搜档网
当前位置:搜档网 › 《线性代数的几何意义》之三(行列式的几何意义)

《线性代数的几何意义》之三(行列式的几何意义)

《线性代数的几何意义》之三(行列式的几何意义)
《线性代数的几何意义》之三(行列式的几何意义)

特别说明

此资料来自豆丁网(https://www.sodocs.net/doc/902803861.html,/)

您现在所看到的文档是使用下载器所生成的文档

此文档的原件位于

https://www.sodocs.net/doc/902803861.html,/p-57393020.html

感谢您的支持

抱米花

https://www.sodocs.net/doc/902803861.html,/lotusbaob

线性方程组解的几何意义

设有三元非齐次线性方程组 线性方程组解的几何意义 ???????=++=++=++,,,)1(22221111m m m m d z c y b x a d z c y b x a d z c y b x a 我们来讨论一下三元非齐次线性方程组解的几何意义.

2) 有唯一解这时方程组(1) 中的m 个方?? ???=+--=--=+,423, 32,123z y x y x z x 该方程组有唯一解.817,21,4 7??? ??--则方程组(1) 的解有以下三种情况: 1) 无解这时方程组(1) 中的m 个方程所表示的平面既不交于一点, 也不共线、共面. 程所表示的平面交于一点. 例如

其几何意义如图3 -11 所示. 2x-y=-3 3x+2z=-1 x-3y+2z=4 图3-11

交直线所确定.3) 有无穷多组解 这时又可分为两种情形:情形一自由变量, 基础解系中有两个向量,其一般解的形式为 γ=c 1η1+ c 2η2+ γ0(c 1, c 2为任意常数).这时方程组的所有解构成一个平面, 而这个平面是由过点γ0且分别以η1、η2为方向向量的两条相A 的秩=A 的秩= 1 .此时,有两个γ=c 1η1+ c 2η2+ γ0 称为平面的参数方程.

例如, 设保留方程组为 x + y + z = 3, 则可求得其通解为 . 11110101121???? ? ??+????? ??-+????? ??-=c c x

则过点P (1,1,1) 分别以(1,-1,0)T , (1,0,-1)T 为方向,1 10111:,0 11111:21--=-=--=--=-z y x L z y x L 则这两条相交直线L 1, L 2所确定的平面的方程即向量的两直线的方程分别为 为x + y + z = 3 . 如图3-12

华南理工大学 线性代数与解析几何 习题答案 (6)

《线性代数与解析几何》勘误表 第1章:行列式 p.13, 例题 4.1: 解的第二个等号后,应加一个负号。 p.15,第三行(等号后):去掉; p.17, 第7-8行: (t=1,2,…, j-1,j+1,…,n) p.19,倒数第4-5行:假设对于n-1阶范德蒙行列式V_{n-1}结论成立,… p .20,第2行: D_{n-1}改为V_{n-1} p.20, 第6行,定理5.2中: 去掉“若”字 p.21, 倒数第3行: …展开代入而得, p.24,倒数第1行: (-1)的指数应为“1+2+…+k +1+2+…+k ” 习题1: 第1题(2)答案有误:应为sin2x-cosx^2. 第6题(3)答案有误:(3) n(3n-1)/2, 当n=4k 或者n=4k+3时为偶数,当n=4k+1或4k+2时为奇数. 第10题(4)(5)答案有误:(4)(-1)^{(n-2)(n-1)/2};(5)(-1)^{n-1}a_n 第11题(6)答案有误: ….,当a\neq 0时,D=(-1)^{n(n-1)/2}a^{n-2}[a^2-(n-1)x^2] p.26, 第12题(2):改为: (33333) 3222 222111 111=+++++++++y x x z z y y x x z z y y x x z z y (3): …= ;)1](2 )2)(1([1--+-+ n a n n a (4): …=.0 ∑=-n i i n i b a p.27, 第14题(4):(此题较难,可以去掉!) 答案有误,应为: n x n )2 )(1( n +=,当yz x 42=。 第15题答案有误:为60(11-2) p .27, 第16题:去掉条件“若x_1+x_2+x_3+x_4=1,则” 第二章:矩阵 p.32, 第7行: 称其为n 阶对角矩阵,….. p.35, 第5-6行: b_21和b_12互换位置(两处) p.36, 第7行: 去掉“设 A ,B ,C 分别为….矩阵,”在第10行后增加: 当然,这里假定了矩阵运算是有意义的. p.39, 第4行: 就得到一个2*2的分块矩阵。 p.46,第2行: 去掉 ′(3个) p .46,倒数 4-6行:… 为满秩的(或非奇异的,非退化的),…为降秩的(或奇异的,退化的),… p.47,倒数第6-7行: 去掉 “,n α”(3处 ),另: 本页的 ”T j T i αα,”均改

平方差公式设计

15.2.1《平方差公式》教学设计方案 秦皇岛市卢龙县卢龙教育局教研室郑淑杰 教学内容:人教版《义务教育课程标准实验教科书·数学》八年级上册“15.2乘法公式”(第一课时) 教学目标: 知识与能力: 1、掌握平方差公式的结构特征,能运用公式进行简单的运算; 2、会用语言描述平方差公式内容; 3、会用几何图形说明公式的意义,体会数形结合的思想在解决问题的作用; 过程与方法: 让学生经历“特例──归纳──猜想──验证──用数学符号表示”这一数学活动过程,积累数学活动的经验,进一步发展学生的符号感、推理能力、归纳能力。会用几何图形说明公式的意义,体会数形结合的思想方法的重要性. 情感态度目标 通过自主探究与合作交流的学习方式,让学生经历探索新知、巩固新知和拓展新知这一过程,发挥学生的主体作用,增强学生学数学、用数学的兴趣.同时,让学生在公式的运用中积累解题的经验,体会成功的喜悦. 教学重点:经历探索平方差公式的全过程,并能运用公式进行简单的运算 教学难点:利用数形结合的数学思想方法解释平方差公式,灵活运用平方差公式进行计算. 教材分析: 《平方差公式》是在学习了有理数运算、列简单的代数式、一次方程及不等式、整式的加减及整式乘法等知识的基础上,在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例.对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法.因此,平方差公式在初中阶段的教学中也具有很重要地位,是初中阶段的第一个公式. 学情分析

矩阵行列式的概念与运算

知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:1112131112111221222321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ??????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如111 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列 式;算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式 展开的对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解 二元一次方程组???=+=+222 1 11c y b x a c y b x a (其中2121,,,b b a a 不全为零);记 2 211b a b a 叫做方程组的系数

华南理工大学 线性代数与解析几何 试卷

,考试作弊将带来严重后果! 华南理工大学期末考试(A 卷) 《 2007线性代数 》试卷 20分) (1) 设A 是n m ?矩阵,B 是m 维列向量,则方程组B AX =无解的充分必要条件 是: (2) 已知可逆矩阵P 使得1cos sin sin cos P AP θθθ θ-??= ?-?? ,则12007 P A P -= (3) 若向量组α=(0,4,t ),β=(2,3,1),γ=(t ,2,3)的秩为2,则t= (4) 若A 为2n 阶正交矩阵,*A 为A 的伴随矩阵, 则*A = (5) 设A 为n 阶方阵,12,,,n λλλ??????是A 的n 个特征根,则1n i i E A λ=-∑ = 选择题(共20分) (1) 将矩阵n m A ?的第i 列乘C 加到第j 列相当于对A : A , 乘一个m 阶初等矩阵, B ,右乘一个m 阶初等矩阵

C,左乘一个n阶初等矩阵,D,右乘一个n阶初等矩阵 (2)若A为m×n 矩阵,B是m维非零列向量,()min{,} r A r m n =<。集合{:,}n M X AX B X R ==∈则 A,M是m维向量空间,B,M是n-r维向量空间 C,M是m-r维向量空间,D,A,B,C都不对 (3)若n阶方阵A,B满足,22 A B =,则以下命题哪一个成立 A,A B =±,B,()() r A r B = C,det det A B =±,D,()() r A B r A B n ++-≤ (4)若A是n阶正交矩阵,则以下命题那一个成立: A,矩阵1A-为正交矩阵,B,矩阵-1A-为正交矩阵 C,矩阵*A为正交矩阵,D,矩阵-*A为正交矩阵 (5)4n阶行列式 111 110 100 -???-- -???- ?????? -??? 的值为: A,1,B,-1 C,n D,-n 三、解下列各题(共30分) 1.求向量 5 1 3 β ?? ? =- ? ? ?? ,在基 123 111 0,1,1 101 ααα ?????? ? ? ? === ? ? ? ? ? ? ?????? 下的坐标。

平方差公式教案(教学设计)

《平方差公式》 【教学目标】 (一)知识与技能: 1.经历探索平方差公式的过程,进一步发展符号感和推理能力。 2.会推导平方差公式,并能运用公式进行简单计算。 (二)过程与方法:  1.认识平方差公式及其几何背景,使学生明白数形结合的思想。  2.在合作、交流和讨论中发掘知识,并体验学习的乐趣。 (三)情感态度与价值观:培养学生灵活运用知识、勇于探求科学规律的意识。 【教学重点】 平方差公式的推导和应用 【教学难点】 理解平方差公式的结构特征,灵活应用平方差公式。 【教学过程】 新课讲授: 一、创设情境,引出新课 教师活动:播放《周老财与李老汉的故事》视频。 周老财是个贪心狡猾的地主,李老汉是个老实巴交的农民。有一天,李老汉找到周老财租土地。周老财对李老汉说“那我把这块边长为a米的正方形土地租给你吧,每年给我200斤粮食就可以了。”李老汉答应了。和周老财签了三年的合约。租到了土地李老汉非常勤劳,三年的收成都挺好。这时周老财打起了李老汉的主意。于是周老财对李老汉说,土地租期到了,要不这样,我把这块土地的一边减少5米,相邻的另一边增加5米,租金不变,继续租给你怎么样?李老汉一听,觉得没什么问题就爽快答应了。事后李老汉跟村里人说起了这事,大伙都说他被周老财骗了,吃大亏了。李老汉想不明白,土地看上去没什么变化,租金也没变,为什么会吃亏呢?李老汉实在想不明白。 提问:李老汉究竟有没有吃亏呢?(让学生做片刻思考)我相信通过这节课的学习,同学们肯定都能轻松地找到答案。 设计意图:引用小故事,设置课堂悬念,激发学生的求知欲望,让学生有兴趣和信心学习新的知识。同时也为说明平方差公式的几何意义做好铺垫。 二、温故知新,探究发现

最新泰勒展开式在高考题中的应用

泰勒展开式在高考题中的应用 莲塘一中 李树森 高中数学中函数导数部分占据了重要的位置,高考试题中函数导数题往往也是以难题、压轴题形式出现.如何应对函数导数难题?高等数学中有一些知识、方法与中学数学相通,本文针对一类函数导数问题借助高等数学中的泰勒展开式解决该类初等数学问题. 如果函数()f x 在定义域I 上有定义,且有1n +阶导数存在,0,x x I ∈,则 ()200000001()()()()()()()...()1!2!! n n n f x f x f x f x f x x x x x x x R n +'''=+-+-++-+, 其中(1)110()()(1)! n n n f R x x n ξ+++=-+,其中ξ介于x 和0x 间.上式即为函数()f x 在0x 点处的泰勒展开式.[1] 令()ln(1)f x x =+,00x =,有23 11ln(1)...(1)23n n n x x x x x R n -++=-+++-+. 上式可以进行放缩,比较ln(1)x +和x 、2 2 x x -的大小, 可以得到不等式:2 ln(1)2 x x x x -≤+≤,(0)x ≥. (*) 下面证明该不等式. 证明:设2()ln(1)2x h x x x =--+,2 1()10,(0)11 x h x x x x x -'=--=≤≥++,则()h x 在[0,)+∞单调递减,()(0)0h x h ∴≤=,即有2 ln(1)2 x x x -≤+,当0x =时取等号. 设()ln(1)f x x x =+-,1()10,(0)11 x f x x x x -'=-=≤≥++,则()f x 在[0,)+∞单调递减, ()(0)0f x f ∴≤=,即有ln(1)x x +≤,当0x =时取等号. 综上所述,有不等式:2 ln(1)2 x x x x -≤+≤,(0)x ≥,当0x =时取等号. 如图所示: 例题展示 考题1 (2015年福建卷理科20题) 已知函数()ln(1),(),()f x x g x kx k R =+=∈ (1)证明:当0x >时,()f x x <; (2)证明:当1k <时,存在00x >,使得对任意的0(0,)x x ∈,恒有()()f x g x >; (3)确定k 的所有可能取值,使得存在0t >,对任意的(0,)x t ∈,恒有2 ()()f x g x x -<. 解析:(1)在对(*)式的证明过程中已经体现.

平方差公式教学设计知识讲解

《14.2.1平方差公式》教学设计 明水二中刘培国 一、内容和内容解析 内容 人教版数学八年级上册“14.2乘法公式”(第一课时) 内容解析 《平方差公式》是在学习了有理数运算、列简单的代数式、一次方程及不等式、整式的加减及整式乘法等知识的基础上,在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例.对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法.因此,平方差公式在初中阶段的教学中也具有很重要地位,是初中阶段的第一个公式. 本节课的教学重点是:经历探索平方差公式的全过程,并能运用公式进行简单的运算. 二、目标和目标解析 目标 1、经历平方差公式的探索过程,进一步发展学生的符号感和推理能力、归纳能力; 2、掌握平方差公式的结构特征,能运用公式进行简单的运算; 3、会用几何图形说明公式的意义,体会数形结合的思想方法. 目标解析: 1、让学生经历“特例──归纳──猜想──验证──用数学符号表示”这一数学活动过程,积累数学活动的经验,进一步发展学生的符号感、推理能力、归纳能力,同时体会数学的简洁美、培养他们的合情推理和归纳的能力以及在解决问题过程中与他人合作交流的重要性. 2、让学生了解平方差公式产生的背景,理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题.在数学活动中,引导学生观察、分析公式的结构特征以及公式中字母的广泛含义,并在练习中,对发生的错误做具体分析,加深学生对公式的理解.

泰勒公式及泰勒级数的应用

摘要:多项式函数是各类函数中最简单的一种,用多项式逼近函数是近似计算和理论分析的一个重要内容。而函数的泰勒公式就是其中比较典型的一种。 本文先介绍泰勒公式和泰勒级数,然后再深入的分析和探讨了泰勒公式和泰勒级数在近似计算、极限计算、求函数值、不等式的证明以及判断级数敛散性等几个方面的应用。 关键字:泰勒公式;泰勒级数;应用

目录 目录 1 引言 (3) 2预备知识 (4) 2.1泰勒公式 (4) 2.2泰勒级数和泰勒展开式 (4) 2.3常见函数的展开式 (6) 3泰勒公式与泰勒级数的应用 (7) 3.1用泰勒公式进行近似计算 (7) 3.2利用泰勒公式进行极限计算 (7) 3.3求函数的极值和不等式的证明 (8) 3.4判断或证明级数的敛散性 (9) 3.5用泰勒公式求行列式的值 (9) 3.6 泰勒公式在经济学中的应用 (10) 3.7用泰勒级数解微分方程 (11) 4结论 (14) 参考文献 (15) 致谢 (14)

1引 言 泰勒公式是高等数学中非常重要的内容,它将一些复杂的函数近似表示为简单的多项式函数,这种化繁为简的方法,使它成为分析和研究其他数学的有力杠杆,并且在经济学上有一定的应用。泰勒公式的问世,使得许多以前难以解决或是不能解决的问题都得到了解决。 泰勒级数使得幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。而实际应用中,我们需要把泰勒级数截断,只取有限项,泰勒定理可以用于估算这种近似的误差。 泰勒公式中含有有限多项, 泰勒级数中含有无限多项, 泰勒公式不是泰勒级数, 泰勒级数也不是泰勒公式。当()f x 的各阶导数都存在时,()f x 的泰勒级数在收敛情况下一定等于()f x ;但不论()f x 的泰勒级数是否收敛,只要()f x 有1n 阶导数, 就有泰勒公式成立。可见泰勒级数收敛时,与泰勒公式结果一致,都是()f x 。 泰勒公式在理论研究和数值计算中具有广泛的应用, 泰勒级数是函数项级数的特例, 泰勒公式和泰勒级数在解决实际问题中有某些的相似性, 但是它们引入不同, 因此还是有一定的差异性。泰勒公式是通过重复运用柯西中值定理得来的, 过程比较复杂;泰勒级数属于函数项级数中的幂级数。千万不要把泰勒公式和泰勒级数混为一谈。

行列式在几何中的应用(黄洁定稿) (1)

上饶师范学院 本科毕业论文 论文题目:行列式在解析几何中的应用专业:数学与应用数学 班级:09级数计学院(2)班学号:09010213 学生姓名:黄洁 指导教师姓名:谭海女 上饶师范学院数学与计算机科学学院 2013 年 4 月 行列式在解析几何中的应用

摘要 行列式在数学中,是由解线性方程组产生的一种算式。作为基本的数学工具,无论是几何、线性代数、多项式理论,还是在微积分学中,它都有着重要的应用。本文根据行列式在解析几何中的应用进行相关讨论与探究,介绍了行列式应用产生的背景,特点,以及行列式在解析几何中应用的优点。 关键词 行列式;解析几何;代数。

目录 一.预备知识 引言 .......................................................................................1 §1.1一些定义和基本定理............................................................1 二.运用行列式解决解析几何问题的几个结果及证明 (2) 1 12 21 11 x y y y =0是经过不同两点P 1 (1x ,y 1),P 2(2,2x y )的直线的方程………2 §2.2 三顶点为A (1x ,y 1),B (2,2x y ),C 3,3()x y 的三角形的面积S=1 2 1 12 23 3111 x y x y x y 的绝对值 (3) §2.3 平面上三点(1x ,y 1),(2,2x y ),3,3()x y 共线的充要条件是1 12 23 31 11 x y x y x y =0……4 §2.4 方程1110a x b y c ++=,2220a x b y c ++=,3330a x b y c ++=表示三直线共点 的必要条件是1 11 2 223 3 3 a b c a b c a b c =0.....................................................................5 三. 行列式在解析几何中应用的意义......................................................6 四.结语..........................................................................................6 五.致谢..........................................................................................6 参考文献 (7)

平方差公式 教学案例

数学教学案例(人教版八年级数学上册14.2.1) 案例名称:《平方差公式》 所属课程:数学 所属专业:初中数学 授课课时:一课时

《平方差公式》教学案例 一、教学内容与分析 1.内容 平方差公式——两个数的和与这两个数的差的积,等于这两个数的平方差。 2.内容分析 本节内容主要研究的是平方差公式的推导和应用。平方差公式是学生学习了整式的加减及整式乘法等知识的基础上,在已经掌握了单项式乘法、多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为完全平方公式的学习提供了方法,同时也为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础。因此,平方差公式在初中阶段的教学中具有承上启下的作用。 3.教学重点与难点 本节课的重点:理解平方差公式,掌握其结构特点,并能运用公式进行运算。 本节课的难点:①理解公式中字母的含义,即公式:22))((b a b a b a -=-+中的字母a ,b 可以是具体的数、单项式、多项式、分式乃至任何代数式。正确找准哪个数或式相当于公式中的a ,b.②平方差公式的变式应用。 二、教学目标与解析 1.目标 (1)知识目标:掌握平方差公式的结构特征,能运用公式进行计算。 (2)能力目标:在探索平方差公式的过程中,感悟从具体到抽象研究问题的方法;在验证平方差公式的过程中,感知数形结合的思想,进一步发展学生的符号感和推理能力、归纳能力;在运用公式的过程中,渗透转化、建模等数学思想,培养学生的思维能力和数

学应用意识。 (3)情感目标:让学生在合作探究的学习过程中体验成功的喜悦,培养学生勇于探索、善于观察、大胆猜想的创新思维品质。 2.目标解析 (1)理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题。在数学活动中,引导学生观察、分析公式的结构特征以及公式中字母的广泛含义,加深学生对公式的理解。 (2)让学生经历具体——抽象的过程。从中发现、体会、理解公式,积累数学活动的经验,进一步发展学生的符号感、观察、归纳、猜想、推理能力,利用几何图形的面积验证公式的过程中,感知数形结合的思想。在运用公式的过程中,渗透转化、建模等数学思想,培养学生的思维能力和数学应用意识。 (3)通过自主探究与合作交流的学习方式,让学生经历探索新知、巩固新知和拓展新知这一过程,发挥学生的主体作用,在解决问题过程中与他人合作交流的重要性,让学生在公式的运用中积累解题的经验,体会成功的喜悦。 三、学生情况分析 学生已经较熟练地掌握了多项式乘法,为学习本节知识做了知识准备;学生已经具备了小组合作能力、探究能力、归纳分析能力,能通过合作交流完成学习任务;通过创造问题情境,让学生探索相应问题,建立并运用公式,从而拓展学生知识技能成为可能。 四、教学问题诊断分析 学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛含义的解。因此,教学中引导学生分析公式的结构特征,并运用变式训练揭示公式的本质特征,以加深学生对公式的理解。

泰勒公式及其应用

泰勒公式及其应用 数学学院数学与应用数学专业 2009级杨立 指导教师吴春 摘要:泰勒公式以一种逼近的思想成为数学分析中的一个重要知识,在分析和研究数学问题中有着重要的作用。本文研究了利用泰勒公式证明微分中值定理,求函数的极限,进行近似计算,求函数的高阶导数和偏导数等方面的应用,恰当的运用泰勒公式能够给我们的解题带来极大的方便。 关键词:泰勒公式;微分中值定理;极限;高阶导数;偏导数 Abstract:Taylor formula is an important knowledge of mathematics analysis in an approximation of the thought, and it plays an important role in the analysis and study of mathematical problems. This paper studies the application of the Taylor formula in proving differential mean value theorem, the limit of function, approximate calculation, the application of high order derivative for function and partial derivative, and using Taylor formula appropriate can bring great convenience to our problem. Keywords:Taylor formula; approximate calculation; limit; higher derivative; partial derivative 引言 泰勒公式最早是以泰勒级数的形式出现在泰勒1715年出版的著作《增量及其逆》中,但在该书中却没有给出具体的证明,直到19世纪由柯西给出了现在的形式及其严格的证明。泰勒公式是一种逼近的思想,集中体现了逼近法的精髓,可以将有理分式函数﹑无理函数和初等超越函数等复杂函数用简单的多项式函

泰勒展开式在高考题中的应用

泰勒展开式在高考题中的应用 河北正定中学 (050800) 温绍雄 高中数学中函数导数部分占据了重要的位置,高考试题中函数导数题往往也是以难题、压轴题形式出现.如何应对函数导数难题?高等数学中有一些知识、方法与中学数学相通,本文针对一类函数导数问题借助高等数学中的泰勒展开式解决该类初等数学问题. 如果函数()f x 在定义域I 上有定义,且有1n +阶导数存在,0,x x I ∈,则 ()200000001()()()()()()()...()1!2!! n n n f x f x f x f x f x x x x x x x R n +'''=+-+-++-+, 其中(1)110()()(1)! n n n f R x x n ξ+++=-+,其中ξ介于x 和0x 间.上式即为函数()f x 在0x 点处的泰勒展开式.[1] 令()ln(1)f x x =+,00x =,有23 11ln(1)...(1)23n n n x x x x x R n -++=-+++-+. 上式可以进行放缩,比较ln(1)x +和x 、2 2 x x -的大小, 可以得到不等式:2 ln(1)2 x x x x -≤+≤,(0)x ≥. (*) 下面证明该不等式. 证明:设2()l n (1)2x h x x x =--+,2 1()10,(0)11 x h x x x x x -'=--=≤≥++,则()h x 在[0,)+∞单调递减,()(0)0h x h ∴≤=,即有2 ln(1)2 x x x -≤+,当0x =时取等号. 设()ln(1)f x x x =+-,1()10,(0)11 x f x x x x -'=-=≤≥++,则()f x 在[0,)+∞单调递减, ()(0)0f x f ∴≤=,即有ln(1)x x +≤,当0x =时取等号. 综上所述,有不等式:2 ln(1)2 x x x x -≤+≤,(0)x ≥,当0x =时取等号. 如图所示:

知识点060 平方差公式的几何背景(选择)

知识点060 平方差公式的几何背景(选择) 1、(2010?达州)如图所示,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a >b ),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( ) A .(a-b )2=a2-2ab+b2 B .(a+b )2=a2+2ab+b2 C .a2-b2=(a+b )(a-b ) D .a2+ab=a (a+b ) 考点:平方差公式的几何背景. 分析:可分别在正方形和梯形中表示出阴影部分的面积,两式联立即可得到关于a 、b 的恒等式. 解答:解:正方形中,S 阴影=a2-b2; 梯形中,S 阴影=2 1(2a+2b )(a-b )=(a+b )(a-b ); 故所得恒等式为:a2-b2=(a+b )(a-b ). 故选C . 点评:此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键. 2. (2009?内江)在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( ) A .(a+b )2=a2+2ab+b2 B .(a-b )2=a2-2ab+b2 C .a2-b2=(a+b )(a-b ) D .(a+2b )(a-b )=a2+ab-2b2 考点:平方差公式的几何背景. 分析:利用正方形的面积公式可知:阴影部分的面积=a2-b2=(a+b )(a-b ). 解答:解:阴影部分的面积=a2-b2=(a+b )(a-b ). 故选C . 点评:此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式. 3. (2006?襄阳)如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( ) A .(a-b )(a+2b )=a2-2b2+ab B .(a+b )2=a2+2ab+b2 C .(a-b )2=a2-2ab+b2 D .(a-b )(a+b )=a2-b2

《泰勒公式及其应用》的开题报告

《泰勒公式及其应用》的开题报告 《泰勒公式的验证及其应用》的开题报告 关键词:泰勒公式的验证数学开题报告范文中国论文开题报告 1.本课题的目的及研究意义 目的:泰勒公式集中体现了微积分、逼近法的精髓,在微积分学及相关领域的各个方面都有重要的应用。泰勒公式是非常重要的数学工具,现对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 研究意义:在初等函数中,多项式是最简单的函数,因为多项式函数的的运算只有加、减、乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数以一种“逼近”的思想,用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。对泰勒公式的研究就是为了解决上述问题的。 2.本课题的研究现状 数学计算中泰勒公式有广泛的应用,需要选取点将原式进行泰勒展开,如何选取使得泰勒展开后,计算的结果在误差允许的范围内,并且使计算尽量简单、明了。泰勒公式是一元微积分的一个重要内容,不仅在理论上有重要的地位,而且在近似计算、极限计算、函数性质的研究方面也有重要的应用。对于泰勒公式在高等代数中的应用,还在研究中。

3.本课题的研究内容 对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 本课题将从以下几个方面展开研究: 一、介绍泰勒公式及其证明方法 二、利用泰勒公式求极限、证明不等式、判断级数的敛散性、证明根的唯一存在性、判断函数的极值、求初等函数的幂级数展开式、进行近似计算、求高阶导数在某些点的数值、求行列式的值。 三、结论。 4.本课题的实行方案、进度及预期效果 实行方案: 1.对泰勒公式的证明方法进行归纳; 2.灵活运用公式来解决极限、级数敛散性等问题; 3.研究实际数学问题中有关泰勒公式应用题目,寻求解决问题的途径。 实行进度: 研究时间为第8学期,研究周期为9周。 1.前期准备阶段: 收集有关信息进行分析、归类,筛选有价值的信息,确定研究主题;制定课题计划,学习理论。 2.研究阶段:20XX年12月—20XX年4月

行列式的若干应用 毕业论文

行列式的若干应用 The Number of Applications of The Determinants 专业: 数学与应用数学 作者: 指导老师:

摘要 行列式是数学研究中的一类重要的工具之一, 它的应用非常广泛. 本文从以下三个方面对行列式的应用进行了论述: 探讨了行列式与线性方程组的关系以及在解线性方程组中的应用; 举例说明了行列式在初等代数中的应用, 如在因式分解中应用, 证明不等式以及恒等式; 最后综述了行列式在解析几何中的若干应用. 关键词: 行列式; 矩阵; 线性方程组; 秩; 因式分解; 平面组; 点组

Abstract Determinant is a kind of important tools in the mathematical study, it is a very wide range of applications. In this paper, we have been to discuss from the following three aspects of the applications of the determinants: To explore the relationship between the determinant and linear equations and the application in the solution of linear equations; examples of the application of the determinant in algebra, such as the application of factorization, to prove that inequality and identity; in the final, we have made overview of the number of applications of the determinants in analytic geometry. Keywords:Determinant; Matrix; Linear equations; Rank; Factorization; Plane group; Point group

线性代数与空间解析几何总结

线性代数与空间解析几何总结 线性代数和空间解析几何是非数学专业的一门基础课程,可以看做是高等代数和解析几何的简化版。其内容大概分为八章,以线性代数内容为主,穿插少量解析几何知识。全书逻辑严谨,内容关联性强,但是缺乏直观性,对于没有基础的大一新生,不免显得生硬。 第一章主要讲述行列式相关内容,直接给出了行列式的定义。这一章的重点内容是根据行列式的定义推出一些性质,利用定义推导出行列式运算的一些性质,并且根据这些性质灵活的化简计算具体的行列式。其实行列式的计算相当繁琐,我们只需要掌握最基本的一些方法,如构造三角行列式(这种方法很重要,矩阵初等变换也要用)、加边法、递推法等等,还有一个重要的范德蒙行列式需要掌握。在章末,给出了克莱姆法则及其在解方程组时的应用,这本来是线性方程组理论内容,为了强化行列式的应用,放在了第一章介绍。 第二章讲述矩阵的基本内容,这是全书的核心,而矩阵理论也是整个线性代数体系的核心内容之一。这一章内容很多,而且联系复杂,但以矩阵的逆和秩为中心内容。首先,介绍的是矩阵的基本概念,基本分类和基本运算,对于矩阵的运算,比较重要的是矩阵与矩阵之间的乘法,这是个新运算,要多加练习,在此基础上,还引出了方阵的幂的概念。然后就开始通过单位矩阵和1的类比,引出矩阵的逆的概念,给出了矩阵逆的性质,给出了判别矩阵是否可逆的充要条件(以后还有很多补充)和求逆矩阵的伴随矩阵法。接着通过解线性方程组的一般解法,引出矩阵的初等变换,给出了行阶梯型矩阵、行最简型矩阵和标准型矩阵的概念。给出了矩阵秩的定义(显然,一个方阵是否可逆与其是否满秩是等价的),指出初等行变换不会改变矩阵的秩,并给出了求矩阵秩的方法——化矩阵为行阶梯型矩阵。接着,又给出了初等矩阵的定义,并且将矩阵初等变换和矩阵与一个初等矩阵相乘建立起一一对应的关系,用初等变换将矩阵化为标准型,显然,根据初等变换不该变矩阵的秩,则初等变换不改变矩阵可逆性,由于我们可以很容易地观察出标准型矩阵的秩和行列式,所以若一个方阵可逆,它的标准型必然是一个单位阵。于是,每个可逆矩阵都可以写成N个初等矩阵的乘积,且初等矩阵都是可逆的,并且都有其明确的变换意义,我们便利用这个结论给出了求可逆矩阵的一般方法——初等变换法(很重要)。最后一部分介绍的是关于分块矩阵的一些知识,其实这些内容是矩阵内容的推广,把矩阵中的元素由数换成了矩阵,内容可以类比于矩阵进行学习,但要注意由于矩阵并不是数,所以比如说行列式运算与一般矩阵的运算法则不同,这种问题最好还是化为一般矩阵处理,以免超范围使用性质,造成不必要的错误。值得一提的是,分块矩阵的秩的性质很重要,在书的后续内容中有着广泛的应用。 第三章是空间向量,属于向量理论范畴,这是线性代数体系的另一个核心内容,它与线性方程组理论和解析几何有着紧密的联系。本章主要介绍基本的空间几何即三维向量知识,为学习更深一层向量理论给出一个直观印象,这是本书中空间解析几何部分的内容。首先给出三维向量的直观概念,空间中既有大小又有方向的量,然后给出了一些性质;建立坐标系,向量线性运算转化为坐标运算,这些都可以类比于平面向量学习。下面介绍空间中的平面和直线的知识,这是本章的重点。给出了平面在空间直角坐标系中的方程,利用两个平面的交线是直线这一结论给出直线方程的一般形式,根据方程解的情况讨论空间平面和直线的位置关系。空间中主要解决距离和角度两个问题,通过引入的向量积和平面法向量,给出了一系列相关求解公式,当然,理解这些公式的推导是更重要的,这能大大简化问题的求解。最后,书中还给出了平面束和投影的概念,求解直线在某一平面上的投影方程的方法要掌握。

《平方差公式》公开课教案

课程教学教学设计(课时) 课题:§15.2.1 平方差公式 课型:新授课 课时:第课时(总第课时) 授课班级:八年级 授课时间:年月日(第周) 教学目标: 一、知识与技能1.经历探索平方差公式的过程. 2.会推导平方差公式,并能运用公式进行简单的运算. 二、过程与方法1.在探索平方差公式的过程中,培养符号感和推理能力. 2.培养学生观察、归纳、概括的能力 三、情感、态度与价值观在计算过程中发现规律,并能用符号表示,从而体会数学的简捷美. 教学重点:平方差公式的推导和应用. 教学难点:理解平方差公式的结构特征,灵活应用平方差公式. 教学方法:讲练结合 教学过程: Ⅰ、学生动手,归纳公式 1.计算下列多项式的积. (1)(x+1)(x-1)(2)(m+2)(m-2)(3)(2x+1)(2x-1)解:(1)(x+1)(x-1)=x2+x-x-1=x2-12 (2)(m+2)(m-2)=m2+2m-2m-2×2=m2-22 (3)(2x+1)(2x-1)=(2x)2+2x-2x-1=(2x)2-12 2.观察上述算式,你发现什么规律?运算出结果后,你又发现什么规律? 规律:等号的一边是两个数的和与这两个数的差的积,等号的另一边:是这两个数的平方差,它们都是形如(a+b)的多项式与形如(a-b)的多项式相乘,由于(a+b)(a?b) = a2?ab+ab?b2 = a2?b2 所以,对于具有与此相同的形式的多项式相乘,我们可以直接写出运算结果即(a+b)(a?b) = a2?b2,两个数的和与这两个数的差的积等于这两个数的平方差,这个公式叫做(乘法的)平方差公式. 3.公式的特点: 等号的左边:相乘的两个二项式中,有一项完全相 同,另一项互为相反数,右边:完全相同项的平方减符 号相反项的平方

泰勒公式的应用

泰勒公式及其应用

摘要 文章简要介绍了泰勒公式的证明及其推导过程,详细讨论了泰勒公式在最优化理论领域的应用,分别讨论了泰勒公式在理论证明和算法设计上面的应用,并用简单的算例加以说明。 关键词:泰勒公式,最优化理论,应用

一、泰勒公式 1.1 一元泰勒公式 若函数)(x f 在含有x 的开区间),(b a 内有直到1+n 阶的导数,则当函数在此区间内时,可展开为一个关于)(0x x -的多项式和一个余项的和: 1 0)1(00)(200000)()!1()()(!)()(!2)())(()()(++-++-++-''+-'+=n n n n x x n f x x n x f x x x f x x x f x f x f ξ 其中=)(x R n 10)1()()!1() (++-+n n x x n f ξ ξ在x 和0x 之间的一个数, 该余项)(x R n 为拉格朗日余项。 1.1.1 泰勒公式的推导过程 我们知道α+-'+=))(()()(000x x x f x f x f ,其在近似计算中往往不够精确,于是我们需要一个能够精确计算的而且能估计出误差的多项式: n n x x a x x a x x a a x p )()()()(0202010-++-+-+= 来近似表达函数)(x f ; 设多项式)(x p 满足)()()()(),()(0)(0)(0000x f x p x f x p x f x p n n ='='= 因此可以得出n a a a 10,.显然,00)(a x p =,所以)(00x f a =;10)(a x p =',所以 )(01x f a '=;20!2)(a x p ='',所以 !2)(02x f a ''= n n a n x p !)(0) (=,所以有! )(0)(n x f a n n = 所以,n n x x n x f x x x f x x x f x f x p )(! )()(!2)())(()()(00)(2 00000-++-''+ -'+= 1.1.2 泰勒公式余项的证明 我们利用柯西中值定理来推出泰勒公式的余项(拉格朗日余项): 设)()()(x p x f x R n -= 于是有0)()()(000=-=x p x f x R n 所以有0)()()()(0) (000===''='=x R x R x R x R n n n n n 根据柯西中值定理可得: n n n n n n n x n R x x x R x R x x x R ))(1()(0)()()()()(011)1(00)1(0-+'=---=-++ξξ 1ξ是在x 和0x 之间的一个数; 对上式再次使用柯西中值定理,可得:

相关主题