搜档网
当前位置:搜档网 › Linear Time-Variant Modeling and Analysis of All-Digital Phase-Locked Loops

Linear Time-Variant Modeling and Analysis of All-Digital Phase-Locked Loops

Linear Time-Variant Modeling and Analysis of All-Digital Phase-Locked Loops
Linear Time-Variant Modeling and Analysis of All-Digital Phase-Locked Loops

Linear Time-Variant Modeling and Analysis of All-Digital Phase-Locked Loops

Ioannis L.Syllaios,Member,IEEE,and Poras T.Balsara,Senior Member,IEEE

Abstract—All-digital phase-locked loops(ADPLL)are inher-ently multirate systems with time-varying behavior.In support of this statement linear time-variant(LTV)models of ADPLL are presented that capture spectral aliasing effects that are not captured by linear time-invariant(LTI)models.It is analytically shown that the latter are subset of the former.The high-speed modulator that improves the frequency resolution of the digitally-controlled oscillator(DCO)is included,too.It realizes fractional resampling and interpolation of the tuning data of the DCO.The noise transfer from all three operating clock domains of the ADPLL(reference,,and DCO)to its output phase is accurately predicted and design metrics are derived with regard to its folded close-in and far-out phase noise performance.The analytical results are validated via simulations using measured event-driven modeling techniques for a CMOS RF ADPLL. Index Terms—All-digital phase-locked loops(ADPLL),fre-quency synthesizers,jitter transfer,linear time-variant(LTV) analysis,multirate modeling,noise folding,phase noise transfer, resampling,sigma-delta modulation,time-domain simulation.

I.I NTRODUCTION

A DV ANCED low-voltage nanometer-scale CMOS pro-

cesses allow for a large degree of scalability and integration of digital circuitry but greatly increase the de-sign cycle of pure analog or mixed-signal components due to poor process characterization and parameter spread. High-performance frequency synthesis circuits are tradition-ally implemented using a charge-pump phase-locked loop (PLL)with a voltage-controlled oscillator(VCO).In the effort to migrate such analog-centric circuits in the digital-centric regime,recent all-digital PLL(ADPLL)developments ex-plore the fast switching characteristics of MOS transistors of advanced CMOS processes to replace the charge-pump with a time-to-digital converter(TDC)and the VCO with a digi-tally-controlled oscillator(DCO)[1]–[5].The block diagram of a modern ADPLL frequency synthesizer is shown in Fig.1. The quantized bit-to-frequency and time-to-bit conversions in the DCO and the TDC,respectively,result in the generation of synthesized clock signals with reduced spectral purity compared to the synthesized clock signals of high-performance analog-centric counterpart topologies[6],[7].However,?ne bit-to-fre-quency resolution is typically achieved by means of high-speed

Manuscript received June14,2011;revised October03,2011;accepted De-cember31,2011.Date of publication March19,2012;date of current version October24,2012.This paper was recommended by Associate Editor S.-H.Cho.

I.L.Syllaios was with the Department of Electrical Engineering,University of Texas at Dallas,Richardson,TX75083USA.He now is with Broadcom Corp.,Irvine,CA92617USA(e-mail:syllaios@https://www.sodocs.net/doc/922492223.html,).

P.T.Balsara is with the Department of Electrical Engineering,University of Texas at Dallas,Richardson,TX75083USA(e-mail:poras@https://www.sodocs.net/doc/922492223.html,). Color versions of one or more of the?gures in this

paper are available online at https://www.sodocs.net/doc/922492223.html,.

Digital Object Identi?er10.1109/TCSI.2012.2189061Fig.1.Block diagram of a modern ADPLL frequency synthesizer.

dithering of the DCO tuning varactors by exercising?ex-ible-rate clock signals that are derived from the DCO itself using frequency division[8].Similarly,?ne time-to-bit resolution is achieved by employing TDC that realize noise-shaping[2],[9] or time ampli?cation[3].

The operation of a PLL involves in principle two clock sig-nals;the clock of a controlled oscillator(here,the DCO clock )and a very stable reference clock that is normally provided by a crystal oscillator(XO).Under frequency/phase lock conditions the frequency of is a multiple of the fre-quency of according to1Hz,where is the frequency control word(FCW)as shown in Fig.1.For RF wireless applications lies in the range of a few tens of MHz and in the GHz range.

The phase-domain is the natural domain of operation of PLL [10].They operate on the phase/frequency difference between

and the clock of the controlled oscillator under a phase detection mechanism that runs at the-rate.Furthermore,in case of ADPLL,the continuous-time phase information of those clocks is digitally regenerated and represented by discrete-time signals as highlighted in Fig.1.Speci?cally,the reference clock phase data are generated by-rate accumulation of FCW cycles and the composite phase data of are generated with the combination of-rate accumulation of integer cycles and the TDC,which is employed for fractional phase estimation. The resulting phase data of the DCO clock are synchro-nously resampled at the-rate in order to be compared with and produce the phase error data.The latter are?ltered through the digital loop?lter and subsequently control the fre-quency of the DCO by means of the tuning word(TW).Fi-nally,it is often necessary to interpolate the TW data in order to?ne-tune the DCO.A modulator is normally employed 1indicates a clock signal and its frequency.

1549-8328/$31.00?2012IEEE

for this purpose to resample the TW at a high frequency

Hz and subsequently dither the tuning varactors of the DCO in order to improve its effective frequency resolution.

The foregoing discussion highlights that ADPLL are inher-ently multirate systems and as such their multiple signal inter-polation and downsampling operations result in spectral aliasing effects that may degrade their performance[11].Such effects become apparent at the ADPLL output as increased close-in phase noise power spectral density(PSD)due to the folding of high-rate noise such as the phase noise of the DCO and the far-out shaped quantization noise of the modulator or as ex-cessive spurious tones that originate from the harmonic aliasing of limit cycle oscillations in the ADPLL due to its internal?-nite-precision arithmetic operations and the periodic variations of the DCO phase due to coupling and noise in the power supply and substrate[12].

Traditional models of ADPLL are based on linear time-in-variant(LTI)either continuous-time(-domain)or single-rate (i.e.,-rate)discrete-time(-domain)models that are de-rived from sampled-data models using the impulse-invariant transformation method[13]–[17].Such models have served as design basis for both ADPLL and analog charge-pump PLL (CPLL)for the past several years offering adequate predic-tion of their close-in?ltering performance.However,when compared against to sampled-data models they fail to capture the subsampling of the PLL output phase that occurs in the feedback path of the PLL and consequently the folding effects related to it.For these reasons,the loop bandwidth of PLL is designed to only be a fraction of the reference clock frequency (Hz)so that their sampled-data operation is not emphasized in the form of dynamic peaking or instability. Furthermore,the frequency domain analysis of PLL when conducted with-rate-domain models is constrained to the reference clock domain(i.e.,in Hz) and hence does not capture far-out PSD degradations due to the injection of higher-rate noise in the system.It is worth mentioning a recent work[18]that addressed the standalone limitation of a-rate-domain model to predict the folding of VCO phase noise in CPLL by combining it with the contin-uous-time forward path of its originating sampled-data model. The estimation of the folded phase noise power necessitated the modi?cation of the VCO noise source(i.e.,subsampling at the-rate and concurrent injection with the continuous-time noise source)followed by postprocessing of the generated output phase spectral images.

A linear discrete-time multirate model of ADPLL is proposed in this paper to address the limitations of traditional single-rate models to capture spectral aliasing effects that are associated with the actual digital multirate operation of ADPLL.It is sup-ported by solid linear time-variant(LTV)mathematical anal-ysis that accurately predicts the noise transfer from all consid-ered operating clock domains(,and)to the ADPLL output phase.It is analytically shown that the separately modeled noise transfers from the various clock domains of the ADPLL to its output phase converge in a single LTV model with superset structure that reveals how LTI analysis is linked to the LTV analysis of multirate systems in general.In particular,it is shown that their LTV output is effectively their LTI output ?ltered by a periodically time-varying recursive?lter.The so-lution of such a?lter is key for their complete LTV analysis across all their operating clock domains and is provided here in the context of the proposed multirate ADPLL model.This paper extends our work in[11]to account for the fact that the mod-ulator in addition to injecting high-rate quantization noise in the ADPLL it also realizes fractional resampling and interpolation of the tuning data of the DCO.

The folding of the quantization noise of the modulator was studied in[19]in the context of an open loop-rate accu-mulate-and-dump process that overestimated the folded quanti-zation noise power because it bypassed its intermediate interpo-lation at the-rate and integration in the DCO prior to sub-sampling in the TDC.The linearized analysis of jitter transfer in divider-based digital bang-bang PLL was studied in[20]using a discrete-time multirate model,which although accounted for the two clock-domain operation of the studied PLL,it did not accurately capture the jitter folding effects because its feedback divider model included a moving average?lter that attenuated the high frequency content of the PLL output jitter prior to its subsampling.Contrary to[20],a linear discrete-time multirate (two clock-domain)model was proposed in[21]and[22]for the jitter analysis of CPLL where although the effect of the feed-back divider on jitter was accurately modeled as a simple dec-imation operator that outputs one out of every transitions of the CPLL output clock,the followed methodology masked the linkage between LTI analysis and LTV analysis of multirate sys-tems.From the above discussion,it can be concluded that both divider-less ADPLL with actual digital multirate operation and divider-based PLL topologies with effective multirate in-loop jitter propagation share a common ground for their analysis to be conducted using multirate signal processing techniques. Section II develops the proposed linear discrete-time multi-rate model for the ADPLL in Fig.1in the context of integer-operation.The presented methodology is easily extended to ac-count for the fractional-operation,too.Section III performs LTV analysis and leads to the superset LTV model that clearly re?ects the periodically time-varying behavior of ADPLL. Section IV complements Section III with the solution of the periodically time-varying recursive?lter that completes the LTV analysis of multirate systems.Section V derives design metrics that accurately predict the degradation of the close-in phase noise performance of ADPLL due to the aliasing of the DCO phase noise and the far-out shaped quantization noise of the modulator when they are subsampled in the TDC and Section VI validates the analysis via measured time-domain simulation techniques for a CMOS RF ADPLL[23].

II.L INEAR D ISCRETE-T IME M ULTIRATE M ODELING OF

A LL-D IGITAL PLL

The sampled-data(mixed-type)discrete/continuous-time ADPLL model shown in Fig.2serves as the means for transi-tioning to a discrete-time multirate model that closely captures the multirate phase-domain operation of the ADPLL in Fig.1. It was recently proposed in[24]in its simplest form(without the modulator,per the needs of[24])and is enhanced here to account for the fractional interpolation of the-rate TW through the modulator prior to its application to the DCO. The clock signal is derived from the DCO by frequency division with an integer factor,i.e.,.The

SYLLAIOS AND BALSARA:LINEAR TIME-V ARIANT MODELING AND ANALYSIS OF ALL-DIGITAL PHASE-LOCKED LOOPS

2497

Fig.2.Sampled-data(mixed-type)discrete/continuous-time model of the ADPLL frequency synthesizer in Fig.

1.

Fig.3.Multirate model of the DCO.ZOH interpolation of the dithered tuning data by factor(:integer)and phase accumulation. primary advantages of the discrete-time multirate modeling approach over the continuous-time sample-data one is that on one hand is closer to the actual digital multirate operation of ADPLL and on the other hand results in compact analytical formulations because it is constrained to their fastest clock do-main,here in Hz,where for all practical purposes the energy of the subsampled ADPLL output phase is suf?ciently allocated to only a?nite number of spectral images as dictated by.

The transition from the clock domain to the clock domain is modeled with a zero-order-hold(ZOH)operator that mimics the?ip-?op register that applies the interpolated tuning word to the DCO.It is noted that the ZOH operator could be replaced by a more elaborate operator that incorporates the settling behavior of the DCO,too.Although,a simple ZOH in-terface is considered here the?nal analytical results maintain a generic form that can account for second order effects by a simple transfer function replacement.

The continuous-time transfer function of the DCO phase inte-grator with the ZOH interface that reconstructs the data is converted to a discrete-time-rate transfer function using the impulse-invariant transformation method.That is by mathe-matically sampling the continuous-time phase impulse response of the DCO at the-rate in order to capture its development at the rising(or falling)edges of and taking the-trans-form as shown in(1).The resulting discrete-time model of the DCO is shown in Fig.3.It is composed of a-rate integrator succeeded by a discrete-time ZOH reconstruction?lter that in-terpolates the upsampled data prior to phase accumula-tion in the integrator.

(1) In(1),is the-domain transfer function of the ZOH ?lter with and is the -rate-domain transfer function of the discrete-time ZOH interpolation?lter with. The modulator in

addition to injecting-rate quan-tization noise in the ADPLL it also realizes fractional resam-pling and interpolation of the-rate TW data.The resam-pling process is modeled as ZOH interpolation by noninteger Fig.4.Multirate model of the modulator.Fractional resampling of the -rate TW data at the-rate and dithering.

(in general)factor

where and

(are integers and gcd is the greatest common divisor). That is,the transition from the domain to the do-main necessitates an effective sampling rate increase by a factor followed by a sampling rate decrease by a factor,with and,respectively.The complete model of the modulator is shown in Fig.4.It is noted that although the integer-operation is considered in this paper as a driver for introducing the principles for the LTV analysis of ADPLL, the above methodology for modeling the resampling of the TW data in the modulator as fractional-interpolation can also be applied to the modeling of the fractional-operation of PLL.The fractional-operation will be addressed in a future article.

Contrary to PLL topologies that include a frequency divider in their feedback path,in ADPLL with the topology of Fig.1, the DCO phase is directly sampled in the TDC without division. Therefore,a decimation operator naturally replaces the sampler in the feedback path of the sampled-data model in Fig.2in order to interface the discrete-time-rate DCO model of Fig.3 with the-rate section of the ADPLL.

The complete linear discrete-time multirate ADPLL model is shown in Fig.5and it serves as the basis for the LTV analysis of ADPLL that is presented in the following section. It accounts for the coexistence of the three clock domains that are typically involved with its operation(,and )as well as the primary noise sources per clock domain. These are the phase noise of the XO and the induced phase noise due to the?nite resolution of the TDC,both combined in,the quantization noise of the modulator and the phase noise of the DCO(are integer indexes). The noise of XO and the DCO are respectively mod-eled as-rate and-rate discrete-time random sequences that re?ect the absolute jitter of the corresponding clock signal [25].The ADPLL model parameters in Fig.5are listed below.

2498IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I:REGULAR PAPERS,VOL.59,NO.11,NOVEMBER

2012

Fig.5.Discrete-time multirate model of the ADPLL frequency synthesizer in Fig.1.

?:The discrete-time angular frequency that de ?nes the

clock domain.rad.

?:The discrete-time angular frequency that de ?nes the clock domain.rad.

?:The discrete-time angular frequency that de ?nes the clock domain.rad.

?:The discrete-time angular frequency that de ?nes the virtual clock domain.rad.

?:The spectrum of the ADPLL output phase.?:The spectrum of the DCO phase noise.

?:The spectrum of the quantization noise of the

modulator.

?:The spectrum of the -rate resampled TW.?:The spectrum of the reference source.?:The spectrum of the phase error signal ..?:The spectrum of the -rate downsampled

output phase of the ADPLL.

?:The spectrum of the -rate interpolated TW.?:The -rate transfer function of the DCO phase integrator..is the DCO gain in Hz/LSB and sec.

?:The -rate transfer function of the ZOH

?lter that interpolates the -rate modulator output.

.

?:The -rate signal transfer function of the

modulator.

?:The -rate quantization noise transfer func-tion of the modulator.

?:The -rate transfer function of the ZOH ?lter

that interfaces the domain with the domain.

.

?:The -rate loop ?lter transfer function.

III.L INEAR T IME -V ARIANT (LTV)A NALYSIS OF A LL -D IGITAL

PLL A frequency-domain approach is followed for the LTV anal-ysis of the ADPLL using the discrete-time multirate model of Fig.5.Here,the transfer of the DCO phase noise to the ADPLL output phase is detailed and the derivation of the transfer charac-teristics for the remaining noise sources follow the same guide-lines.The superposition principle applies for the total output spectrum on the linearity basis of the model.

The output phase of the ADPLL due to the phase noise of the

DCO is found as follows:

(2)

According to the discussion in Section II,results after frac-tional resampling and interpolation of the -rate TW.The transition from the domain to the domain is math-ematically described by -rate ZOH interpolation fol-lowed by sampling rate decrease by factor .The integer fac-tors and re ?ect the smallest integers whose ratio equals to and depending on the values of (and hence those of )a virtual clock domain is de ?ned with

Hz that serves as the means

for the fractional-interpolation of the -rate TW at the

-rate.Therefore,the resampled -rate is effectively

the downsampled

and their spectrums are described by (3)and (4),respectively [26],[27].

(3)(4)

The spectrum of the subsampled output phase of the ADPLL

at the output of the TDC completes (4)and is given as

(5)

After placing (3)–(5)in (2)

is found as

(6)

SYLLAIOS AND BALSARA:LINEAR TIME-V ARIANT MODELING AND ANALYSIS OF ALL-DIGITAL PHASE-LOCKED LOOPS

2499

Fig.6.Magnitude responses of and for a type-II second-order ADPLL with MHz, GHz MHz

kHz/LSB and error-free DCO gain normalization.

where is a high-pass transfer function seen by the DCO phase noise,is a low-pass transfer function,inherent in the ADPLL structure,seen by the images of the output phase spectrum at integer multiples of Hz due to subsam-pling of the DCO phase in the TDC,and is a band-pass transfer function,also inherent in the ADPLL structure,seen by the images of the subsampled output phase at integer mul-tiples of Hz that result after resampling the-rate TW at the-rate.They are formulated as

(7)

(8)

(9) where

A realization of the magnitude responses of

and is shown in Fig.6.

Following the same procedure for the noise sources that orig-inate from the and clock domains,it is found that the spectrum of the output phase of the ADPLL has a similar ex-pression as(6)with the exception that is replaced by the interpolative transfer functions seen by the reference source and the induced quantization noise of the modulator.They are described by(10)and(11),respectively.

(10)

(11) The superposition of the individual output spectra contribu-tions from the three clock domains results in the total spectrum of the ADPLL output phase.It is analytically expressed by the superset equation(12)and on its basis the discrete-time multirate ADPLL model in Fig.5can be equivalently redrawn as shown in Fig.7.The?rst term of(12),[expanded in(13)],a natural outcome of the presented re?ects the output phase spectrum that is predicted after traditional LTI analysis of the discrete-time multirate ADPLL model in Fig.5.That is,by neglecting the spectral images of a down-sampled-by-discrete-time signal or,equivalently,by assuming that.

(12)

(13) The periodically time-varying coef?cients of the LTV model in Fig.7clearly re?ect the time-varying behavior of the ADPLL and its superset structure encompasses the traditional LTI models,too.The scope of LTI models is limited to its upper left section and its right section indicates that LTV models are equivalent to LTI models with a periodically time-varying recursive?ltering operation applied to their output.Such time-varying?ltering operation is effectively the result of sub-sampling the DCO phase with the reference clock in the TDC and subsequently resampling it via the TW in the modu-lator.The?rst operation results in the frequency translation of the ADPLL output phase spectrum at integer multiples of the reference clock frequency and the second one in its additional translations at integer multiples of the modulator clock frequency.These frequency translations are attributed to the two sets of periodically time-varying coef?cients of the LTV model and their effect becomes apparent at the ADPLL output as increased close-in phase noise power due to the folding of high-rate noise that is injected in the system such as the phase noise of the DCO and the far-out shaped quantization noise of the modulator,or as excessive spurious tones that originate from the harmonic aliasing of periodic signals in the ADPLL.The signal spectral images that are generated due to the multirate operation of the ADPLL are inherently?ltered by and.

A close of the LTV model in Fig.7reveals that the subsampling of the ADPLL output phase in the TDC(see the upper right section of the LTV model)directly impacts the close-in phase noise performance of the ADPLL because of the effective all-pass response of at small frequency offsets (see Fig.6).On the other hand,folded phase noise power due to the resampling of the phase error signal via the TW in the modulator(see the lower section of the LTV model)has minimal effect on the close-in phase noise performance of the ADPLL because of the high-pass response of at small frequency offsets(see Fig.6).Furthermore,under frequency/phase lock conditions of a practical ADPLL system it is expected that the phase error noise power is low and in conjunction with a

2500IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I:REGULAR PAPERS,VOL.59,NO.11,NOVEMBER

2012

Fig.7.Linear time-variant model of the ADPLL frequency synthesizer in Fig.1,as per(12).The lower section in the dashed line highlights the effect of the modulator on the phase error performance of the ADPLL.The upper left section highlights that LTI analysis is subset of LTV analysis.

dithering clock with frequency that satis?es the Nyquist crite-rion Hz,the effect of resampling the TW on the phase noise performance of the ADPLL is negligible.It can thus be concluded that for noise analysis purposes the third term of (12)can safely be neglected to only account for the primary second-order effects that result after subsampling the ADPLL output phase in the TDC,i.e.,

(14) It is worth noting that when the ratio is in-teger(i.e.,),(12)is naturally reduced to(14)and the lower section of the LTV model vanishes.The solution of(14) is key for the complete LTV analysis of the ADPLL across all its operating clock domains and is provided next.

IV.S OLUTION FOR(14)

Equation(14)describes the fundamental LTV system shown in Fig.8that bridges the LTI with the LTV analysis of mul-tirate systems.Its solution is provided here in the context of ADPLL following a frequency-domain approach.Speci?cally, the images of at integer multiples of the reference clock frequency,re?ected in for

,are?rst extracted by rotating. This is easier facilitated after transforming(14)to a suitable form that allows us to take advantage of the periodicity of the discrete-time Fourier transform.To this end,the sum on the right-hand side of(14)is?rst completed as

(15) and with the assistance of(5)the spectrum of the ADPLL output phase is equivalently expressed as

(16) where

(17)

(18) Equation(16)is rotated by replacing with

and the resulting images for are added to yield

(19)

SYLLAIOS AND BALSARA:LINEAR TIME-V ARIANT MODELING AND ANALYSIS OF ALL-DIGITAL PHASE-LOCKED LOOPS

2501

Fig.8.Fundamental LTV system as per(14)that bridges the LTI with the LTV analysis of ADPLL.It describes how the subsampling of the DCO phase in the TDC affects the output phase of the ADPLL.

where is periodic with period rad.is now replaced by

to?nd the extracted spectrum of images of

(20) The solution of(14)is analytically given by(21),which results after replacing the second term of(14)with(20)and solving with respect to.

(21) where

(22)

(23)

A realization of the magnitude responses of and

is shown in Fig.9.It can be seen that for all practical purposes and,which leads to the following simpli?cation of(21)

[11]:

(24)Fig.9.Magnitude responses of(22)and(23)for the same con?guration of the ADPLL as in Fig.6.The magnitude response of is also shown for comparison purposes with(23).

Fig.10.Single-sided(half-power)PSD of the DCO phase noise pro?le.

On the basis of(24)the PSD of the ADPLL output phase for uncorrelated noise sources is obtained as

(25) where

(26) V.ADPLL O UTPUT C LOSE-I N P LATEAU OF F OLDED DCO P HASE N OISE AND Q UANTIZATION N OISE

A.Close-In Plateau of Folded DCO Phase Noise

The phase noise spectrum of the DCO is described by the phase noise pro?le shown in Fig.10.It is composed of the three

2502IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I:REGULAR PAPERS,VOL.59,NO.11,NOVEMBER2012

regions that are typically observed in measurements,namely the thermal(0dB/dec),the wander(20dB/dec)and the?icker (30dB/dec).They re?ect the non-accumulative thermal phase noise and the accumulative thermal and?icker phase noise of the DCO,respectively.

Equation(27)describes the phase noise pro?le of the DCO in rad/Hz in conjunction with the speci?cations shown in Fig.10.It is used for the calculation of the ADPLL output close-in plateau that results after the subsampling of the DCO phase noise in the TDC.

(27) In(27),rad/sec,is the thermal phase noise ?oor and the(power density,frequency offset)pairs

and de?ne the20dB/dec and30dB/dec regions of the phase noise pro?le of the DCO shown in Fig.10,respec-tively.

is obtained using(29),which results after evaluating the term of(25)at rad(i.e.,at the center frequency of the DCO clock)for

(28) Equation(28)in(25)reveals that when the phase noise of the DCO is subsampled in the TDC is frequency translated un?l-tered by and because of the effective all-pass response of at small frequency offsets directly impacts the phase noise performance of the ADPLL.

(29) In(29)a large value for was assumed for the ap-proximation of the summations and

with and1.2,respectively.The second and third terms of(29)agree with the?ndings in[18]in the context of the phase noise of a VCO in CPLL by determining and

at Hz,respectively.

The power density of the colored(wander and?icker)phase noise of the DCO of a well-designed ADPLL should be equal to or lower than the phase noise plateau that is contributed from the quantization noise of the TDC at the loop bandwidth frequency offset,which is normally constrained in the range of up to a few hundreds of kHz.For a today’s nanometer scale CMOS process technology the latter would correspond to dBc/Hz for a TDC with a

near ps resolution,a DCO clock in the1.5GHz range and a reference clock frequency of a few tens of MHz.was estimated Fig.11.ADPLL output

close-in plateau(normalized to)due to the folded thermal phase noise of the DCO,as the?rst term of(29).

Fig.12.ADPLL output close-in plateau(normalized to and) due to the wander and?icker phase noise of the DCO as per the second term and third term of(29),respectively..

using the formula

[28].Under the assumption that the ADPLL loop bandwidth

Hz and that at

Hz,in the absence of thermal phase noise, the second and third terms of(29)would induce a close-in plateau equal to

(30) It can therefore be concluded that the contribution of the colored phase noise of the DCO to the close-in folded phase noise power is negligible and that the latter is practically dominated by its thermal phase noise(see also Figs.11and12).The foregoing discussion leads to the rule of thumb(31)that the thermal phase noise?oor of the DCO should satisfy so that does not affect the close-in noise performance of the Equation(31)accounts for the thermal phase noise?oor of the reference clock,too.

(31)

SYLLAIOS AND BALSARA:LINEAR TIME-V ARIANT MODELING AND ANALYSIS OF ALL-DIGITAL PHASE-LOCKED LOOPS

2503

Fig.13.ADPLL output close-in plateau(normalized to)in-duced by a?rst order modulator,as per(33)[for].

B.Close-In Plateau of Folded Quantization Noise

The ADPLL output close-in plateau of the folded far-out quantization noise of the is obtained using(33)after evaluating the second term of(25)at

rad for

(32) The factor has been introduced for proper scaling.

(33) In(33)the DCO gain is de?ned in Hz/LSB and is the order of the high-pass transfer function

that shapes the quantization noise of a MASH modulator [29]–[31].Its quantization noise is considered white with PSD

for Hz.

has been evaluated for typically used division fac-tors and plotted normalized with respect to in Figs.13–15for up to third-order modulators,respectively. The dashed lines correspond to the values of that sat-isfy the boundary condition of the relation(i.e., ),which re?ects the Nyquist criterion

Hz.

Equation(32)can also be used for the prediction of the far-out peaking of the ADPLL output phase noise spectrum near

Hz that results from the high-pass noise shaping functionality of the modulator.The power density in rad/Hz of this local maximum is obtained by(34)at,the frequency of the?rst maximum of

(32).

(34)Fig.14.Similarly as in Fig.13for a third order modulator,as per(33)[for ].

Fig.15.Similarly as in Fig.13for a second order modulator,as per(33) [for].

A close inspection of(34)in conjunction with(32)reveals that the far-out high-pass noise shaping functionality of a?rst-order modulator is masked by the phase integrator of the DCO and its ZOH interface.In particular,for it is converted to an effective all-pass?lter and for to a moving average?lter with variable dc gain.However,higher-order modulators behave as expected for all values of.has been evaluated for the same division factors and modulator orders as in Figs.13–15and plotted normalized with respect to in Fig.16.For the case where and frequency re?ects the3-d

B bandwidth of the moving average?lter with transfer function.

Figs.13–16may be utilized as design guides for the optimal selection of the modulator order and its frequency of op-eration through the value of,given far-out and close-in PSD speci?cations.Although a?rst-order modulator would in theory always produce the lowest far-out and close-in power density levels for a given set of values,its typical realization as a digital accumulator renders it impractical for its intended purpose,which is the improvement of the effec-tive frequency resolution of the DCO.This is because a digital accumulator has very poor phase error randomization properties

2504IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I:REGULAR PAPERS,VOL.59,NO.11,NOVEMBER

2012

Fig.16.ADPLL output far-out peak PSD near Hz(normalized to)that results from the shaping func-

modulator,as per(34).

[32],[33]that mask its underlined high-pass noise shaping char-acteristic even under the self-dithered operation of the ADPLL. For these reasons higher order modulators are preferred that are based on a MASH(Multi-stAge noise-SHaping)structure of cascaded digital accumulators that often employ additional dithering mechanisms for spur-free operation[34],[35].

VI.V ALIDATION

The proposed linear discrete-time multirate ADPLL model in Fig.5and its LTV analysis are validated in this section via time-domain simulations.They are based on event-driven modeling techniques for ADPLL that have been validated with measurements of an actual CMOS RF ADPLL[23].A type-II second-order system has been selected with loop?lter transfer function,which results in a loop with damping factor and bandwidth MHz for a reference clock frequency MHz.Although a practical RF ADPLL would require a much smaller loop bandwidth so that spurious tones due to its?nite-precision arithmetic are adequately suppressed,here this requirement is relaxed and ?oating-point arithmetic is assumed so that the noise aliasing effects are clearly visible at small frequency offsets(kHz). The resolution of the TDC is chosen to be ps,which for a DCO clock with frequency GHz results in an output close-in plateau

(35) The PSD of the colored(wander and?icker)phase noise of the DCO at MHz offset is de-?ned to be dBc/Hz.However, without deviating from the scope of this paper,the?icker phase noise of the DCO is neglected in order to allow an additional 10dB/dec headroom on top of its40dB/dec high-pass atten-uated wander phase noise for the folded ADPLL output phase noise to be clearly visible.According to(29)both the wander and the?icker phase noise independently have minor effect to the ADPLL output close-in folded phase noise power[see(36)and(37),respectively].Equation(37)justi?es that the?icker phase noise of the DCO can safely be neglected.Finally,the phase noise of the reference clock(XO)is ignored since its pur-pose in this paper is served through the-rate quantization noise of the TDC being captured in.

(36)

(37) The presented LTV analysis is validated via two represen-tative simulations that explore(29)–(31),which pertain to the design speci?cation of the DCO phase noise and(33)–(34), which pertain to the optimal selection of the order and operating frequency of the modulator,given a far-out peak power density level requirement.The DCO gain is?to500 kHz/LSB and.

?Simulation-1:The power of the thermal phase noise of the DCO is set according to(38)so that after subsampling in the TDC induces a close-in https://www.sodocs.net/doc/922492223.html,ing

(29)and after neglecting its colored phase noise the above

requirement corresponds to

(38)

A third-order modulator is initially selected and its op-

eration frequency is set by means of

so that.This would result in a dB increase the output PSD level above

near Hz.This requirement is chosen here to vali-date the ability of the presented LTV analysis to accurately predict the ADPLL output spectrum beyond the reference clock domain frequencies(i.e.,for Hz).Ac-cording to Figs.16and14a division factor leads to MHz and the following peak(at45.634 MHz)and folded power densities,respectively:

(39)

(40)

Based on the above conditions the composite spectrum of the ADPLL output phase noise should be in line with the following far-out peak,aliased and total close-in plateaus:

(41)

(42)

(43)

(44)

The analytically derived PSD of the ADPLL output phase noise using(25)and(26)are shown in Fig.17superim-posed on the PSD of the phase noise data of the ADPLL

SYLLAIOS AND BALSARA:LINEAR TIME-V ARIANT MODELING AND ANALYSIS OF ALL-DIGITAL PHASE-LOCKED LOOPS2505

output clock timestamps,proving the conditions of Simu-lation-1hence the validity of the presented discrete-time multirate ADPLL model and LTV analysis.?Simulation-2:The power of the thermal phase noise of the DCO is set according to(45)so that after subsampling in the TDC induces a close-in plateau that is10dB lower than .This condition re?ects the rule of thumb(31).Using

(29)and after neglecting its colored phase noise the above

requirement corresponds to

(45)

Fig.16is used to optimize the order and operation fre-quency of the modulator so that is also re-duced by10dB compared to(39).A10dB improvement in can be achieved by either reducing to(a

2.33increase in)or by switching to a second-order

modulator and reducing to(a1.56increase in).The second approach is followed here,which ac-cording to Fig.16and15leads to the following peak(at

59.074MHz)and folded power densities:

(46)

(47)

Based on the above conditions the composite spectrum of the ADPLL output phase noise should be in line with the following far-out peak,aliased and total close-in plateaus:

(48)

(49)

(50)

(51)

The analytically derived PSD of the ADPLL output phase noise using(25)and(26)are shown in Fig.18superim-posed on the PSD of the phase noise data of the ADPLL output clock timestamps.They prove the conditions of Simulation-2and highlight that the optimization of the high-rate noise sources of the ADPLL,such as the DCO and the modulator,in accordance with the presented LTV analysis can drastically improve their related noise aliasing effects and give rise to an effective LTI behavior.

VII.C ONLCUSION

In this article,a linear discrete-time multirate model for all-digital PLL(ADPLL)has been proposed to address the limitations of traditional linear time-invariant(LTI)single-rate models to capture spectral aliasing effects that are associated with their actual digital multirate operation.The high-speed modulator that is normally employed for the improvement of the effective frequency

resolution of the digitally-controlled oscillator(DCO)has been included,too.In addition to injecting Fig.

17.Simulated and analytically predicted PSD of the ADPLL output clock phase noise,per Simulation-1.

Fig.18.Simulated and analytically predicted PSD of the ADPLL output clock phase noise,per Simulation-2.

high-rate quantization noise in the ADPLL it also realizes frac-tional resampling and interpolation of the tuning data of the DCO.The noise transfer from all considered operating clock domains of the ADPLL(reference,,and DCO)to its output phase has been predicted using linear time-variant(LTV) analysis and design metrics have been derived with reference to its folded close-in and far-out phase noise performance.It was shown that the separately modeled noise transfers from the various clock domains of the ADPLL to its output phase converge in a single LTV model with superset structure that reveals the linkage between LTI and LTV analysis of multirate systems in general.Speci?cally,it was shown that their LTV output is effectively their LTI output?ltered by a periodically time-varying recursive?lter.The solution of such?lter is key for their complete LTV analysis across all their operating clock domains and has been provided here in the context of the proposed multirate ADPLL model.The analytical results have been validated via simulations using measured event-driven time-domain modeling techniques for a CMOS RF ADPLL.

2506IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I:REGULAR PAPERS,VOL.59,NO.11,NOVEMBER2012

R EFERENCES

[1]R.B.Staszewski et al.,“All-digital phase-domain TX frequency syn-

thesizer for Bluetooth radios in0.13m CMOS,”in Proc.IEEE ISSCC Tech.Papers,Feb.2004.

[2]C.Hsu,M.Z.Straayer,and M.H.Perrott,“A low-noise wide-BW

3.6-GHz digital fractional-N frequency synthesizer with a noise-

shaping time-to-digital converter and quantization noise cancellation,”

IEEE J.Solid-State Circuits,vol.43,no.12,pp.2776–2786,Dec.2008.

[3]M.Lee,M.E.Heidari,and A.A.Abidi,“A low-noise wideband digital

phase-locked loop based on a coarse-?ne time-to-digital converter with subpicosecond resolution,”IEEE J.Solid-State Circuits,vol.44,no.

10,pp.2808–2816,Oct.2009.

[4]C.Weltin-Wu et al.,“A3.5GHz wideband ADPLL with fractional spur

suppression through TDC dithering and feedforward compensation,”in Proc.IEEE ISSCC Tech.Papers,Feb.2010,pp.468–469.

[5]T.Tokairin et al.,“A2.1-to-2.8GHz alldigital frequency synthesizer

with a time-windowed TDC,”in Proc.IEEE ISSCC Tech.Papers,Feb.

2010,pp.470–472.

[6]E.Temporiti et al.,“Insights into wideband fractional all-digital PLLs

for RF applications,”in Proc.IEEE Custom Integr.Circuits Conf.

(CICC),Sept.2009,pp.37–44.

[7]H.Hedayati,W.Khalil,and B.Bakkaloglu,“A1MHz bandwidth

6GHz0.18m CMOS type-I fractional-N synthesizer for WiMAX applications,”IEEE J.Solid-State Circuits,vol.44,no.12, pp.3244–3252,Dec.2009.

[8]R.B.Staszewski et al.,“A digitally controlled oscillator in90nm dig-

ital CMOS process for mobile phones,”IEEE J.Solid-State Circuits, vol.40,no.11,pp.2203–2211,Nov.2005.

[9]R.B.Staszewski,K.Waheed,and S.Vemulapalli,“Elimination of spu-

rious noise due to time-to-digital converter,”in Proc.IEEE Dallas Cir-cuits Syst.Workshop:Design,Appl.,Integr.,Softw.(DCAS),Oct.2009.

[10]B.Razavi,RF Microelectronics.Upper Saddle River,NJ:Prentice-

Hall,1998.

[11]I.L.Syllaios and P.T.Balsara,“Multi-clock domain analysis and mod-

eling of all-digital frequency synthesizers,”in Proc.IEEE Int.Symp.

Circuits Syst.(ISCAS),May2011,pp.153–156.

[12]A.Hajimiri and T.H.Lee,“A general theory of phase noise in electrical

oscillators,”IEEE J.Solid-State Circuits,vol.33,no.2,pp.179–194, Feb.1998.

[13]F.M.Gardner,“Charge-pump phase-lock loops,”IEEE Trans.

Commun.,https://www.sodocs.net/doc/922492223.html,-28,no.11,pp.1849–1858,Nov.1980.

[14]J.P.Hein and J.W.Scott,“-domain model for discrete-time PLL’s,”

IEEE Trans.Circuits Syst.,vol.35,no.11,pp.1393–1400,Nov.1988.

[15]R.B.Staszewski and P.T.Balsara,“Phase-domain all-digital phase-

locked loop,”IEEE Trans.Circuits Syst.II,Exp.Briefs,vol.52,no.3, pp.159–163,Mar.2005.

[16]S.Mendel and C.V ogel,“A-domain model and analysis of phase-

domain all-digital phase-locked loops,”in Proc.IEEE Norchip,Nov.

2007.

[17]P.K.Hanumolu et al.,“Analysis of charge-pump phase-locked loops,”

IEEE Trans.Circuits Syst.I,Reg.Papers,vol.51,no.9,pp.1665–1674, Sep.2004.

[18]S.Levantino et al.,“Folding of phase noise spectra in charge-pump

phase-locked loops induced by frequency division,”IEEE Trans.Cir-cuits Syst.II,Exp.Briefs,vol.57,no.9,pp.671–675,Sep.2010. [19]P.Madoglio et al.,“Quantization effects in all-digital phase-locked

loops,”IEEE Trans.Circuits Syst.II,Exp.Briefs,vol.54,no.12,pp.

1120–1124,Dec.2007.

[20]N.Da Dalt,“Linearized analysis of a digital Bang-Bang PLL and its va-

lidity limits applied to jitter transfer and jitter generation,”IEEE Trans.

Circuits Syst.I,Reg.Papers,vol.55,no.11,pp.3663–3675,Dec.2008.

[21]S.D.Vamvakos,V.Stojanovic,and B.Nikolic,“Discrete-time,cyclo-

stationary phase-locked loop model for jitter analysis,”in Proc.IEEE Custom Integr.Circuits Conf.(CICC),Sep.2009,pp.637–640. [22]S. D.Vamvakos,V.Stojanovic,and B.Nikolic,“Discrete-time,

linear periodically time-variant phase-locked loop model for jitter analysis,”IEEE Trans.Circuits Syst.I,Reg.Papers,vol.55,no.11, pp.1211–1224,Jun.2011.

[23]I.L.Syllaios,R.B.Staszewski,and P.T.Balsara,“Time-domain mod-

eling of an RF all-digital PLL,”IEEE Trans.Circuits Syst.II,Exp.

Briefs,vol.55,no.6,pp.601–605,Jun.2008.

[24]I.L.Syllaios,P.T.Balsara,and R.B.Staszewski,“Recombination of

envelope and phase paths in wideband polar transmitters,”IEEE Trans.

Circuits Syst.I,Reg.Papers,vol.57,no.8,pp.1891–1903,Aug.2010.

[25]U.Moon,K.Mayaram,and J.T.Stonick,“Spectral analysis of time-do-

main phase jitter measurements,”IEEE Trans.Circuits Syst.II,Analog

Digit.Signal Process.,vol.49,no.5,pp.321–327,May2002.

[26]R.W.Schafer and L.R.Rabiner,“A digital signal processing approach

to interpolation,”Proc.IEEE,vol.61,no.6,pp.692–702,Jun.1973.

[27]J.G.Proakis and D.G.Manolakis,Digital Signal Processing:Prin-

ciples,Algorithms,and Applications.Upper Saddle River,NJ:Pren-

tice-Hall,1996.

[28]R.B.Staszewski and P.T.Balsara,All-Digital Frequency Synthesizer

in Deep-Submicron CMOS.Hoboken,NJ:Wiley,2006.

[29]Y.Matsuya et al.,“A16-bit oversampling A-to-D conversion tech-

nology using triple-integration noise shaping,”IEEE J.Solid-State Cir-

cuits,vol.22,no.6,pp.921–929,Dec.1987.

[30]https://www.sodocs.net/doc/922492223.html,ler and R.J.Conley,“A multiple modulator fractional divider,”

IEEE Trans.Instrum.Meas.,vol.40,no.3,pp.578–583,Jun.1991.

[31]T.Riley,M.A.Coperland,and T.A.Kwasniewski,“Delta-sigma mod-

ulation in fractional-N frequency synthesis,”IEEE J.Solid-State Cir-

cuits,vol.28,no.5,pp.553–559,May1993.

[32]R.M.Gray,“Quantization noise spectra,”IEEE Trans.Inf.Theory,vol.

36,no.6,pp.1220–1244,Nov.1990.

[33]P.P.Sotiriadis,“Spurs suppression and deterministic jitter correction

in all-digital frequency synthesizers,current state and future direc-

tions,”in Proc.IEEE Int.Symp.Circuits Syst.(ISCAS),May2011,pp.

422–425.

[34]S.Pamarti and I.Galton,“LSB dithering in MASH D/A con-

verters,”IEEE Trans.Circuits Syst.I,Reg.Papers,vol.54,no.4,pp.

779–790,Apr.2007.

[35]K.Hosseini and M.P.Kennedy,“Maximum sequence length MASH

digital Delta-Sigma modulators,”IEEE Trans.Circuits

Syst.I,Reg.Pa-pers,vol.54,no.12,pp.2628–2638,Dec.2007.

Ioannis L.Syllaios received the B.S.E.E.(summa

cum laude),M.S.E.E.,and Ph.D.degrees from the

University of Texas at Dallas,Richardson,in2003,

2005,and2010,respectively.

In2007,he held a design engineer position within

the Digital RF Processor(DRP)group of Texas In-

struments,Dallas.Since early2011he has been a

Staff Scientist within the Mobile and Wireless Group

of Broadcom Corporation,Irvine,CA,performing re-

search and development on wireless communication

systems.He has a patent pending.

Dr.Syllaios regularly serves as reviewer for several IEEE Transactions and

conferences.He is a member of the IEEE Analog Signal Processing Technical Committee(ASPTC).

Poras T.Balsara(M’85–SM’95)received the

L.E.E.diploma in electronics from Victoria Jubilee

Technical Institute,Mumbai,India,in1980,the B.E.

(electrical)degree from the University of Bombay,

Mumbai,in1983,and the M.S.and Ph.D.degrees

from the Pennsylvania State University,University

Park,in1985and1989,respectively.

In1989,he joined the faculty of the Erik Jonsson

School of Engineering and Computer Science,

University of Texas at Dallas,Richardson,where is

currently a Professor of Electrical Engineering.He has published several journal and conference publications and has coauthored one book.His research interests include VLSI design,design of energy-ef?cient digital circuits and systems,circuits and systems for DSP and communications, computer arithmetic,and digitally assisted mixed-signal and power electronics circuits.His recent work includes the design of CMOS all-digital phase-locked loops(ADPLL)and other digitally intensive front-end circuits for wireless transceivers.

能源概论课后习题带答案

第一章 ?1、人类面临的能源挑战的两大矛盾是什么? ?能源的有限供给与经济发展日益扩大的能源需求之间的矛盾。 ?能源的大量使用与环境形势日益加剧之间的矛盾。 ?2、对未来能源的要求是什么? ?未来将被广泛使用的新能源中,首先在能源总量上必须能满足人类对能源的整体需求水平。其次,将完全替代传统能源的新能源会遍布人类生活的每一个角落。 ?3、有可能成为人类社会的未来能源有哪些? ?从目前的发展态势看,氢能、太阳能、地热能及核能(聚变)将成为未来人类社会的主流能源。其中氢能包括:可燃冰、页岩气、煤层气、生物质能等。 ?4、能源和材料有什么关系? ?能源的发展离不开材料的支撑; ?世界能源消耗在持续增长,80%的能源来自于化石燃料,从长远来看,需要没有污染和可持续发展的新型能源来代替所有化石燃料,未来的清洁能源包括氢能、太阳能、地热能、核聚变能等。而解决能源问题的关键是能源材料的突破,无论是提高燃烧效率以减少资源消耗,还是开发新能源及利用可再生能源都与材料有着极为密切的关系 5、什么是合同能源管理? ?合同能源管理是一种新型的市场化节能机制。其实质就是以减少的能源费用来支付节能项目全部成本的节能业务方式。这种节能投资方式允许客户用未来的节能收益为工厂和设备升级,以降低运行成本;或者节能服务公司以承诺节能项目的节能效益、或承包整体能源费用的方式为客户提供节能服务。 第二章 1、何为能源?什么是二次能源? ?所谓能源,是指能够直接或经过转换而获取某种能量的自然资源 ?二次能源是由一次能源经过加工或转换得到的其他种类和形式的能源,包括煤气、焦炭、汽油、柴油、电力、蒸汽、核电等。一次能源无论经过几次转换所得到的另一种能源都被称为二次能源。二次能源比一次能源的利用更为有效、更为清洁、更为方便。 2、地球变暖的原因到底是什么? ?人类使用能源一天所放出的热量 =0.1 ?1016kJ; ?地球一天从太阳获得的热量 =1500 ?1016kJ。 ?太阳射向地球的光约1/3被云层、冰粒和空气分子反射回去; ?约25%穿过大气层时暂时被大气吸收起到增温作用,但以后又返回到太空; ?其余的大约37%则被地球表面吸收。这些被吸收的太阳辐射能大部分在晚间又重新发射到天空。 ?如果这部分热量遇到了阻碍,不能全部被反射出去,地球表面的温度就会升高。3、大气环境的三大问题包括哪些具体内容? 酸雨,臭氧层破坏,温室效应 4、什么是可持续发展?可持续发展的深刻内涵是什么? 指在保护环境的条件下既满足当代人的需求,又不损害后代人的需求的发展模式。

上个世纪的飞雪和溪流阅读训练题及答案

上个世纪的飞雪和溪流迟子建去年深冬,在回故乡的慢行列车上,我遇见了两个老者。他们一胖一瘦,愉快地交谈。其中的一个说,四十多年前的一个夜晚,他驾着手推车,从山上拉烧柴回家。走到半程时,天飘起了雪花。雪越下越大,到了一个三岔路口时,他习惯地上了一条路。然而走了一会儿,他发现那路越走越生,于是掉转车头,又回到岔路口。雪花纷纷扬扬的,天又黑,他分辨不出南北东西了,于是凭着直觉,又踏上了一条路。可是他越走越心虚,因为那条路似乎也是陌生的,他害怕了,又一次回到岔路口。深夜时,家人寻来了。他这才知道,他第一次踏上的路,是正确的。只不过因为雪太大,改变了路的风貌。那人说:“谁能相信,我让雪花给迷了路呢!要是搁现在,可能吗?”他指着车窗外的森林说:“看看,这雪一年比一年小,风一年比一年大,这还叫大兴安岭吗?”透过车窗,我看见稀疏的林地上,覆盖着浅浅的积雪,枯黄的蒿草在风中舞动。而在雪大的年份,那些蒿草会被雪深深地埋住,你是看不到的。天虽然仍是蓝的,可因为雪少得可怜,那幅闪烁的冬景给人残破不堪的感觉。而这样的景象,在大兴安岭,自新世纪以来,是越来越司空见惯了。我想起童年在小山村的时候,每逢冬天来临,老天就会分派下一项活儿,等着我们小孩子来接收,那就是扫雪。那个年代的雪,真是恋人间啊!常常是三天一小场,十天一大场,很少碰到一个月没有雪的时候。雪会大到什么程度呢?有的时候,它闷着头下了一夜,清晨起来,你无法出去抱柴了,因为大雪封门了。这个时候,就得慢慢地推门,让它渐渐透出缝隙,直到能伸出笤帚,一点点地掘开雪,门才会咧开嘴,将满院子的白雪推进你的视野,有如献给你一个明朗的笑。那个年代,不光是雪多,溪流也是多的。夏天,我们常到山上玩,渴了,随时捧山间的溪水来喝。溪水清冽甘甜,带着草木的清香,我喝的这世上最好的水,就是大兴安岭的溪水。那时植被好,雨水丰沛,因而溪流纵横。女孩们夏天洗衣服,爱到溪水旁。省了挑水,可以洗个透彻。洗衣服的时候,蝴蝶和蜻蜓在你眼前飞来飞去的,它们的翅膀有时会温柔地触着你的脸;而溪水中呢,不仅浸泡着衣服,还浸泡着树和云的影子,好像它们嫌自己不干净,要你帮着洗一洗似的。大兴安岭的河流,到了冬天都封冻了。柔软的水遇到零下三四十度的严寒,哪有不僵的呢?可母亲告诉我,我们家在设计队住的时候,后山上有一道泉水,冬天是不冻的。母亲说,我们后来搬家了,所以那道泉水在那座山上,究竟活了多少个冬天,她是不知道的。大兴安岭的开发,使林木资源日渐匮乏,小时候常见的参天大树,好像都被老天召走,做了另一个世界晚祷的蜡烛,难觅踪影了。而那如丰富的神经一样遍布大地的溪流,也悄然消逝了。我已故的爱人,他曾天真地对我说:“大兴安岭全境人口不过五十多万,我看不如把所有的人口都迁出去,异地安置,做到真正的封山。几十年后,树茂盛了,溪水也充沛了,中国会留下最好的一片原始森林。”可我知道,这样的想法,无论是在他生前还是死后,都是“天上的想法”。我怀念上个世纪故乡的飞雪和溪流。我幻想着,有一天,它们还会在新世纪的曙光中,带着重回人间的喜悦,妖娆地起舞和歌唱。(有删改)文中写到了上个世纪大兴安岭的飞雪和溪流,请结合全文用简洁的语言分别概括其特点。(4分) 飞雪:雪大,雪多。溪流:多(溪流纵横,遍布大地),清冽甘甜,有些经冬不冻。文章第一段写两个老者的对话,这样写有何用意?请简要分析。(6分)⑴内容上,回忆了曾经的大兴安岭雪大的特点,表现了作者对上个世纪大兴安岭飞雪的怀念之情;⑵结构和手法上,与后文现在残破不堪的冬景形成鲜明对比,为回忆上个世纪大兴安岭飞雪和溪流做铺垫;⑶效果上,起到吸引读者的作用。本文是围绕“大兴安岭的飞雪和溪流”展开的,请梳理全文的行文思路。(6分)⑴开篇借老者之口讲述雪夜迷路的故事,突出了上个世纪大兴安岭雪大的特点,与现在残破不堪的冬景形成鲜明对比。⑵回忆起上个世纪雪和溪流的景象。⑶回到现实,说明人们对大兴安岭的开发、对林木资源的破坏是这一改变的根源。⑷作者怀念上个世纪大兴安岭飞雪和溪流,憧憬它们重回人间。请结合全文分条归纳,作者主要流露出了哪些情感。(6分)⑴怀念、惋惜之情;⑵憧憬、期盼之情;⑶对人们破坏林木资源的批判,对封山

无线传感器网络论文中英文资料对照外文翻译

中英文资料对照外文翻译 基于网络共享的无线传感网络设计 摘要:无线传感器网络是近年来的一种新兴发展技术,它在环境监测、农业和公众健康等方面有着广泛的应用。在发展中国家,无线传感器网络技术是一种常用的技术模型。由于无线传感网络的在线监测和高效率的网络传送,使其具有很大的发展前景,然而无线传感网络的发展仍然面临着很大的挑战。其主要挑战包括传感器的可携性、快速性。我们首先讨论了传感器网络的可行性然后描述在解决各种技术性挑战时传感器应产生的便携性。我们还讨论了关于孟加拉国和加利 尼亚州基于无线传感网络的水质的开发和监测。 关键词:无线传感网络、在线监测 1.简介 无线传感器网络,是计算机设备和传感器之间的桥梁,在公共卫生、环境和农业等领域发挥着巨大的作用。一个单一的设备应该有一个处理器,一个无线电和多个传感器。当这些设备在一个领域部署时,传感装置测量这一领域的特殊环境。然后将监测到的数据通过无线电进行传输,再由计算机进行数据分析。这样,无线传感器网络可以对环境中各种变化进行详细的观察。无线传感器网络是能够测量各种现象如在水中的污染物含量,水灌溉流量。比如,最近发生的污染涌流进中国松花江,而松花江又是饮用水的主要来源。通过测定水流量和速度,通过传感器对江水进行实时监测,就能够确定污染桶的数量和流动方向。 不幸的是,人们只是在资源相对丰富这个条件下做文章,无线传感器网络的潜力在很大程度上仍未开发,费用对无线传感器网络是几个主要障碍之一,阻止了其更广阔的发展前景。许多无线传感器网络组件正在趋于便宜化(例如有关计算能力的组件),而传感器本身仍是最昂贵的。正如在在文献[5]中所指出的,成功的技术依赖于

【名师推荐】2018新能源汽车概论答案 (1)

重庆市农业机械化校 2018 年(春) 《新能源汽车概论》期末考试题答案
一、选择 1、以下属于新能源的是(A) A 柴油、B 太阳能、C 地热能、D 风能 2、不可再生资源是(D) A 波浪能、B 潮汐能、C 海流能、D 煤炭 3、以下汽车,不属于电动汽车的是(D) A 混合动力汽车、B 纯电动汽车、C 燃料电池汽车、D 乙醇汽车 4、根据储能机理不同,再生制动能量回收系统回收能量的方法也不同,下列不属于这三种储能方式的是:D A、飞轮储能 B、液压储能 C、电化学储能 D、电子储能 5、汽车在城市中行驶,制动能量占总驱动能量的比重是(A) 。 A、50% B、70% C、30% D、20% 6、具有再生制动能量回收系统的电动汽车,一次充电续驶里程可以增加:B A、5%~15% B、10%~30% C、30%~40% D、40%~50% 7、下列不属于电池故障级别信息的是(C) 。 A、尽快维修 B、立即维修 C、电池报废 D、电池寿命 8、下列不属于电池成组后会出现的问题的是(D) 。 A、过充/过放 B、温度过高 C、短路或漏电 D、充电过慢 9、不是电动汽车用电池的主要性能指标的是(D) 。 A、电压 B、内阻 C、容量和比容量 D、流量 10、动力电池组的总电压可以达到(C) 。 A、36~88V B、420~500V C、90~400V D、12~35V 二、判断 1、混合动力汽车也称复合动力汽车,但是只有一个动力源。× 2、新能源又称非常规能源,是指刚开始开发利用或正在积极研究、有待推广的能源。√ 3、燃料电池化学反应产物主要是电能和水,还有极度多的二氧化碳和氮氧化物。 × 4、氢燃料汽车的动力系统是在传统内燃机的基础上加以改进后制成的。√ 5、 不可外接充电型混合动力汽车是指被设计成在正常使用情况下从车载燃料中获取全部能量的混合动力汽车。 √ 6、混合动力指装备有两种具有不同特点驱动装置的汽车。√ 7、为避免发动机的怠速及低负荷工况,以减小油耗,故发动机不工作,仅电机利用其高速大转矩的特性单独 使车辆起步。× 8、在电池失效报废后,可直接将动力电池丢弃。× 9、在动力电池日常维护工作中,要做到日常管理的周到、细致和规范性。√ 10、电动汽车的安全包括人身安全与系统安全。√ 三、填空 1、太阳能的利用主要有三种:光热转换、光电转换以及光化学转换。 2、混合动力汽车分为串联、并联、串并联三种结构形式。 3、按照电机相对于燃油发动机的功率比大小分为重度混合型、中度混合型、轻度混合型以及微混合型混合动 力汽车。

苏雪林《溪水》阅读答案

苏雪林《溪水》阅读答案 导读:溪水 苏雪林 ⑴我们携着手走进林子,溪水漾着笑窝,似乎欢迎我们的双影。这道溪流,本来温柔得像少女般可爱,但不知何时流入深林,她的身体便被囚禁在重叠的浓翠中间。 ⑵早晨时她不能更向玫瑰色的朝阳微笑,深夜时不能和娟娟的月儿谈心,她的chè莹晶的眼波,渐渐变成忧郁的深蓝色,时时凄咽着忧伤的调子,她是如何的沉闷呵!在夏夜的时候。 ⑶几番秋雨之后,溪水涨了几篙;早diāo的梧楸,飞尽了翠叶;黄金色的晓霞,从杈桠树隙里,深入溪中;泼靛的波面,便泛出彩虹似的光。 ⑷现在,水恢复从前活泼和快乐了,一面疾忙的向前走着,一面还要和沿途遇见的落叶、枯枝……淘气。 ⑸一张小小的红叶儿,听了狡狯的西风劝告,私下离开母校出来顽玩,走到半路上,风偷偷儿的溜走了,他便一交跌在溪水里。 ⑹水是怎样的开心呵,她将那可怜的失路的小红叶儿,推推挤挤的推到一个xuán涡里,使他滴滴溜溜的打圆转儿;那叶向前不得,向后不能,急得几乎哭出来;水笑嘻嘻的将手一松,他才一溜烟的逃走了。 ⑺水是这样欢喜捉弄人的,但流到坝塘边,她自己的磨难也来

了。你记得么?坝下边不是有许多大石头,阻住水的去路。 ⑻水初流到水边时,还是不经意的涎着脸撒嗔痴的要求石头放行,但石头却像没有耳朵似的,板着冷静的面孔,一点儿不理。于是水开始娇嗔起来了,拼命向石头冲突过去;冲突激烈时,浅碧的衣裳袒开了,漏出雪白的胸臂,肺叶收放,呼吸极其急促,发出怒吼的声音来,缕缕银丝头发,四散飞起。 ⑼辟辟拍拍,温柔的巴掌,尽打在石头皱纹深陷的颊边,---- 她真的发怒了,不是儿嬉。 ⑽谁说石头是始终顽固的呢,巴掌来得狠了,也不得不低头躲避。于是谁得安然度过难关了。 ⑾她虽然得胜了,然而弄得异常疲倦,曳了浅碧的衣裳去时, 我们还听见她继续的chuǎn息声。 ⑿我们到这树林中来,总要到这坝塘边参观水石的争执,一坐总要一两个钟头。 1.文章着重刻画了溪水流经途中的哪两件事?表现出溪水怎样的 性格特点?请根据文意简要回答。 2.下列句子生动形象,富有表现力,请加以赏析。 1).一张小小的红叶儿,听了狡狯的西风劝告,私下离开母校出来顽玩,走到半路上,风偷偷儿的溜走了,他便一交跌在溪水里。 2).于是水开始娇嗔起来了,拼命向石头冲突过去;冲突激烈时,浅碧的衣裳袒开了,漏出雪白的胸臂,肺叶收放,呼吸极其急促,发

车载无线传感器网络监测系统设计(外文原文+中文翻译)

Wireless sensor network monitoring system design Kang yi-mei,Zhao lei,Hu jiang,Yang en-bo (Study on Beijing University of Aeronautics and Astronautics) Summary: A car wireless sensor network monitoring system based on IEEE 802.15.4 and ZigBee standards. With universal wireless sensor networks, expansion of the scope of monitoring and monitoring functions for in-car system, car data acquisition and condition monitoring of equipment status and the necessary equipment control, topology control, topology query functions. Keywords: wireless sensor networks; monitoring system Introduction In order to satisfy the people to car safety, handling and comfort requirements, vehicle integrated with more and more electronic system .At present, car electronic equipment is widely used 16 or 32-bit microprocessor control. Creating in-vehicle monitoring system based on IEEE 802.15.4 and ZigBee standard for wireless sensor networks, designed to achieve a more optimized wireless sensor networks, the progressive realization of the network of automotive systems, intelligent and controllable to provide high-Car System security. System design In this paper, the existing vehicle system, the data transmission mode is extended to the wireless transmission mode, the realization of a star network data acquisition system. And can place each data acquisition node of the acquired data is transmitted to the gateway, the gateway through the serial port to upload data to the host computer, in the host data real-time waveform display, and method of database to preserve, for the follow-up data processing. The application of system object is composed of a temperature sensor, pressure sensor, speed sensor, speed sensor, a current sensor, pressure sensor, sensor subsystem. The purpose of this design is to use a monitoring host machine end to the detection of multiple target environment, taking into account the access data throughput and software system complexity, using time-division multiplexing way, one by one on the net terminal collecting point of control and data acquisition. As shown in Figure 1, the system is divided into 3 parts: Vehicle Monitoring Center, gateway and mobile sensor node. Gateway is the whole vehicle system core, and all vehicular sensor node communication. Vehicle monitoring center to the gateway sends a control command by the gateway, the control command is converted to an RF signal and sent to the vehicle sensor node. When the vehicle sensor nodes to transmit data, gateway into the data reception state, and upload data to the monitoring center for further processing. In addition, car between sensor nodes cannot communicate with each other. The monitoring center of the monitoring software and gateway in RS232standard interface for communication. Vehicle sensor node life cycle is active and dormant periods. Nodes in the active phase of the completion of data acquisition, data sent to the gateway, receiving and

新能源汽车概述A卷以及答案

新能源汽车概述A卷以 及答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

7.为了充分利用电池电量,应当尽可能的让电池多放电,保持较深的放电深度,有利于蓄电池的使用寿命。() 8.汽车排放的污染物主要有一氧化碳、碳氢化合物、氮氧化合物和微粒等,并主要由油箱和化油器等地方排出。() 9.发动机润滑油在发动机各摩擦表面只起润滑作用。() 10.汽车行驶系一般由承载式车身、前后车桥、车轮和前后悬架等组。() 三、选择题(每题1 题,共20分) 1. ( ) A、~2V B、~ C 12~15V 2. 具有极强竞争力的是 A、铅酸蓄电池B C、干电池 D 3.下列不是电动汽车用电池的主要 性能指标的是( ) A、电压 B、内阻 C、容量和 比容量 D、流量 4.能量管理系统是电动汽车的智能 核心,其英文表示为( ) A、ABS B、BMS C、ECU D、DOD 5.动力电池组的总电压可以达到( ) A、36~88V B、420~500V C、 90~400V D、12~35V 6.铅酸蓄电池、锂离子蓄电池、镍 氢蓄电池的最佳工作温度是( ) A、25~40度 B、0~10度 C、 45~80度 D、88~100度 甘肃交通职业技术学院2017——2018学年第二学期期末考试试卷(附页) 7.动力电池的组的英文表示为( ) A、PACK B、BATTERY C、ELECTRIC D、CAR 8.下列不属于电池故障级别信息的 是( ) A、尽快维修 B、立即维修 C、

电池报废 D、电池寿命 9.下列不属于电池成组后出现的问题的是( ) A、过充/过放 B、温度过高 C、短路或漏电 D、充电过慢 10.国家开展节能宣传和教育,将节能知识纳入国民教育和培训体系,普及节能科学知识,增强国民的节能意识,提倡( )的消费方式。 A、清洁型 B、循环型 C、节约型 D、环保型 11.节约资源是我国的基本国策。国家实施( )的能源发展战略。A、开发为主,合理利用B、利用为主,加强开发 C、开发和节约并举,把开发放在首位D、节约和开发并举,把节约放在首位 12.铅酸蓄电池用的电解液是( ) A、KOH B、H2SO4 C、NH4CL D、有机溶液 13.铅酸蓄电池用的正极材料是( ) A、锌 B、铅板 C、铝 D、Ni(OH)2 14.根据储能机理不同,再生制动能量回收系统回收能量的方法也不同,下列不属于这三种储能方式的是( ) A、飞轮储能 B、液压储能 C、电化学储能 D、电子储能 15.热继电器在三相异步电动机电路中的作用是( ) A、欠压保护 B、过载保护 C、短路保护 D、过压保护 16.直流电动机的主磁场是( ) A、主磁极产生的磁场 B、电枢电流产生的磁场 C、换向极产生的磁场 D、以上三者的合成 17.以下电动汽车对充电装置的要求不包括( ) A、安全 B、质量大 C、经济 D、效率高 18.最小转弯半径、最小离地间隙、接近角、离去角、前悬、后悬是汽车( )的技术参数。

溪流的阅读答案

溪流的阅读答案 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

①我愈来愈爱着生我养我的土地了。 ②就像山地里纵纵横横的沟岔一样,就像山地里有着形形色色的花木一样,我一写山同,似乎思路就开了,文笔也活了。 ③甚至觉得,我的生命,我的笔命,就是那山溪哩。虽然在莽莽的山的世界里,它只是那么柔得可怜,细得伤感的一股儿水流。 ④我常常这么想:天上的雨落在地上,或许会成洪波,但它来自云里;溪是有根的,它凉凉地扎在山峰之下。人都说山是庄严的,几乎是死寂的,其实这是错了。它最有着内涵,最有着活力;那山下一定是有着很大很大的海的,永远在蕴涵的感情,永远是不安宁,表现着的,恐怕便是这小溪了。 ⑤或许,是从小草的根下一个泡儿一个泡儿冒出来的。但是,太阳晒不干、黄风刮不跑的。天性是那么晶莹,气息是那么清新;它一出来,便宣告了它的生命,寻着自己的道路要流动了。 ⑥正因为寻着自己的道路,它的步伐是艰辛的。然而,它从石板上滑下,便有了自己的铜的韵味的声音;它从石崖上跌落,便有了自己白练般的颜色,它回旋在穴潭之中,便有了自己叵不可测的深沉。

⑦它终于慢慢地大起来了,要走更远的道儿;它流过了石川,流过了草地,流过了竹林,它要拜访所有的山岭,叩问每一次石头,有时会突然潜入河床的沙石之下去了呢。(A于是,轻风给了它的柔情,鲜花给了它的芬芳,竹林给了它的凉绿,那多情的游鱼,那斑斓的卵石,也给它增添了美的色彩。) ⑧它在流着,流着。它要流到啊里去呢?我想,山既然给了它的生命,它该是充实的,富有的;(B或许,它是做一颗露珠儿去滋润花瓣,深入到枝叶里了,使草木的绿素传送);或许,它竟能掀翻一坯污泥,拔脱了一从腐根呢。那么,让它流去吧,山地这么大,这么复杂,只要它流,它探索,它就有了自己的路子。 ⑨我是这么想的,我提醒着我,我鼓励着我,我便将它写成了淡淡的文字,聊作这本小书的小序了。 1.作者笔下的溪流有什么特点?(一排空) 2.简要归纳文中小溪的成长过程。(一排空) 3.细读6、7段,说说这两段有什么思想含义。(一排空) 4.作者为自己的书作序,写的却是溪流,这有什么用意?(一排空) 5.这篇文章有什么特色?(两排空) ⒈以时间为序,从小溪的过去写起,写小溪的现在,再想象它的未来。

(中文)基于无线传感器网络桥梁安全监测系统

基于无线传感器网络的桥梁安全检测系统 摘要 根据桥梁监测无线传感器网络技术的桥梁安全监测系统,以实现方案的安全参数的需要;对整个系统的结构和工作原理的节点集、分簇和关键技术,虽然近年来在无线传感器网络中,已经证明了其潜在的提供连续结构响应数据进行定量评估结构健康,许多重要的问题,包括网络寿命可靠性和稳定性、损伤检测技术,例如拥塞控制进行了讨论。 关键词:桥梁安全监测;无线传感器网络的总体结构;关键技术 1 阻断 随着交通运输业的不断发展,桥梁安全问题受到越来越多人的关注。对于桥梁的建设与运行规律,而特设的桥梁检测的工作情况,起到一定作用,但是一座桥的信息通常是一个孤立的片面性,这是由于主观和客观因素,一些桥梁安全参数复杂多变[1]。某些问题使用传统的监测方法难以发现桥梁存在的安全风险。因此长期实时监测,预报和评估桥梁的安全局势,目前在中国乃至全世界是一个亟待解决的重要问题。 桥梁安全监测系统的设计方案,即通过长期实时桥跨的压力、变形等参数及测试,分析结构的动力特性参数和结构的评价科关键控制安全性和可靠性,以及问题的发现并及时维修,从而确保了桥的安全和长期耐久性。 近年来,桥梁安全监测技术已成为一个多学科的应用,它是在结构工程的传感器技术、计算机技术、网络通讯技术以及道路交通等基础上引入现代科技手段,已成为这一领域中科学和技术研究的重点。 无线传感器网络技术,在桥梁的安全监测系统方案的实现上,具有一定的参考价值。 无线传感器网络(WSN)是一种新兴的网络科学技术是大量的传感器节点,通过自组织无线通信,信息的相互传输,对一个具体的完成特定功能的智能功能的协调的专用网络。它是传感器技术的一个结合,通过集成的嵌入式微传感器实时监控各类计算机技术、网络和无线通信技术、布式信息处理技术、传感以及无线发送收集到的环境或各种信息监测和多跳网络传输到用户终端[2]。在军事、工业和农业,环境监测,健康,智能交通,安全,以及空间探索等领域无线传感器网络具有广泛应用前景和巨大的价值。 一个典型的无线传感器网络,通常包括传感器节点,网关和服务器,如图1

苏雪林《溪水》阅读题的答案

苏雪林《溪水》阅读题的答案 我们携着手走进林子,溪水漾着笑涡,似乎欢迎我们的双影。这道溪流,本来温柔得像少女般可爱,但不知何时流入深林,她的身体便被囚禁在重叠的浓翠中间。 早晨时她不能更向玫瑰色的朝阳微笑,夜深时不能和娟娟的月儿谈心,她的明澈莹晶的眼波,渐渐变成忧郁的深蓝色,时时凄咽着忧伤的调子,她是如何的沉闷呵!在夏天的时候。几番秋雨之后,溪水涨了几篙;早凋的梧楸,飞尽了翠叶;黄金色的晓霞,从杈枒树隙里,深入溪中;泼靛的波面,便泛出彩虹似的光。 现在,水恢复从前活泼和快乐了,一面疾忙的向前走着,一面还要和沿途遇见的落叶、枯枝??淘气。 一张小小的红叶儿,听了狡狯的西风劝告,私下离开母校出来游玩,走到半路上,风偷偷儿溜走了,他便一交跌在溪水里。 水是怎样的开心呵,她将那可怜的失路的小红叶儿,推推挤挤的推到一个漩涡里,使他滴滴溜溜的打圆转儿;那叶向前不得,向后不能,急得几乎哭出来;水笑嘻嘻的将手一松,他才一溜烟的逃走了。

水是这样欢喜捉弄人的,但流到坝塘边,她自己的魔难也来了。你记得么?坝下边不是有许多大石头,阻住水的去路?水初流到石边时,还是不经意的涎着脸撒娇撒痴的要求石头放行,但石头却像没有耳朵似的,板着冷静的面孔,一点儿不理。于是水开始娇嗔起来了,拼命向石头冲突过去;冲突激烈时,浅碧的衣裳袒开了,露出雪白的胸臂,肺叶收放,呼吸极其急促,发出怒吼的声音来,缕缕银丝头发,四散飞起。 噼噼啪啪,温柔的巴掌,尽打在石头皱纹深陷的颊边,──她真的怒了,不是儿戏。谁说石头是始终顽固的呢?巴掌来得狠了,也不得不低头躲避。于是水安然渡过难关了。她虽然得胜了,然而弄得异常疲倦,曳了浅碧的衣裳去时,我们还听见她断续的喘息声。我们到树林中来,总要到这坝塘边参观水石的争执,一坐总是一两个钟头。 1.这是一首优美的散文,作者赋予溪水以少女般的性格。请你说说文章先写溪水______________; 再写溪水______________;最后写溪水_________________。(3分) 2.结合文章内容,说说作者笔下的溪水具有怎样的个性特征?(4分)

无线传感器网络期末试卷

2011学年第一学期高一无线传感器网络期末试卷适用班级:11计6 满分:100分考试时间:60分钟 一、单项选择题(将最合适的选项填入括号中,每小题3分,共24分) 1.下列对无线传感器网络中传感器结点的叙述错误的是()。 A.数目庞大 B.分布密集 C.易受环境干扰 D.可随意移动 2.关于传感器的现代感知方法,下列说法错误的是()。 A.使用多跳路由算法向用户报告观测结果 B.多个传感器协同完成感知区域的大观测任务 C.传感器无计算能力 D.每个传感器完成临近感知对象的观测 3.无线网络技术使用的介质是()。 A.无线电波 B.双绞线 C.光缆 D.同轴电缆 4.()是传感器结点没有的组件。 A.处理子系统和无线通信子系统 B.传感器子系统 C.一个简单的操作系统和基本的变成语言 D.传统的Web浏览界面 5.以下哪个不是对无线传感器网络技术的设计挑战?() A.驱动程序 B.有限的能源 C.可靠性 D.对Linux的支持 6.以下名词中中英文对应错误的是()? A.无线传感器网络——Wireless Sensor Network,WSN B.全球定位系统——Geographical Information System,GIS C.云计算——Cloud Computing D.智能家居——Intelligent Home 7.电饭煲中的主要传感器是() A.压力传感器 B.红外传感器 C.温度传感器 D.湿敏传感器 8.智能家居功能包括() A.家居安全监控 B.家电控制 C.门禁系统 D.以上皆是 二、填空题(每个空格1分,共21分) 1.传感器网络的主要应用领域有__________________、__________________、__________________、__________________等。 2. 无线传感器网络的三大基础技术是__________________、__________________、__________________。 3.传感器网络的协议可分为五层,从下到上可分为_________________、_________________、_________________、_________________、_________________。 4.传感器结点的物理结构是: 5.传感器网络节点的功能模块组成为: 三、简答题(共30分)

新能源概论试题答案

一、单选题(每题1分,共计15分) 1.(A)2.(C)3.(B)4.(C)5.(B)6.(B)7.(C)8.(B)9.(A)10.(C)11.(A)12.(C)13.(B)14.(A)15(A) 二、复选题(每题1分,共计15分) 1.(A)(C)2.(A)(B) (E) 3.(A)(B)(D) 4.(A)(D) 5.(C)(D)6.(A)(B)(C)7.(C)8.(C) 9.(A)(B)(C)10.(A)(B)(C)(D)11.(A)(B)12.(B)(D)13.(A)(B)(C)(D)14.(A)15.(A)(B)(C)(D) 三、判断题(请在你认为正确的叙述中的括号内打√,反之打×,每题1分,共计15分。) 1.沼气发酵可分为液化、产酸、产甲烷三个阶段。(√) 2.到达地球表面的太阳辐射强度是一个常数,称之为太阳常数。(×) 3.集热墙式太阳房属于主动式太阳房(×) 4.舵轮调向装置主要应用于大型风力机上(×) 5.生物质热解汽化技术是指将固态生物质原料以热解反应转换成方便可燃气体的过程。(√) 6.中国人均化石能源资源虽然严重短缺,但是人均能源消耗水平与终端能源质量较高。(×) 7.在各种可再生能源中,生物质是独特的,它贮存的是太阳能,更是一种唯一可再生的碳源。(√) 8.地热是一种清洁无污染的能源。(×) 9.水电站压力前池可把从引水道来的水均匀分配给各压力水管。(√) 10.上吸式煤气发生器适用于燃用含焦油较多的燃料。(×) 四、填空 1.到达地面的太阳能中,可见光和(红外线)的能量约各占50%; 2. 按系统接受太阳能及能量输出方式,可将太阳能干燥系统分为三 种类型:温室型、空气集热器型和(温室与空气集热器结合型)。 3. 聚光器把太阳能量的低密度变为高密度,这种增大能量密度的倍率,称为 (聚光比) 4. 限制风力机超速运行的上限风速称为(切除风速) 5. 地面上接收到的总辐射包括直射、散射和(散射) 6. 下图2所展示的潮汐电站的开发形式属于(双库连续发电) 7. 沼气的主要成分是(甲烷)和(二氧化碳)。 8.生物质能转换技术总的可分直接燃烧技术、热化学转换技术和(生物转换 技术)三种类型。 9.四川、重庆、贵州一带是中国太阳能分布( 贫乏 )的地区。 10.水力发电的两个要素即:水头和(流量)。 五、简述题(每题10分,共计20分) 1. 答:风力机离心螺旋槽式调速机构是依靠叶片旋转时的离心力与压缩弹簧 产生的弹力之间的平衡来控制叶片在风轮径向的位置,叶片位置的变动可以改变风轮叶片的角度,进而控制风轮的转速。 (1)如图3所示,在风轮觳上有两个平行的孔洞,孔内塞有螺旋底面的滑键。 叶柄与滑键相垂直,叶柄上铣出螺旋槽,滑键伸入槽内。 (2)当风速超过额定值时,风轮转速超过额定转速,叶片的离心力加大,克服压缩弹簧的作用力向外甩出。由于叶柄螺旋槽与装在其内的滑键的制约,叶片在外甩的同时,发生偏转,升力系数降低,风轮转速不再增加。 (3)当风速变小,在弹簧的作用下,叶片回缩到原来位置。 2. 答:太阳能溴化锂吸收式制冷系统的工作原理如下: (1)太阳能集热器内的介质水吸收热量变成高温热水,被泵打入发生器内加热发生器内的溴化锂稀溶液使之变成浓溶液,产生的水蒸汽进入冷凝器。 (2)发生器内形成的浓溶液进入吸收器,在吸收器内地吸收由蒸发器产生的水蒸汽并由此促进蒸发器内的冷冻水不断的蒸发。 (3)由发生器来的水蒸汽在冷凝器内冷凝变成水后再进入蒸发器。 (4)蒸发器内的冷水不断的蒸发,产生的水蒸汽被吸收器吸收而带走热量,从而使得蒸发器内的冷水维持在很低的温度,从空调来的冷媒介水被蒸 发器内的冷水降温,然后再次进入房间进行制冷。 1

溪流的阅读答案

①我愈来愈爱着生我养我的土地了。 ②就像山地里纵纵横横的沟岔一样,就像山地里有着形形色色的花木一样,我一写山同,似乎思路就开了,文笔也活了。 ③甚至觉得,我的生命,我的笔命,就是那山溪哩。虽然在莽莽的山的世界里,它只是那么柔得可怜,细得伤感的一股儿水流。 ④我常常这么想:天上的雨落在地上,或许会成洪波,但它来自云里;溪是有根的,它凉凉地扎在山峰之下。人都说山是庄严的,几乎是死寂的,其实这是错了。它最有着内涵,最有着活力;那山下一定是有着很大很大的海的,永远在蕴涵的感情,永远是不安宁,表现着的,恐怕便是这小溪了。 ⑤或许,是从小草的根下一个泡儿一个泡儿冒出来的。但是,太阳晒不干、黄风刮不跑的。天性是那么晶莹,气息是那么清新;它一出来,便宣告了它的生命,寻着自己的道路要流动了。 ⑥正因为寻着自己的道路,它的步伐是艰辛的。然而,它从石板上滑下,便有了自己的铜的韵味的声音;它从石崖上跌落,便有了自己白练般的颜色,它回旋在穴潭之中,便有了自己叵不可测的深沉。 ⑦它终于慢慢地大起来了,要走更远的道儿;它流过了石川,流过了草地,流过了竹林,它要拜访所有的山岭,叩问每一次石头,有时会突然潜入河床的沙石之下去了呢。(A于是,轻风给了它的柔情,鲜花给了它的芬芳,竹林给了它的凉绿,那多情的游鱼,那斑斓的卵石,也给它增添了美的色彩。) ⑧它在流着,流着。它要流到啊里去呢?我想,山既然给了它的生命,它该是充实的,富有的;(B或许,它是做一颗露珠儿去滋润花瓣,深入到枝叶里了,使草木的绿素传送);或许,它竟能掀翻一坯污泥,拔脱了一从腐根呢。那么,让它流去吧,山地这么大,这么复杂,只要它流,它探索,它就有了自己的路子。 ⑨我是这么想的,我提醒着我,我鼓励着我,我便将它写成了淡淡的文字,聊作这本小书的小序了。 1.作者笔下的溪流有什么特点?(一排空) 2.简要归纳文中小溪的成长过程。(一排空) 3.细读6、7段,说说这两段有什么思想含义。(一排空)

无线传感器网络中英文对照外文翻译文献

(文档含英文原文和中文翻译) 中英文对照翻译 基于网络共享的无线传感网络设计 摘要:无线传感器网络是近年来的一种新兴发展技术,它在环境监测、农业和公众健康等方面有着广泛的应用。在发展中国家,无线传感器网络技术是一种常用的技术模型。由于无线传感网络的在线监测和高效率的网络传送,使其具有很大的发展前景,然而无线传感网络的发展仍然面临着很大的挑战。其主要挑战包括传感器的可携性、快速性。我们首先讨论了传感器网络的可行性然后描述在解决各种技术性挑战时传感器应产生的便携性。我们还讨论了关于孟加拉国和加利尼亚州基于无线传感网络的水质的开发和监测。 关键词:无线传感网络、在线监测

1.简介 无线传感器网络,是计算机设备和传感器之间的桥梁,在公共卫生、环境和农业等领域发挥着巨大的作用。一个单一的设备应该有一个处理器,一个无线电和多个传感器。当这些设备在一个领域部署时,传感装置测量这一领域的特殊环境。然后将监测到的数据通过无线电进行传输,再由计算机进行数据分析。这样,无线传感器网络可以对环境中各种变化进行详细的观察。无线传感器网络是能够测量各种现象如在水中的污染物含量,水灌溉流量。比如,最近发生的污染涌流进中国松花江,而松花江又是饮用水的主要来源。通过测定水流量和速度,通过传感器对江水进行实时监测,就能够确定污染桶的数量和流动方向。 不幸的是,人们只是在资源相对丰富这个条件下做文章,无线传感器网络的潜力在很大程度上仍未开发,费用对无线传感器网络是几个主要障碍之一,阻止了其更广阔的发展前景。许多无线传感器网络组件正在趋于便宜化(例如有关计算能力的组件),而传感器本身仍是最昂贵的。正如在在文献[5]中所指出的,成功的技术依赖于共享技术的原因是个人设备的大量花费。然而,大多数传感器网络研究是基于一个单一的拥有长期部署的用户,模式不利于分享。该技术管理的复杂性是另一个障碍。 大多数传感器的应用,有利于这样的共享模型。我们立足本声明认为传感器可能不需要在一个长时间单一位置的原因包括:(1)一些现象可能出现变化速度缓慢,因此小批量传感器可进行可移动部署,通过测量信号,充分捕捉物理现象(2)可能是过于密集,因此多余的传感器可被删除。(3)部署时间短。我们将会在第三节更详细的讨论。 上述所有假定的有关传感器都可以进行部署和再部署。然而有很多的无线传感器网络由于其实时监测和快速的网络功能可能被利用作为共享资源。其作为共同部署资源要求,需要一些高效的技术,包括对传感器的一些挑战,如便携性,流动频繁的传感器内的部署,这使我们在第四节将会有大的挑战。 在本文中,我们专注于作为共享的可行性设计的传感器网络。下面我们开始 阐述传感网络在孟加拉国和加利福尼亚州的水质检测中的应用。 2.无线传感网络在水质监测中的应用

新能源概论期末考试卷

名词解释。一次能源、新能源二次能源核反应堆地热能潮汐能生物质核燃料生物质能光生伏特效应氢能控制系统 1、科学家认为,是未来人类生活最合适、最安全、最绿色、最理想的替代能源。 A、太阳能 B、生物质能 C、风能 D、核能 2、太阳的能量通过反应产生。 A、核裂变 B、核聚变 C、中和 D、物理 3、下列属于传统能源的是。 A、天然气 B、核能 C、石油 D、生物质能 4、煤炭、石油、天然气都是资源有限的。 A、化石能源 B、可再生能源 C、二次能源 D、替代能源 5、风电技术发展的核心是。 A、风速 B、风向 C、风力发电机组 D、风能密度 6、我国一般把高于150℃的称为,主要用于发电。 A、中温地热 B、低温地热 C、中低温地热 D、高温地热 7、海洋能的利用方式主要是。 A、发电 B、养殖 C、提水 D、开采石油 8、沼气的最主要成分是。 A、甲烷和二氧化碳 B、甲烷和一氧化碳 C、氢气和氮气 D、氢气和硫化氢 9、在风力发电机组中使用最多的是。 A、镍氢电池 B、铅酸蓄电池 C、锂离子电池 D、聚合物电池 10、逆变器是一种将的装置。 A、直流电变成交流电 B、交流电变成直流电 C、低压电变成高压电 D、高压电变成低压电 11、是氢能利用的最理想的方式。 A、氢内燃机 B、氢燃料电池 C、氢气发电 D、氢化合成水 12、核能利用的另一途径是实现可控的。 A、核裂变 B、核聚变 C、核泄漏 D、核辐射 13、我们在节约能源的同时,还应开发和利用新的能源.作为未来的理想能源应满足一定的条件。下列不符

合理想能源必要条件的是() A、必须足够丰富,可以保证长期使用 B、必须足够便宜,可以保证多数人用得起 C、必须足够安全、清洁,可以保证不会严重影响环境 D、必须足够昂贵,可以保证节约使用 14、核电站的能量转化情况是() A、核能→机械能→电能 B、核能→内能→机械能→电能 C、核能→化学能→电能 D、化学能→内能→电能 15、下列有关说法正确的是() A、核能的释放主要是通过重核裂变和轻核聚变 B、核反应是不能控制的 C、放射性射线能用于治疗肿瘤,因此对人体无害 D、太阳能来源于太阳内部的重核裂变 16、水能资源最显著的优点不包括以下哪一点() A、成本低 B、无污染 C、利用便利 D、可再生 17、关于开发利用风能的意义,理解正确的一组是() ①节约大量化石燃料②风能是可再生能源③减少SO2排放,防止形成酸雨④风能是二次能源 A、①②③ B、①②④ C、①③④ D、②③④ 18、关于风能下列说法中,不正确的是() A、不污染环境 B、不便于贮存 C、很稳定 D、利用起来很简单 19、我国著名的大型水电站不包括() A、三峡水电站 B、小浪底水电站 C、葛洲坝水电站 D、大古力水电站 20、以下发电过程中利用了化学变化的是() A、火力发电 B、水力发电 C、风力发电 D、地热发电 21、我国大型核电站有() A、秦山核电站 B、大亚湾核电站 C、岭澳核电站 D、田湾核电站 22、关于核能,下列说法正确的是() A、原子核很小,因此其中不可能存在大量的能量 B、人们现在能够利用可控核聚变的能量

相关主题