搜档网
当前位置:搜档网 › 标准化船队浅水槽运原理简述及模型试验研究

标准化船队浅水槽运原理简述及模型试验研究

标准化船队浅水槽运原理简述及模型试验研究
标准化船队浅水槽运原理简述及模型试验研究

第三章,湍流模型

第三章,湍流模型 第一节, 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 第二节,平均量输运方程 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。对于速度,有: i i i u u u '+= 3-3 其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3) 类似地,对于压力等其它标量,我们也有: φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。 把上面的表达式代入瞬时的连续与动量方程,并取平均(去掉平均速度i u 上的横线),我们可以把连续与动量方程写成如下的笛卡儿坐标系下的张量形式: 0)(=?? +??i i u x t ρρ 3-5 () j i j l l ij i j j i j i i u u x x u x u x u x x p Dt Du -?? +???????????? ????-??+????+??-=ρδμρ32 3-6 上面两个方程称为雷诺平均的Navier-Stokes (RANS )方程。他们和瞬时Navier-Stokes 方程有相同的形式,只是速度或其它求解变量变成了时间平均量。额外多出来的项j i u u ''-ρ是雷诺应力,表示湍流的影响。如果要求解该方程,必须模拟该项以封闭方程。 如果密度是变化的流动过程如燃烧问题,我们可以用法夫雷(Favre )平均。这样才可以求解有密度变化的流动问题。法夫雷平均就是出了压力和密度本身以外,所有变量都用密度加权平均。变量的密度加权平均定义为: ρρ/~ Φ=Φ 3-7 符号~表示密度加权平均;对应于密度加权平均值的脉动值用Φ''表示,即有: Φ''+Φ=Φ~ 。很显然,这种脉动值的简单平均值不为零,但它的密度加权平均值等于零,即: 0≠Φ'', 0=Φ''ρ Boussinesq 近似与雷诺应力输运模型 为了封闭方程,必须对额外项雷诺应力j i u u -ρ进行模拟。一个通常的方法是应用Boussinesq 假设,认为雷诺应力与平均速度梯度成正比,即: ij i i t i j j i t j i x u k x u x u u u δμρμρ)(32 ??+-??? ? ????+??=''- 3-8 Boussinesq 假设被用于Spalart-Allmaras 单方程模型和ε-k 双方程模型。Boussinesq 近似 的好处是与求解湍流粘性系数有关的计算时间比较少,例如在Spalart-Allmaras 单方程模型中,只多求解一个表示湍流粘性的输运方程;在ε-k 双方程模型中,只需多求解湍动能k 和耗散率ε两个方程,湍流粘性系数用湍动能k 和耗散率ε的函数。Boussinesq 假设的缺点是认为湍流粘性系数t μ是各向同性标量,对一些复杂流动该条件并不是严格成立,所以具有其应用限制性。

比较线性模型和Probit模型Logit模型

比较线性模型和P r o b i t 模型L o g i t模型 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

研究生考试录取相关因素的实验报告 一,研究目的 通过对南开大学国际经济研究所1999级研究生考试分数及录取情况的研究,引入录取与未录取这一虚拟变量,比较线性概率模型与Probit模型,Logit模型,预测正确率。 二,模型设定 表1,南开大学国际经济研究所1999级研究生考试分数及录取情况见数据表 定义变量SCORE:考生考试分数;Y:考生录取为1,未录取为0。 上图为样本观测值。 1.线性概率模型 根据上面资料建立模型 用Eviews得到回归结果如图: Dependent Variable: Y

Method: Least Squares Date: 12/10/10 Time: 20:38 Sample: 1 97 Included observations: 97 Variable Coefficient Std. Error t-Statistic Prob. C SCORE R-squared Mean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) 参数估计结果为: i Y ?+ i SCORE Se=( t= p= 预测正确率: Forecast: YF Actual: Y Forecast sample: 1 97 Included observations: 97 Root Mean Squared Error Mean Absolute Error Mean Absolute Percentage Error Theil Inequality Coefficient Bias Proportion Variance Proportion Covariance Proportion 模型 Dependent Variable: Y Method: ML - Binary Logit (Quadratic hill climbing) Date: 12/10/10 Time: 21:38 Sample: 1 97 Included observations: 97 Convergence achieved after 11 iterations Covariance matrix computed using second derivatives Variable Coefficient Std. Error z-Statistic Prob.

比较线性模型和Probit模型、Logit模型

研究生考试录取相关因素的实验报告 一,研究目的 通过对南开大学国际经济研究所1999级研究生考试分数及录取情况的研究,引入录取与未录取这一虚拟变量,比较线性概率模型与Probit模型,Logit模型,预测正确率。 二,模型设定 表1,南开大学国际经济研究所1999级研究生考试分数及录取情况见数据表

定义变量SCORE :考生考试分数;Y :考生录取为1,未录取为0。 上图为样本观测值。 1. 线性概率模型 根据上面资料建立模型 i i i SCORE B B Y μ++=*21 用Eviews 得到回归结果如图: Dependent Variable: Y Method: Least Squares Date: 12/10/10 Time: 20:38 Sample: 1 97 Included observations: 97 Variable Coefficient Std. Error t-Statistic Prob. C -0.847407 0.159663 -5.307476 0.0000 SCORE 0.003297 0.000521 6.325970 0.0000 R-squared 0.296390 Mean dependent var 0.144330 Adjusted R-squared 0.288983 S.D. dependent var 0.353250 S.E. of regression 0.297866 Akaike info criterion 0.436060 Sum squared resid 8.428818 Schwarz criterion 0.489147 Log likelihood -19.14890 F-statistic 40.01790 Durbin-Watson stat 0.359992 Prob(F-statistic) 0.000000

教学设计原理与方法

教学设计原理与方法 一、教学设计概述 1、教学设计的定义是什么?谈谈你是如何理解的。 对教学结果作出评价的一种计划过程与操作程序。 确定并解决教学问题,实现教学最优化的现代教学技术。 (教学设计不再是简单的设计之后加以实施的问题,而是一个在学—教的具体境脉中、在互动中发展演化的过程。) 教学设计属于教育科学领域的方法论学科,是教学论的重要组成部分。 教学设计的基本原理与方法适用于不同类型和层次的教学系统的设计,具有很强的实践性、操作性。 2、教学设计的理论基础是什么? a)系统科学理论 b)学习理论 c)教学理论 d)教育传播理论 3、教学设计的内容包括哪些? 1、分析教学目标 2、确定教学策略 3、进行教学评价 4、教学设计应用在哪些领域?试举例说明。 (一)教学类型(过程)的设计 1、多媒体组合课堂教学 2、基于局域网的网络教学 3、广播电视远程教学 4、基于Internet的远程教学 (二)教学资源的设计 1、电视教材 2、多媒体(网络)课件 3、专题学习网站 4、网络课程 5、专业资源库 二、学习者特征与教学目标分析 1、学习者特征分析的内涵是什么?教学中通常需要分析学习者的哪些特征?(学生的认知结构和认知发展水平、学习者的起点能力分析、学习风格、自我效能感、学习动机) 教学中通常需要分析学习者的: 一、认知发展特征分析 二、起点能力分析 三、学习风格分析 四、学习动机分析 五、学习自我效能感分析 2、教学目标分类的代表性理论有哪些?

(一)布卢姆等的教学目标分类理论 1、认知领域 2、动作技能领域 3、情感领域 (二)加涅的学习结果分类理论 (三)国内对教学目标的研究 3、教学目标分析方法有哪些?举例说明如何表述教学目标? 依据知识点的内容属性确定具体的教学目标,采用教学内容与教学目标二维层次模型 行为目标的ABCD表述方法 A即Audience,意指“学习者”,要求有明确的学习者,他们是目标表述句中的主语。 B即Behavior,意为“行为”,要求说明通过学习后,学习者应能做什么,是目标表述句中的谓语和宾语。 C即Conditions,意为“条件”,要求说明上述行为在什么条件下产生,是目标表述句中的状语。 D即Degree,意为“程度”,要求明确上述行为的标准。 三、学习环境设计 1、学习环境的内涵是什么? 谈谈你是如何理解的 /场所说 /工具说 /条件说 广义的学习环境,是指一切影响学习的环境条件和各种因素。 狭义的学习环境,是指在正规课程中影响课堂学习的各种情况和条件。(专指课堂学习环境) 全面认识学习环境概念,需要结合学习环境的空间和时间两个存在形式来考察,学习环境既是一种静态的系统结构,也是一种动态的发展过程。 2、建构主义学习环境的基本构成要素是什么?举例说明。 3、试述学习环境的设计方法。 ——真实情境 ——问题情境 ——模拟真实情境 四、学习资源设计 1、学习资源的主要类型有哪些?

陶宏才《数据库原理及设计》第3版课后习题答案

第一章 一、解答题 1、解释术语:数据、数据库、数据管理系统、数据库系统、数据库应用系统、视图、数据字典。P19-20 数据:是描述现实世界中各种具体事物或抽象概念的、可存储并具有明确意义的信息。 数据库:是相互关联的数据集合。 数据管理系统:是一个通用的软件系统,由一组计算机程序构成。 数据库系统:是一个用户的应用系统得以顺利运行的环境。 数据库应用系统:主要指实现业务逻辑的应用程序。 视图:指不同的用户对同一数据库的每一种理解称为视图。 数据字典:用于存储数据库的一些说明信息的特殊文件。 2、简述数据抽象、数据模型及数据模式之间的关系P26 数据模型是数据抽象的工具,是数据组织和表示的方式; 数据模式是数据抽象利用数据模型,将数据组织起来后得到的结果; 总而言之,数据模式是数据抽象的结果。 3、DBMS应具备的基本功能有哪些?P9 数据独立性、安全性、完整性、故障恢复、并发控制 4、数据库中对数据最基本的4种操作是什么?P24 增加、删除、修改、查询 5、评价数据模型的3个要素是什么?P12 1)能够真实地描述现实系统 2)能够容易为业务用户所理解 3)能够容易被计算机实现 6、数据模型的3个要素是什么?P24 数据结构、数据操作、数据约束 7、简述SQL语言的使用方式。P13 一般有两种方式:SQL的交互式使用;用户通过开发应用系统与RDBMS交互。 8、在数据库设计时,为什么涉及到多种数据模型?P12 因为目前商用化DBMS没有一个能够同时满足3项要求,为此,人们不得不走折中路线,设计一些中间的数据模型。 9、数据库系统中的用户类型有哪些?P28-29 最终用户、数据库应用开发人员、数据库管理员、其他与数据库系统有关的人员。11、简述OLTP与OLAP间的区别。P42-43 OLTP(联机事务处理)主要面向日常的业务数据管理,完成用户的事务处理,提高业务处理效率,通常要进行大量的更新操作,同时对响应时间要求比较高。 OLAP(联机分析处理)注重数据分析,主要对用户当前及历史数据进行分析,辅助领导决策,通常要进行大量的查询操作,对时间的要求不太严格。 二、单项选择题 1、( A )不是SQL语言的标准。P156 A.SQL-84 B.SQL-86 C.SQL-89 D.SQL-92 2、( D )数据模型没有被商用DBMS实现。P26 A.关系模型 B.层次模型 C.网状模型 D.E-R模型 3、( C )不是数据模型应满足的要求。P12 A.真实描述现实世界 B.用户易理解

现代设计理论与方法作业 (大作业)

现代机械设计理论与方法 (大作业)

1、采用系统化设计流程及所学现代设计方法详细阐述某公司需要投资研发一款新型产品的整个设计流程和采用方法。 (1)请具体阐述采用哪些设计方法,如何去完成新产品的规划设计过程?(2)请具体阐述采用哪些设计方法,如何去完成新产品的方案设计过程?(3)请具体阐述采用哪些设计方法,如何去完成新产品的技术设计过程?(4)请具体阐述采用哪些设计方法,如何去完成新产品的施工设计过程? 答: (1)产品规划设计包括三个主要阶段:第一个阶段是市场细分及选择阶段。在这个阶段,主要通过市场调研与分析,研究如何细分市场,以及企业如何选择细分市场,最后确定企业对细分市场的战略选择。第二个阶段是定义新产品概念。在这个阶段中要对某个细分市场,收集其需求的主要内容,包括客户需求、竞争需求及企业内部需求,并确定企业在该细分市场的产品定位,然后寻找和定义新产品概念。第三个阶段是确定产品规划阶段。在这一阶段中需要从技术层面分析新产品属于哪个产品族及其开发路径,并根据公司的战略确定新产品开发的优先顺序和组合策略,然后依据企业资源状况,制定新产品开发的时间计划。 产品规划设计的步骤为:信息集约→产品设计任务→预测调研→可行性分析→明确任务要求→可行性报告、设计要求项目表。 进行产品规划设计的主要方法有:设计方法和预测技术。支持产品规划设计的主要理论有:设计方法学、技术预测理论、市场学、信息学等。 (2)新产品的方案设计过程大致可以分为方案设计和方案评审两个阶段。方案设计阶段的步骤为:总共能分析→功能分解→功能元求解→功能载体组合→获得功能原理方案(多个原理方案)→原理试验→评价决策→最优原理方案→原理参数表、方案原理图。 进行产品的方案设计的方法主要有:系统化设计方法、创造技法、评价决策法、形态学矩阵法。 主要的理论指导包括:系统工程学、形态学、创造学、思维心理学、决策论、模糊数学等。 (3)对产品进行技术设计时,首先要对结构进行总体设计,包括了对产品的结构设计和造型设计。进行新产品的技术设计的主要步骤为:

FLUENT中常用的湍流模型

The Spalart-Allmaras模型 对于解决动力漩涡粘性,Spalart-Allmaras 模型是相对简单的方程。它包含了一组新的方程,在这些方程里不必要去计算和剪应力层厚度相关的长度尺度。Spalart-Allmaras 模型是设计用于航空领域的,主要是墙壁束缚流动,而且已经显示出很好的效果。在透平机械中的应用也愈加广泛。 在原始形式中Spalart-Allmaras 模型对于低雷诺数模型是十分有效的,要求边界层中粘性影响的区域被适当的解决。在FLUENT中,Spalart-Allmaras 模型用在网格划分的不是很好时。这将是最好的选择,当精确的计算在湍流中并不是十分需要时。再有,在模型中近壁的变量梯度比在k-e模型和k-ω模型中的要小的多。这也许可以使模型对于数值的误差变得不敏感。想知道数值误差的具体情况请看5.1.2。 需要注意的是Spalart-Allmaras 模型是一种新出现的模型,现在不能断定它适用于所有的复杂的工程流体。例如,不能依靠它去预测均匀衰退,各向同性湍流。还有要注意的是,单方程的模型经常因为对长度的不敏感而受到批评,例如当流动墙壁束缚变为自由剪切流。 标准k-e模型 最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。在FLUENT中,标准k-e模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。适用范围广、经济,有合理的精度,这就是为什么它在工业流场和热交换模拟中有如此广泛的应用了。它是个半经验的公式,是从实验现象中总结出来的。 由于人们已经知道了k-e模型适用的范围,因此人们对它加以改造,出现了RNG k-e模型和带旋流修正k-e 模型。k-ε模型中的K和ε物理意义:k是紊流脉动动能(J),ε是紊流脉动动能的耗散率(%);k越大表明湍流脉动长度和时间尺度越大,ε越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。 RNG k-e模型 RNG k-e模型来源于严格的统计技术。它和标准k-e模型很相似,但是有以下改进: ?RNG模型在e方程中加了一个条件,有效的改善了精度。 ?考虑到了湍流漩涡,提高了在这方面的精度。 ?RNG理论为湍流Prandtl数提供了一个解析公式,然而标准k-e模型使用的是用户提供的常数。 ?然而标准k-e模型是一种高雷诺数的模型,RNG理论提供了一个考虑低雷诺数流动粘性的解析公式。这些公式的效用依靠正确的对待近壁区域 这些特点使得RNG k-e模型比标准k-e模型在更广泛的流动中有更高的可信度和精度。 带旋流修正的k-e模型 带旋流修正的k-e模型是近期才出现的,比起标准k-e模型来有两个主要的不同点。 ?带旋流修正的k-e模型为湍流粘性增加了一个公式。 ?为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。 术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。带旋流修正的k-e模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。带旋流修正的k-e模型和RNG k-e模型都显现出比标准k-e模型在强流线弯曲、漩涡和旋转有更好的表现。由于带旋流修正的k-e模型是新出现的模型,所以现在还没有确凿的证据表明它比RNG k-e模型有更好的表现。但是最初的研究表明带旋流修正的k-e模型在所有k-e模型中流动分离和复杂二次流有很好的作用。带旋流修正的k-e模型的一个不足是在主要计算旋转和静态流动区域时不能提供自然的湍流粘度。这是因为带旋流修正的k-e模型在定义湍流粘度时考虑了平均旋度的影响。这种额外的旋转影响已经在单一旋转参考系中得到证实,而且表现要好于标准k-e模型。由于这些修改,把它应用于多重参考系统中需要注意。 标准k-ω模型 标准k-ω模型是基于Wilcox k-ω模型,它是为考虑低雷诺数、可压缩性和剪切流传播而修改的。Wilcox k-ω模型预测了自由剪切流传播速率,像尾流、混合流动、平板绕流、圆柱绕流和放射状喷射,因而可以应用于墙壁束缚流动和自由剪切流动。标准k-e模型的一个变形是SST k-ω模型,它在FLUENT中也是可用的,将在10.2.9中介绍它。 剪切压力传输(SST)k-ω模型

计算机组成原理模型机设计与实现

武汉华夏理工学院 课程设计 课程名称计算机组成原理 题目模型机设计与实现 专业 班级 姓名 成绩 指导教师田小华 2016 年12 月27 日

武汉华夏理工学院信息工程系 课程设计任务书 课程名称:计算机组成原理指导教师:田小华 班级名称:开课教研室:软件与信息安全 一、课程设计目的与任务 理解计算机系统各个功能部件的功能、结构和工作原理,正确理解各功能部件之间的相互关系及其在计算机系统中所起的作用;掌握计算机系统各个功能部件的设计和分析技术,包括数据与指令的编码、存储器、运算器、输入输出接口等。 在此基础上,使学生通过理论与实践的结合,利用基本模型计算机的构建与调试实验,完整地建立计算机硬件的整机模型,掌握中央处理器的基本结构和控制流程,掌握机器指令执行的基本过程,熟悉微程序控制器的基本结构和微程序设计技术的主要技巧,理解一条机器指令与一段微程序的关系,明确高级语言指令与微指令的对应关系,充分理解控制信息流利用数据通路完成对数据流的加工处理的过程。 通过课程设计,使学生将所学专业知识综合运用,在实践活动中积累经验,增长才干,训练学生独立工作能力,激发学生的学习热情,培养学生的自主创新精神,养成务实严谨的工作作风。 二、课程设计的内容与基本要求 1.按给定的数据格式、机器指令格式和微指令格式,利用基本的数字逻辑器件,设计—台微程序控制的模型计算机。 2.设计五条机器指令:IN,ADD,STA,OUT,JMP,并用微指令编写微程序,实现每条机器指令的功能。 3.在TD-CMA教学实验平台上实现基本模型机方案: ⑴建立数据通路,定义开关SWA及SWB的功能;⑵确定微程序控制流程,掌握控制台操作;⑶输入编写的五条机器指令的微程序序列;⑷输入实验机器指令程序序列;⑸设计基本模型的物理连线;⑹完成微程序的调试,实现实验机器指令程序的功能。 完成模型机调试任务后,整理课程设计资料,撰写课程设计报告。课程设计报告内容包括: ①模型机数据通路图;②微程序控制器逻辑模块图;③微程序控制流程图;④元件排列图; ⑤设计说明书;⑥调试小结。 三、课程设计步骤及时间进度和场地安排 《计算机组成原理》课程设计将安排在第17周, 地点在信息系实验楼523教室。具体安排如下:1.第17周周1(1节)(12月26日) :集中讲解课程设计原理与方法,3-203教室 2.第17周周1(2--4节):完成模型机的实验线路连接

Fluent 湍流模型小结

Fluent 湍流模型小结湍流模型目前计算流体力学常用的湍流的数值模拟方法主要有以下三种: 直接模拟(direct numerical&Oσλαση; simulation, DNS) 直接数值模拟(DNS)特点在湍流尺度下的网格尺寸内不引入任何封闭模型的前提下对Navier-Stokes方程直接求解。这种方法能对湍流流动中最小尺度涡进行求解,要对高度复杂的湍流运动进行直接的数值计算,必须采用很小的时间与空间步长,才能分辨出湍流中详细的空间结构及变化剧烈的时间特性。基于这个原因,DNS目前仅限于相对低的雷诺数中湍流流动模型。另外,利用DNS模型对湍流运动进行直接的数值模拟对计算工具有很高的要求,计算机的内存及计算速度要非常的高,目前DNS模型还无法应用于工程数值计算,还不能解决工程实际问题。 大涡模拟(large&Oσλαση; eddy simulation, LES) 大涡模拟(LES)是基于网格尺度封闭模型及对大尺度涡进行直接求解N-S方程,其网格尺度比湍流尺度大,可以模拟湍流发展过程的一些细节,但其计算量仍很大,也仅用于比较简单的剪切流运动及管流。大涡模拟的基础是:湍流的脉动与混合主要是由大尺度的涡造成的,大尺度涡是高度的非各向同性,而且随流动的情形而异。大尺度的涡通过相互作用把能量传递给小尺度的涡,而小尺度的涡旋主要起到耗散能量的作用,几乎是各向同性的。这些对涡旋的认识基础就导致了大涡模拟方法的产生。Les大涡模拟采用非稳态的N-S方程直接模拟大尺度涡,但不计算小尺度涡,小涡对大涡的影响通过近似的模拟来考虑,这种影响称为亚格子Reynolds应力模型。大多数亚格子Reynolds模型都是将湍流脉动所造成的影响用一个湍流粘性系数,既粘涡性来描述。LES对计算机的容量和CPU的要求虽然仍然很高,但是远远低于DNS方法对计算机的要求,因而近年来的研究与应用日趋广泛。 应用Reynolds时均方程(Reynolds-averaging&Oσλαση; equations)的模拟方法 许多流体力学的研究和数值模拟的结果表明,可用于工程上现实可行的湍流模拟方法仍然是基于求解Reynolds时均方程及关联量输运方程的湍流模拟方法,即湍流的统观模拟方法。统观模拟方法的基本思想是用低阶关联量和平均流性质来模拟未知的高阶关联项,从而封闭平均方程组或关联项方程组。虽然这种方法在湍流理论中是最简单的,但是对工程应用而言仍然是相当复杂的。即便如此,在处理工程上的问题时,统观模拟方法仍然是最有效、最经济而且合理的方法。在统观模型中,使用时间最长,积累经验最丰富的是混合长度模型和K-E模型。其中混合长度模型是最早期和最简单的湍流模型。该模型是建立在层流粘性和湍流粘性的类比、平均运动与湍流的脉动的概念上的。该模型的优点是简单直观、无须增加微分方程。缺点是在模型中忽略了湍流的对流与扩散,对于复杂湍流流动混合长度难以确定。 到目前为止,工程中应用最广泛的是k-ε模型。另外针对k-ε模型的不足之处,许多学者通过对K-E模型的修正和发展,开始采用雷诺应力模型(DSM)和代数应力模型(ASM)。近年来,DSM模型已用来预报燃烧室及炉内的强旋及浮力流动。很多情况下能够给出优于k-ε模型的结果。但是该模型也有不足之处,首先它对工程预报来说太复杂,其次经验系数太多难以确定,此外,对压力应变项的模拟还有争议。更主要的是,尽管这一模型考虑了各种应变效应,但是其总精度并不总是高于其它模型,这些缺点导致了DSM模型没有得到广泛的应用。总之,虽然从本质上讲DSM模型和ASM模型比k-ε模型对湍流流场的模拟更加合理,但DSM和ASM中仍然采用精度不高的E方程,模型中常数的通用性还没有得到广泛的验证,边界条件不好给定,计算也比较复杂。正因为如此,目前用计算解决湍流问题时仍然采用比较成熟的K-E模型。 需要注意的是: 1、大涡模拟有自己的亚格子封闭模型,这和k-ε模型完全是两回事。LES的亚格子模型表

fluent湍流模型

第十章湍流模型 本章主要介绍Fluent所使用的各种湍流模型及使用方法。 各小节的具体内容是: 10.1 简介 10.2 选择湍流模型 10.3 Spalart-Allmaras 模型 10.4 标准、RNG和k-e相关模型 10.5 标准和SST k-ω模型 10.6 雷诺兹压力模型 10.7 大型艾迪仿真模型 10.8 边界层湍流的近壁处理 10.9 湍流仿真模型的网格划分 10.10 湍流模型的问题提出 10.11 湍流模型问题的解决方法 10.12 湍流模型的后处理 10.1 简介 湍流出现在速度变动的地方。这种波动使得流体介质之间相互交换动量、能量和浓度变化,而且引起了数量的波动。由于这种波动是小尺度且是高频率的,所以在实际工程计算中直接模拟的话对计算机的要求会很高。实际上瞬时控制方程可能在时间上、空间上是均匀的,或者可以人为的改变尺度,这样修改后的方程耗费较少的计算机。但是,修改后的方程可能包含有我们所不知的变量,湍流模型需要用已知变量来确定这些变量。 FLUENT 提供了以下湍流模型: ·Spalart-Allmaras 模型 ·k-e 模型 -标准k-e 模型 -Renormalization-group (RNG) k-e模型 -带旋流修正k-e模型 ·k-ω模型 -标准k-ω模型 -压力修正k-ω模型 -雷诺兹压力模型 -大漩涡模拟模型 10.2 选择一个湍流模型 不幸的是没有一个湍流模型对于所有的问题是通用的。选择模型时主要依靠以下几点:流体是否可压、建立特殊的可行的问题、精度的要求、计算机的能力、时间的限制。为了选择最好的模型,你需要了解不同条件的适用范围和限制 这一章的目的是给出在FLUENT中湍流模型的总的情况。我们将讨论单个模型对cpu 和内存的要求。同时陈述一下一种模型对那些特定问题最适用,给出一般的指导方针以便对于你需要的给出湍流模型。 10.2.1 雷诺平均逼近vs LES 在复杂形体的高雷诺数湍流中要求得精确的N-S方程的有关时间的解在近期内不太可能实现。两种可选择的方法用于把N-S方程不直接用于小尺度的模拟:雷诺平均和过滤。

CFD讲义-湍流模型

第三章,湍流模型 第一节, 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=''-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

第二节,平均量输运方程 雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。对于速度,有: i i i u u u '+= 3-3 其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3) 类似地,对于压力等其它标量,我们也有: φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。 把上面的表达式代入瞬时的连续与动量方程,并取平均(去掉平均速度i u 上的横线),我们可以把连续与动量方程写成如下的笛卡儿坐标系下的张量形式: 0)(=?? +??i i u x t ρρ 3-5 () j i j l l ij i j j i j i i u u x x u x u x u x x p Dt Du ''-?? +???????????? ????-??+????+??-=ρδμρ32 3-6 上面两个方程称为雷诺平均的Navier-Stokes (RANS )方程。他们和瞬时Navier-Stokes 方程有相同的形式,只是速度或其它求解变量变成了时间平均量。额外多出来的项j i u u ''-ρ是雷诺应力,表示湍流的影响。如果要求解该方程,必须模拟该项以封闭方程。 如果密度是变化的流动过程如燃烧问题,我们可以用法夫雷(Favre )平均。这样才可以求解有密度变化的流动问题。法夫雷平均就是出了压力和密度本身以外,所有变量都用密度加权平均。变量的密度加权平均定义为: ρρ/~ Φ=Φ 3-7 符号~表示密度加权平均;对应于密度加权平均值的脉动值用Φ''表示,即有: Φ''+Φ=Φ~ 。很显然,这种脉动值的简单平均值不为零,但它的密度加权平均值等于零,即: 0≠Φ'', 0=Φ''ρ Boussinesq 近似与雷诺应力输运模型 为了封闭方程,必须对额外项雷诺应力j i u u ''-ρ进行模拟。一个通常的方法是应用Boussinesq 假设,认为雷诺应力与平均速度梯度成正比,即: ij i i t i j j i t j i x u k x u x u u u δμρμρ)(32 ??+-??? ? ????+??=''- 3-8 Boussinesq 假设被用于Spalart-Allmaras 单方程模型和ε-k 双方程模型。Boussinesq 近似 的好处是与求解湍流粘性系数有关的计算时间比较少,例如在Spalart-Allmaras 单方程模型中,只多求解一个表示湍流粘性的输运方程;在ε-k 双方程模型中,只需多求解湍动能k 和耗散率ε两个方程,湍流粘性系数用湍动能k 和耗散率ε的函数。Boussinesq 假设的缺点是认为湍

probit模型与logit模型

probit模型与logit模型 2013-03-30 16:10:17 probit模型是一种广义的线性模型。服从正态分布。 最简单的probit模型就是指被解释变量Y是一个0,1变量,事件发生地概率是依赖于解释变量,即P(Y=1)=f(X),也就是说,Y=1的概率是一个关于X的函数,其中f(.)服从标准正态分布。 若f(.)是累积分布函数,则其为Logistic模型 Logit模型(Logit model,也译作“评定模型”,“分类评定模型”,又作Logistic regression,“逻辑回归”)是离散选择法模型之一,属于多重变量分析范畴,是社会学、生物统计学、临床、数量 心理学、市场营销等统计实证分析的常用方法。 逻辑分布(Logistic distribution)公式 P(Y=1│X=x)=exp(x’β)/1+exp(x’β) 其中参数β常用极大似然估计。 Logit模型是最早的离散选择模型,也是目前应用最广的模型。Logit模型是Luce(1959)根据IIA特性首次导出的;Marschark(1960)证明了Logit模型与最大效用理论的一致性;Marley (1965)研究了模型的形式和效用非确定项的分布之间的关系,证明了极值分布可以推导出Logit 形式的模型;McFadden(1974)反过来证明了具有Logit形式的模型效用非确定项一定服从极值分布。 此后Logit模型在心理学、社会学、经济学及交通领域得到了广泛的应用,并衍生发展出了其他离散选择模型,形成了完整的离散选择模型体系,如Probit模型、NL模型(Nest Logit model)、Mixed Logit模型等。模型假设个人n对选择枝j的效用由效用确定项和随机项两部分构成:Logit模型的应用广泛性的原因主要是因为其概率表达式的显性特点,模型的求解速度快,应用方便。当模型选择集没有发生变化,而仅仅是当各变量的水平发生变化时(如出行时间发生变化),可以方便的求解各选择枝在新环境下的各选择枝的被选概率。根据Logit模型的IIA特性,选择枝的减少或者增加不影响其他各选择之间被选概率比值的大小,因此,可以直接将需要去掉的选择枝从模型中去掉,也可将新加入的选择枝添加到模型中直接用于预测。 Logit模型这种应用的方便性是其他模型所不具有的,也是模型被广泛应用的主原因之一。Logit模型的优缺点 Logit模型的优点是: (1)模型考察了对两种货币危机定义情况下发生货币危机的可能性,即利率调整引起的汇率 大幅度贬值和货币的贬值幅度超过了以往的水平的情形,而以往的模型只考虑一种情况。 (2)该模型不仅可以在样本内进行预测,还可以对样本外的数据进行预测。 (3)模型可以对预测的结果进行比较和检验,克服了以往模型只能解释货币危机的局限。 虽然Logit模型能够在一定程度上克服以往模型事后预测事前事件的缺陷,综合了FR模型中FR概率分析法和KLR模型中信号分析法的优点,但是,它只是在利率、汇率等几个主要金 融资产或经济指标的基础上预警投机冲击性货币危机,与我们所要求的一般货币危机预警还有所差异。所以仅用几个指标来定义货币危机从而判断发生货币危机的概率就会存在一定问题,外债、进出口、外汇储备、不良贷款等因素对货币危机的影响同样非常重要。 logit模型也叫Logistic模型,服从Logistic分布。 probit模型服从正态分布。 两个模型都是离散选择模型的常用模型。但logit模型简单直接,应用更广。 离散选择模型的软件很多,有limdep,elm、nlogit等。 spss18.0中能做2元和多元logit模型。 stata,sas,guass都能做logit模型。 入门级的软件是spss和elm,后者可以做多元logit和分层logit。但是elm必须购买注册号才能

组成原理课程设计-设计一台模型计算机(完整资料).doc

此文档下载后即可编辑 计算机组成原理课程设计 一、基本要求:设计一台模型计算机 具体内容: 1. 数据格式和指令系统 2. 数据通路 3. 时序系统 4. 微指令格式 5. 微程序控制器 6. 微程序流程图 7. 微程序代码表 二、模型机设计 1. 数据格式和指令系统的约定 1) 数据格式 模型机规定采用定点补码表示法表示数据,且字长为8位,其格式如下: 7 6 5 4 3 2 1 0 其中: -1≤X<1。 2) 指令系统 模型机设计四大类指令共16条,其中包括算术逻辑指令(9条)、I/O指令(4条)、访内及转移指令(2条)和停机指令(1条)。 因为指令系统共16条指令,所以操作码是4位。 由于模型机机器字长为8位,故设计单字长指令和双字长指令供使用。 (1) 算术逻辑指令 设计9条算术逻辑指令并用单字节表示,寻址方式采用寄存器直接寻址,其格式如下: 1 0 7 6 5 4 3 2

(2) 访内指令及转移指令 模型机设计2条访问指令,即存数(STA)、取数(LDA),2 条转移指令,即无条件转移(JMP)、结果为零或有进位转移指令 (BZC),指令格式为: 7 6 5 4 3 2 1 0 D 为位移量(正 负均可),X 为寻址方式,其定义如下: 格式如下: 7 6 5 4 3 2 1 0 ”中的开关组作为入 设备,addr=10时,选中“OUTPUT DEVICE ”中的数码快作为 输出设备。 (4) 停机指令 格式如下: 7 6 5 4 3 2 1 (5) 模型机指令系统

2. 数据通路 简单的模型计算机是由运算器、控制器、存储器、总线、输入输出和时序产生器组成。 在模型机中,我们将要实现RAM的读写指令,寄存器的读写指令,跳转指令,ALU的加、减、与、或指令。把通用寄存器作为累加器A,进行左、右移等指令,整体构成一个单累加器多寄存器的系统。 运算器模块主要由四片74LS181、暂存器两片74LS273等构成。其中74LS181可通过控制器相应的控制指令来进行某种运算,具体由S0、S1、S2、S3、M、CN来决定。T4是它的工作脉冲,正跳变有效。寄存器堆模块为实验计算机提供了2个8位通用寄存器。它们用来保存操作数及其中间运算结果,它对运算器的运算速度、指令系统的设计等都有密切关系。在该运算器中,有两片74LS181组成算术和逻辑运算。数据的来源由74LS273寄存器提供,74LS273产生16位数据分别送入到74LS181运算器中进行相应的运算。 主存储器单元电路主要用于存放实验机的机器指令,它的数据总线挂在外部 数据总线EXD0~EXD7上;它的地址总线由地址寄存器单元电路中的地址寄存器74LS273(U37)给出,地址值由8个LED灯

fluent中湍流参数的定义

FLUENT 中湍流参数的定义 2011-07-28 10:46:03| 分类:默认分类|举报|字号订阅 流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF (用户自定义函数)来定义,具体方法请参见相关章节的叙述。 在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。 在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity)

湍流强度I的定义为: I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg (8-1) 上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中,自由流的湍流强度通常低于%。 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几个百分点。如果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公式得到的: I=u’/u_avg=*Re_DH^ (8-2) 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(8-2)中的雷诺数是以水力直径为特征长度求出的。 (2)湍流的长度尺度与水力直径 湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,

相关主题