水理性质变化等方面综合分析确定。关于岩石风化程度的定量评价,目前常采用的是对岩体工程地质性质比较敏感的一些物理力学性质指标,通过室内或现场测试岩石物理力学性质单项或综合指标进行风化程度分带。由于岩石类型的千差万别,影响岩石风化因素复杂,各种岩石风化速度和风化后形态的变化也各异。因此,很难建立岩石风化程度划分的统一、定量的标准。岩石风化程度划分应当采用定性描述和定量指标相结合的方法,两者互为印证以积累利用定量指标划分岩石风化程度的经验。 2.1颜色的改变 风化前岩石断面颜色鲜艳,有光泽。而经过风化后的岩石。微风化,仅沿裂隙面颜色略

风化岩地层描述

花岗岩 2(3)): 全风化花岗岩(γ T 灰白、灰黄色,矿物结构已破坏,花岗结构较清晰,主要矿物成分为长石、石英,部分云母及少量暗色矿物。长石、云母等易风化矿物已完全风化成土,岩芯呈坚硬土状。该岩石为极软岩,岩体极破碎,岩体基本质量等级属Ⅴ级。该岩石遇水易软化崩解。 2(3)): 砂砾状强风化花岗岩(γ t 灰黄、褐黄色,主要成分为长石、石英,部分云母及少量暗色矿物,花岗结构清晰,原岩矿物已强烈风化,部分长石、云母已粘土化,残留少量长石硬核,矿物颗粒间联结力已基本丧失,网状裂隙极发育,岩芯呈砂砾状,手捏可散碎。该岩石为极软岩,岩体极破碎,岩体基本质量等级为V级。该岩层浸水扰动易软化 2(3)): 碎块状强风化花岗岩(γ T 灰白、褐黄色,花岗结构清晰,主要成分为长石、石英,部分云母及少量暗色矿物。原岩矿物强烈风化,矿物颗粒间具有一定的结构联结力,网状裂隙发育,岩芯呈碎块状、碎块夹砂砾状,手折或轻击可碎。该岩石为软岩,岩体极破碎,岩体基本质量等级为V级。 中风化花岗岩: 灰白、灰黄色,中粒~细粒花岗结构,块状构造,矿物成份以长石、石英为主,部分云母及少量暗色矿物。裂隙较不发育,沿裂隙面长石已风化变色,见铁锰质浸染。岩芯呈短柱状,少量长柱状、块状,锤击声较脆。该岩石为较硬岩、岩体较完整~较破碎,岩体质量等级为Ⅲ~Ⅳ级。其岩石质量指标RQD为50~78,平均为65,其等级属“较差的”。 微风化花岗岩: 灰白、灰黄色,中粒~细粒花岗结构,块状构造,矿物成份以长石、石英为主,部分云母及少量暗色矿物。裂隙不发育。岩芯呈长柱状,少量短柱状,锤击

声脆。该岩石为坚硬岩、岩体较完整,岩体质量等级为Ⅱ级。其岩石质量指标RQD为78~90,平均为85,其等级属“较好的”。 风化岩夹层、特性综合描述(选择一种方式即可) 1、场地基岩主要为花岗岩,属于硅酸盐类火成岩,不存在岩溶现象,勘察时孤石或硬夹层揭露情况见下表2-1,此外在全~强风化花岗岩岩体内钻探未发空洞、临空面,以及相对软(硬)夹层。 2、场地基岩主要为花岗岩,属于硅酸盐类火成岩,不存在岩溶现象,勘察时部分孔段揭露孤石或硬夹层,不排除在钻孔间的残积土~砂砾状强风化岩层中,存在中微风化花岗岩孤石的可能性。此外在全~强风化花岗岩岩体内钻探未发空洞、临空面,以及相对软(硬)夹层。钻探中仅在个别钻孔(yk5)有揭露辉绿岩岩脉,未揭穿,揭露风化带厚度 2.3m。其力学性质接近花岗岩,且不存在岩溶现象。 凝灰熔岩 全风化流纹质晶屑凝灰熔岩: 该风化岩呈灰白、褐黄、青灰色,晶屑凝灰结构较清晰,已完全风化,主要成分为晶屑、熔岩物质,晶屑含量约30~35%,主要成分为石英、碱性长石、斜长石及黑云母,长石等矿物已粘土化,岩芯呈坚硬土状,该岩石为极软岩,岩体极破碎,岩体基本质量等级为Ⅴ级。该岩具浸水软化,力学强度降低的工程特性。 土状强风化流纹质晶屑凝灰熔岩: 该岩石呈浅灰、灰黄色,晶屑凝灰结构清晰,但岩石矿物组织结构已基本破坏。主要成分为晶屑、熔岩物质,晶屑含量约30~35%,主要成分为石英、碱性长石、斜长石及黑云母,长石晶屑等易风化矿物已大部分粘土化,仅残留少量长石小硬核及石英晶屑。岩芯呈坚硬土状,偶见小碎块,碎块手折可断,该岩石为极软岩,岩体极破碎,岩体基本质量等级为Ⅴ级。该岩具浸水软化、强度降低的工程特性。 碎块状强风化流纹质晶屑凝灰熔岩:

风化程度划分

岩石风化程度 学科:工程地质学 词目:岩石风化程度 英文:degree of rock weathering 释文:岩石风化程度是风化作用对岩体的破坏程度,它包括岩体的解体和变化程度及风化深度。 岩石的解体和变化程度一般划分成:全风化、强风化、弱风化、微风化等四级。 四个方面的特征变化情况;根据对上述4个方面的判断,可以 如何确定基岩的风化程度 请大家来谈谈基岩风化程度的划分依据 1 沿海花岗岩地区分带明显且厚度大,具备定量划分的条件,其他岩性不好说 2 用标贯可确定。 n<30残积土,30<=n=<50全风化,n>50强风化 楼上给出的老岩土规范的划分标准,而且不修正的,实践中看,n>50不修正作为强风化上限多数是土状的东西

用标贯是不准确的,有两个方面:1、标贯操作有误差,工作人员一般不热心打标贯。2, 是标贯超过20米(有的说是25米),标贯数据误差比较大,通过修正也不能完全反应地层情况。 3根据钻孔用肉眼判定岩层的风化程度,各个行业应该是一致的。 如果岩芯呈土状或土柱状,或者大部分呈土状或土柱状,手可搓碎,即可判定是全风化。 如果岩芯大部分呈块状、碎块状,手不可掰开,或者用力才能掰开,锤击声闷,即可判定为强风化。 若岩芯颜色新鲜,很少矿物质,多呈柱状,锤击声脆,即可判定是弱风化或微风化。 4我想各个地质区域的岩性其划分条件是不一样的,比如花岗岩就可以用力学指标去判定,其它的大多数还是以经验判定。主要还是根据各类岩石岩性,其风化后所表现出的各种特征来判定。我在江西南昌,以泥质粉砂岩为主,其强风化就表现出泥土状及碎片状,强度很低,手可折断;中风化,裂隙较发育,层面多见Fe、Me质,而且泥质成分肉眼就可感觉偏多;余下划分的基本就需靠岩石强度去调整了。 5岩体风化程度划分分级 颜色光泽 岩体组织结构的变化及破碎情况 矿物成分的变化情况 物理力学特征的变化 锤击声 全风化 颜色已全改变光泽消失 组织结构己完全破坏,呈松散状或仅外观保持原岩状态,用手可折断,捏碎 除石英晶粒外,其余矿物大部分风化变质,形成次生矿物 浸水崩解,与松软土体的特性近似 哑声 强风化 颜色改变,唯岩块的断口中心尚保持原有颜色 外观具原岩组织结构,但裂隙发育,岩体呈干砌块石状,岩块上裂纹密布,疏松易碎 易风化矿物均已风化变质形成风化次生矿物,其他矿物仍部分保持原矿物特征物理力学性质显著减弱,具有莱些半坚硬岩石的特性,变形模量小,承载强度低哑声 弱风化 表面和沿节理面大部变色,但断口仍保持新鲜岩石特点 组织结构大部完好,但风化裂隙发育,裂隙面风化剧烈 沿节理裂隙面出现次生风化矿物 物理力学性质减弱,岩体的软化系数与承载强度变小

【精品】标贯试验在花岗岩类岩石风化程度划分中的应用1

标贯试验在花岗岩类岩石风化程度划分中的应用 摘要:在岩土工程勘察中,用实测标准贯入试验击数进行花岗岩类岩石的风化程度划分已成为最常用的方法之一,但在风化壳顶部有沉积覆盖层的情况下,会出现一些偏差,对此进行探讨. 关键词:标准贯入试验;实测标准贯入击数;花岗岩类岩石;风化程度划分 国家标准《岩土工程勘察规范}(GB50021—-2001)和广东省标准《建筑地基基础设计规范》(DBJl5—31-2003)对岩石风化程度的划分中提到:花岗岩类岩石,可采用实测标准贯人试验击数划分,N≥50为强风化;50>N≥30为全风化;N〈30为残积土。在岩土工程勘察中,用实测标准贯入击数进行花岗岩类岩石的风化程度划分已成为最常用的方法之一,在风化壳顶部无沉积覆盖层的情况下,应用效果较好,但在风化壳顶部有沉积覆盖层的情况下,会出现风化壳层位缺失的假象,建议进行一些必要的修正。 1、工程实例 中国人民武装警察部队汕头市支队宿舍楼场地位于汕头市龙湖区珠江北路,地貌

属韩江三角洲平原前缘,场地岩土层的划分及工程地质特征自上而下分述如下:(1)素填土:灰黄一灰褐色,饱和,松散,由建筑废料 及中细砂组成,层厚1.20~1.60m.(2)粉砂:灰黄色,饱和,松散一稍密,以粉砂为主,层厚4.10一.-6.00m,实测标准贯入击数8.o~19.0击,杆长校正后7.6~18.8击,平均10.4击,fak=90kPa。(3)淤泥:深灰色,饱和,流塑,含少量有机质,上部含贝壳碎片,厚度1.55~12.40m,fak=40—50kPa.(4)粘土:浅黄一浅青灰色,湿,可塑,由粉、粘粒组成,粘性好,层厚0.00~5.35m,实测标准贯人击数7.o~9.0击,杆长修正5.5~7.1击,平均6.2击,fak=120kPa。(5)中砂、细砂:灰白一灰黄色,饱和,中密一密实,以中砂为主,细砂次之,层厚3.70~13.19m,实测标准贯人击数19.0-42.0击,杆长修正后14.2~29.9击,平均22.1击,fak=160~200kPa。(6)粘土:灰黄色,湿,可塑,含少量粉砂,层厚0.00--—.5.30m,实测7.o~9.0击,杆长修正后4.6~6.1击,平均5.3击,k一140kPa.(7)淤泥质土:深灰色,饱和,流塑,含少量有机质,夹微薄层粉、细砂,层厚7.5一18.20m,实测标准贯人击数3.o~5.0击,杆长修正后1.9~2.9击,平均2.4击,fak=65kPa.(8)粉质粘土:青灰一灰白色,湿,可塑一硬塑,成分以粉、粘粒为主,含少量粉、细砂,层厚2.45~10.90m,实测标准贯入击数8.o~12.0击,杆长修正后4.70~6.80击,平均5.5击,fak一160kPa。(9)中砂:灰白色,饱和,密实,以中砂为主,含少量泥质,局部含少量砾石,层厚4.85——10.20m

油层物理

第一章储层岩石的物理特性 Physical Properties of Reservoir Rock 粒度:指构成砂岩的各种大小不同颗粒的直径。 Grain size:The diameter of various size clastic particles forming sandstone. 粒度组成:指构成砂岩的各种大小不同颗粒的重量占岩石总重量的百分数。 Size composition:The proportion by weight of various size particles forming sandstone in total weight of rock, expressed as a weight percent. 粒度主要分析方法(analysis) (1)直接法:筛析法(主要),沉降法 (2)间接法:岩石薄片显微镜观测法,粒度薄片图像分析法,激光衍射测定法 筛析法 过程:用振动筛分离,称出每份的重量(w i),计算每一份重量占总重的百分比(G i),每一份岩屑所占重量比例都对应一定的平均直径即为粒度组成 优点:设备简单,操作容易,适合大多数岩样的粒度分析,矿物密度对分析结果影响小 缺点:只适合疏松或胶结较差的砂岩,(用橡胶锤)捣碎岩石时可能将颗粒打碎,影响分析粘结果,颗粒的形状对分析结果也有很大影响 沉降法 原理:不同大小的颗粒在液体中具有不同的沉降速度 V—速度,cm/s ρs—颗粒密度,g/cm3ρL—液体密度,g/cm3 γ—液体运动粘度,cm2/s 优点:经常与筛析法配合使用,分析粒径小于37μm的粒度组成,小粒径的颗粒可以被分开 缺点:岩样必须放入液体介质中,其中的矿物可能部分或全部溶解,影响测定结果 筛析法和沉降法所得出的粒径d并不是一个定值,而是一个范围,其平均粒径为 d i’ d i’’—分别为相邻的两层筛子的孔眼直径 粒度组成分布曲线grain size distribution curve 曲线尖峰(hump)越高(shaper),说明该岩石以某一粒径颗粒为主,即岩石粒度组成越均匀(uniform);曲线尖峰越靠右,说明岩石颗粒越粗 粒度组成积累分布曲线grain size cumulative distribution curve 上升段直线越陡(steeper),则说明岩石越均匀 粒度分布曲线可以定性(qualitatively)描述岩石颗粒的大小和分布 比面:单位外表体积岩石内孔隙总内表面积或单位外表体积岩石内岩石骨架的总表面积。 Specific surface:The total internal surface area of void space divided by volume of rock, or the total surface area of rock matrix divided by volume of rock. S—cm2/cm3 以颗粒骨架体积V s为基准 以孔隙体积V p为基准 比面可以定量(quantitatively)描述岩石颗粒分散程度 孔隙度:指岩石中孔隙体积V p(或岩石中未被固体物质充填的空间体积)与岩石总体积V b的比值。Porosity:The ratio between pore volume V p in rock and total bulk volume V b of rock. 有效(含烃)孔隙度:岩石中烃类体积V e与岩石总体积V b之比。 Effective porosity:The ratio between hydrocarbon volume V e in rock and total bulk volume V b of rock.

(整理)工程地质岩石分类及鉴定

工程地质岩石分类及鉴定 中国?宜昌 2016年5月4日

目录 1.工民建工程 (3) 2.公路工程 (5) 3.港口工程 (10) 4.铁路工程 (13) 5.工程岩体分级标准 (18)

1 工民建工程 1.1、岩石坚硬程度分类《岩土工程勘察规范》GB50021—2001 注:1 当无法取得饱和单轴抗压强度数据时,科用点荷载试验强度换算,换算方法按现行国家标准《工程岩体分级标准》(GB50218)执行; 2 当岩体完整程度极为破碎时,可不进行坚硬程度分类。 1.2、岩石坚硬程度等级定性分类《岩土工程勘察规范》GB50021—2001 1.3、岩体完整程度分类《岩土工程勘察规范》GB50021—2001 注: 完整性指数为岩体压缩波速与岩块压缩波速之比的平方。 1.4-1、岩石完整程度的定性分类《岩土工程勘察规范》GB50021—2001 1.4-2、岩体完整程度划分《建筑地基基础设计规范》(GB50007—2002)

1.5、岩石按风化程度分类《岩土工程勘察规范》GB50021—2001 注:1 波速比Kv为风化岩石与新鲜岩石压缩波速度之比; 2 风化系数K f为岩石与新鲜岩石饱和单轴抗压强度之比; 3 花岗岩类岩石,可采用标准贯入试验划分,N≥50为强风化;50>N≥30为全风化;N<30为残积土。 4 泥岩和半成岩,可不进行风化程度划分。 1.6、岩体基本质量等级分类《岩土工程勘察规范》GB50021—2001 1.7、岩石按质量指标RQD分类《岩土工程勘察规范》GB50021—2001 1.8、岩层厚度分类《岩土工程勘察规范》GB50021—2001 1.9、岩石按在水中软化系数分类《岩土工程勘察规范》GB50021—2001 注:软化系数(K R)等于饱和状态与风干状态的岩石单轴极限抗压强度之比。

金属表面防腐油处理工艺流程

金属表面防腐油处理工艺流程 一般建筑工程的金属构件,如钢门窗,钢屋架,楼梯踏步,栅栏,管件,铁艺制品,框架结构等都可以采用金属防腐油进行表面防锈涂饰处理。其施涂工艺流程如下:基层处理→刮腻子→涂第一道防腐油→补腻子,打磨→涂第二道防腐油1:基层处理:清扫,除锈,磨砂纸。首先将金属表面上的浮土,灰浆等打扫干净。已刷防锈漆但出现 锈斑的金属面层,须用铲刀铲除底层防锈漆后,再用钢丝刷和砂布彻底打磨干净,补刷一道防腐油。待 防腐油干透后,将金属面层的砂眼,缺棱,拼缝等处,用腻子刮抹平整。待腻子干透后,用1号砂纸打磨 ,磨完后用潮布将面上的粉末擦拭干净。对于镀锌板或铝合金等材料,虽难以生锈,但因表面有光泽 时附着力差,因此除去表面脏物和附着物后,应涂刷底衬涂料,或放置于室外1-2个月使其锌面风化。 2:刮腻子:用开刀或橡皮刮板在金属表面上满批一遍腻子{原子灰}要求刮得薄,收得干净,均匀平整 无飞刺。待腻子干透后用1号砂纸进行打磨,注意保护棱角,要求达到表面光滑,线角平直,整齐一致 。 3:涂擦第一道防腐油:第一道防腐油的稠度不宜太厚,可用松香水按1:1的比例进行兑稀后涂擦,确保涂后

不流淌,不显擦痕为宜,注意涂擦的时候要厚薄一致均匀,涂痕通顺。要重点检查线角和阴阳角处有 无流坠,漏涂,裹棱,透底等毛病,应及时修整达到均匀一致。 4:补腻子,打磨:待第一道防腐油干燥后,对于底腻子收缩或残缺处,再用腻子补刮一遍。待腻子干透后 ,用1号砂纸打磨,磨好后用潮布将磨下的粉末擦净。 5:涂第二道防腐油:由于面防腐油要求黏度大一些,涂擦时要多涂多理,涂防腐油饱满,不流不挂,光亮均匀, 色泽一致。涂防腐油动作要敏捷,涂擦要轻,防腐油要均匀,不损伤防腐油灰,表面光滑,涂完后要立即进行仔细 检查一遍,如发现有毛病应及时修整。 注意事项:涂擦防腐油的工具建议使用软质棉布蘸防腐油进行涂擦,施工现场要求干燥,温度保持20度以上 进行施涂。涂饰完工后,要保持自然通风,防止雨淋,7-10天内不能接触使用。 如何在金属表面喷漆? 喷漆的主要工序如下: 物面清理→喷第一遍底漆→批第一道腻子→磨砂纸→批第二道腻子→砂纸打磨→喷第二遍底漆→批第三道腻子→水砂纸打磨→喷第三道底漆→水砂纸打磨→喷第一遍漆→水砂纸打磨→喷第二遍漆→水砂纸打磨→喷第三遍漆→擦砂

对隧道全强风化花岗岩围岩的认识

对隧道全强风化花岗岩围岩的认识 一、全强风化花岗岩的特性 花岗岩是地球上分布最广的结晶粒状深成岩,由石英、长石和云母组成。石英通常呈圆形粒状、无色透明。长石有肉红色的钾长石和灰白色的斜长石,可见到发育良好的解理。云母为片状的黑云母,有时也有白云母,以及少量黑色长柱状普通角闪石。花岗岩具有多种颜色,如灰白色、灰色、肉红色等,主要由长石的种类和颜色而定。根据组成花岗岩矿物粒径的大小分成粗粒、中粒、细粒花岗岩,长石与石英晶体特别粗大的称为伟晶岩。花岗岩常呈规模巨大的岩基或岩株产出。花岗岩形成时,岩浆往往以强注入形式侵入围岩地层中,这一过程使围岩块体进入岩体形成捕虏体。由于侵入的岩浆高温炽热,可能引起围岩热变质。花岗岩密度2.7g/cm3 ,致密坚硬、孔隙度小、强度大。 而全强风化花岗岩的密度为2.06g/cm3,渗透系数为6×10-7cm/s,岩土渗透性等级划分当K <1.16×10-6cm/s时为不透水。 二、全强风化花岗岩对隧道施工的影响 全强风化花岗岩在开挖出来后表现为砂(即石英)土(长石),类似于第四纪沉积物,但是在未开挖时却与砂土有本质区别,这种区别按照天然含水量不同,表现形式不同。当含水量<8%时,即干燥状态,开挖时极易滑塌;当含水量>13%时,表现为蠕变;介于二者之间,可表现为较好的稳定性。其中最难的是含水量较大时的围岩,而围岩中水的形式为裂隙水(非孔隙水,与第四纪沉积物区别),当埋深较大时,又表现为承压水,这样,水除了软化作用之外,尚有因流动而造成的突泥、突水危害。 全强风化花岗岩表现为“松散的砂土”,所以,处理方法很容易想到注浆固结。而事实证明,全强风化花岗岩围岩的施工难度远比第四纪沉积物甚至人工堆积物围岩难,其原因就在于全强风化花岗岩其实并不松散,渗透系数为6×10-7cm/s,注浆、尤其注固体浆是无效的。很多资料总结全强风化花岗岩围岩注浆成功,据我个人经验,与事实有相当大的差距,主要表现为两个方方面。 一是完全按照设计(通常为大管棚或小管棚、环向间距300mm~400mm)施工,然后坍塌(规模不等),再作管棚、注浆,如此反复,取得成功。 试想,花岗岩无论风化与否,均非常致密,如果没有强有力的止浆措施,浆液如何能注入围岩?现场有没有施作止浆措施? 而实质上,全强风化花岗岩坍塌后,其物理力学指标就与第四纪沉积物接近了,孔隙率增大了,一般注浆就可以实现了;此外,注浆坍塌后留下的空腔亦可以容易回填了。 二是不完全按照设计施工,主要措施是“密排管棚”,仅进行回填注浆。这在低水压情况下是一个有效的方法。 对全强风化花岗岩中注浆的难度,大多数人有了认识,为了改进注浆效果,采取了很多办法,如有资料讲,先用超细水泥进行劈裂注浆,然后改为普通水泥进行渗透注浆。在厦门海底隧道曾做过用超细水泥的注浆试验,试验结果只是形成一个10cm~15cm的柱体,没有任何渗透扩散,也没有人们的最低期望——树根状浆脉。见下图。 这种注浆的作用应为挤压和加筋。 三、全强风化花岗岩围岩隧道施工的几个实例 1、广西平钟高速公路水冲口隧道 该隧由武警水电总队施工,围岩为全强风化花岗岩,且干燥,采用二台阶(长台阶)开挖,掌子面稳定,但后方支护变形较大,未有效开展围岩监控量测,不知围岩变形情况,就作出

岩石强度分类

第二章天然石料 天然石料:天然岩石经机械或人工开采、加工(或不经加工)获得的各种块料或散粒状石材。 第一节岩石的形成与分类 岩石由于形成条件不同可分为: 岩浆岩(火成岩) 沉积岩(水成岩) 变质岩 一、岩浆岩 (一)岩浆岩的形成与分类 岩浆岩是由地壳深处熔融岩浆上升冷却而成的。 (1)深成岩:岩浆在地壳深处,在上部覆盖层的巨大压力下,缓慢且比较均匀地冷却而形成的岩石。 特点:矿物全部结晶,多呈等粒结构和块状构造,质地密实,表观密度大、强度高、吸水性小、抗冻性高。 建筑上常用的深成岩主要有花岗岩、闪长岩、辉长岩等。 (2)喷出岩:岩浆喷出地表时,在压力急剧降低和迅速冷却的条件下形成的。 特点:岩浆不能全部结晶,或结晶成细小颗粒,常呈非结晶的玻璃质结构、细小结晶的隐晶质结构及个别较大晶体嵌在上述结构中的斑状结构。 建筑上常用的喷出岩主要有玄武岩、辉绿岩、安山岩等。 (3)火山岩:火山岩也称火山碎屑岩,是火山爆发时喷到空中的岩浆经急速冷却后形成的。 常见的有火山灰、火山砂、浮石及火山凝灰岩等。 (二)岩浆岩的主要矿物成分 (1)石英:结晶状态的SiO2 强度高、硬度大、耐久性好。 常温下基本不与酸、碱作用。 温度达575℃以上时,石英体积急剧膨胀,使含石英的岩石,在高温下易产生裂缝岩浆岩分为:

酸性岩石(SiO2>65%) 中性岩石(65%≥SiO2≥55%) 碱性岩石(SiO2<55%) (2)长石:强度、硬度及耐久性均较低(与石英相比) 正长石(K2O·Al2O3·6SiO2) 斜长石钠长石(Na2O·Al2O3·6SiO2) 钙长石(CaO·Al2O3·2SiO2) 干燥条件下耐久性高, 温暖潮湿的条件下较易风化,特别遇CO2,更易于被破坏。风化后主要生成物是高岭石(Al2O3·2SiO2·2H2O)。 (3)云母:含水的铝硅酸盐,柔软而有弹性的成层薄片。 白云母 黑云母 云母含量较多时,易于劈开,降低岩石的强度和耐久性,且使表面不易磨光。 (4)暗色矿物:角闪石、辉石、橄榄石等着色深暗的铁镁硅酸盐类矿物,统称为暗色矿物。 特点:密度特别大(3~4)g/cm3。 与长石相比,强度高,冲击韧性好,耐久性也较高。 在岩石中含量多时,能形成坚固的骨架。 其它:黄铁矿(FeS2), 特征:岩石表面具有锈斑。 黄铁矿遇水,易氧化成硫酸,腐蚀其它矿物,加速岩石风化。 二、沉积岩 (一)沉积岩的形成与分类 位于地壳表面的岩石,经过物理、化学和生物等风化作用,逐渐被破坏成大小不同的碎屑颗粒和一些可溶解物质。这些风化产物经水流、风力的搬运,并按不同质量、不同粒径或不同成分沉积而成的岩石,称为沉积岩。 特点:有明显的层理,较多的孔隙,不如深成岩密实。 (1)化学沉积岩:原岩石中的矿物溶于水,经聚集沉积而成的岩石。 常见:石膏、白云岩、菱镁矿及某些石灰岩。 (2)机械沉积岩:原岩石在自然风化作用下破碎,经流水、冰川或风力的搬运,逐渐沉积而成。

石油工业流程

(二○○九年,北京,中国) ()

1、石油与天然气 石油与天然气都是碳、氢元素为主要成分的烃类混合物。天然气是甲烷、乙烷、丙烷、丁烷等组成的混合物,由的天然气还中含有硫化氢、一氧化碳、二氧化碳等气体。石油是烷烃、环烷烃和芳香烃的混合物,其密度一般低于水,其中烃分子含碳原子少的石油为轻质油,烃分子含碳原子多的为重质油。 汽油烃分子中的碳原子数为6~10个,柴油烃分子中的碳原子数为13~20个,润滑油烃分子中的碳原子数为21~40个,沥青烃分子中的碳原子数为40个以上。

2、地层水 在多数油藏中均含有水,在油气开采过程中常常随同油气一起被踩到地面上来,这些水一般不是纯净水,而是有一定矿化度的水,若地面排放掉,必然也会对环境产生影响。 地层水中一般含有钠离子、钙离子、镁离子、铁离子、氯离子、硫酸根离子和碳酸根离子等离子,根据其所含离子不同,可把地层水分为氯化钙型、氯化镁型、硫酸盐型和碳酸盐型等不同类型的地层水。地层水的pH值一般在4~8之间,矿化度差别较大,高矿化度地层水具有较强的腐蚀性和污染能力。

1、有机说石油和天然气是在地质历史中由分散在沉积岩中的动、植物有机质转化而来的。 2、无机说石油和天然气是地下深处高温、高压条件下由无机物转化而来的。 3、生成油气的原始物质沉积岩中的有机质,主要指生活在地球上的生物遗体。 4、生成油气的基本条件 1)有利的古地理环境(生物大量繁殖及堆积环境) 2)地壳长期稳定下沉形成还原环境(缺氧环境) 3)有利于有机质向油气转化的物理化学条件(高压高温)

具备生油条件,且能生成一定数量石油的地层。主要有粘土岩类生油层和碳酸盐岩生油层。 粘土岩类生油层,以泥岩、页岩为主,其次是粉砂质泥岩。这类岩石是母岩风化过程中形成的高岭石、蒙脱石、水云母等粘土矿物在浅海、三角洲、湖泊等环境中沉积形成。如胜利油田多为湖相泥岩生油层。 碳酸盐岩生油层,以含有大量有机质的生物灰岩、泥灰岩、白云岩为主,这类岩石是母岩风化过程中被水溶解的一些成分,如钙粒子、镁离子、碳酸根离子、以及铝和铁的胶体物质,在浅海和深水湖环境中沉积形成。 如中东的油田多为海相碳酸盐岩生油层。

相关主题