搜档网
当前位置:搜档网 › 高一数学 带你走进法向量(法向量的理解与运用)

高一数学 带你走进法向量(法向量的理解与运用)

高一数学 带你走进法向量(法向量的理解与运用)
高一数学 带你走进法向量(法向量的理解与运用)

带你走进法向量

一、法向量概念理解

如果表示非零向量n 的有向线段所在的直线垂直于平面α,那么称向量n 垂直于平面α,记作α⊥n ,此时,我们把向量n 叫做平面α的法向量.

特别提醒:(1)法向量一定是非零向量,平面的法向量是不唯一的;

(2)一个平面的所有法向量一定是平行向量;

(3)向量n 是平面α的一个法向量,向量m 与平面平行或在平面内,则g n m 0=;

(4)因为过一点有且只有一个平面与已知直线垂直,所以,已知平面内一点和平面的法向量,则这个平面是唯一确定的.

二、法向量求解步骤

若要求出一个平面的法向量的坐标,一般要建立空间直角坐标系,然后用待定系数法求解.一般步骤:

(1)设出平面的法向量为(,,)x y z =n ;

(2)找出(求出)平面内的两个不共线的向量的坐标111(,,)a b c =a ,222(,,)a b c =b ;

(3)根据法向量的定义建立关于x 、y 、z 的方程组00=??=?

g g n a n b ; (4)解方程组,取其中的一个解,即得法向量(通常取其中一个未知数为1或1-).

三、用法向量可以解决的问题

1.直线与平面成角

直线l 与平面α所成的角为θ,是直线l 的方向向量l 与平面α的法向量n 的夹角β(锐角)的余角,故有sin cos θβ==||||

g l n l n . 注意:求出直线l 的方向向量l 与平面α的法向量n 的夹角β(锐角)并不是直线与平面所成角,应取其余角.

2.平面与平面成角

设1n ,2n 分别是二面角l αβ--的面,αβ的法向量,则12就是所求二面角的平面角或其补角的大小.且有12cos =1212|

g n n |n ||n . 注意:通过平面的法向量求二面角时,若二面角的两个面的法向量1n 、2n 方向相反时,则二面角的大小等于22<>n ,n ,若两个面的法向量1n 、2n 方向相同时,则二面角大小为22π-<>n ,n .

3.求点面距离

点面距离的具体求解步骤是:

(1)求出该平面的一个法向量;(2)求出从该点出发的平面的任一条斜线段对应的向量;(3)求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离.其中

设e 是直线l 上的一个单位方向向量,线段AB 在l 上的投影是''A B ,则有|''|||A B AB =u u u r g

e ,是求点到线,点到面的距离问题重要公式.

四、法向量的具体应用

例1如图,四边形PCBM 是直角梯形,90PCB ∠=o

,PM ∥BC ,12PM BC ==,,又1AC =,120ACB AB PC ∠=o ,⊥,直线AM 与直线PC

所成的角为60o .

(1)求证:平面PAC ⊥平面ABC ;

(2)求二面角M AC B --余弦值的大小.

解:(1)∵,,PC AB PC BC AB BC B ⊥⊥=I

∴PC ABC ⊥平面,

又∵PC PAC ?平面

∴平面PAC ⊥平面ABC .

(2)在平面ABC 内,过C 作CD CB ⊥,建立空间直角坐标系C xyz -

由题意有1,022A ??- ? ???

,设()()000,0,0P z z >,

则(

)()00010,1,,,,0,0,22M z AM z CP z ??=-= ? ???

u u u u r u u u r ,

由直线AM 与直线PC 所成的解为0

60,得 cos60AM CP AM CP =???u u u u r u u u r u u u u r u u u r g

,即200z z =,解得01z = ∴(

)10,0,1,,,022CM CA ??==- ? ???

u u u u r u u u r ,设平面MAC 的一个法向量为n {}111,,x y z =,

则11110102y z y z +=?-=,取11x =

,得{=n (正方向), 平面ABC 的法向量取为()0,0,1=m (正方向),

利用空间向量求空间角教案设计

利用空间向量求空间角 一、高考考纲要求: 能用向量方法解决异面直线的夹角、线面角、面面角问题.体会向量法在立体几何中的应用. 二、命题趋势: 在高考中,本部分知识是考查的重点内容之一,主要考查异面直线所成角、线面角、面面角的计算,属中档题,综合性较强,与平行垂直联系较多. 三、教学目标 知识与技能:能用向量法熟练解决异面直线的夹角、线面角、面面角的计算问题,了解向量法在研究立体几何问题中的应用; 过程与方法:通过向量这个载体,实现“几何问题代数化”的思想,进一步发展学生的空间想象能力和几何直观能力; 情感态度价值观:通过数形结合的思想和方法的应用,进一步让学生感受和体会空间直角坐标系,方向向量,法向量的魅力. 四、教学重难点 重点:用向量法求空间角——线线角、线面角、二面角; 难点:将立体几何问题转化为向量问题. 五、教学过程 (一)空间角公式 1、异面直线所成角公式:如图,设异面直线l ,m 的方向向量分别为a r ,b r ,异面直线l ,m

2、线面角公式:设直线l 为平面α的斜线,a r 为l 的方向向量,n r 为平面α的法向量,θ为 l 与α所成的角,则sin cos ,a n θ==r r a n a n ?r r r r . 3、面面角公式:设1n r ,2n r 分别为平面α、β的法向量,二面角为θ,则12,n n θ=r r 或 12,n n θπ=-r r (需要根据具体情况判断相等或互补) ,其中121212 cos ,n n n n n n ?=r r r r r r . α θ O n r a

(二)典例分析 如图,已知:在直角梯形OABC 中,//OA BC ,90AOC ∠=o ,SO ⊥面OABC ,且 1,2OS OC BC OA ====.求: (1)异面直线SA 和OB 所成的角的余弦值; (2)OS 与面SAB 所成角α的正弦值; (3)二面角B AS O --的余弦值. 解:如图建立空间直角坐标系,则(0,0,0)O , (2,0,0)A ,(1,1,0)B ,(0,1,0)C ,(0,0,1)S , 于是我们有(2,0,1)SA =-u u r ,(1,1,0)AB =-u u u r ,(1,1,0)OB =u u u r ,(0,0,1)OS =u u u r , (1)cos ,5SA OB SA OB SA OB ?== =u u r u u u r u u r u u u r u u r u u u r , 所以异面直线SA 和OB 所成的角的余弦值为5 . (2)设平面SAB 的法向量(,,)n x y z =r , 则0,0, n AB n SA ??=???=??r u u u r r u u r ,即0,20.x y x z -+=??-=? 取1x =,则1y =,2z =,所以(1,1,2)n =r , sin cos ,3OS n OS n OS n α?∴=== =u u u r r u u u r r u u u r r . (3)由(2)知平面SAB 的法向量1(1,1,2)n =u r , 又OC ⊥Q 平面AOS ,OC ∴u u u r 是平面AOS 的法向量, 令2(0,1,0)n OC ==u u r u u u r ,则有121212 cos ,n n n n n n ?== =u r u u r u r u u r u r u u r . ∴二面角B AS O --O A B C S

高一数学单元测试题附答案

高一数学单元测试题 一、选择题 1.已知{}2),(=+=y x y x M ,{} 4),(=-=y x y x N ,则N M ?=( ) A .1,3-==y x B .)1,3(- C .{}1,3- D .{})1,3(- 2.已知全集U =N ,集合P ={ },6,4,3,2,1Q={}1,2,3,5,9则() P C Q =U I ( ) A .{ }3,2,1 B .{}9,5 C .{}6,4 D {}6,4,3,2,1 3.若集合{} 21|21|3,0,3x A x x B x x ?+? =-<=

高一数学单元测试—函数

高一数学单元测试——函数091010 班级_______姓名____ ____学号 一、 填空题 1、求定义域时,应注意以下几种情况。 1)、如果()x f 是整式,那么函数的定义域是______; 2)、如果()x f 是分式,那么函数的定义域是使___的实数的集合; 3)、如果()x f 为二次根式,那么函数的定义域是使_____的实数的集合; 4)、如果()x f 为某一数的零次幂,那么函数的定义域是使_____的实数的集合; 2、(浙江卷1)已知函数2()|2|f x x x =+-,则(1)f =__________。2 3、设集合{|32}M m m =∈-<

高一数学向量的加法一 人教版

高一数学向量的加法一 一.课题:向量的加法 二.教学目标:1.理解向量加法的概念及向量加法的几何意义; 2.熟练掌握向量加法的平行四边形法则和三角形法则,会作已知两向量的和向量; 3.理解向量的加法交换律和结合律,并能熟练地运用它们进行向量计算。 三.教学重、难点:1.如何作两向量的和向量; 2.向量加法定义的理解。 四.教学过程: (一)复习: 1.向量的概念、表示法。 2.平行向量、相等向量的概念。 3.已知O 点是正六边形ABCDEF 的中心,则下列向量组中含有相等向量的是( ) (A )OB uuu r 、CD uuu r 、FE u u u r 、CB u u u r (B )AB u u u r 、CD uuu r 、FA u u u r 、DE u u u r (C )FE u u u r 、AB u u u r 、CB u u u r 、OF u u u r (D )AF u u u r 、AB u u u r 、OC u u u r 、OD u u u r (二)新课讲解: 1.向量的加法:求两个向量和的运算叫做向量的加法。表示:AB BC AC +=u u u r u u u r u u u r . 规定:零向量与任一向量a r ,都有00a a a +=+=r r r r r . 说明: ①共线向量的加法: a r b r a b +r r ②不共线向量的加法:如图(1),已知向量a r ,b r ,求作向量a b +r r . 作法:在平面内任取一点O (如图(2)),作OA a =u u u r r ,AB b =r r ,则OB a b =+u u u r r r . (1) (2) 2.向量加法的法则: (1)三角形法则:根据向量加法定义得到的求向量和的方法,称为向量加法的三角形法则。 表示:AB BC AC +=u u u r u u u r u u u r . (2)平行四边形法则:以同一点A 为起点的两个已知向量a r ,b r 为邻边作ABCD Y ,则 则以A 为起点的对角线AC u u u r 就是a r 与b r 的和,这种求向量和的方法称为向量加法的平行 四边形法则。 b r a r O B A b r a r b r a r A B C D A B C

高一数学必修1第二章单元测试题

高一数学必修1第二章单元测试题(A 卷) 班级 姓名 分数 一、选择题:(每小题5分,共30分)。 1.若0a >,且,m n 为整数,则下列各式中正确的是 ( ) A 、m m n n a a a ÷= B 、n m n m a a a ?=? C 、 () n m m n a a += D 、01n n a a -÷= 2.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( ) A . 41 B .21 C .2 D .4 3.式子82log 9 log 3的值为 ( ) (A )23 (B )3 2 (C )2 (D )3 4.已知(10)x f x =,则()100f = ( ) A 、100 B 、100 10 C 、lg10 D 、2 5.已知0<a <1,log log 0a a m n <<,则( ). A .1<n <m B .1<m <n C .m <n <1 D .n <m <1 6.已知3.0log a 2=,3 .02b =,2.03.0c =,则c b a ,,三者的大小关系是( ) A .a c b >> B .c a b >> C .c b a >> D .a b c >> 二、填空题:请把答案填在题中横线上(每小题5分,共20分). 7.若24log =x ,则x = . 8.则,3lg 4lg lg +=x x = . 9.函数2)23x (lg )x (f +-=恒过定点 。 10.已知3 7222 --

用向量法求二面角的平面角教案

第三讲:立体几何中的向量方法——利用空间向量求二面角的平面角 大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1.使学生会求平面的法向量; 2.使学生学会求二面角的平面角的向量方法; 3.使学生能够应用向量方法解决一些简单的立体几何问题; 4.使学生的分析与推理能力和空间想象能力得到提高. 教学重点

求平面的法向量; 求解二面角的平面角的向量法. 教学难点 求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:],0[πθ∈) 向量夹角的补角. 3、用空间向量解决立体几何问题的“三步曲”: (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) Ⅱ、典例分析与练习 例1、如图,ABCD 是一直角梯形,?=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,

高一数学必修集合》单元测试题及答案新

高一数学必修 1:《集合》单元测试题 班级: 姓名: 得分: 一、单项选择题(每小题5分,共25分) (1).已知集合}1,1{-=A ,}1|{==mx x B ,且A B A =?,则m 的值为( ) A .1 B .—1 C .1或—1 D .1或—1或0 (2)设{} 022=+-=q px x x A ,{} 05)2(62=++++=q x p x x B ,若? ?? ???=21B A I , 则=B A Y ( ) (A )??????-4,31,21 (B )??????-4,21 (C )??????31,21 (D )? ?????21 (3).函数2x y -= 的定义域为( ) A 、(],2-∞ B 、(],1-∞ C 、11,,222????-∞ ? ?????U D 、11,,222? ???-∞ ? ?? ???U (4).设集合{}21<≤-=x x M ,{} 0≤-=k x x N ,若M N M =I ,则k 的取值范围( ) (A )(1,2)- (B )[2,)+∞ (C )(2,)+∞ (D )]2,1[- (5).如图,U 是全集,M 、P 、S 是U 的3个子集,则阴影部分所表示的集合是 ( ) A 、 ()M P S I I B 、 ()M P S I U C 、 ()u M P C S I I D 、 ()u M P C S I U 二、填空题(每小题4分,共20分) (6). 设{ }{} I a A a a =-=-+24122 2 ,,,,,若{}1I C A =-,则a=__________。 (7).已知集合A ={1,2},B ={x x A ?},则集合B= . (8).已知集合{ }{ } A x y y x B x y y x ==-==()|()|,,,322 那么集合A B I = (9).50名学生做的物理、化学两种实验,已知物理实验做的正确得有40人,化学实验做的正确的有31人,两种实验都做错的有4人,则这两种实验都做对的有 人.

高一数学测试题—向量的加减法.doc

一、选择题: 1、下列说法正确的有( )个. ①零向量是没有方向的向量,②零向量的方向是任意的,③零向量与任一向量共线,④零向 量只能与零向量共线. A.1 B.2 C.3 D.以上都不对 2、下列物理量中,不能称为向量的有( )个. ①质量②速度③位移④力⑤加速度⑥路程 A.0 B.1 C.2 D.3 3、已知正方形ABCD的边长为1, = a , = b , = c,则| a+b+c|等于() A.0 B.3 C.2 D.22 4、在平行四边形ABCD 中,设= a, = b,= c, = d,则下列不等式中不正确的是 ()A.a+b=c B.a-b=d C.b-a=d D.c-d=b-d 5、△ABC中,D,E,F分别是AB、BC、CD的中点,则-等于() A.B .C.D. 6、如图.点M是△ABC的重心,则MA+MB-MC为() A.0 B.4 C .4 D.4 7、在正六边形ABCDEF中,不与向量相等的是() A .+ B .- C .+D.+ 8、a=-b是|a| = |b|的() A.充分非必要条件B.必要非充分条件 C.充要条件D.既非充分也非必要条件 二、填空题: 9、化简:+ + + + = ______.

10、若a =“向东走8公里”,b =“向北走8公里”,则| a + b |=___,a +b 的方向是_ ____. 11、已知D 、E 、F 分别是△ABC 中BC 、CA 、AB 上的点,且 = 3 1 , = 3 1 , = 3 1,设 = a , = b ,则 = __________. 12、向量a,b 满足:|a |=2,|a +b |=3,|a -b |=3,则|b |=_____. 三、解答题: 13、如图在正六边形ABCDEF 中,已知:= a , = b ,试用a 、b 表示向量 , , , . 14、如图:若G 点是△ABC 的重心,求证: + + = 0 . 15、求证:|a +b | 2 +|a -b | 2 =2 (|a | 2+|b | 2). 16、如图 ABCD 是一个梯形,AB ∥CD 且AB=2CD,M,N 分别是DC 和AB 的中点,若 = a , = b ,试用a,b 表示 和 . 一、BCDBD DCA E

高一数学平面向量单元测试

必修4第二章《平面向量》单元测试 姓名 班级 一、选择题(每小题5分,共50分) 1.在矩形ABCD 中,O 是对角线的交点,若e e 则213,5=== A . )35(2 1 21e e + B . )35(2121e e - C .)53(2 1 12e e - D .)35(2 1 12e e -( ) 2.对于菱形ABCD ,给出下列各式: ①= ②||||BC AB = ③||||+=- ④||4||||22=+ 2 其中正确的个数为 ( ) A .1个 B .2个 C .3个 D .4个 3 ABCD 中,设d BD c AC b AD a AB ====,,,,则下列等式中不正确的是( ) A .c b a =+ B .d b a =- C .d a b =- D .b a c =- 4.已知向量b a 与反向,下列等式中成立的是 ( ) A .||||||b a b a -=- B .||||b a b a -=+ C .||||||-=+ D .||||||+=+ 5.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个点的坐标为 ( ) A .(1,5)或(5,-5) B .(1,5)或(-3,-5) C .(5,-5)或(-3,-5) D .(1,5)或(-3,-5)或(5,-5) 6.与向量)5,12(=平行的单位向量为 ( ) A .)5,13 12 ( B .)135,1312(-- C .)135,1312( 或 )135,1312(-- D .)13 5,1312(±± 7.若32041||-=-,5||,4||==,则b a 与的数量积为 ( ) A .103 B .-103 C .102 D .10 8.若将向量)1,2(=a 围绕原点按逆时针旋转 4 π 得到向量,则的坐标为 ( )

向量法求空间角(高二数学,立体几何)

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形,DP AD ⊥,⊥CD 平面ADPQ ,DP AQ AB 2 1==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱PA 与底面ABCD 所成的角的正切值为 2 6. (1)求侧面PAD 与底面ABCD 所成的二面角的大小; (2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值; (3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由. B

3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (1)求证:AF//平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面角的大小. P-中,PD⊥底面ABCD,且底面4.(本小题满分12分)如图,在四棱锥ABCD ABCD为正方形,G PD =分别为CB PC, ,的中点. = PD F ,2 E AD, , AP平面EFG; (1)求证:// (2)求平面GEF和平面DEF的夹角.

H P G F E D C B 5.如图,在直三棱柱111AB C A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线AC 与平面1A BC 所成的角为6 π,求锐二面角1A A C B --的大小. 6.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ,2AD PD EA ==,F ,G , H 分别为PB ,EB ,PC 的中点. (1)求证:FG 平面PED ; (2)求平面FGH 与平面PBC 所成锐二面角的大小.

高一数学集合单元测试卷

高一数学集合单元测试卷 (时间45分钟 满分100分) 一、选择题(每小题有且只有一个正确答案,8×4分=32分) 1.下列各项中不能组成集合的是 ( ) A .所有正三角形 B .《数学》教材中所有的习题 C .所有数学难题 D .所有无理数 2.若集合M =,a =,则下面结论中正确的是 ( ) A . B . C . D . 3.设集合S ={0,1,2,3,4},集合A ={1,2,3},集合B ={2,3},则 ( ) A . B . C . D .= 4.已知集合A 中有10个元素,集合B 中有8个元素,集合A ∩B 中共有4个元素,则集合A ∪B 中共有( )个元素 ( ) A . 14 B . 16 C . 18 D .不确定 5.已知a R ,集A =与B =若则实数a 所能取值为 A .1 B .-1 C .-1或1 D .-1或0或1 ( ) 6.如果集合A ={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( ) A .0 B .0 或1 C .1 D .不能确定 7. 满足{1,2,3} M {1,2,3,4,5,6}的集合M 的个数是 ( ) A .8 B .7 C .6 D .5 8.集合A ={x |x =2n +1,n ∈Z },B ={y |y =4k ±1,k ∈Z },则A 与B 的关系为 ( ) A .A B B .A B C .A =B D .A ≠B 二.填空题(8×4分=32分) 9.集合用列举法表示应是 ; 10.设集合,,则A ∩B = . 11.某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有 人. 12.已知全集________. 姓名__ __ __ __ __ __ __ __ 班级____ ____ ____ __得分__ ____ ______ ______ ——— — —— — — — — — — —— —— —— — — — — — —— — — — — — ——— — — — — — —— — — —————————

平面向量的向量表示四种策略

平面向量的向量表示四种策略 平面向量基本定理;如果1e →+2e → 是同一平面内的两个不共线向量,那么对于该平面内任一向量→ a ,有且只有一对数数λ1,λ2,满足→ a =λ 11e → +λ 22e → ,称λ 11e → λ+λ 22e →为1e → , 2e → 的线性组合。 根据平面向量基本定理,任一向量→ a 与有序数对(λ1,λ2)一一对应,称(λ1,λ2)为→ a 在 基底{1e →,2e →}下的坐标,当取{1e →,2e → }为单位正交基底{→ i ,→ j }时定义(λ1,λ2)为向量→ a 的平面直角坐标。 下面我们谈谈用基向量表示向量的四种策略. 策略1.构造法 例1、如图,→--OA ,→--OB 为单位向量,→--OA 与→ --OB 夹角为1200 , →--OC 与→ --OA 的夹角为450 ,|→--OC |=5,用→--OA ,→--OB 表示→ --OC 。 解析:以→--OA ,→--OB 为邻边,→ --OC 为对角线构造平行四边形 把向量→--OC 在→--OA ,→--OB 方向上进行分解,如图,设→--OE =λ→--OA ,→ --OD =μ→ --OB ,λ>0,μ>0 则→--OC =λ→--OA +μ→ --OB ∵ |→--OA |=|→ --OB |=1 ∴ λ=|→--OE |,μ=|→ --OD | △OEC 中,∠E=600 ,∠OCE=750 ,由 45 sin |CE |60 sin |OC |75 sin |OE |→ --→ --→ --= = 得: 6) 623(560sin 75sin |OC ||OE |00 += = → --→ -- 3 6 560sin 45sin |OC ||CE |0 = =→ --→ -- ∴ 3 6 5,6)623(5=μ+= λ ∴ → --→--→ --++= OB 3 65OA 6)623(5OC 说明:用若干个向量的线性组合表示一个向量,是向量中的基本而又重要的问题,通常

利用向量法求空间角经典教案

利用空间向量求空间角 目标:会用向量求异面直线所成的角、直线与平面所成的角、二面角的方法; 一、复习回顾向量的有关知识: (1)两向量数量积的定义:><=?,cos ||||(2)两向量夹角公式:| |||,cos b a b a >= < 二、知识讲解与典例分析 知识点1:两直线所成的角(范围:]2 , 0(π θ∈) (1)定义:过空间任意一点o 分别作异面直线a 与b 的平行线a′与b′,那么直线a′与b′ 所成的锐角或直角,叫做异面直线a 与b 所成的角. (2)用向量法求异面直线所成角,设两异面直线a 、b 的方向向量分别为a 和b , 问题1: 当与的夹角不大于90°时,异面直线 的角θ与 和 的夹角的关系? 问题 2:与的夹角大于90°时,,异面直线a 、θ与a 和b 的夹角的关系? 结论:异面直线a 、b 所成的角的余弦值为| ||||,cos |cos n m = ><=θ 例1如图,正三棱柱111C B A ABC -的底面边长为a ,侧棱长为a 2,求1AC 和1CB 所成的角. 解法步骤:1.写出异面直线的方向向量的坐标。 2.利用空间两个向量的夹角公式求出夹角。 解:如图建立空间直角坐标系xyz A -,则)2,,0(),0,2 1 ,23(),2,21,23(),0,0,0(11a a B a a C a a a C A -- ∴ )2,21,23(1a a a AC - =,)2,2 1 ,23(1a a a CB = 即21323,cos 22 111111==>= <11,cos BE DF 与>

高一数学必修1集合单元测试题

敬业中学高一 集合单元测试 班级 姓名 得分 一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1 下列各项中,不可以组成集合的是( ) A 所有的正数 B 等于2的数 C 充分接近0的数 D 不等于0的偶数 2 下列四个集合中,是空集的是( ) A }33|{=+x x B },,|),{(2 2 R y x x y y x ∈-= C }0|{2 ≤x x D },01|{2 R x x x x ∈=+- 3 下列表示图形中的阴影部分的是( ) A ()()A C B C B ()() A B A C C ()()A B B C D ()A B C 4 若集合{},,M a b c =中的元素是△A B C 的三边长,则△A B C 一定不是( ) A 锐角三角形 B 直角三角形 C 钝角三角形 D 等腰三角形 5 若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A 3个 B 5个 C 7个 D 8个 6. 下列命题正确的有( ) (1)很小的实数可以构成集合; (2)集合{}1 |2 -=x y y 与集合(){}1 |,2 -=x y y x 是同一个集合; (3)361 1, ,,,0.5242 -这些数组成的集合有5个元素;

(4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象限内的点集 A 0个 B 1个 C 2个 D 3个 7. 若集合}1,1{-=A ,}1|{==mx x B ,且A B A =?,则m 的值为( ) A 1 B 1- C 1或1- D 1或1-或0 8 若集合{}{}2 2 (,)0,(,)0,,M x y x y N x y x y x R y R =+==+=∈∈,则有( ) A M N M = B M N N = C M N M = D M N =? 9. 方程组? ??=-=+91 22y x y x 的解集是( ) A ()5,4 B ()4,5- C (){}4,5- D (){}4,5- 10. 下列表述中错误的是( ) A 若A B A B A =? 则, B 若B A B B A ?= ,则 C ) (B A A )(B A D ()()()B C A C B A C U U U = 二、填空题:本大题共5小题,每小题5分,共25分。 11.设集合{=M 小于5的质数},则M 的子集的个数为 . 12 设{}{}34|,|,<>=≤≤==x x x A C b x a x A R U U 或,则___ ___,==b a 13.已知{15},{4} A x x x B x a x a =<->=≤<+或,若A ?≠B,则实数a 的取值范 围是 . 14. 某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人_______________ 15. 若{}{}2 1,4,,1,A x B x ==且A B B = ,则x = 三、解答题:本大题共6分,共75分。

高一数学向量的加法二 人教版

高一数学向量的加法二 一.课题:向量的减法 二.教学目标:1.掌握向量减法及相反向量的的概念; 2.掌握向量减法与加法的逆运算关系,并能正确作出已知两向量的差向量; 3.能用向量运算解决一些具体问题。 三.教学重、难点:向量减法的定义。 四.教学过程: (一)复习:1. 向量的加法法则。 2.数的运算:减法是加法的逆运算。 (二)新课讲解: 1.相反向量:与a r 长度相等,方向相反的向量,叫做a r 的相反向量,记作a -r 。 说明:(1)规定:零向量的相反向量是零向量。 (2)性质:()a a --=r r ;()()0a a a a +-=-+=r r r r r . 2.向量的减法:求两个向量差的运算,叫做向量的减法。表示()a b a b -=+-r r r r . 3.向量减法的法则: 已知如图有a r ,b r ,求作a b -r r . (1)三角形法则:在平面内任取一点O ,作OA a =u u u r r ,OB b =u u u r r ,则BA a b =-u u u r r r . 说明:a b -r r 可以表示为从b r 的终点指向a r 的终点的向量(a r ,b r 有共同起点). (2)平行四边形:在平面内任取一点O ,作OA a =u u u r r ,BO b =-u u u r r , 则BA BO OA a b =+=-u u u r u u u r u u u r r r . 思考:若//a b r r ,怎样作出a b -r r ? 4.例题分析: 例1.试证:对任意向量a r ,b r 都有||||||||||||a b a b a b -≤+≤+r r r r r r . 证明:(1)当a r ,b r 中有零向量时,显然成立。 (2)当a r ,b r 均不为零向量时: ①a r ,b r ,即//a b r r 时,当a r ,b r 同向时,||||||||||||a b a b a b -<+=+r r r r r r ; 当,b r 异向时,||||||||||||a b a b a b -=+<+r r r r r r . ②a r ,b r 不共线时,在ABC ?中,||||||AB BC -

第8讲立体几何中的向量方法求空间角 (1)

第8讲立体几何中的向量方法(二)——求空间角 一、选择题 1.(2016·长沙模拟)在正方体A1B1C1D1-ABCD中,AC与B1D所成的角的大小为() A.π 6 B. π 4 C. π 3 D. π 2 解析建立如图所示的空间直角坐标系,设正方体边长为1,则A(0,0,0),C(1,1,0),B1(1,0,1),D(0,1,0). ∴AC→=(1,1,0),B1D →=(-1,1,-1), ∵AC→·B1D →=1×(-1)+1×1+0×(-1)=0, ∴AC→⊥B1D →, ∴AC与B1D所成的角为π2. 答案 D 2.(2017·郑州调研)在正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的正弦值为() A. 3 2 B. 3 3 C. 3 5 D. 2 5 解析设正方体的棱长为1,以D为坐标原点,DA,DC,DD1 所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,如 图所示.则B(1,1,0),B1(1,1,1),A(1,0,0),C(0,1, 0),D1(0,0,1), 所以BB1→=(0,0,1),AC→=(-1,1,0),AD1 →=(-1,0,1). 令平面ACD1的法向量为n=(x,y,z),则n·AC→=-x+y=0,n·AD1 →=-x+z =0,令x=1,可得n=(1,1,1),

所以sin θ=|cos 〈n ,BB 1→ 〉|=13×1=3 3 . 答案 B 3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B.23 C.33 D.22 解析 以A 为原点建立如图所示的空间直角坐标系 A -xyz ,设棱长为1, 则A 1(0,0,1), E ? ????1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1), A 1E →=? ????1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),所以有???A 1D →·n 1=0,A 1E →·n 1=0,即???y -z =0,1-12z =0,解得????? y =2,z =2. ∴n 1=(1,2,2). ∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴ cos 〈n 1,n 2〉=23×1=23. 即所成的锐二面角的余弦值为2 3. 答案 B 4.(2017·西安调研)已知六面体ABC -A 1B 1C 1是各棱长均等于a 的正三棱柱,D 是侧棱CC 1的中点,则直线CC 1与平面AB 1D 所成

《用向量法求直线与平面所成的角》教案

第二讲:立体几何中的向量方法——利用空间向量求直线与平面所成的 角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合 推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般 规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。 空间角主要包括线线角、线面角和二面角,下面对线面角的求法进行总结。 教学目标 1. 使学生学会求平面的法向量及直线与平面所成的角的向量方法; 2. 使学生能够应用向量方法解决一些简单的立体几何问题; 3. 使学生的分析与推理能力和空间想象能力得到提高. 教学重点 求平面的法向量; 求解直线与平面所成的角的向量法. 教学难点 求解直线与平面所成的角的向量法. 教学过程 I、复习回顾 一、回顾有关知识: 1

1、直线与平面所成的角:(范围:二? [0,—]) 2 思考:设平面:的法向量为n,则::n,BA .与二的关系? JT ■■二日=----- < n, BA > 2 (图 ) 2

高一数学必修一单元测试题

广东省聿怀中学高一数学模块一第二章单元测试试题06.10.25 说明:本试题测试时间为50分钟,满分100分 一、选择题:(本大题共8小题,每小题6分,共48分)答案填在答题卷答题卡内,否则不计分. 1、 函数32+=-x a y (a >0且a ≠1)的图象必经过点 ( ) (A )(0,1) (B ) (1,1) (C ) (2,3) (D )(2,4) 2、三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是( ) (A )b c a <<. (B ) c b a << (C )c a b << (D )a c b << 3、函数 的定义域为 ( ) (A )[1,3] (B )),3()1,(+∞?-∞ (C )(1,3) (D )(1,2)∪(2,3) 4、已知镭经过100年,剩留原来质量的95.76%,设质量为1的镭经过x 年的剩留量为y ,则y 与x 的函数关系是( ) (A )y =(0.9576) 100 x (B )y =(0.9576)100x (C )y =( )x (D )y =1-(0.0424)100 x 5、函数y =x a log 在[1,3]上的最大值与最小值的和为1,则a =( ) (A ) (B ) 2 (C ) 3 (D ) 6、下列函数中,在区间(0,2)上不是增函数的是( ) (A ) 0.5log (3)y x =- (B ) 12+=x y (C ) 2x y -= (D )x y 22= 7、函数 与 ( )在同一坐标系中的图像只可能是( ) ; ; ; 。 8、(4~10班做)对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)+f (x 2);② f (x 1·x 2)=f (x 1)+f (x 2 ) ;③1212 ()()f x f x x x -->0; ④1212()()()2 2 x x f x f x f ++<.当f (x )=lo g 2 x 时,上述结论中正确结论的序号选项是 (A ) ①④ (B ) ②④ (C )②③ (D )①③ 8、(1~3班做)已知?? ?≥<+-=1 ,log 1,4)13()(x x x a x a x f a 是(,)-∞+∞上的减函数,那么a 的取值范围是 100 9576 .02 131 x a y =x y a log -=1,0≠>a a 且) 34(log 1)(22-+-= x x x f

高中数学例题:向量的表示方法

高中数学例题:向量的表示方法 例2.一辆汽车从A点出发向西行驶了100千米到达B点,然后又改变方向向西偏北50°走了200千米到达C点,最后又改变方向, 向东行驶了100千米达到D点. (1)作出向量AB,BC,CD; (2)求|| AD. 【解析】(1)如图所示. (2)由题意,易知AB与CD方向相反,故AB与CD共线即AB∥CD.又|||| AB CD =, ∴四边形ABCD为平行四边形. ∴||||200 ==(千米). AD BC 【总结升华】(1)准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.(2)要注意能够运用向量的观点将实际问题抽象成数学模型.“数学建模”能力是今后能力培养的主要方向,需要在平时的学习中不断积累经验. 举一反三: 【变式1】如图,在平面四边形ABCD中,用有向线段表示图中向量,正确的是(). A.AD,AB,BC,DC B.DA,BA,BC,DC C.DA,AB,BC,DC D.DA,AB,CB,CD 【答案】C

【变式2】如图,点D、E、F分别是△ABC的各边中点.在 图所示向量中, (1)写出与ED,DF,FE相等的向量; (2)写出模相等的向量. 【解析】(1)ED CF FA ==,FE AD DB ==,DF BE EC ==。 (2)|||||| ED FA CF ==。 ==,|||||| FE AD DB ==,|||||| DF BE EC 【总结升华】利用三角形的中位线和平行四边形的性质研究向量的各种关系是常考题型,要注意掌握解决这类问题的方法. 【变式3】如图是4×3的矩形(每个方格都是单位正方形), 在起点与终点都在小方格的顶点处的向量中, 试问:(1)与AB相等的向量有几个(不含 AB)? (2)与AB的向量有几个? (3)与AB同向且模为 【答案】(1)5(2)24(3)2