搜档网
当前位置:搜档网 › 无线MESH——概念及基本技术

无线MESH——概念及基本技术

无线MESH——概念及基本技术
无线MESH——概念及基本技术

中科招商创业投资管理有限公司

无线Mesh网络

概念及基本技术

Chenshan Wang

2011/11/29

无线Mesh网络是一种新型的无线宽带接入网络,它融合了无线局域网和Adhoc网络的优势,具有自组网、自修复、多跳级联、节点自我管理等智能优势以及移动宽带、无线定位等特点,成为无线宽带接入的一种有效手段。文章简要介绍无线Mesh网络的概念和系统特性,并阐述基本技术等。

目录

1、引言 (3)

2、无线Mesh网络的概念 (3)

3、无线Mesh基本技术 (4)

3.1无线Mesh路由器的无线传输技术 (4)

3.2多信道接入的MAC技术 (5)

3.3接入WGW的路由技术 (6)

3.4无线Mesh路由器配置技术 (7)

4、无线Mesh网络的特性 (8)

5、Mesh网络的不足 (9)

6、Mesh网络的应用 (9)

7、展望 (11)

1、引言

无线网状网(WMN)是近年被高度重视和快速发展的新型网络技术,支持宽带高速多媒体业务服务。随着未来无线分布技术和无线分布网络的发展,无线Mesh技术和网络将会成为无线移动通信的基本网络技术和网络结构,渗透到各种无线网络中,发挥更大作用。

无线Mesh网络(WMN)技术曾是一项军事技术,战场上的移动网络需要很高的数据速率、很低的被检出概率和防止人为干扰的能力,而Mesh技术就具备了这些能力。随着人们对802.11a、802.11b和802.11g等局域网(LAN)技术了解的深入,Mesh技术才逐步成为企业界和消费者瞩目的焦点,并沿着不同的分支演进。

目前,业界讨论最多的“无线网状网”技术是一种灵活的广域无线局域网(WLAN)解决方案,它突破了Wi-Fi技术对每个接入点的有线连接要求,将多个接入点通过无线方式连接在一起,无需进行布线就可形成一个无线网络或“热区”,从而在室内和室外提供宽广的无线覆盖。目前,许多知名厂商(如摩托罗拉、思科、Strix、Tropos等)都已经有成熟产品问世,促进各个行业组织制订标准,以推进网状网技术的可操作性。

而基于Mesh技术的无线网络集成了健壮的安全性和全面的可管理性,可提供移动宽带和灵活的自组网通信,并拥有对局部区域可靠和安全的覆盖能力,已成为符合国际电联(ITU)公众保护及救灾(PPDR)业务要求的一项优秀解决方案。Mesh网络不仅有助于改善城市信息化的应用环境,而且对提升城市的综合服务能力也有十分明显的作用。

2、无线Mesh网络的概念

无线Mesh网络是基于IP协议的无线宽带接入技术,它融合了WLAN和Adhoc网络的优势,支持多点对多点的网状结构,具有自组网、自修复、多跳级联、节点自我管理等智能优势以及移动宽带、无线定位等特点,是一种大容量、高速率、覆盖范围广的网络,成为宽带接入的一种有效手段。从某种意义上讲,Mesh网络更主要的是一种网络架构思想,主要功能体现在无中心、自组网、多级跳接和路由判断选择等。

无线Mesh技术是一种与传统无线网络完全不同的新型无线网络技术。在传统的WLAN 中,每个客户端均通过一条与接入点(AP)相连的无线链路访问网络,用户若要进行相互通信,必须首先访问一个固定的AP,这种网络结构称为单跳网络。而在无线Mesh网络中,任何无线设备节点都可同时作为路由器,网络中的每个节点都能发送和接收信号,每个节点都能与一个或多个对等节点进行直接通信。

这种结构的最大好处在于:如果最近的AP由于流量过大而导致拥塞的话,数据可以自动重新路由到一个通信流量较小的邻近节点进行传输。依此类推,数据包还可以根据网络的情况,继续路由到与之最近的下一个节点进行传输,直到到达最终目的地为止。这样的访问方式就是多跳访问。

其实我们熟知的Internet就是一个Mesh网络的典型例子。当我们发送一份Email时,

电子邮件并不是直接到达收件人的信箱中,而是通过路由器从一个服务器转发到另外一个服务器,经过多次路由转发才到达用户的信箱。在转发过程中,路由器一般会选择效率最高的传输路径,以便使电子邮件能尽快到达用户的信箱。因此,无线Mesh网络可看作“Internet 的无线版”。

3、无线Mesh基本技术

无线Mesh网络在通常的WGW(实现无线Internet接入)、无线用户终端的基础上,增添了无线路由器,由原有基础的无线接入网络结构演变成无线Mesh网络结构。无线Mesh网络增加了无线路由器层,各路由器间由无线连接,路由器与无线IP接入点(WGW)间由无线连接,并可交叉链接,形成密集网络。由此衍生出无线Mesh网络特有的基本技术和处理方法,它们都是与常规单纯的无线接入网络不同的新增无线路由器层直接相关联的。

3.1无线Mesh路由器的无线传输技术

在研究无线Mesh网络技术过程中,常常把Mesh路由器(如WR)的无线传输技术,称为无线Mesh网络的物理层技术。这里传输主要是指WR与用户终端间的无线传输、WR之间的无线传输和WR与WGW间的无线传输。

WR与用户终端间的无线传输是按用户终端支持的无线技术和标准化要求,实现类似于基站或无线接入点的功能,能够支持各种不同无线空中接口的接入要求。无线Mesh网络结构支持不同的标准化接入系统,有不同的无线传输技术,WR与用户终端间的无线传输都能适应。

WR之间的无线传输和WR与WGW间的无线传输是需要定义和确认的。原则上,采用何种传输技术与用户终端支持的技术标准和系统方式没有直接关系,可以尽量采用现有的先进技术和方法。由于WR相当于基站,是位置固定的,是支持多用户综合高速数据的,是密集覆盖并要尽量避免彼此间干扰的,是有多种路由选择的。因此,智能定向天线技术、高效可控调制编码技术、低临界发射功率控制技术等是最重要的物理层传输技术。

智能定向天线技术是一种信号功率集中的指定

方向波束成形技术,如图所示。在3G系统中,特

别是在同频工作的TD-SCDMA系统中,得到广泛应

用。智能天线技术是一种特别的多输入多输出

(MIMO)技术,使用相位受控的m个天线振子组

合,可形成m个不同方向的低功率定向发射,使到

达接收点的信号功率最强,而对其他邻近WR的辐

射最小,影响最小,实现网络密集覆盖的低功率应

用。在不好直接利用智能天线的场合,也要采用MIMO技术,提高功率效率和传输效率。

高效可控调制编码技术是未来无线通信的共同要求。但是,WR之间和WR与WGW间的无线传输,由于位置固定、传输路径固定、信道衰落起伏平稳,因此能采用有效的信道估计补偿技术实现比移动环境高得多的传输调制效率和编码效率,完成高速通信。正交频分复用(OFDM)技术、正交幅度调制(QAM)迭代技术、Turbo编解码技术等能够实现高速、可控可管、自适应,都是首选技术。

低临界发射功率控制技术是信号功率效率提高的关键,与网络拓扑结构密切相关。无线Mesh网络采用无线接入密集覆盖办法,能实现低信号功率应用。为最大减小对邻近WR的干扰,发射功率最小临界化的功率控制十分重要。上图是临界低功率发射控制示意图,图a 发射功率过小,仅部分连接;图b是发射功率过大,各WR覆盖彼此交叉重叠过多,相互干扰严重;图c是发射功率控制到合适临界的状况,相互交叉重叠不多,各WR都可经由单跳或多跳连接到WGW,全可联通,是最佳控制。当然,信号发射功率控制,不仅考虑网络拓扑结构,还要考虑到数据业务负载,传输时延和业务质量等要求,实现优秀综合性能的最大网络容量。

3.2多信道接入的MAC技术

提供媒体访问控制(MAC)接入的多信道技术,同通常的无线通信网络一样,有频分多址(FDMA)技术、时分多址(TDMA)技术、码分多址(CDMA)技术和使用定向天线的空

分多址(SDMA)技术,实用中经常是这些多址技术的部分或全部综合应用,形成彼此独立互不串扰的多信道接入技术。由于WR的定点定向传输可以充分利用智能天线技术实现空分多址,实现尽可能多的互不干扰独立传输信道。相对常规无线通信,这是无线Mesh网络的又一特色。

在多址接入技术支持下,无线Mesh网络的MAC层设计与通常的典型无线网络的MAC 设计一样,同接入点相关。由于无线Mesh网络不是单跳而是多跳系统,需要支持多跳的MAC设计。首先是就近Mesh路由器的接入选择。无线Mesh网络是自组织网络,网络路由连接和用户终端接入状况的拓扑结构随地理位置、通信环境、用户移动、WR布局等不同而不同,是变动的。如图所示,图(a)是一种Mesh拓扑结构,终端经过3次跳转接力,接入Internet接入点GW1,完成MAC过程。图(b)是同一地区同样的Mesh路由器和WGW布局,但Mesh拓扑连接不同,该终端在同样位置,选择同样的Mesh路由器,要经过4次跳转接力,接入Internet接入点GW3,完成MAC过程。但如果选择临近的另外不同的Mesh路由器,可能只经过2跳或3跳,就能接入GW1。因此,无线Mesh网络的就近Mesh路由器的接入选择,是动态的,与通常设计不同。典型的有应用于IEEE 802.11的多信道MAC技术协议(MMAC协议),并考虑MAC层与网络层的交互,引入多信道协同子层(MCCL),以此增加网络能力。

3.3接入WGW的路由技术

用户终端通过WR接到无线IP接入点的路由技术和相关协议是多跳的无线Mesh网络的最重要技术。研究和设计接入Internet的路由技术和协议,基本考虑准则有:尽量少的多跳数、尽量小的时延、尽量大的数据速率、尽量低的差错率、尽量大的路由稳定等。这样,接入WGW的路由协议设计有如下几点要尤其注意:首先,无线Mesh网络中的路由协议不能仅仅根据“最小跳数”来进行路由选择,而要综合考虑多种性能度量指标,综合评估后进行路由选择;其次,路由协议要提供网络容错性和健壮性支持,能够在无线链路失效时,迅速选择替代链路避免业务提供中断;第三,路由协议要能够利用流量工程技术,在多条路径间进行负载均衡,尽量最大限度利用系统资源;第四,路由协议要求能同时支持路由器和用户终端。

无线Mesh路由协议可参照Ad Hoc网络路由协议,目前几种典型的路由协议有:动态源路由协议(DSR)、目的序列距离矢量路由协议(DSDV)、临时按序路由算法(TORA)和Ad Hoc

按需距离矢量路由协议(AODV)等。DSR是最常见的一种对等的基于拓扑的反应式自组织路由协议,它的特点是采用积极的缓存策略以及从源路由中提取拓扑信息,通过比对,实现路由创建。图10表示一个无线Mesh网络,可能有上下行不同的路由选择。无线Mesh网络中Mesh路由器通常都是静止不动的,原则上没有功耗限制,也没有用户移动带来的路由器位置改变和路由拓扑改变,因此,可将现有Ad Hoc路由协议加以简化,进行跨层设计,建立简单得多的路由协议。但是,对于移动用户终端需要采用完全类似Ad Hoc的路由协议,寻求就近接入点和接入路由。

接入网络的路由协议的另一个问题是

如何选择路由实现接入的公平性,让用户终

端接入网络的机会、数据速率和通信质量是

基本上一致的。左图给出了实现公平性的基

本路由选择方式,在可能情况下,对各自

Mesh路由器转接基本能力相同时,尽量选

择如右图(a)的并行接入方式,WR各自支持

接入的用户终端,以可能的最大数据速率支

持连接到Internet,各用户享受的支持是相

同的公

平的。

采用右

图(b)的串行接入方式,在Mesh路由器基本相同能力

情况下,要公平就不能实现最大速率。这时,WR4通过

WR3把用户终端以数据速率S4接入WGW,如果WR3

有用户接入,WR3能支持的速率就是S3-S4,如果WR

最大支持能力为S,则可能实现的公平接入是:

S3=S4=S/2,WR4没有达到最大支持能力,WR3达到最

大支持能力,但它直接联络的用户只能实现WR3部分

接入能力。只有在WR3接入能力明显大于WR4接入能

力时,串行接入方式对实现接入公平,才比较有效。这

种接入公平性的考虑,也是实现网络各Mesh路由器最

大能力的接入考虑,可使网络容量最大。

3.4无线Mesh路由器配置技术

网络设备通常是指Internet接入点和Mesh路由器。在覆盖区域给定的情况下,WGW 放置位置可以变动的话,放置位置的确定;在WR布局密度和数目给定情况下,放置位置的确定,是构建无线Mesh网络的基本研究课题。在大多数情况下,WGW位置是确定的,因此主要研究Mesh路由器的配置问题。

Mesh路由器的配置,如上节的路由选择所述一样,有并行配置和串行配置的两种方式。

为实现最大网络能力,需要凭借在串行配置下的多跳链路(路由)。这种链路为提高效率,采用分时工作,因此要研究避免碰撞的分时策略和处理方法。如下图所示。

采用串行配置,Mesh路由器的最大接入能力在不同位置有不同要求,可以通过不同调制方式和不同微区大小覆盖来转接任务大的Mesh路由器,使用高速传输技术,覆盖较小区域,减少用户终端直接接入需求量。

而在多跳末端位置的Mesh路由器由于转接工作少,可采用较低数据速率和较大区域覆盖,实现最优网络能力。如上图所示。

4、无线Mesh网络的特性

1)自组织

网络节点和授权最终用户可即时加入网络,扩展网络覆盖范围,并可连接至所有其他节点。

2)自愈

如果网络中的某台设备发生故障或从其拓扑位置上拆卸,网络会自动适应这种改变。既使发端与对端之间的连接涉及多台中继设备,网络也会找到从发端到对端的新的路由。

3)多跳式

每个网络节点和用户端设备(无线通信单元)均能转发和路由发送至另一个对端的数据包,能选择并确定一个从发端到对端的最佳路由。

4)点对点网络

自组织网络通常由平等的网元构成,只要发端和对端的距离足够近,就能直接连接发端和对端。而不必通过中央管理节点。

5、Mesh网络的不足

尽管无线Mesh联网技术有着广泛的应用前景,但也存在一些影响它广泛部署的问题。

1)互操作性

目前影响无线Mesh技术迅速普及的一个重要障碍就是互操作性,无线Mesh网络现在还没有一个统一的技术标准,用户现在要么就只能使用某一个厂商的无线Mesh产品,要么面临如何与各种不同类型的嵌入式无线设备接口的问题,这个问题目前是影响无线Mesh技术推广使用最重要的原因。想彻底解决互操作性问题,最终还需要业界制定统一的无线Mesh 技术标准。

2)通信延迟

既然在Mesh网络中数据通过中间节点进行多跳转发,每一跳至少都会带来一些延迟,随着无线Mesh网络规模的扩大,跳接越多,积累的总延迟就会越大。一些对通信延迟要求高的应用,如话音或流媒体应用等,可能面临无法接受的延迟过长的问题。目前解决这一问题主要是通过增加Mesh节点以及合适的网络协议。

3)安全

与WLAN的单跳机制相比,无线Mesh网络的多跳机制决定了用户通信要经过更多的节点。而数据通信经过的节点越多,安全问题就越变得不容忽视。Internet本身即是使用Mesh 方式进行通信的典型,它的安全隐患是众所周知的。尽管有线网络中使用的各种端到端安全技术,如虚拟专用网(VPN)同样可以用来解决无线Mesh的安全问题。但正如Internet一样,无线Mesh网络的安全是一个不容忽视的问题。

6、Mesh网络的应用

从本质上说,Mesh网络是一种类似于点对点的无线网络架构,这种架构可以大大减少网络的基础设施成本(例如AP,无线路由器数量),同时也可为无线网络服务供应商(WISP)减少70%~75%的营运、安装成本。

基于Mesh网络的优势,它还可以在不同异构的环境下提供多种服务;当用户在高速移动时,或者在较大范围的区域内可以通过3G或2.5G传输语音、数据;在局部的范围内可通过WLAN提供宽带网络服务,例如视频点播等。随着Mesh网络的进一步发展,它最终可在企业的办公环境中将办公室电话或者手机进行整合。

Mesh网络在家庭、企业和公共场所等诸多领域都具有广阔的应用前景:

1)家庭

Mesh技术的一个重要用处就是用于建立家庭无线网络。家庭式无线Mesh联网可以连接台式PC机、笔记本和手持计算机、HDTV、DVD播放器、游戏控制台,以及其他各种消费类电子设备,而不需要复杂的布线和安装过程。在家庭Mesh网络中,各种家用电器既是网上的用户,也作为网络基础设施的组成部分为其他设备提供接入服务。当家用电器增多时,这种组网方式可以提供更多的容量和更大的覆盖范围。Mesh技术应用家庭环境中的另外一个关键好处是它能够支持带宽高度集中的应用,如高清晰度视频等。

2)企业

目前,企业的无线通信系统大都采用传统的蜂窝电话式无线链路,为用户提供点到点和点到多点传输。无线Mesh网络则不同,它允许网络用户共享带宽,消除了目前单跳网络的瓶颈,并且能够实现网络负载的动态平衡。在无线Mesh网络中增加或调整AP也比有线AP 更容易、配置更灵活、安装和使用成本更低。尤其是对于那些需要经常移动接入点的企业,无线Mesh技术的多跳结构和配置灵活将非常有利于网络拓朴结构的调整和升级。

3)学校

校园无线网络与大型企业非常类似,但也有自己的不同特点。一是校园WLAN的规模巨大,不仅地域范围大,用户多,而且通信量也大,因为与一般企业用户相比学生会更多地使用多媒体;二是网络覆盖的要求高,网络必须能够实现室内、室外、礼堂、宿舍、图书馆、公共场所等之间的无缝漫游;三是负载平衡非常重要,由于学生经常要集中活动,当学生同时在某个位置使用网络时就可能发生通信拥塞现象。

解决这些问题的传统作法是在室内高密度地安装AP,而在室外安装的AP数量则很少。但由于校园网的用户需求变化较大,有可能经常需要增加新的AP或调整AP的部署位置,这会带来很大的成本增加。而使用Mesh方式组网,不仅易于实现网络的结构升级和调整,而且能够实现室外和室内之间的无缝漫游。

4)医院

Mesh还为像医院这样的公共场所提供了一种理想的联网方案。由于医院建筑物的构造密集而又复杂,一些区域还要防止电磁辐射,因此是安装无线网络难度最大的领域之一。

医院的网络有两个主要的特点。一是布线比较困难:在传统的组网方式中,需要在建筑物上穿墙凿洞才能布线,这显然不利于网络拓朴结构的变化。二是对网络的健壮性要求很高:如果医院里有重要的活动(如手术),网络任何可能的故障都将会带来灾难性的后果。

采用无线Mesh组网则是解决这些问题的理想方案。如果要对医院无线网络拓扑进行调整,只需要移动现有的Mesh节点的位置或安装新的Mesh节点就可以了,过程非常简单,安装新的Mesh节点也非常方便。而无线Mesh的健壮性和高带宽也使它更适合于在医院中部署。

5)旅游休闲场所

Mesh非常适合于在那些地理位置偏远布线困难或经济上不合算,而又需要为用户提供宽带无线Internet访问的地方,如旅游场所、度假村、汽车旅馆等。Mesh能够以最低的成本为这些场所提供宽带服务。

6)快速部署和临时安装

对于那些需要快速部署或临时安装的地方,如展览会、交易会、灾难救援等,Mesh网络无疑是最经济有效的组网方法。比如,如果需要临时在某个地方开几天会议或办几天展览,使用Mesh技术来组网可以将成本降到最低。

7、展望

从国外的研究情况来看,2004年1月,IEEE802.11WorkingGroup专门正式成立了网状网研究组(MeshStudy Group),标志着Mesh技术正式迈上了广泛标准化道路。同时,其他标准(如802.15.3a、802.15.4和专用短程通信(DSRC))也开始探索如何通过网状网嵌入式设备来改进其现有技术,IEEE802.16已经将网状网技术纳入其MAC层协议标准中。随着无线网络带宽的增加和融入更多的安全性,无线Mesh技术会越来越显示出其优势,成为无线宽带领域中的生力军。

国内的Mesh技术市场推广工作也在一步步展开,个别大学进行了校园无线网状网接入的尝试。此次上海针对MotoMesh技术系统进行的性能研究是目前国内搭建规模最大、技术测试最深入的一次技术试验,初步摸清了MotoMesh系统的容量、传输吞吐率、多级跳接、移动性能等性能指标,对自组织对等网、虚拟专用网络(VPN)管理能力、多业务接入能力以及系统安全性方面功能也进行了验证。

我们有理由相信,随着无线Mesh技术研究的不断深入,其应用的领域会越来越广,它在无线宽带接入方面有着非常大的市场潜力。

基于射频捷变频收发器AD9361的软件定义无线电解决方案

基于射频捷变频收发器AD9361的软件定义无线电解决方案 AD9361是一款用于SDR架构的高性能、高度集成的RF收发器IC,适合无线通信基础设施、防务电子系统、RF测试设备和仪器,以及通用软件定义无线电平台等应用。该器件的高度可编程性和宽带能力使其成为多种收发器应用的理想选择。该器件集RF前端与灵活的混合信号基带部分为一体,集成频率合成器,为处理器或FPGA提供可配置数字接口,从而简化设计导入。AD9361芯片工作频率范围为70 MHz至6 GHz,涵盖大部分特许执照和免执照频段,通过对AD9361 IC编程可改变采样速率、数字滤波器和抽取参数,使该芯片支持的通道带宽范围为低于200 kHz至56 MHz。 IC特性 ? 单芯片上的完整双通道集成式宽带收发器 ? 可调谐频段:70 MHz至6.0 GHz;200 kHz至56 MHz(通道带宽) ? 出色的接收器灵敏度,噪声系数小于2.5 dB ? 高线性度宽带发射机: ? Tx EVM: ≤?40 dB ? Tx噪声:≤?157 dBm/Hz(噪底) ? Tx监控器动态范围:≥66 dB(1 dB精度) ? 集成小数N分频频率合成器,本振(LO)步长最大值为2.5 Hz ? 提供完整的集成式电源解决方案:ADP5040 应用 ? 通用设计,适合任意软件定义无线电应用 ? MIMO无线电 ?点对点通信系统 ? 毫微微蜂窝/微微蜂窝/微蜂窝基站 ? Wi-Fi ? ISM ? 军用/航空航天

? 公共安全 ? 智能电网 AD9361是ADI的可编程2 × 2集成式收发器解决方案,频率范围为70 MHz至6.0 GHz 这款灵活的高性能IC采用AD-FMCOMMS2-EBZ板,可无缝连接Xilinx FPGA开发平台,方便进行快速SDR原型制作和系统开发。 AD-FMCOMMS2-EBZ RF快速开发板采用AD9361宽带收发器IC AD-FMCOMMS2-EBZ快速开发和原型制作板是一款高速模拟模块产品,内置AD9361,可无缝连接Xilinx FPGA开发平台生态系统并在系统中工作。该板采用2 × 2 I/Q收发器配置,可通过软件完全自定义。它提供可供下载的Linux驱动程序和裸机软件驱动程序、原理图、电路板布局文件和有助于设计的参考材料,可前往ADI的Wiki知识库获取。 产品特性 ? FMC格式SDR开发平台 ? 包括原理图、布局、BOM、HDL、Linux驱动程序和应用软件 ? 通过单FMC连接器供电 ? 支持特定频谱设计(PA、LNA 等)的附加卡 ? 适用于所有器件寄存器的通用I 2 C访问

无线Mesh网络架构及发展现状研究_bupt

无线Mesh网络架构及发展现状研究 李曦 北京邮电大学,北京(100876) E-mail:cici0404@https://www.sodocs.net/doc/937694629.html, 摘要:本文介绍了无线Mesh网络的自身特点、组网结构及其与移动Ad hoc网络和蜂窝网络的异同,重点论述了无线Mesh网络中路由协议的特点及分类,特别是MR-LQSR、PWRP、MCRP等无线Mesh网络专有的路由协议。最后介绍了无线Mesh网络的研究现状,包括标准化进程和商用情况,以及未来的发展前景。 关键词:无线Mesh网络; 路由协议; 移动Ad hoc网络 1.引言 无线Mesh网络(WMN,Wireless Mesh Network),又称无线网状网、无线网格网,随着无线宽带接入因特网业务需求的急速增长,由于其所具有的高速率、易组网、成本低、性能稳定等优势,已经引起人们的日益关注。有一位美国经济学家声言:Mesh网络和智能天线、Ad hoc网络以及超宽带技术一起,正在成为无线通信领域中压到一切的技术,它们将很可能使所谓的3G网络技术落伍,甚至可能会影响4G的发展。这句评价毫无疑问将无线Mesh网络放在了一个很高的层次上。 其实早在20世纪90年代中期,无线Mesh网络的概念就已经提出来了,但人们真正开始关注它是在近两年。可以说,无线Mesh网络是在移动Ad hoc网络的基础上产生发展的。移动Ad hoc网络是美国军方为了在战场上通信而研发的,近年来随着一些保密技术相继被公开并转化为民用,逐渐成为移动通信领域的研究热点。移动Ad hoc网络的应用环境和技术成本等因素决定了它并不适合直接应用于民用通信领域:最大的民用通信业务应该是包括VoIP业务在内的因特网业务,民用通信用户的移动性也远远低于军事通信用户。因此需要一种基于移动Ad hoc网络的技术基础,并且适用于民用通信的无线多跳网络技术,于是,无线Mesh网络应运而生[1]。 MeshNetworks公司于2000年初购买了美国军方研发的战术移动通信系统的部分专利技术,由此开发了一系列具有自主知识产权的WMN民用产品,在市场上获得了极大的成功,2005年摩托罗拉公司极为看好其发展,成功收购该公司。其间,诺基亚、北电网络、Tropos、SkyPilot、Radiant Networks和Firetide等多家公司纷纷开发WMN产品并相继推入市场。无线Mesh网络进入了飞速发展的时期。 2.无线Mesh网络的组成和特点 一般而言,无线Mesh网络由客户节点、Mesh路由器节点和网关节点组成。根据具体网络配置,并不一定包括所有节点。客户节点可以是笔记本电脑、PDA、Wi-Fi手机、RFID 阅读器和无线传感器或控制器等;Mesh路由器可以是普通PC,也可以是专用的嵌入式系统,如ARM等。客户节点按照功能可以分为两类:一类只作为普通终端接入网络,不具有转发信息的功能;另一类既具有普通节点的接入功能,又具有路由和信息转发功能,即兼具了无线路由器的功能。 按照结构层次,无线Mesh网络可以分为平面结构、多极结构和混合结构。

软件定义的无线电的架构特点与应用

软件定义的无线电的架构特点与应用 随着世界逐渐走向无处不在的无线连接,甚至固定功能设备,如手机采用几个不同的频段和协议共存于一个小空间,无线设计师的工作也变得不那么容易了。现代智能手机和平板电脑可以同时收发3G/4G,(很快将是5G)语音和数据,蓝牙,Wi-Fi和可能的GPS数据。支持“可穿戴”计算机和外围设备的新兴个人区域网络将为已经重大通信的设计增加更多的RF责任。即使在相同的频段内,不同的,有时是非互操作的协议和服务也在争取认可,接受,时间段和市场份额。例如,考虑2.4 GHz ISM频段。我们有蓝牙,Wi-Fi,ZigBee,无绳电话,遥测和其他几种服务都存在于这个领域。 它并不止于此。需要连接到不断变化的无线世界的设计人员必须了解芯片组开发,协议栈,知识产权以及众多开发环境,认证,工具和测试设备。 如果有其他方法怎么办?如果一个RF部分可以完成所有工作怎么办? 本文将介绍新兴的软件定义无线电(SDR)架构及其支持部分。SDR拥有单一,超灵活的RF处理系统的承诺,可以对其进行编程,以同时运行多个频率和多个协议。此外,软件定义无线电的完全可编程和信号处理特性使其成为出现的新协议和服务的理想对冲,但可能不会很快占据。 您正在被替换 无线电具有相互分离的功能,可以协同工作。例如,接收器将使用天线来接入低电平信号,放大它,对其进行滤波,进行混频,解调恢复的信号(使用几种调制/解调方案中的一种或多种)并将输出数据呈现为模拟或数字波形。发送器调制而不是解调,但反向执行相同的过程。 高度优化的硬件模块已经发展到稳定性,清晰度,低漂移,良好的温度稳定性,小尺寸,低功耗,良好的灵敏度和简单的系统集成。从某种意义上说,SDR的目标是用可编程和自动化技术取代这些训练有素的工人。 理想情况下,天线将连接到A/D转换器,将宽带波形馈送到信号处理阶段。然后,信号处理块将在期望的时隙(如果适用的话)从期望的信道和期望的频带中提取期望的信号。然

最新无线通信技术基础知识(1)

无线通信技术 1.传输介质 传输介质是连接通信设备,为通信设备之间提供信息传输的物理通道;是信息传输的实际载体。有线通信与无线通信中的信号传输,都是电磁波在不同介质中的传播过程,在这一过程中对电磁波频谱的使用从根本上决定了通信过程的信息传输能力。 传输介质可以分为三大类:①有线通信,②无线通信,③光纤通信。 对于不同的传输介质,适宜使用不同的频率。具体情况可见下表。 不同传输媒介可提供不同的通信的带宽。带宽即是可供使用的频谱宽度,高带宽传输介质可以承载较高的比特率。 2无线信道简介 信道又指“通路”,两点之间用于收发的单向或双向通路。可分为有线、无线两大类。

无线信道相对于有线信道通信质量差很多。有限信道典型的信噪比约为46dB,(信号电平比噪声电平高4万倍)。无限信道信噪比波动通常不超过2dB,同时有多重因素会导致信号衰落(骤然降低)。引起衰落的因素有环境有关。 2.1无线信道的传播机制 无线信道基本传播机制如下: ①直射:即无线信号在自由空间中的传播; ②反射:当电磁波遇到比波长大得多的物体时,发生反射,反射一般在地球表面,建筑物、墙壁表面发生; ③绕射:当接收机和发射机之间的无线路径被尖锐的物体边缘阻挡时发生绕射; ④散射:当无线路径中存在小于波长的物体并且单位体积内这种障碍物体的数量较多的时候发生散射。散射发生在粗糙表面、小物体或其它不规则物体上,一般树叶、灯柱等会引起散射。 2.2无线信道的指标 (1)传播损耗:包括以下三类。 ①路径损耗:电波弥散特性造成,反映在公里量级空间距离内,接收信号电平的衰减(也称为大尺度衰落); ②阴影衰落:即慢衰落,是接收信号的场强在长时间内的缓慢变化,一般由于电波在传播路径上遇到由于障碍物的电磁场阴影区所引起的; ③多径衰落:即快衰落,是接收信号场强在整个波长内迅速的随机变化,一般主要由于多径效应引起的。 (2)传播时延:包括传播时延的平均值、传播时延的最大值和传播时延的统计特性等; (3)时延扩展:信号通过不同的路径沿不同的方向到达接收端会引起时延扩展,时延扩展是对信道色散效应的描述; (4)多普勒扩展:是一种由于多普勒频移现象引起的衰落过程的频率扩散,又称时间选择性衰落,是对信道时变效应的描述; (5)干扰:包括干扰的性质以及干扰的强度。 2.3无线信道模型 无线信道模型一般可分为室内传播模型和室外传播模型,后者又可以分为宏蜂窝模型和微蜂窝模型。 (1)室内传播模型:室内传播模型的主要特点是覆盖范围小、环境变动较大、不受气候影响,但受建筑材料影响大。典型模型包括:对数距离路径损耗模型、Ericsson多重断点模型等; (2)室外宏蜂窝模型:当基站天线架设较高、覆盖范围较大时所使用的一类模型。实际使用中一般是几种宏蜂窝模型结合使用来完成网络规划; (3)室外微蜂窝模型:当基站天线的架设高度在3~6m时,多使用室外微蜂窝模型;其描述的损耗可分为视距损耗与非视距损耗。

无线mesh网络设计方案

无线mesh网络设计方案 关于本方案 本方案为黄河科技学院信息工程学院无线mesh网络硬件平台设计提供详细的需求分析和设计方案,包括但不限于硬件平台、软件设计、数据库、项目人员分配、项目完成计划。 第1章概述 1.1项目背景 无线mesh网络设计方案为无线mesh团队提供算法的支持平台。 第2章总体设计 2.1总体设计目标 本项目由软件和硬件两部分组成 硬件: 1、做板子。有显示、键盘组成。LPC2148芯片。 (1)、步骤一:以LPC2148开发板为平台,连接Unet测试板。以RS232串口连接。Unet测试板用5V供电,和LPC2148开发板的串口1以电缆连接。LPC2148串口2监控水表、电表等。 (2)、步骤二:画SCH板子,自己做板,焊接。 2、底层程序 (1)、显示部分 (2)、键盘 (3)、U_Net连接部分。用RS232连接。 (4)、连接电表、水表等。用RS485。 (5)、数据的发送和接受。 3、上位机程序。 (1)、串口通信部分。 (2)、显示部分 (3)、数据库部分

(3)、TCP\IP和web服务器链接部分。 4、web服务器部分 (1)、TCP\IP和上位机连接部分 (2)、显示部分 (3)、数据库部分 (4)、界面部分 2.2软件系统协议设计说明 Unet协议操作流程 (1)NP 发送的时候,串口是透明的,但是在网络层会有地址码,所以AP收到会知道来自哪个NP,只是需要用API的格式表现出来 (2)基本上 unet不需要额外的操作设置,NP透传上报数据到AP,AP透传广播到所有的NP或者API的格式发到某一个NP。 (3)unet 地址改不了,固化了的 1001 1002 1003 (4)NP 2400 (5)如果接的是NP,NP是没有透明模式的,用+++返回OK就说明PC和模块通信是可以的 Unet 的设置 1、AP (1)API设置命令,串口 9600,n,8,1 +++ATAP 0 ATWR ATCN 收到OK为正确接收。 (2)透传的设置命令,串口 2400,n,8,1 +++ATAP 1 ATWR ATCN 收到OK为正确接收。 2、NP (1)输入 +++ 返回 ok;传输模式到AT命令集。 (2)输入 ATCN ,从AT命令集到透传模式。 3、数据发送 (1)、AP数据发送 7E 00 15 01 00 FF FF 00 01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF 80 NP数据接收 01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF (2)、NP发送 1234567890ABCDEF AP接收 7E 00 15 81 10 08 00 00 31 32 33 34 35 36 37 38 39 30 41 42 43 44 45 46 C4

433MHz无线通信

433MHz无线通信 一、基本概念 工作频率:433.92MHz 调制方式:ASK/OOK、FSK、GFSK 现有的大多数远程控制和接收器解决方案都使用ASK/OOK调试方法。ASK是“振幅键控”,也称为“振幅键控”。也称为“on键”,作为ook(on键)信号被记录。ASK是一种相对简单的调制方法。幅移键控(ask)等效于模拟信号中的幅度调制,以将载波频率信号乘以二进制。振幅偏移使用频率和相位作为常数,振幅作为变量。信息比特以载波的振幅来传输。如图所示,是ASK调制方式的典型的时域波形。 二、编码和解码 以遥控器为例。在明确调制方式之后,需要就遥控编码方式达成一致。一组远程控制代码通常必须包含“指南/起始代码”、“用户代码”、“数据代码”、“结束代码”和“重复代码”,格式如下: 决定了编码的构成之后,必须明确“逻辑0”和“逻辑1”的表现方法。它们可

以按照标准的编码方式,也可以进行自定义。标准编码方法可以使用曼彻斯特编码或其他方法。自定义编码方案时,可以参考下图所示的编码规则。主要是电平序列和电平长度的组合。 三、参考例 根据测得的遥控码波形可知,在433MHz接收机输出的信号中,电平维持时间为20ms、9ms、1.6ms、700us。逻辑1指示1.6ms高电平+700us低电平,逻辑0指示700us高电平+1.6ms低电平,启动/启动代码指示9ms高电平,逻辑700us高电平+20ms低电平的结束代码指示“重复代码”的启动。 在编程中,检测并计数了700us的电平。为了确保充分的容错性,计时器中断必须在100us以下。显然,使用计时器中断进行处理是不合理的。在本例中,将外部中断+计时器计数方式用于电平长采样。外部中断由上升沿和下降沿触发,边缘触发模式根据中断中的当前等级进行切换。计时器使用系统时钟(16.6MHz)除以64作为时钟源并且具有足以增加接收器的容错能力的分辨率。在数据采样逻辑中,确定下降沿处以当前高电平表示的逻辑值,上升确认在上述步骤中生成的逻辑值,如果逻辑值合法,则记录该逻辑值,如果逻辑值不合法,则丢弃该逻辑值,初始化接收器,并且等待下一数据。程序的流程图如下所示:

无线MESH网络设备与无线网桥的比较

无线MESH网络设备与WDS设备的比较 对于由MESH网络设备或者WDS(无线分布系统)网络设备所组成的无线局域网来说,二者在最终的表现形式上是近乎相同的:在一定区域内互相联通的无线网络,该网络在创建时无需将所有接入点都与基础有线设施连在一起。MESH网络或者WDS网络的基本优势之一就是避免了接入点之间的有线连接,比如需要将接入点安装在室外的体育场,停车场,或者企业园区内电杆上的场景中,无线网络设备可以替代有线电缆的使用。MESH网络或者WDS 网络可以在这些情况下,发挥出其相比于有线网络所独有的优势。在最简单的组网结构中,可以使用二者之中的任何一个来创建双节点——即单点对单点的无线链路(低成本的点对点链路通常也正是这么实现的)。 为了进一步讨论使用MESH网络设备组建的无线局域网与使用WDS网络设备桥接的无线局域网之间有何异同,我们首先需要讨论“路由”与“桥接”的区别,在此基础上再比较Mesh路由和WDS桥接就比较容易了。 路由和桥接 路由是属于计算机网络架构中第三层的概念,而桥接属于第二层。“路由”是网络互连设备所使用的一个专业术语,该互连设备可以接收数据分组,并基于数据分组的第3层目的地址进行递交转发。“第3层”即网络层,在使用TCP / IP协议族的情况下,网络层决定了每个传输的数据包中和IP(互联网协议)有关的部分,“第3层地址”指的就是IP地址(如192.168.1.10)。 桥接也是一个专业术语,它指的是网络设备接收数据分组之后,根据其第2层的目标地址进行传递转发。“第2层”指OSI参考模型里的第2层,即MAC层,在以太网或802.11 协议中,MAC层包含在每个传输数据包的报头,MAC地址(如9C:2A-79:27:DF:A3)就

软件无线电发展现状

<<移动通信>.>>2002年第 4期 软件无线电发展现状 罗序梅信息产业部电子七所 1 前言 — 软件无线电是实现无线通信新体系结构的一种技术,在经过近几年的发展之后,其重要性和可 行性正逐步被越来越多的人所认识和接受。软件无线电技术的重要价值体现在:硬件只是作为 无线通信的基本平台,而许多的通信功能则是通过软件来实现的,这就打破了长期以来设备的 通信功能实现仅仅依赖于硬件的发展格局。所以有人称,软件无线电技术的出现是通信领域继 固定到移动,模拟到数字之后的第三次革命。本文主要介绍全球软件无线电技术研究动态、对 实现软件无线电台至关重要的器件技术的发展以及软件无线电台商用前景。 2 全球软件无线电技术研究动态 软件无线电技术具有结构的开放性、软件的可编程性、硬件的可重构性以及功能和频段的… 多样性等特点,无论在军事还是在商用通信中都有着巨大的应用潜力。也正是因为这些独特的 优势,引发了全球对软件无线电技术的关注和研发热潮。除美国在 90年代初开始实施易通话计 划并成功地研制出多功能多频段电台外,欧洲、日本、中国等全球其它地区也纷纷开展了各自 的软件无线电技术项目。 欧洲委员会已将软件无线电技术列为重要的研发项目,大量与软件无线电技术相关的研究项目正在其 ACTS计划中进行。受潜在的商业利益所驱动,其研究重点集中在第三代标准上, 这包括 FIRST(灵活的综合无线电系统和技术)、FRAMES(未来无线电宽频段多址系统)和 · SORT等项目。前两个项目利用软件无线电台样机研究开发下一代无线接口。其中

FIRST项目 主要是评估实现软件重构空中接口的问题。目前最公开的工作集中在 RF结构最佳划分方法及 数字处理的实现上。 SORT主要是开展有关第三代系统( UMTS)在地面和卫星接入方面的硬件 重构问题的研究,演示灵活而有效的软件可编程电台,实施该项目的目标是:

专用无线通信基本概念0805

专用无线通信基本概念 培训手册 . 上海新干通通信设备有限公司

目录Table of Contents 一、术语和缩略语Glossary of Terms (3) 二、基本概念Basic Concept (4) 三、常用指标 (6) 四、其它 (6) 五、常用符号 (8) 注意:1、因水平有限,如有错误,敬请谅解。 2、本手册仅作为培训使用,请参照随机资料。

一、术语和缩略语Glossary of Terms RF Radio Frequency 发射频率 Rx Receiver 接收机 Tx Transmitter 发送机 S/N Serial Number 串号,本设备每一单元对应一个工厂唯一的编号。Repeater or Cell Enhancer A Radio Frequency (RF) amplifier which can simultaneously amplify and re-broadcast Mobile Station (MS) and Base Transceiver Station (BTS) signals. 中继器或者单元放大器一种同时放大和转发移动台(MS)和基站(BTS)信号的 射频放大器。 Band Selective Repeater A Cell Enhancer designed for operation on a range of channels within a specified frequency band. 带宽选频中继器一个用来在特定的频率带宽里工作的单元放大器。Channel Selective Repeater A Cell Enhancer, designed for operation on specified channel(s) within a specified frequency band. Channel frequencies may be factory set, remotely set by computer, or on-site programmable. 信道选择中继器一个单元放大器,用来在特定带宽里的工作。信道频率可以 在工厂设定,由计算机设定,或者现场写频。 BTS Base Transceiver Station 基地台 M.S. Mobile Station 移动台 C/NR Carrier-to-Noise Ratio 载噪比 Downlink (D.L.) RF signals transmitted from the BTS and to the MS 下行链路从BTS传到MS的RF信号。 Uplink (U.L.) RF signals transmitted from the MS to the BTS 上行链路从MS传到BTS的RF信号。 EMC Electromagnetic Compatibility 电磁兼容性 GND Ground 地 DC Direct Current 直流 AC Alternating Current 交流

现代生活中无线通信

生活中的无线通信 (公选课)结课论文 2014 — 2015学年第一学期 题目:超宽带(UWB)技术 专业班级:海洋13-1班 学号:0116 姓名:张然 指导老师:梁娜 日期:2014-12-12 摘要 本文主要对UWB通信技术进行简要的阐释。首先对UWB的技术背景、基本概念和特点进行介绍。技术应用范围脉冲无线电技术技术解决方案无载波脉冲方案单载波DS-CDMA方案 关键词:USB;脉冲;调制;家庭 目录 1 前言 (4) 1 UWB基本概念 (5) 2 UWB的主要特点及其应用 (5) 3 UWB的发展现状 (6) 4 关键技术,研究热点 (7) 4.1脉冲信号的产生 (7) 4.2调制方式 (8) (8) (8) 4.3收发机的设计 (9) 4.4中国对UWB电磁兼容性研究 (9) 5 家庭无线通信是UWB的发展方向之一 (10) 参考文献 (11)

1 前言 目前一种新的无线通信技术引起了人们的广泛关注,这就是所谓"UWB(Ultra WideBand,超宽带无线技术)"技术。正如其名称一样,UWB技术是一种使用1GHz 以上带宽的最先进的无线通信技术,被认为是未来五年电信热门技术之一。但是UWB不是一个全新的技术,它实际上是整合了业界已经成熟的技术如无线USB、无线1394等连接技术,本文就是对UWB做一简单的介绍。 1 UWB基本概念 超宽带(Ultra-wideband,UWB)技术起源于20世纪50年代末,此前主要作 为军事技术在雷达等通信设备中使 对高速无线通信提出了更高的要求, 超宛带技术又被重新提出,并倍受关 注。UWB是指信号带宽大于500MHz或 者是信号带宽与中心频率之比大于 25%。与常见的通信方式使用连续的载波不同,UWB采用极短的脉冲信号来传送信息,通常每个脉冲持续的时间只有几十皮秒到几纳秒的时间。这些脉冲所占用的带宽甚至高达几GHz,因此最大数据传输速率可以达到几百Mbps。在高速通信的同时,UWB设备的发射功率却很小,仅仅是现有设备的几百分之一,对于普通的非UWB接收机来说近似于噪声,因此从理论上讲,UWB可以与现有无线电设备共享带宽。所以,UWB是一种高速而又低功耗的数据通信方式,它有望在无线通信领域得到广泛的应用。目前,Intel、Motorola、Sony等知名大公司正在进行UWB无线设备的开发和推广。 2 UWB的主要特点及其应用 鉴于UWB信号是持续时间非常短的脉冲串,占用带宽大,因此它有一些十分 独特的优点和用途。在通信领域,UWB可以提供高速率的无线通信。在雷达方面,

无线Mesh网络的概念及关键技术

无线Mesh网络的概念及关键技术 来源:中国联通网站作者:出处:https://www.sodocs.net/doc/937694629.html, 2008-04-17 进入论坛 摘要:无线Mesh网络是一种新型的无线宽带接入网络,它融合了无线局域网和Ad hoc 网络的优势,具有自组网、自修复、多跳级联、节点自我管理等智能优势以及移动宽带、无线定位等特点,成为无线宽带接入的一种有效手段。文章简要介绍无线Mesh网络的概念和系统特性,详细阐述摩托罗拉Mesh技术的系统结构、频率配置和关键技术等。 0、引言 无线Mesh网络(WMN)技术曾是一项军事技术,战场上的移动网络需要很高的数据速率、很低的被检出概率和防止人为干扰的能力,而Mesh技术就具备了这些能力。随着人们对802.11a、802.11b和802.11g等局域网(LAN)技术了解的深入,Mesh技术才逐步成为企业界和消费者瞩目的焦点,并沿着不同的分支演进。 目前,业界讨论最多的“无线网状网”技术是一种灵活的广域无线局域网(WLAN)解决方案,它突破了Wi-Fi技术对每个接入点的有线连接要求,将多个接入点通过无线方式连接在一起,无需进行布线就可形成一个无线网络或“热区”,从而在室内和室外提供宽广的无线覆盖。目前,许多知名厂商(如摩托罗拉、思科、Strix、Tropos等)都已经有成熟产品问世,促进各个行业组织制订标准,以推进网状网技术的可操作性。 目前,基于Mesh技术的无线网络集成了健壮的安全性和全面的可管理性,可提供移动宽带和灵活的自组网通信,并拥有对局部区域可靠和安全的覆盖能力,已成为符合国际电联(ITU)公众保护及救灾(PPDR)业务要求的一项优秀解决方案。Mesh网络不仅有助于改善城市信息化的应用环境,而且对提升城市的综合服务能力也有十分明显的作用。 1、无线Mesh网络的概念 无线Mesh网络是基于IP协议的无线宽带接入技术,它融合了WLAN和Ad hoc网络的优势,支持多点对多点的网状结构,具有自组网、自修复、多跳级联、节点自我管理等智能优势以及移动宽带、无线定位等特点,是一种大容量、高速率、覆盖范围广的网络,成为

无线Mesh网络的跨层设计概述

无线Mesh网络的跨层设计概述 钱新蕾 (信息科学与技术学院,2004(1)班,04261106号) [摘要]无线Mesh网络是一种新型的宽带无线网络,它越来越受到人们的重视。由于无线Mesh网络在拓扑、传输和业务上的特性,传统的用于有线网络的分层协议设计方法已不能保证其服务质量(QoS)。跨层设计这一项热门技术,将自适应技术引入其中,可以适应信道变化实现对资源的自适应优化配置、增加Qos保障,在无线资源利用率和多媒体业务的QoS需求两方面都达到了较好的折衷。本文在搜集了一定资料的基础上,从跨层设计的背景、跨层信息交互、实例分析以及发展前景几方面做了概述。 [关键词]无线Mesh网络自适应跨层设计 1 引言 无线Mesh网,即无线网状网(WMN),也称为无线多跳网。较之传统无线接入技术,WMN具有成本低、支持无线接入且与无线终端之间可以实现对等网络通信、扩展了现有无线网络的覆盖范围等特点。无线Mesh网的结构如图1所示[1]。 图1 无线mesh网结构 但由于无线通信环境具有快速变化的特性,而基于分层结构的协议栈只能在相邻的层之间以固定的方式进行通信,这使得现有的协议栈无法灵活地适应无线移动环境的变化,从而使得在设计协议栈时只能考虑其在通信条件最为恶劣的情况下进行工作,进而导致了协议栈无法对有限的频谱资源及功率资源进行有效的利用。为了解决这个问题,人们提出了跨层设计的思想,即通过在协议栈的各层之间传递特定的信息来协调协议栈各层之间的工作过程,使之与无线通信环境相适应,从而使系统能够满足不同业务的不同需求,实现对资源的自适应优化配置。 2 跨层设计的背景

2.1跨层设计的必要性 由于无线信道的物理特性(信道传播的开放性和信道参量变化的时变性等)使无线信道成为一种非常不稳定的媒介,增加了无线通信网络设计的难度,所以人们往往只按照信道性能最差的情况和最低要求进行设计,这在信道质量较好的情况下则会造成频谱、功率等资源的浪费。传统的无线通信系统设计对各层进行单独的设计和优化,简化了整体网络设计的复杂性,满足了软件设计的信息隐藏原则,因而得到广泛应用。但若遵循OSI设计理念必然摒弃协议层之间跨层交互,而且不同协议层中存在一定的信息冗余。因此,OSI严格分层的参考模型不能对无线网络资源进行整体管理,网络性能不能得到整体优化。而跨层思想就很好的解决了这些问题。 2.2跨层设计的基本要求 2.2.1物理层对跨层设计的要求 物理层的BER(每一位的出错概率)对物理层性能来说是关键因素。但计算BER是相当复杂的,实际中是将BER性能要求映射为信噪比(SNR)的要求。一般决定包是否正确的解码是通过接收到的SNR值来衡量的。提高SNR就可以提高正确接收的机率,一个重要的技术是功率控制。功率控制是在不影响通话质量的前提下,通过控制接入终端的输出功率,在保证高质量的反向链路的同时使得干扰最小化。当平均的每个用户反向链路信噪比达到最小时,通信质量达到“可接受”标准,从而使得容量最大化。 2.2.2MAC层对跨层设计的要求 MAC层使用物理层提供的传输信道向无线链路层提供逻辑信道。它定义了对实时声音、视频和可信的数据传输的支持,在有限的无线带宽有效公平的共享中起着重要作用。因为无线网络中无线链路的共享特性,所以带来了竞争。MAC层需要调度功能来解决竞争问题。所谓调度就是协调用户共享无线信道资源(带宽、时延等),如规定用户何时、以何种方式发送数据。 2.2.3网络层对跨层设计的要求 网络层将数据分成一定长度的分组,并在分组头中标识源和目的节点的逻辑地址,这些地址就像街区、门牌号一样,成为每个节点的标识;网络层的核心功能便是根据这些地址来获得从源到目的的路径,当有多条路径存在的情况下,还要进行路由选择。当路径的预留资源得到满足时,请求被接纳,否则被拒绝,这一操作过程称为接纳控制[6]。不同的业务需要不同的QoS 需求,需要接入控制进行区别对待。 2.2.4多媒体业务QoS保证对跨层设计的需求 QoS保证机制涉及所有协议层,即每个协议层的相应参数设置都涉及到QoS能否得到保证。从应用层的角度粗略分为非实时业务和实时业务。对于非实时业务,在传输层可以采用TCP协议,根据接收器窗口大小和网络拥塞情况自适应地调整业务流速率;实时业务因其对

软件无线电(software radio)

概要 软件无线电的基本思想是以一个通用、标准、模块化的硬件平台为依托,通过软件编程来实现无线电台的各种功能,从基于硬件、面向用途的电台设计方法中解放出来。功能的软件化实现势必要求减少功能单一、灵活性差的硬件电路,尤其是减少模拟环节,把数字化处理(A/D和D/A变换)尽量靠近天线。软件无线电强调体系结构的开放性和全面可编程性,通过软件更新改变硬件配置结构,实现新的功能。软件无线电采用标准的、高性能的开放式总线结构,以利于硬件模块的不断升级和扩展。 软件无线电(software radio)在一个开放的公共硬件平台上利用不同可编程的软件方法实现所需要的无线电系统。简称SWR。理想的软件无线电应当是一种全部可软件编程的无线电,并以无线电平台具有最大的灵活性为特征。全部可编程包括可编程射频(RF)波段、信道接入方式和信道调制。 一般说来,SWR就是宽带模数及数模变换器(A/D及D/A)、大量专用/通用处理器、数字信号处理器(Digital Signal Proicesser,DSP)构成尽可能靠近射频天线的一个硬件平台。在硬件平台上尽量利用软件技术来实现无线电的各种功能模块并将功能模块按需要组合成无线电系统。例如:利用宽带模数变换器(Analog Digital Converter,ADC),通过可编程数字滤波器对信道进行分离;利用数字信号处理技术在数字信号处理器(DSP)上通过软件编程实现频段(如短波、超短波等)的选择,完成信息的抽样、量化、编码/解码、运算处理和变换,实现不同的信道调制方式及选择(如调幅、调频、单边带、跳频和扩频等),实现不同的保密结构、网络协议和控制终端功能等。 在目前的条件下可实现的软件无线电,称做软件定义的无线电(Software Defin ed Radio,SDR)。SDR被认为仅具有中频可编程数字接入能力。 发展历史无线电的技术演化过程是:由模拟电路发展到数字电路;由分立器件发展到集成器件;由小规模集成到超大规模集成器件;由固定集成器件到可编程器件;由单模式、单波段、单功能发展到多模式、多波段、多功能;由各自独立的专用硬件的实现发展到利用通用的硬件平台和个性的编程软件的实现。 20世纪70~80年代,无线电由模拟向数字全面发展,从无编程向可编程发展,由少可编程向中等可编程发展,出现了可编程数字无线电(PDR)。由于无线电系统,特别是移动通信系统的领域的扩大和技术复杂度的不断提高,投入的成本越来越大,硬件系统也越来越庞大。为了克服技术复杂度带来的问题和满足应用多样性的需求,特别是军事通信对宽带技术的需求,提出在通用硬件基础上利用不同软件编程的方法。20世纪80年代初开始的软件无线电的革命,将把无线电的功能和业务从硬件的束缚中解放出来。 1992年5月在美国通信系统会议上,Jeseph Mitola(约瑟夫·米托拉)首次提出了“软件无线电”(Software Radio,SWR)的概念。1995年IEEE通信杂志(Comm unication Magazine)出版了软件无线电专集。当时,涉及软件无线电的计划有军用的SPEAKEASY(易通话),以及为第三代移动通信(3G)开发基于软件的空中接口计划,即灵活可互操作无线电系统与技术(FIRST)。

软件定义仪器

摘要:为了加速新型仪器研发,提出了“软件定义仪器”的方法并讨论了其体系和可行性。关键词:软件定义仪器;微处理器;信号调理;模数转换器;数字信号处理引言仪器,作为人类感官的延伸,在人类的文明和社会发展中起作不可替代的、极其重要的作用。在科学技术成爆炸状发展的当代,仪器所起的作用几乎无所不在,离开了仪器现代人们的生活就一刻也不能继续:医院对患者的抢救、发电厂的运行、交通工具的运行……。实际上,近代科学技术的发展史几乎就是仪器仪表的发展史,即使到科学技术高度发达的今天,仪器仪表也在科学研究中同样起作不可替代的、极其重要的作用。仪器科学与技术本身也在迅速地发展,但这种发展主要体现在专门领域应用的仪器科学技术的研究上,对仪器仪表带共性的问题研究较少。本文借助软件定义无线电(SDR)、虚拟仪器(Virtual Instrument,VI)和组态软件(Con-figuration Software,CS)的思想,提出软件定义仪器(Software Defined Instrumentation,SDI)的概念和系统。软件无线电的由来1992年5月,Joe Mitola在美国电信系统会议上首次提出了软件无线电SR(SoftWareRadio)(又称为软件定义无线电,Software De-fined Radio,SDR)的概念,它的基本思想是将硬件做为其通用的基本平台,而把尽可能多的无线及个人通信功能用软件来实现,从而将无线通信新系统、新产品的开发过程逐步转移到软件上来。它被称之为是继模拟通信到数字通信、定通信到移动通信之后,无线通信领域的第三次革命,即从硬件定义的无线电通信到软件定义的无线电通信。软件无线电可定义为:“软件无线电是一种可用软件进行重配置和重编程的、灵活的、多业务、多标准、多频段无线电系统的新兴技术。”为了更清晰地说明软件无线电与传统无线电的区别,分别给出软件(数字)化程度不同的无线电结构。所谓的软件无线电,从硬件上来看,就是要使ADC和DAC尽可能靠近天线,省却高频模拟的放大、变频、调制与解调等环节。ADC和DAC越靠近天线,说明软件(数字)化程度越高。显然,软件无线电将为所有远程通信市场的参与者、制造商、经营商和用户带来巨大的利益。制造商可以把研究与开发重点集中到简单的硬件平台设备上,这些设备可应用到每一个蜂窝系统和市场,而不仅仅是一个国家或地区范围的蜂窝系统和市场。因此,可进行大批量生产以降低成本。另一个优点是可以不断地改进软件,以及纠正在工作中发现的软件错误和故障。经营商能够快速拓展适合每个用户并区别于其他经营商的新业务;同样的终端能够提供所有服务,即使这些服务用不同的通信标准支持。另外,还可以实现多标准基站。对用户来说,软件无线电的优点是能将他们的通信漫游到其他蜂窝系统,并利用全球移动和覆盖盖范围的优势(即只要有一个蜂窝网络覆盖某地区就可以提供服务)。而且,用户可以根据其偏爱配置他们的终端。 [!--empirenews.page--] 另外,软件无线电技术延长了硬件(基站和用户终端的)的使用寿命,降低了过时落伍的风险。系统可重编程能力使硬件可重复使用,直到可以利用新一代硬件平台。但这并不意味着用户终端的寿命可以无限延长,因为在PC机市场,运行功能越来越强大的程序需要功能更强大的PC机。在不久的将来,移动终端也可能出现同样的现象。虽然软件无线电能够为研发、生产、运营和使用等各方带来巨大的利益,但存在和面临天线、前端电路、高速模数转换器、处理器电路、算法等很大的问题和挑战。对比之下,现代仪器仪表的一般结构。在仪器仪表的研发中,模拟电路部分(传感器接口电路+放大滤波)和数字部分(μP或μC)是最为重要的两个部分,又是各个整机厂“各自”研发、投入最大、重复最多的两个部分。与“无线电”可以有以下对比:传感器、天线;传感器接口电路+放大滤波、高频放大、变频、调制与解调;μP或μC、DSP……因此,我们完全可以借鉴“软件无线电”的概念,构成图5所示的“软件定义仪器”(Software Defined Instrument,SDI)或软件仪器(Software Instrument,SI)(为简便起见,以下均简称软件仪器)。这样使得一方面A/DC尽可能地靠近传感器,减少或避免模拟电路,同时采用具有API(Application Programming In-terface,应用编程接口)、仪器接口协议栈的μP或μC平台;可以把分散、重复而且最耗费人力、财力的“个体”或“小

无线通信基本原理、基本概念(1).doc

无线通信基本原理、基本概念 1、无线频段的划分 2、我国常用移动通信使用频段 (a ) GSM900:上行:890?915MHz ,下行:935?960MHz ,每载波带宽 200 KHz ; GSM1800:上行:1710?1720MHz ,下行:1805?1815MHz ,每载波带宽 200 KHz ; (b ) CDMA2000 :上行:825?835MHz ,下行:870?880MHz ,每载波带宽 1.23MHz ; (C )PHS : 1900?1920MHz ,每载波带宽 300KHz ; (d )集群:上行806?821MHz ,下行851?866MHz ,每载波带宽25KHz ; 3、波长入、频率f 的关系为 c=f* 入 式中:C 为光速,数值为3X 108 m/s ,f 单位为Hz ,入单位为m 。 4、波传播的几种方式 表面波传播:以绕射方式,沿着地球表面传播。 天波传播:通过高 空电离层反射传播。 空间波传播:通过直线传播和地面反射传播。 散射传播:利用大气对流层和电离层的不均匀性来散射传播。 长波一般通过表面波传播;中波、短波一般通过表面波或天波传播;微波 一般通过空间波、散射波传播。 5、仙农(Shannon )定理 C=Blog 2(1+S/N ) 上式中C 为信道容量,B 为信道带宽,S/N 为信噪比。 扩频通信即据此原理。 6、TDD 、FDD 、TDMA 、FDMA 、CDMA 的区别 a ) b )

a ) TDD (时分双工) 收发信共用一射频频带,上、下行链路使用不同的时隙来进行通信。 b ) FDD (频分双工) 收发信使用一个不同的射频频率来进行通信。 C )TDMA (时分多址) 传送给不同终端用户的信息通过同一载波的不同时隙来区分。 d ) FDMA (频分多址) 传送给不同终端用户的信息通过不同载波来区分。 CDMA (码分多址) 传送给不同终端用户的信息通过不同码调制来区分。 7、大尺度路径损耗和小尺度路径损耗 大尺度路径损耗:无线信号经长距离上的场强变化,又叫慢衰落。自由空 间损耗即属于典型的大尺度路径损耗。 小尺度路径损耗:无线信号经过短时间或短距离传播后其幅度快速衰落, 又叫快衰落。多经传播是引起小尺度传播的主要原因。 8、平衰落和选择性衰落 平衰落:发射信号的频谱特性在接收机内仍能保持不变的衰落。 选择性衰落:发射信号的频谱特性在接收机内发生了畸变的衰落。 9、极化 波的极化是指电场的取向随时间变化的方式。 电场矢量的两个正交分量具有不同振幅和相位关系时,可能形成三种不同 的极化:线极化、园极化和椭圆极化。 i L 厂 选择性衰落 ------- ? ----- ? f r ---- \ 功率谱密度 功率谱密度 平衰落 f fO 发信频谱图 fO 收信频谱图 功率谱密度 发信频谱图 fO 收信频谱图

最新无线Mesh网络

无线网络技术学院:信息工程与自动化专业:通信132 学号:201310404239 姓名:李园 成绩:

无线Mesh网络 摘要:无线Mesh 网络是无线局域网和移动自组织网络相结合的产物,是一种全 新的网络架构.它是下一代无线网络的关键技术之一, 近几年得到了人们的广泛关注和快速发展。为了以低成本的代价实现无处不在的高速Internet,新一代无线Mesh网络的发展势在必行。新一代无线Mesh网络旨在能够提供高性能和高可靠性的服务。简要描述了无线Mesh网络技术原理、网络架构和协议,分析了其优缺点以及它的应用,还有未来的趋势。 一、无线Mesh网络的概念 无线Mesh网络(WMN)是一种多跳、自组织的宽带无线网络,一般由Mesh路由器和Mesh 客户节点组成。其典型结构是一种分级网络结构:Mesh路由器互联构成多跳无线骨干网,负责数据的中继;骨干网一般通过网关节点与其他网络互联,而Mesh客户节点通过Mesh 路由器接入到WMN。通过WMN最终实现Mesh客户节点间、客户节点与Internet等其他网络间的互联互通,网络结构如图一所示。 二、无线Mesh网络研究现状 1、物理层 目前一些较前沿的物理层技术可以被用于无线Mesh网络的开发,如无线Mesh网络可以通过用不同的调制和编码速率,支持不同的传输速率。这样可以根据无线信道的质量和网络拥塞,动态改变数据传输速率,从而保证较低的差错率。另外,将会被广泛应用于宽带无线通信的正交频分复用技术(OFDM)、超宽带技术(UWB)、多输人多输出技术(MIMO)以及定向天线技术都可以用于无线Mesh网络的开发。除此之外,认知无线电技术也可以被用于Mesh网络,以提高频谱利用率。 2、MAC层 无线Mesh网络的可扩展性对于MAC层的设计提出了相应的要求。目前,对于Mesh网络MAC 层的研究,主要可以分为单信道MAC和多信道MAC。 (1)单信道MAC 1)修改目前已有的MAC层协议:目前的几种无线MAC层协议多是在IEEE 802.1 1 基础上进行修改的,如对CSMA/CA算法的一些诸如竞争窗口大小、退避过程的修改。 对于多跳的无线Mesh网络来说,这样的MAC层协议还远远达不到提高全网吞吐率的

相关主题