搜档网
当前位置:搜档网 › 倍角公式

倍角公式

倍角公式
倍角公式

倍角公式

Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^ 2-1

tan2A=(2tanA)/(1-tanA^2)三倍角公式

sin3α=4sinα2sin(π/3+α)sin(π/3-α) cos3α=4cosα2cos(π/3+α)cos(π/3-α) tan3a = tan a 2tan(π/3+a)2tan(π/3-a)

辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2)tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B推导公式

tanα+cotα=2/sin2αtanα-cotα=-2cot2α

1+cos2α=2cos^2α1-cos2α=2sin^2α

上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)

半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. in^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

两角和差

cos(α+β)=cosα2cosβ-sinα2sinβ

cos(α-β)=cosα2cosβ+sinα2sinβ

sin(α±β)=sinα2cosβ±cosα2sin β

tan(α+β)=(tanα+tanβ)/(1-tanα2tan β)

tan(α-β)=(tanα-tanβ)/(1+tanα2tan β)

和差化积

sinθ+sinφ= 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

sinθ-sinφ= 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

cosθ+cosφ= 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

cosθ-cosφ= -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+t anAtanB)

积化和差

sinαsinβ= [cos(α-β)-cos(α+β)] /2

cosαcosβ= [cos(α+β)+cos(α-β)]/2

sinαcosβ= [sin(α+β)+sin(α-β)]/2

cosαsinβ= [sin(α+β)-sin(α-β)]/2

诱导公式

sin(-α) = -sinα

cos(-α) = cosα

tan (—a)=-tanα

sin(π/2-α) = cosα

cos(π/2-α) = sinα

sin(π/2+α) = cosα

cos(π/2+α) = -sinα

sin(π-α) = sinα

cos(π-α) = -cosα

sin(π+α) = -sinα

cos(π+α) = -cosα

tanA= sinA/cosA

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

tan(π-α)=-tanα

tan(π+α)=tanα

诱导公式记背诀窍:奇变偶不变,符号看象限

万能公式

sinα=2tan(α/2)/[1+tan^(α/2)]

cosα=[1-tan^(α/2)]/1+tan^(α/2)]

tanα=2tan(α/2)/[1-tan^(α/2)]

其它公式

(1)(sinα)^2+(cosα)^2=1

(2)1+(tanα)^2=(secα)^2

(3)1+(cotα)^2=(cscα)^2

证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

(4)对于任意非直角三角形,总有

tanA+tanB+tanC=tanAtanBtanC

证:A+B=π-C

y轴的负半轴)tan(A+B)=tan(π-C)

(tanA+tanB)/(1-tanAtanB)=(tanπ

-tanC)/(1+tanπtanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

得证同样可以得证,当x+y+z=nπ

(n∈Z)时,该关系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得

出以下结论

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B

/2)cot(C/2)

(7)(cosA)^2+(cosB)^2+(cosC)

^2=1-2cosAcosBcosC

(8)(sinA)^2+(sinB)^2+(sinC)

^2=2+2cosAcosBcosC

(9)sinα+sin(α+2π/n)+sin(α+2π

*2/n)+sin(α+2π*3/n)+……+sin[α+2π

*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π

*2/n)+cos(α+2π*3/n)+……+cos[α+2π

*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2

π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

椭圆的标准方程:

焦点在x轴:x平方/a平方+y平方/b平方=1

焦点在y轴:x平方/b平方+y平方/a平方=1

椭圆长半轴长a,半焦距准线:x=±a^2/c

双曲线实轴长a,半焦距c 准线:x=±a^2/c

双曲线:x平方/a平方-y平方/b平方

=1x=±a^2/c

抛物线:1.a>0,则抛物线y=ax2+bx+c开口向

上;

a<0,则抛物线y=ax2+bx+c开口向下;2.b

与a决定了抛物线的对称轴

ab>0,对称轴在y轴的右侧;ab<0,对

称轴在y轴的左侧;

3.c>0,抛物线与y轴的交点在x轴的上方(即

y轴的正半轴)

c<0,抛物线与y轴的交点在x轴的下方(即

两角和与差的三角函数及倍角公式练习及答案

两角和与差的三角函数及倍角公式练习及答案 一、选择题: 1、若)tan(,21tan ),2(53sin βαβπαπα-=<<= 则的值是 A .2 B .-2 C .211 D .-211 2、如果sin cos ,sin cos x x x x =3那么·的值是 A .16 B .15 C .29 D .310 3、如果的值是那么)4tan(,41)4tan(,52)tan(παπββα+=-= + A .1318 B .322 C .1322 D .-1318 4、若f x x f (sin )cos ,=?? ?? ?232则等于 A .-12 B .-32 C .12 D .32 5、在?ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题: 6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+= ; 7、若αα23tan ,则=所在象限是 ; 8、已知=+-=??? ??+θθθθθπsin 2cos cos sin 234cot ,则 ; 9、=??-?+?70tan 65tan 70tan 65tan · 10、化简3232sin cos x x += 。 三、解答题: 11、求的值。·??+?100csc 240tan 100sec

12、的值。,求已知)tan 1)(tan 1(43βαπβα--=+ 13、已知求的值。cos ,sin cos 23544θθθ=+ 14、已知)sin(2)(sin 053tan ,tan 22βαβαβα+++=-+的两个根,求是方程x x ·cos()αβ+的值。

二倍角公式的应用,推导万能公式

课题十:二倍角公式的应用,推导万能公式 教学第一环节:衔接阶段 回收上次课的教案,检查学生的作业,做判定。 了解家长的反馈意见 通过交流,了解学生思想动态,稳定学生的学习情绪 了解学生上次学习的情况,查漏补缺,为后面的备课方向提供依据 教学第二个环节:教学内容 一、解答本章开头的问题: 令AOB = , 则AB = a cos OA = a sin ∴S 矩形ABCD = a cos ×2a sin = a 2sin2 ≤a 2 当且仅当 sin2 = 1, 即2 = 90, = 45时, 等号成立。 此时,A,B 两点与O 点的距离都是a 2 2 二、半角公式:在倍角公式中,“倍角”与“半角”是相对的 例一、求证:α +α-=αα+=αα-=αcos 1cos 12tan ,2cos 12cos ,2cos 12sin 222 证:1在 α-=α2sin 212cos 中,以代2,2 α代 即得: 2sin 21cos 2α-=α ∴2 cos 12sin 2α-=α 2在 1cos 22cos 2-α=α 中,以代2,2 α代 即得: 12 cos 2cos 2-α=α ∴2cos 12cos 2α+=α 3以上结果相除得:α +α-=αcos 1cos 12tan 2 注意:1左边是平方形式,只要知道2 α角终边所在象限,就可以开平方。 2公式的“本质”是用角的余弦表示2 α角的正弦、余弦、正切 3上述公式称之谓半角公式(大纲规定这套公式不必记忆) α+α-±=αα+±=αα-±=αcos 1cos 12tan ,2cos 12cos ,2cos 12sin 4 还有一个有用的公式:α α-=α+α=αsin cos 1cos 1sin 2tan (课后自己证) 三、万能公式 B C a A O D

倍角公式练习题

3 θ 1 ?若 v? 0,二 I, cos'=,则 tan ( 4 2 (C )等腰或直角三角形 (D )等腰直角三角形 2 7.【原创】y =2sin X 的值域是() A . [ — 2, 2] B . [0 , 2] C . [ — 2, 0] D X 8. f(x)=cos x ,则下列等式成立的是( ) 2 (A ) f(2二-x)=f(x) ( B ) f(2d ∣ x) = f(x) (C ) f(-X )一f(χ) (D f(-x) = f (X) 9 .已知 tan □=- 3 ,贝U Sin2α = () 5 A 15 D 15 8 8 A. B. _ C. -— D. 17 17 17 17 斤-( 3兀) 10 .已知Ot '= I — -,COSG —,ta n2□=( ) I 2 ) 5 A . 4 B .- 4 C . - 2 D . 2 3 3 A . 24 24 25 25 12 25 12 25 3 .已知角 X 轴的正半轴重合,终边在直线 y = 2x 上则 4 m 3 3 γ, 4 —B C D . 5 5 5 5 θ的顶点与原点重合,始边与 cos 2 θ 等于( ) A . Sinα 十CoSa= — , 贝U sin 2α = ( ) 1 1 D 8 B .—一 C . — 2 2 9 4 .已知 A . _8 9 5.已知圧三( 0,二), + cosα =丄 2 ,则cos2>的值为 A . 一 7 B 7 C .一 7 D . 3 4 4 4 4 ABC 中, 6 .【原创】在厶 (A+B-C ) =Sin Sin 若 (A )等腰三角形 (A-B+C ), 则厶ABC 必是( (B )直角三角形 B 1 C .7 D .7 7 7 4 ,则 Sin(理一 2: )= ) 2 .已知〉为第二象限角,

两角和与差及倍角公式(一)

两角和与差及倍角公式(一) 【考点导读】 1.掌握两角和与差,二倍角的正弦,余弦,正切公式,了解它们的内在联系; 2.能运用上述公式进行简单的恒等变换; 3.三角式变换的关键是条件和结论之间在角,函数名称及次数三方面的差异及联系,然后通过“角变换”,“名称变换”,“升降幂变换”找到已知式与所求式之间的联系; 4.证明三角恒等式的基本思路:根据等式两端的特征,通过三角恒等变换,应用化繁为简,左右归一,变更命题等方法将等式两端的“异”化“同”. 【基础练习】 1.sin163sin 223sin 253sin313+= ___________. 2. 化简2cos 6sin x x -=_____________ . 3. 若f (sin x )=3-cos2x ,则f (cos x )=___________ . 4.化简: sin sin 21cos cos 2αααα +=++___________ . 【范例解析】 例 .化简:(1) 4221 2cos 2cos 22tan()sin () 44 x x x x ππ-+ -+; (2) (1sin cos )(sin cos ) 22(0)22cos θθ θθθπθ ++-<<+. (1)分析一:降次,切化弦. 解法一 : 原 式 = 2221 (2cos 1)2 2sin() 4cos () 4cos()4 x x x x π ππ----22 (2cos 1)4sin()cos() 44 x x x ππ -= --2cos 22sin(2)2 x x π = -1 cos 22 x =. 分析二:变“复角”为“单角”. 解法二 :原式 221 (2cos 1)21tan 222(sin cos ) 1tan 22 x x x x x -= -?++2 2c o s 2c o s s 2(s i c o s s x x x x x x x =- ?++ 1c o s 2 x =. ( 2 ) 原 式 = 22 (2sin cos 2cos )(sin cos )2 22224cos 2 θ θ θθθθ+-22cos (sin cos )cos cos 2222cos cos 22θθθθ θθθ--?== 12 3+cos2x 22cos()3x π + tan α

三角函数的二倍角公式及应用

三角函数的二倍角公式及应用 一. 考点要求 1、 熟记二倍角的正弦、余弦、正切公式,并能灵活应用; 2、 领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美 3、 公式应用的方法与技巧。 二、公式再现; 1、二倍角公式; sin2a= 2sinacosa 。 cos2a =22cos sin αα- = 22cos 1α-= 21sin α- tan2a= 22tan 1tan αα - 2、降幂公式;2 2cos 1sin ,2 2cos 1cos 22α αα α-= += 三;闯关训练 A 、类型一 公式逆用 逆用公式,换个角度豁然开朗,逆过来看茅塞顿开,这种在原有基础上的变通是创新意识的体现; 1、求下列各式的值 ();??cos15sin151 ()8 s i n 8 c o s 22 2 π π - () ? -?5.22tan 15.22tan 32 ; ()15.22cos 242 -? B 、、类型二----公式正用 从题设条件出发,顺着问题的线索,正用三角公式,通过对信息的感

知、加工、转换,运用已知条件和推算手段逐步达到目的。 2、已知(),5 3 sin -=-απ求α2cos 的值。 3、已知?? ? ??∈-=ππ ααα,2 ,sin 2sin ,求αtan 的值。 C 、、类型三----化简 ()()()2 4441sin cos ;2cos sin a a θθ +-、 四.能力提升; 1, 已知,128,5 4 8 cos παπα <<-=求4 tan ,4 cos ,4 sin α αα的值 2、已知,2 4,1352sin π απα<<=求ααα4tan ,4cos ,4sin 的值。 3、化简 ()() 11 1sin cos cos 2;2; 1tan 1tan x x x θθ--+ 4.x x - 5. 求值:(1)0000sin13cos17cos13sin17+ (2)0 1tan 751tan 75+- (3)2 2 cos sin 8 8 π π - 6.已知a ,β都是锐角,cosa=17 ,cos ()αβ+=11 14 -,求cos β的值。 7、 已知tan()3,tan()5αβαβ+=-=求tan2a 及tan 2β的值。 8、求值0000tan 70tan1070tan10- 9、.已知函数 2cos cos x x x +,求函数f(x)的最小正周期及单调递增区间。 五;高考链接

倍角公式练习题 有答案

二倍角正弦、余弦与正切公式练习题 一 选择题 1.已知34sin ,cos 2525 αα==-则α终边所在的象限是( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限 2.已知sin tan 0x x < =( ) A x B x x D x 3.若1tan 2α=则sin 22cos 24cos 24sin 2αααα +=-( ) A 114 B 114- C 52 D 52- 4.0022log sin15log cos15+的值是( ) A 1 B -1 C 2 D -2 5.若53( ,)42 ππθ∈ 的结果是( ) A 2sin θ B 2cos θ C 2sin θ- D 2cos θ- 6.已知3sin(),sin 245 x x π-=的值为( ) A 725 B 1425 C 1625 D 1925 二 填空题 001tan 22.5tan 22.5-= 001tan 22.5tan 22.5 +=__________ 8. 已知1sin 2x =则sin 2()4 x π-=____________ 9.计算0000sin 6sin 42sin 66sin 78=__________ 10.已知(cos )3cos 22x f x =+则(sin )8f π=__________ 三 解答题 11. 化简 (1sin cos )(sin cos )αα αα++-(2)παπ<<

12. 已知(0,)4x π∈且5sin()413x π-=求cos 2cos()4 x x π+的值 13. 已知tan 2x =- 22x ππ<< 求2 2cos sin 12)4 x x x π--+的值 14. 已知223sin 2sin 1,3sin 22sin 20αβαβ+=-=且,αβ都是锐角,求证22παβ+=

三角函数诱导公式、万能公式、和差化积公式、倍角公式等公式总结及其推导

三角函数诱导公式: 诱导公式记忆口诀:“奇变偶不变,符号看象限”。 “奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n?(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。 符号判断口诀: “一全正;二正弦;三两切;四余弦”。这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。 “ASCT”反Z。意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值。 三角函数诱导公式- 其他三角函数知识 同角三角函数的基本关系式 倒数关系 tanα?cotα=1 sinα?cscα=1 cosα?secα=1 商的关系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系 sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。 平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ )/(1-tanα ?tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα ?tanβ) 二倍角的正弦、余弦和正切公式 sin2α=2sinαcosα

二倍角公式教案

二倍角公式教案 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

二 倍角的正弦、余弦、正切公式 一、教学目标: 1.学会利用S (α+β) C (α+β) T (α+β)推导出sin2α,cos2α,tan2α. 知道各公式 间的内在联系,认识整个公式体系的生成过程,从而培养逻辑推理能力。 2、记住并能正确运用二倍角公式进行求值、化简、证明;通过综合运用 公式,掌握基本方法,提高分析问题、解决问题的能力。 二、教学重难点: 二倍角的公式的推导及灵活应用,倍角的相对性 三、教学方法: 讨论式教学+练习 五、教学过程 1 复习引入 前面我们学习了和(差)角公式,现在请一位同学们回答一下和角公式的内容: sin (α+β)= cos (α+β)= tan (α+β)= 计算三角函数值时,有些情况中,只用加或减不能满足要求,比如,角α,我们要求它的二倍,三倍,即2α,3α,等等,该如何求呢?今天我们就先来学习二倍角的相关公式。 2 公式推导 在上面的和角公式中,若令β=α,会得到怎样的结果呢?请同学们阅读课本132页——133页,并填写课本中的空白框。(让学生做5分钟) (1)提问: sin2α=sin (α+α)= sin αcos α+cos αsin α= 2sin αcos α cos2α=cos (α+α)= cos αcos α-sin αsin α= cos 2α-sin 2α tan2α= tan (α+α)= tanα+ tanα1-tanαtanα =2tanα1-tan 2α 整理得: sin2α=2sin αcos α cos2α= cos 2α-sin 2α tan2α= 2tanα1-tan 2α (2)提问:对于cos2α= cos 2α- sin 2α,还有没有其他的形式? 利用公式sin 2α + cos 2α=1变形可得: cos2α = cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1 cos2α = cos 2α-sin 2α=(1-sin 2α )-sin 2α =1-2sin 2α 因此:cos2α = cos 2α-sin 2α

倍角公式与半角公式习题

两角和与差的三角函数 1.若cos 4,且 5 2 .(本小题满分12 分)(1)求的表达式;(2)设,,,求的值.3.在非等腰△ ABC中, 0, ,则tg 2 已知函数的最 小正周期为,且. a,b,c 分别是三个内角A,B,C的对边,且a=3,c=4 , C=2A. (Ⅰ)求cosA 及 b 的 值; Ⅱ)求cos( 3 2A)的值. 4.已知sin( 6 A .1 ,则cos2()的值是()33 .1 .3 5.若cos 是第三象限的 角 1 ,则 1 tan 2= ( tan 2 A . D .-2 6.己知R,sin 3cosa 5 ,则tan 2a= 7.已知cos( ) 4 8.已知cos( ) 4 4 ,则sin2 5 4 ,则sin2 5 9.在ABC 中,内角A,B,C 的对边分别为a,b,c且a b,已知cosC 2B 2 A sin Acos sin Bcos 22 (Ⅰ)求 a 和b的值;(Ⅱ)求cos(B C) 的值.2 1sin C .2 10.已知函数f (x)2sin( 6)(0,x R)的最小正周期为 1)求的值; 2 2)若f ()2 3 (0, ),求cos2 的值. 8 11.已知函数f (x) 2 2sin xcosx 2sin x 1(x R) . 1)求函数f (x)的最小正周期和单调递增区 间; 2)若在ABC中,角A,B ,C的对边分别为a,b,c, A 为锐角, 且f (A 2,求ABC面积S的最大值.3

12.已知函数 y log a (x 1) 3,(a 0且 a 1)的图象恒过点 P ,若角 的终边经 过点 P ,则 sin 2 sin2 的值等于 ________ 又是偶函数; 23. y 2sin 2 x 的值域是( 13.已知 (0, ) ,且 sin cos 1 ,则 cos2 的值为( ) 2 A . 14.已知函数 f x Asin( x )(x R, A 0, 0,| | ) 的部分图象如图所 示. 1)试确定函数 f x 的解析式; (2) 若 f ( 2 15 . 已知 sin( 16 . 已知 sin( 17 . 已知 18 . 已知 19 . 设 sin2 20 . 设 f ( ) 21 . ①存在 sin 0; 1 ,求 3 cos(2 3 )的值. 45 ) 45 ) 2 10 2 10 2 ,0),cos( 2 ,0),cos( sin 2cos 3 sin 2(2 且0 且0 4 5 4 5 90 , 90 , ,则 tan2 ,则 tan2 则 cos2 则 cos2 ),则 tan2 的值是 ) sin(2 2 2 2cos 2 ( ) (0, ) 使 sina cosa 2 的值为 的值为 cos( ) 3 ,求 f (3)的值。 1 ;②存在区间 (a,b )使 y cos x 为减函数而 3 ③ y tanx 在其定义域内为增函数;④ y cos2x sin ( x ) 既有最大、最小值, 2 ⑤ y sin |2x | 最小正周期为 6 22 .在△ ABC 中,若 sin ( A )等腰三角形 ( C )等腰或直角三角形 以上命题错误的为 A+B-C ) =sin (B ) (D ) A-B+C ),则△ ABC 必是( ) 直角三角形 等腰直角三角形 A .[ -2,2] B .[0,2] .[ - 2,0] D . R 24 . 已 知 sin 是 方 程 5x 2 7x 6 0 的 根 , 且 是 第 三 象 限 角 , 求 ) ( (

三角函数的两角和差及倍角公式练习题

三角函数的两角和差及倍角公式练习题 一、选择题: 1、若)tan(,21tan ),2(53sin βαβπαπα-=<<= 则的值是 A .2 B .-2 C .211 D .-211 2、如果sin cos ,sin cos x x x x =3那么·的值是 A .16 B .15 C .29 D .310 3、如果的值是那么)4tan(,41)4tan(,52)tan(παπββα+=-= + A .1318 B .322 C .1322 D .-1318 4、若f x x f (sin )cos ,=?? ?? ?232则等于 A .-12 B .-32 C .12 D .32 5、在?ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题: 6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+= ; 7、若αα23tan ,则=所在象限是 ; 8、已知=+-=??? ??+θθθθθπsin 2cos cos sin 234cot ,则 ; 9、=??-?+?70tan 65tan 70tan 65tan · ; 10、化简3232sin cos x x += 。 三、解答题: 11、求的值。·??+?100csc 240tan 100sec

12、的值。,求已知)tan 1)(tan 1(43βαπβα--=+ 13、已知求的值。cos ,sin cos 23544θθθ=+ 14、已知)sin(2)(sin 053tan ,tan 22βαβαβα+++=-+的两个根,求是方程x x ·cos()αβ+的值。

二倍角公式练习题含答案

1.若sin 2α ,则cos α=( ) A .-2 3 B .-13 C.13 D.2 3 2. 47 17 30 17sin sin cos cos ??? ?-的值是( ). A .-2 B .-1 2 C. 12 D. 2 3.若sin cos sin cos αα αα+-=1 2,则tan2α=( ). A .-3 4 B.3 4 C .-4 3 D.4 3 4.已知()1 cos 03??π=-<<,则sin 2?=( ) A.9 B.9- C.9 D.9- 5 .已知cos 2θ=44sin cos θθ-的值为( ) A . 1811 D. 2 9- 6.已知3 cos 5α=,则2cos 2sin αα+的值为( ) A. 925 B. 18 25 C. 2325 D. 34 25 7.已知(,0)2πα∈-,3 cos 5α=,则tan 2α=( ) A.247 B.247- C.-724 D.24 7 8.4sin 2,(,)544ππ αα=-∈-,则sin 4α的值为( ) A. 24 25 B. -2425 C. 4 5 D. 725 9. 已知2 sin 3α=,则cos(2)πα-=

A . B .19- C .19 D 10.已知α为第二象限角,3sin 5 α= ,则sin 2α= . 11.已知tan 2α=,则sin cos 3sin 2cos αααα +=-________; 12.已知α是第二象限的角,且53sin =α,则α2tan 的值是 ;

本卷由系统自动生成,请仔细校对后使用,答案仅供参考。 答案第1页,总1页 参考答案 1.C 2.C 3.B 4.D 5.B 6.A 7.D 8.B 9.B 10.2524 - 11.3 4 12.24 7-

两角和、差及倍角公式(一)

两角和、差及倍角公式(一) 【考纲解读】 1. 掌握两角和与差,二倍角的正弦,余弦,正切公式,了解它们的内在联系; 2. 能运用上述公式进行简单的恒等变换. 【基础回顾】 1. 和、差角公式: sin()______________________αβ±=; cos()______________________αβ±=; tan()______________________αβ±=. 2. 二倍角公式: sin 2______________________α=; cos 2_____________________________________________α===; tan 2______________________α=. 3. 半角公式: =αsin _________________; _________________________________________________cos ===α; ________________tan =α. 4.降幂公式: 2sin _________________α=; 2cos _________________α=. 5.辅助角公式: sin cos ______________a x b x +=, (其中sin ______cos ______??==,). 【基础练习】

1. 已知),,2( ,53cos ππαα∈-= 的值求)4cos(απ-。 2. 已知)3 cos(,1715sin πθθθ-= 是第二象限角,求 3. 利用两角和差公式求下列各式的值 (1)?15sin (2)?75cos (3) ?15tan 4. 的值求已知)3tan(,3tan παα+ = 5.求下列各式的值: (1)??+??18sin 72cos 18cos 72sin (2)??+??12sin 72sin 12cos 72cos 6.化归:))tan()(os A )sin(A (?ω?ω?ω+++x x c x 、 、即化归成 (1) =-x x sin 23cos 21 (2)=+x x cos sin 3 (3)=-)sin (cos 2x x (4)=-x x sin 6cos 2 【高考例题】 4. (04重庆)sin163sin 223sin 253sin313_____??+??=. 5. (05北京)在ABC ?中,已知2sin cos sin A B C =,那么ABC ?是___三角形.

三角函数和差及倍角公式讲义.docx

教育学科教师辅导讲义 教学内容 一、 上次作业检查与讲解; 二、 学习要求及方法的培养: 三、 知识点分析、讲解与训练: Mite 一、两角和与差的正弦、余弦、正切公式及倍角公式: sin (° ± 0) = sin QCOS 0 土 cos osin 0 —令空?》sin 2a = 2 sin a cos a (o±0) = cosfzcos^ + sinc^sin p — cos2a = cos?(7-sin 2 a -2cos 2 a-\ = l-2sin 2 a 7 1+COS 2Q n cos 「a= ---------- 2 .9 l — cos2o sirr a= ---------- 2 r 2 tan a tan 2a = ------- - l-tarr a 二、三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与角之间的关系, 注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三 观察代数式的结构特点。基本的技巧有: (1) 巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变 换.如 G = (Q + 0)-0 = (Q -0) + 0, 2Q = (G + 0) + (Q -0) , 2a = (0 + a)-(0-a), 心=2?呼,呼十号俘") ⑵三角函数名互化(切割化弦), ⑶公式变形使用(tana 土tan0 = tan (仅±0)(1^tanotan")。 1 I y zy I / cos 等),

(4)三角函数次数的降升(降幕公式:cos2 6Z = —-—, sin%= —与升幕公式: 2 2 1+ cos 2a = 2 cos2a , 1-cos 2a = 2 sin2a)。

运用二倍角公式解题的六技巧

运用二倍角公式解题的五技巧 二倍角公式变化多姿,在求值以及恒等变换中应用很广。若熟练掌握二倍角公式以及变通公式并能灵活运用,则往往能出奇制胜,获得新颖别致的解法。 一、二倍角公式的直接运用 例1 若1 sin cos 3 αα+=,0απ<<,求sin 2cos 2αα+的值。 分析:由条件式两边平方,可求得sin 2α的值。注意到22 cos 2cos sin ααα=- (cos sin )(cos sin )αααα=+-,还需求c o s s i n α α-的值,于是先求22(cos sin )(sin cos )4sin cos αααααα-=+-的值, 然后开方,从而要进一步界定α的范围。 解:由1 sin cos 3 αα+= 两边平方得112sin cos 9αα+=,所以4sin cos 9αα=-。又 0απ<<,所以sin 0α>,cos 0α<,所以α为钝角。所以8 sin 22sin cos 9 ααα==-, cos sin αα-= 3 ==- ,所以22cos 2cos sin ααα=-(cos sin )(cos sin )αααα=+ -1(3=?=,从 而sin 2cos 2αα+=。 点评:挖掘隐含得到α 为钝角是解题的一个重要环节。注意导出公式 21sin 2(sin cos )ααα±=±。 二、二倍角公式的逆用 例2 求tan cot 8 8 π π -的值。 解:tan cot 8 8 π π -sin cos 88cos sin 8 8 πππ π =-2 2sin cos 8 8cos sin 88 π π ππ -= cos 41sin 24 π π-= 2cot 24π=-=-。 点评:本题通分后逆用正弦与余弦的二倍角公式,从而转化为特殊角函数的求值问题。 三、二倍角公式的连用 例3 求cos12cos 24cos 48cos96 的值. 分析:242 12=? ,48224=? ,96248=? ,联想二倍角的正弦公式αααcos sin 22sin =,若逐步逆用将是一条通途. 解:cos12cos 24cos 48cos96 sin12cos12cos 24cos 48cos96sin12 = sin19216sin12= sin12116sin1216 -==- 。 点评:对形如αααα1 2cos 4cos 2cos cos -n 的求值问题可考虑此法.若逆用诱导公式ααπcos )2sin(=±可知74cos 72cos 7cos πππ14 5sin 143sin 14sin π ππ-=,即对于正弦之 积或正弦余弦混合积的求值问题先利用诱导公式转化为余弦之积的形式利用此法求解. 四、整体配对使用二倍角公式 例4.求值: 78sin 66sin 42sin 6sin 分析:本题可按例2的点评部分所说的方法处理,这里介绍整体构造法.

倍角公式与半角公式-常考题型专题练习(机构专用)

启迪思维 点拨方法 开发潜能 直线提分 倍角公式与半角公式 考向一 直接求值 1、若sin α=1 3 ,则cos2α=( ) A.89 B.79 C .-79 D.-89 答案:B 2、若sin α-cos α=2,则sin 2α等于( ) A .2 B.12 C .1 D .-1 所以(sin α-cos α)2=1-sin 2α=2,所以sin 2α=-1. 3、 2sin 2α1+cos 2α ·cos 2α cos 2α等于( ) A .tan α B .tan 2α C .1 D.1 2

4、已知角α的终边经过点(2,4),则cos2(α= ) A .35- B .35 C .35 ± D . 45 【解答】解:角α的终边经过点(2,4), 故选:A . 5、已知θ为第二象限角,且1sin 4θ= ,则3cos(2)(2 π θ+= ) A . 78 B .78 - C D . 故选:D . 6、若3cos22sin()4παα=+,3(,)2 π απ∈,则sin 2α的值为( ) A . B . C .79 - D . 79

故选:D . 7、已知1 cos 3α=-,则cos2(α= ) A .79 - B .89 - C . 79 D .89 故选:A . 考向二 公式逆用 1、设α是第二象限角,4tan 3α=- ,且sin cos 22αα <,则cos 2 α=( ) A .5 - B C . 35 D . 35

【答案】A 2、已知7cos 25θ=- ,(),2θ∈ππ,则sin cos 22 θθ +=( ) A .75 - B .7 5 C .15 - D . 15 【答案】D 【解析】 (,2θ∈π1cos 2θ+- 3、若θ∈????π4,π2,sin 2θ=37 8 ,则sin θ等于( ) A.3 5 B.45 C.74 D.34 4、已知(,0)2απ∈- ,4cos 5 α=,则tan 2α =( )

三角函数基础,两角和与差、倍角公式

练习: 一、填空题 1. α是第二象限角,则2 α 是第 象限角. 2.已知扇形的半径为R ,所对圆心角为α,该扇形的周长为定值c ,则该扇形最大面积为 . 同角三角函数的基本关系公式: αααtan cos sin = ααα cot sin cos = 1cot tan =?αα 1cos sin 22=+αα 1?“同角”的概念与角的表达形式无关,如: 13cos 3sin 2 2 =+αα 2tan 2 cos 2sin ααα = 2?上述关系(公式)都必须在定义域允许的围成立。 3?由一个角的任一三角函数值可求出这个角的其余各三角函数值,且因为利用“平方关系”公式,最终需求平方根,会出现两解,因此应尽可能少用,若使用时,要注意讨论符号. 这些关系式还可以如图样加强形象记忆: ①对角线上两个函数的乘积为1(倒数关系). ②任一角的函数等于与其相邻的两个函数的积(商数关系). ③阴影部分,顶角两个函数的平方和等于底角函数的平方(平方关系). 二、讲解例: 例1化简:ο440sin 12- 解:原式οοο ο ο 80cos 80cos 80sin 1)80360(sin 122 2 ==-=+-= 例2 已知α α αααsin 1sin 1sin 1sin 1+---+是第三象限角,化简 解:) sin 1)(sin 1() sin 1)(sin 1()sin 1)(sin 1()sin 1)(sin 1(αααααααα-+--- -+++= 原式 |cos |sin 1|cos |sin 1sin 1)sin 1(sin 1)sin 1(2 222ααααα ααα--+=----+= 0cos <∴αα是第三象限角,Θ αα α ααtan 2cos sin 1cos sin 1-=----+= ∴原式 (注意象限、符号) 例3求证: α α ααcos sin 1sin 1cos +=- 分析:思路1.把左边分子分母同乘以x cos ,再利用公式变形;思路2:把左边分子、分母同乘以(1+sinx )先满足

三角函数的两角及差与倍角公式练习题.doc

三角函数的两角和差及倍角公式练习题 一、选择题: 1、若 sin 3 ( 2 ), tan 1 ,则 tan( ) 的值是 5 2 A .2 B .- 2 2 2 C . D . 11 11 2、如果 sin x 3cosx, 那么 sin x · cosx 的值是 1 1 2 3 A . B . C . D . 6 5 9 10 3、如果 tan( ) 2 , tan( ) 1 ,那么 tan( )的值是 5 4 4 4 13 3 13 13 A . B . C . D . 18 22 22 18 4、若 f (sin x) cos2x, 则 f 3 等于 2 1 3 1 3 A . B . C . D . 2 2 2 2 5、在 ABC 中, sin A · sin B cosA · cosB, 则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题: 6 、角 终边过点 (4,3) ,角 终边过点 ( 7, 1),则 sin() ; 7 、若 tan 3,则 2 所在象限是 ; 8 、已知 cot 4 3,则 2 sin cos ; cos 2 sin 9 、 tan 65 tan 70 tan65·tan 70 ; 10、 化简 3sin 2x 3 cos2x 。 三、解答题: 11、求 sec100 tan 240·csc100 的值。

12、已知3 ,求(1 tan )(1 tan )的值。4 13、已知cos2 3 , 求 sin 4 cos4的值。 5 14、已知tan, tan 是方程x 2 3x 5 0的两个根, 求 sin 2 ( ) 2 sin( ) ·cos( ) 的值。

三角函数的两角和差及倍角公式练习题之欧阳学文创编

三角函数的两角和差及倍角公式练 习题 欧阳学文 一、选择题: 1、若)tan(,2 1 tan ),2 (53sin βαβπαπα-= <<=则的值是 A .2 B .-2 C .211 D .-211 2、如果sin cos ,sin cos x x x x =3那么·的值是 A .16 B .15 C .29 D . 3 10 3、如果的值是那么)4 tan(,4 1)4 tan(,5 2)tan(παπββα+=-=+ A .1318 B . 322 C .1322 D .-1318 4、若f x x f (sin )cos ,=?? ? ? ?232则等于 A .-12 B .-32 C .12 D . 32 5、在?ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题:

6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+=; 7、若αα23tan ,则=所在象限是; 8、已知=+-=?? ? ??+θθθθθπ sin 2cos cos sin 234cot ,则; 9、=??-?+?70tan 65tan 70tan 65tan ·; 10、化简3232sin cos x x + =。 三、解答题: 11、求的值。 ·??+?100csc 240tan 100sec 12、的值。,求已知)tan 1)(tan 1(4 3βαπβα--=+ 13、已知求的值。cos ,sin cos 235 44θθθ=+ 14、已知 )sin(2)(sin 053tan ,tan 22βαβαβα+++=-+的两个根,求是方程x x ·cos()αβ+的值。 答案: 一、 1、B 2、D 提示: tanx = 3, 所求12 2sin x , 用万能公式。 3、B 提示: ()απ αββπ+ =+--? ? ?? ?44 4、A 提示: 把x =π3 代入

二倍角公式的两个特殊变式及应用

高考数学复习点拨:二倍角公式的两个 特殊变式及应用 二倍角公式的两个特殊变式及应用 浙江周宇美 一、变式 变式1:sin2=sin2(+)-cos2(+) =2sin2(+)-1 =1-2cos2(+). 变式2:cos2=2sin(+) cos(+)=2sin(+) sin(-). 以上两个变式的形式与二倍角正、余弦形式恰相反,角度变为(+).其实证明只需运用诱导公式再结合倍角公式即可解决.由sin2=-cos(2+)=-cos2(+),及cos2= sin2(+),再用倍角公式即可. 二、应用 变式1、2主要用于题中含有2与±问题的转化. 例1 已知cos(+)=,求. 分析:本题只需将sin2及sin(-),运用变式及诱导公式转化成cos(+)形式即可解决问题. 解:∵cos(+)=,由变式1,得 sin2=1-2cos2(+)=. sin(-)=cos(+)=.

∴ 原式=. 例2 已知sin(+x)sin(-x)=,x∈(,),求sin4x的值. 分析:本题只需求cos2x即可,又由变式2并结合题意即可 解决. 解:由变式2,得 cos2x=2sin(+x)sin(-x)=,又2x∈(,2), ∴ sin2x=-=-. ∴ sin4x=2sin2xcos2x=-. 例3 已知x∈(-,),且sin2x=2sin(x-),求x的值. 分析:将角2x与x-统一即可,又运用变式1即可达到目的.解:由变式1,原方程可化为 1-2cos2(x+)=-cos(x+). 解得cos(x+)=1或cos(x+)=-. 又x∈(-,), ∴x+=0或x+=, ∴ x=-或x=-.

倍角公式练习题

1.若[]0,θπ∈, ) A .7 D 2.已知α为第二象限角,5 4sin = α,则=-)2sin(απ A .2425- B .2425 C .1225 D .1225- 3.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上则cos 2θ等于( ) A 4) A 5,则α2cos 的值为( ) A 6.【原创】在△ABC 中,若sin (A+B-C )=sin (A-B+C ),则△ABC 必是( ) (A )等腰三角形 (B )直角三角形 (C )等腰或直角三角形 (D )等腰直角三角形 7.【原创】x y 2sin 2=的值域是( ) A .[-2,2] B .[0,2] C .[-2,0] D .R ) (A ))()2(x f x f =-π (B ))()2(x f x f =+π (C ))()(x f x f -=- (D ))()(x f x f =- 9,则sin2=α( ) 10( ) A 2- D .2 11则sin 2θ=( )

A.1 B.3 C 12则x4 cos的值等于() 13.若(0,) απ ∈,且,则cos2α=() (A (B (C (D 14.已知α 是第二象限角,且,则tan2α的值为() A 15 ,则x 2 sin的值为() A 16 17的值为. 18上的最大值是. 19 20___________ 21 22 23.若tanα=2,则sinα·cosα的值为. 24的最大值是. 25的最大值是. 26.已知函数log(1)3 a y x =-+,(0 a>且1) a≠的图象恒过点P,若角α的终边经过点P,则2 sin sin2 αα -的值等于_______.

相关主题