搜档网
当前位置:搜档网 › Szorb催化汽油吸附脱硫装置试车方案设计

Szorb催化汽油吸附脱硫装置试车方案设计

Szorb催化汽油吸附脱硫装置试车方案设计
Szorb催化汽油吸附脱硫装置试车方案设计

***************

* 部资料*

* 注意保存*

***************

120万吨/年S-Zorb汽油吸附脱硫装

置总体试车方案

燕山分公司炼油厂

2005年12月

目录

1 工程概况---------------------------------------------------------------------------- 3

2 总体试车方案的编制依据与编制原则 --------------------------------------- 4

3 试车的指导思想和应达到的标准 --------------------------------------------- 4

4 试车应具备的条件---------------------------------------------------------------- 5

5 试车的组织与指挥体系---------------------------------------------------------- 9

6 试车进度---------------------------------------------------------------------------- 9

7 物料平衡--------------------------------------------------------------------------- 10

8 燃料、动力平衡------------------------------------------------------------------ 11

9 环境保护--------------------------------------------------------------------------- 12

10 安全技术与工业卫生 ---------------------------------------------------------- 13

11 试车难点及对策 ---------------------------------------------------------------- 16

12 经济效益预测 ------------------------------------------------------------------- 17 附录一120万吨/年S-Zorb汽油吸附脱硫装置开车组成员

1 工程概况

为了保护环境,世界各国对汽车尾气中的有害物质排放量的限制越来越严格。降低汽油中硫含量将有效地减少汽车尾气中有害物质的排放量,因此世界各国清洁汽油的硫含量越来越低。目前,美国市场上汽油的平均硫含量30ug/g,2006年将降低至≯30ug/g(US TIER II-3标准);欧盟等国家汽油的平均硫含量将由2000年的≯150 ug/g(欧洲III类排放汽油标准)降低到2005年的≯50 ug/g(欧洲IV类排放汽油标准)。2005年7月1日起,我国汽油标准要求硫含量由目前的≯800ug/g,降低到≯500ug/g,为了迎接2008年奥运会,市2005年起要执行相当于欧洲III类排放标准的地方汽油标准。

针对市制定的新汽油标准,燕山分公司认真研究汽柴油生产方案。随着油田原油产量递减,燕山分公司加工部分俄罗斯原油以及其他进口原油数量增加,原油含硫量明显增加,汽油硫含量逐年递增,已经难以满足地方汽油质量要求。为了满足地方汽油质量标准,生产符合欧III、欧IV 排放的汽油标准,牢固占领市清洁燃料市场,取得更大的经济效益,燕山分公司拟建设一套120万吨/年S-Zorb 汽油吸附脱硫装置。2005年1月21日,中石化股份批准燕山分公司120万吨/年S-Zorb催化汽油吸附脱硫装置可行性研究报告(石化股份计[2005]31号)。

1.1 装置规模及建设情况

汽油吸附脱硫装置采用美国ConocoPhillips公司提供的专利技术工艺包,由工程建设公司负责设计。该装置建设规模为加工量120万吨/年,连续操作,年开工8400小时。该装置主要由进料与脱硫反应、吸附剂再生、吸附剂循环、产品稳定和公用工程五个部分组成。该装置占地面积3900m2,布置于现航煤加氢装置北侧,需开土石方约90000m3。

该装置以炼油厂第三作业部、第二作业部生产的催化汽油为原料,生产满足欧III、欧IV标准的清洁汽油。该装置于2005年4月初开始进行土方爆破以及场平工作。为了保证工程建设顺利进行,装置早日建成投产,燕化公司成立了120万吨/年汽油吸附脱硫项目工程协调领导小组,综合协调管理项目的质量、进度、投资、安全环保、合同“五大控制”,并对项目建设总目标实施控制。建设单位按合同委托燕山石化工程建设公司对该项目实施监理,在工程建设过程中,履行监理职责;委托燕化质量监督站进行工程质量监督;物装中心负责组织对设备物资的招标采购。项目实施阶段的监督、管理、组织、协调由公司工程管理部总体负责。预计2006年6月中旬进行装置中交,2006年7月中旬将进行试车投产。

1.2 原料、燃料、动力供应及产品流向

1.2.1 原料

1)原料为炼油厂三催化、二催化装置生产的催化裂化汽油,在界区外合并后直接输送至汽油吸附脱硫装置原料缓冲罐。

2)补充氢气直接由系统管网接入装置

1.2.2装置加热炉所需燃料气由厂燃料气管网提供,主要由催化干气吸附废气和天然气组成。

1.2.3 动力

蒸汽由厂蒸汽管网提供,电源从现航煤加氢装置配电间引出,从东风变电所引电缆到航煤加氢装置配电间,净化风、非净化风由三空压站供应。

1.2.4 产品

1)再生部分产生的烟气压控送到硫磺回收装置处理,氧含量不合格时经硫磺回收装置烟囱排出,装置不做处理。

2)稳定塔底生产的精制汽油换热冷却后,压送出装置去汽油罐区。

3)正常操作时装置不产液化气,当原料中轻组分多时,稳定塔顶将有少量的轻汽油组分与催化LPG管道合并;稳定塔顶的燃料气部分用于原料缓冲罐气封,其余送到系统燃料气管网中。

4)装置低点排凝污油去污油设泵送出装置,开停工中的不合格退油亦可通过原料泵直接先送出装置外。

2 总体试车方案的编制依据与编制原则

2.1 编制依据

2.1.1 中石化总公司《建设项目生产准备与试车规定》。

2.1.2 中国石化工程建设公司提供的汽油吸附脱硫装置的设计说明书。

2.1.3美国CononPhillps公司编制的《燕山分公司120万吨/年S-Zorb汽油吸附脱硫装置工艺包0版、1版》。

2.1.4 美国CononPhillps公司编制的《燕山分公司120万吨/年S-Zorb汽油吸附脱硫装置操作指南》。

2.1.5 因为S-Zorb汽油吸附脱硫装置为国首套,目前国尚无同类装置可做比较。国外同类装置开工试车总结,待出国培训后才能确定。

2.2 编制原则

遵循中石化总公司的“单机试车要早,吹扫气密要严,联动试车要全,投料试车要稳,经济效益要好”的原则编制而成。

3 试车的指导思想和应达到的标准

3.1 试车的指导思想

3.1.1 S-Zorb汽油吸附脱硫装置具有临氢、高温、高压、易燃易爆的特点,并产生易造成人员伤害的有毒物质,危险程度很高。为此我们把保证装置的安全做为首要原则,一切工作的安排都有安全保证,以保证试车过程中不发生爆炸、火灾、人员伤亡、设备事故等问题。

3.1.2 试车方案的形成要以尽可能使总体开工费用或损失降低为原则,在这个前提下,编排好试车计划,做好物料平衡工作,按计划使用氢气、燃料气、蒸汽、水、电等,尽快生产出合格产品,达到一次投料试车成功。

3.1.3 投料试车过程中,按设计方案实施,要努力使原料、工艺操作条件尽最大程度地靠近设计值,并在试车成功后尽快组织生产考核,以确定装置是否达到设计要求,和是否实现其设计上的先进性。

3.1.4 根据S-Zorb汽油吸附脱硫装置在施工阶段暴露出的问题和车间人员缺乏现场实际经验的情况,在开车过程中要尽可能地暴露问题并处理解决,不能

回避问题。通过这一过程使队伍得到锻炼,形成将来能够驾驭这套装置所必备的技能与素质,以在短时期,使得装置形成真正的生产能力。

3.1.5 环保设施同时投用和考核,以实现装置的开车不对环境产生新的污染。

3.2 试车应达到的标准

3.2.1 生产装置连续运行产出合格产品,一次投料试车成功。

3.2.2 投料试车的主要控制点正点达到。

3.2.3 不发生重大的设备、操作、人身事故,不发生火灾和爆炸事故。

3.2.4 安全、环保、消防和工业卫生做到"三同时",监测指标符合标准。

3.2.5 做好物料平衡,燃料、动力消耗低。

3.2.6 控制好投料试车,经济效益好。

4 试车应具备的条件

投料试车必须高标准、严要求,严格按照批准的试车方案和程序进行,坚持应遵循的程序一步也不能减少,应达到的标准一点也不能降低,应争取的时间一分钟也不能放过的原则,在投料前严格检查和确认投料试车应具备的条件。

投料试车应具备的条件规定如下:

4.1 工程中间交接完成

4.1.1 工程质量初评合格;

4.1.2 “三查四定”的问题整改完毕,遗留问题处理完毕;

4.1.3 影响投料的设计变更项目已施工完;

4.1.4 工程已办理中间交接手续;

4.1.5 现场施工用临时设施已全部拆除;现场清洁,无杂物、无障碍;

4.1.6 设备位号和管道介质名称、流向标志齐全;

4.1.7 系统吹扫、试压、气密完;

4.1.8 现场消防设施等配套设施已投用。

4.2 联动试车已完成

4.2.1 吹扫、清洗、气密、干燥、置换、吸附剂剂装填、仪表联校等已完成并经确认;

4.2.2 设备处于完好备用状态;

4.2.3 在线分析仪表、仪器经调试具备使用条件,工业空调已投用;

4.2.4 仪表、计算机的检测、控制、联锁、报警系统调校完毕,准确可靠;

4.2.5 岗位工器具已配齐。

4.3 人员培训已完成

4.3.1 国外同类装置培训以及国相关培训、实习已结束;

4.3.2 已进行岗位练兵、模拟练兵、反事故练兵,达到“三懂六会”(三懂:懂原理、懂结构、懂方案规程;六会:会识图、会操作、会维护、会计算、会联系、会排除故障);提高“六种能力”(思维能力,操作、作业能力,协调组织能力,反事故能力,自我保护能力,自我约束能力);

4.3.3 各工种人员经考试合格,已取得上岗证;

4.3.4 已汇编国外同类装置事故案例,并组织学习;对本装置试车以来的事故和事故苗头本着“四不放过”?的原则已进行分析总结,吸取教训。

4.4 各项生产管理制度已落实

4.4.1 岗位分工明确,班组生产作业制度已建立;

4.4.2 各级试车指挥系统已落实,干部已值班上岗,并建立例会制度;

4.4.3 生产调度制度已建立;

4.4.4 岗位责任、巡回检查、交接班等十项制度已建立;

4.4.5 已做到各种指令、信息传递文字化,原始记录数据表格化。

4.5 经上级批准投料试车方案已向生产人员交底

4.5.1 工艺技术规程、安全技术规程、操作法等已人手一册,投料试车方案主操以上人员已人手一册;

4.5.2 每一试车步骤都有书面方案,从指挥到操作人员均已掌握;

4.5.3 已实行“看板”或“上墙”管理;

4.5.4 已进行试车方案交底、学习、讨论;

4.5.5 事故处理预想方案已经制定并落实。

4.6 保运工作已落实

4.6.1 保运的围、责任已划分;

4.6.2 保运队伍已组成;

4.6.3 保运人员已经上岗并佩戴标志;

4.6.4 保运设备、工器具已落实;

4.6.5 保运值班地点已落实并挂牌,实行24小时值班;

4.6.6 保运后备人员已落实;

4.6.7 物资供应服务到现场,实行24小时值班;

4.6.8 机、电、仪、修人员已上岗。

4.7 供排水系统已正常运行

4.7.1 水网压力、流量、水质符合工艺要求,供水稳定;

4.7.2 循环水系统预膜已合格,运行稳定;

4.7.3 化学水、消防水、冷凝水、排水系统均已投用,运行可靠。

4.8 供电系统已平稳运行

4.8.1 已实行双电源、双回路供电;

4.8.2 仪表电源稳定运行;

4.8.3 保安电源已落实,事故发电机处于良好备用状态;

4.8.4 电力调度人员已上岗值班;

4.8.5 供电线路维护已经落实,人员开始倒班巡线。

4.9 蒸汽系统已平稳供给

4.9.1 蒸汽系统已按压力等级运行正常,参数稳定;

4.9.2 无跑、冒、滴、漏,保温良好。

催化裂化装置设计工艺计算方法

第一章 再生系统工艺计算 1. 1再生空气量及烟气量计算 烧碳量及烧氢量 烧焦量=8000 10101603 4??×%=1700kg/h H/C=7/93(已知) 烧碳量=17000×=15810kg/h=131705kmol/h 烧氢量=17000×=1190kg/h=595kmol/h 设两段烧碳比为85∶15且全部氢Ⅰ再生器中燃烧掉,又已知在I 段烟气中 CO 2% (O)= CO%(O)= Ⅱ段不存在CO 则Ⅰ段生成CO 2的C 为: ×× 5 .78.128 .12+=h=h Ⅰ段生成CO 的C 为××5 .78.125 .7+=h=h Ⅰ段烧焦量=++595=h=h Ⅱ生成CO 2的C 即为Ⅱ段烧焦量=×=h=h 理论干空气量的计算 Ⅰ段碳燃烧生成二氧化碳需O 2量×1=h Ⅰ段碳燃烧生成一氧化碳需O 2量×=h

Ⅰ段氢燃烧生成水需O 2量595×=h 理论需O 2量=++=h=38736kg/h 理论需N 2量=×79/21=h=h Ⅰ段理论干空气量=O 2+N 2 =h=h Ⅱ段碳燃烧生成CO 2需O 2量=h=h Ⅱ段碳燃烧生成CO 2需N 2=×79/21=h=h Ⅱ段碳燃烧生成CO 2需N 2== O 2+ N 2=941kmol/h=h 实际干空气量 Ⅰ段再生烟气中过剩量为%, 则%= 8.455321 79 7.4131.70622(2+?O +O ++O (过剩) (过剩)过剩) 过剩02量=h=h 过剩N 2量=× 21 79 =224kmol/h=h Ⅰ段实际干空气量=理论干空气量+过剩的干空气量 =h=h Ⅱ段烟气中过剩02为%=(过剩) (过剩) )(2221 79 14.7436.197O +++O 过剩O 2量= kmol/h=h 过剩N 2量=× 21 79 =h=h Ⅱ段实际干空气量=1300 kmol/h=h

几种催化裂化烟气脱硫技术的比较

湿式气体洗涤系统对比关键指标(KPI) BELCO 贝尔格 CANSOLV 康世富 HAMON 哈曼 NORTON 诺顿关键设备 容器类吸收塔 低pH冷却器 分离器/吸收塔分离器胺吸收器 NaOH吸收器 再生器 (蒸汽气体塔) SO2脱除NaOH溶液 多层喷淋 第一填料部分使用胺 溶液NaOH溶液 外部文丘里洗涤 NaOH溶液 外部文丘里洗涤第二填料部分使用 NaOH溶液 粉尘颗粒物脱除 滤清模块中喷淋 (安装在吸收塔内部 的文丘里) 无外部文丘里洗涤外部文丘里洗涤 NOx脱除LoTOx无WGS+多种处理方案 NOx脱除反应试剂氧气/臭氧亚氯酸钠/ 次氯酸钠 SNCR:氨 CoNOx:氧气 催化添加剂 洗涤液循环泵有有有特殊设计/最好的质量 及可靠性 紧急情况下 液体排泄设施 需要需要不需要不需要净化处理需要需要需要需要 颗粒物脱除沉淀及过滤CANSOLV不提供沉淀及过滤沉淀及过滤 硫的脱除氧化为Na2SO4湿SO2被送至 硫磺车间 氧化为Na2SO4氧化为Na2SO4 热稳定性盐脱除不需要需要离子交换树脂不需要不需要 公用工程 补水新鲜水新鲜水及去离子水多种多种 碱新鲜碱新鲜碱新鲜碱新鲜碱或废碱氨试剂补充无每天需补充1%无无 Nox反应试剂氧气消耗量为O3加入 速率的10倍 无 亚氯酸钠/ 次氯酸钠 消耗量最低 能耗 SO2及颗粒物脱除能耗一般一般一般最低NOx脱除能耗高无Nox脱除技术一般最低蒸汽消耗无高无无

湿式气体洗涤系统对比关键指标(KPI) BELCO 贝尔格 CANSOLV 康世富 HAMON 哈曼 NORTON 诺顿关键性能因素 设备高可靠性√有引起FCC运行不稳定的风险√√√ 对系统进行定制化设计√最优化的能源消耗√公用工程消耗-补充水√√√√补充水选择高灵活性√碱消耗量最低√ 界区内设备安装成本最低√界区外设备安装成本最低√脱除效率√√√√占地面积最小√系统复杂√√ 运行简单√√曾经引起FCC装置停车√√ 净化处理系统√√√增加硫磺车间载荷√ 需安装的设备数量多√ 设备安装之后提供技术支持√√√√为FCC提供优化,检修等服务√FCC再生器烟气回路工程服务√燃烧设备工程服务(CO锅炉及 其他加热器)√在FCC污染物控制领域拥有最丰 富的从业经验√

(整理)催化裂化的装置简介及工艺流程

催化裂化的装置简介及工艺流程 概述 催化裂化技术的发展密切依赖于催化剂的发展。有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。 催化裂化装置通常由三大部分组成,即反应/再生系统、分馏系统和吸收稳定系统。其中反应––再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下: (一)反应––再生系统 新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370℃左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650℃~700℃)催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。 积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上的少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650℃~680℃)。再生器维持0.15MPa~0.25MPa(表)的顶部压力,床层线速约0.7米/秒~1.0米/秒。再生后的催化剂经淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。 烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部分催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高而且含有约5%~10%CO,为了利用其热量,不少装置设有CO锅炉,利用再生烟气产生水蒸汽。对于操作压力较高的装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电能。 (二)分馏系统 分馏系统的作用是将反应/再生系统的产物进行分离,得到部分产品和半成

催化裂化装置的主要设备

催化裂化装置的主要设备 百克网:2008-5-30 14:50:14 文章来源:本站 催化裂化装置设备较多,本节只介绍几个主要设备。 一、提升管反应器及沉降器 (一)提升管反应嚣 提升管反应器是进行催化裂化化学反应的场所,是本装置的关键设备。随装置类型不同 提升管反应器类型不同,常见的提升管反应器类型有两种: (1)直管式:多用于高低并列式提升管催化裂化装置。 (2)折叠式:多用于同轴式和由床层反应器改为提升管的装置。 图5—8是直管式提升管反应器及沉降器示意图 提升管反应器是一根长径比很大的管子,长度一般为30~36米,直径根据装置处理量决 定,通常以油气在提升管内的平均停留时间1~4秒为限确定提升管内径。由于提升管内自下而上油气线速不断增大,为了不使提升管上部气速过高,提升管可作成上下异径形式。 在提升管的侧面开有上下两个(组)进料口,其作用是根据生产要求使新鲜原料、回炼 油和回炼油浆从不同位置进入提升管,进行选择性裂化。

进料口以下的一段称预提升段(见图5—9),其作用是:由提升管底部吹入水蒸气(称预 提升蒸汽),使由再生斜管来的再生催化剂加速,以保证催化剂与原料油相遇时均匀接触。 这种作用叫预提升。 为使油气在离开提升管后立即终止反应, 提升管出口均设有快速分离装置,其作用是使 油气与大部分催化剂迅速分开。快速分离器的 类型很多,常用的有:伞帽型,倒L型、T型、 粗旋风分离器、弹射快速分离器和垂直齿缝式 快速分离器(分州如图5—10中a、b、c、d、e、f所示)。 为进行参数测量和取样,沿提升管高度还 装有热电偶管、测压管、采样口等。除此之外,提升管反应器的设计还要考虑耐热,耐磨 以及热膨胀等问题。 (二)沉降器 沉降器是用碳钢焊制成的圆筒形设备,上段为沉降段,下段是汽提段。沉降段内装有数 组旋风分离器,顶部是集气室并开有油气出口。沉降器的作用是使来自提升管的油气和催化剂分离,油气经旋风分离器分出所夹带的催 化荆后经集气室去分馏系统;由提升管快速分 离器出来的催化剂靠重力在沉降器中向下沉 降,落入汽提段。汽提段内设有数层人字挡板 和蒸汽吹入口,其作用是将催化剂夹带的油气用过热水蒸气吹出(汽提),并返回沉降段,以便减少油气损失和减小再生器的负荷。 沉降器多采用直筒形,直径大小根据气体(油气、水蒸气)流率及线速度决定,沉降段线速一般不超过0.5~0.6米/秒。沉降段高度由旋风分离器科腿压力平衡所需料腿长度和所 需沉降高度确定,通常为9~12米。 汽提段的尺寸一般由催化剂循环量以及催化剂在汽提段的停留时间决定,停留时间一般 是1.5~3分钟。 二、再生器

催化裂化的装置简介及工艺流程样本

催化裂化装置简介及工艺流程 概述 催化裂化技术发展密切依赖于催化剂发展。有了微球催化剂,才浮现了流化床催化裂化装置;分子筛催化剂浮现,才发展了提高管催化裂化。选用适当催化剂对于催化裂化过程产品产率、产品质量以及经济效益具备重大影响。 催化裂化装置普通由三大某些构成,即反映/再生系统、分馏系统和吸取稳定系统。其中反映––再生系统是全装置核心,现以高低并列式提高管催化裂化为例,对几大系统分述如下: (一)反映––再生系统 新鲜原料(减压馏分油)通过一系列换热后与回炼油混合,进入加热炉预热到370℃左右,由原料油喷嘴以雾化状态喷入提高管反映器下部,油浆不经加热直接进入提高管,与来自再生器高温(约650℃~700℃)催化剂接触并及时汽化,油气与雾化蒸汽及预提高蒸汽一起携带着催化剂以7米/秒~8米/秒高线速通过提高管,经迅速分离器分离后,大某些催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带催化剂后进入分馏系统。 积有焦炭待生催化剂由沉降器进入其下面汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部空气(由主风机提供)接触形成流化床层,进行再生反映,同步放出大量燃烧热,以维持再生器足够高床层温度(密相段温度约650℃~680℃)。再生器维持0.15MPa~0.25MPa(表)顶部压力,床层线速约0.7米/秒~1.0米/秒。再生后催化剂经淹流管,再生斜管及再生单动滑阀返回提高管反映器循环使用。 烧焦产生再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带大某些催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高并且具有约5%~10%CO,为了运用其热量,不少装置设有CO锅炉,运用再生烟气产

催化裂化装置脱硫脱硝环保措施及效果分析

催化裂化装置脱硫脱硝环保措施及效果分析 摘要现在社会空气污染问题相当严重,催化裂化装置在排放烟气过程当中会出现不可避免的粉尘浓度超标问题。为在真正意义上实现对上述现象的解决,我们需要从催化装置烟气脱硫设置应用方面着手,实现对合适烟气脱硝技术的选择。本文主要针对催化裂化装置脱硫脱硝环保措施以及结果进行进一步探究。主要是在选择适合本装置脱硝技术的基础,实现对预期效果的满足,这不仅可实现对空气污染问题的有效解决,同时也可将更为良好的生存环境提供给人们。 关键词催化裂化;烟气脱硫;烟气脱硝 这些年来气候恶劣问题日益严重,全球面对的主要环境问题集中在温室效应、酸雨以及臭氧层破坏几个方面,这会对人类长期发展目标的实现造成制约。很多因素对环境造成污染,天然气及石油和煤等燃料的大规模使用都会在一定程度上加剧環境污染的程度。从催化裂化装置脱硫脱硝环保措施着手可实现对上述问题的不断改善,这可充分说明催化裂化装置脱硫脱硝环保措施的重要性。 1 FP-DNSNOx催化裂化烟气多效净化剂 FP-DNSNOx催化裂化烟气多效净化剂由北京某公司生产,为独家产品,已经得到相关质量管理体系的认证。其活性组分为金属氧化物,在助燃以及降低NOx排放的功能过程中都起着较为重要的作用。 1.1 技术原理NOx FP-DNSNOx催化裂化烟气多效净化剂有大量的金属氧化物存在,这也是其活性组分,金属氧化物在高温水热环境以及两器中会发生不可避免的还原反应。反应的主要对象为NOx,这是导致N2出现的主要原因。对烟气中NOx含量的降低有积极作用。 1.2 实施过程NOx 我们主要分为两个阶段对FP-DNSNOx催化裂化烟气多效净化剂进行加入,第一阶段速度较快,进而保障其在最短的时间内实现在自身作用与价值的发挥。第二阶段的加入较为平稳,在衡量其是否进入平稳阶段时,可借助助剂在系统总藏量中所占据的比例。快速阶段的助剂加入次数为每天三次,60kg,平稳阶段加入次数依旧为每天三次,但是每次加入次数有所改变,为10kg。催化剂小型加料器是FP-DNSNOx催化裂化烟气多效净化剂过程当中所借助的主要工具,然后在再生器密相床上进行直接补充。 1.3 烟气多效净化剂实施效果 烟气多效净化剂实施效果可通过以下数据进行直观体现。NOx在烟气多效

石油催化裂化系统设计

目录 第1章绘制控制工艺流程图 (1) 1.1 石油催化裂化工艺生产过程简介 (1) 1.2 催化裂化的工艺特点 (2) 1.3 CAD流程图 (3) 第2章节流装置的设计计算 (4) 2.1节流装置程序设计流程 (4) 2.3数据计算 (5) 第3章调节阀口径计算 (8) 3.1调节阀的选型 (8) 3.2调节阀口径计算 (8) 3.3 计算数据 (9) 第4章程序设计心得 (10) 参考文献 (11)

第1章 绘制控制工艺流程图 1.1 石油催化裂化工艺生产过程简介 该装置工艺流程分四个系统如图 提升管反应器 沉降器 再生器 回炼油浆 催化剂罐 主风机 加热炉 水蒸汽 新原料油 油浆 重柴油轻柴油 粗汽油 富气 气提塔 塔 馏分 回炼油罐 水蒸气 1 反应-再生系统:原料油经过加热汽化后进入提升管反应器进行裂化。提升管中 催化剂处于稀相流化输送状态,反应产物和催化剂进入沉降器,并经汽提段用过热水蒸气汽提,再经旋风分离器分离后,反应产物从反应系统进入分馏系统,催化剂沉降到再生器。在再生器中用空气使催化剂流化,并且烧去催化剂表面的焦炭。烟气经旋风分离器和催化剂分离后离开装置,使催化剂在装置中循环使用。 反应系统主要由反应器和再生器组成。原料油在装有催化剂的反应器中裂化,催化剂表面有焦炭沉积。沉积的焦炭的催化剂在再生器中烧焦进行再生,再生后的催化剂返回反应器重新使用。反应器主要为提升管,再生器为流化床。 再生器的主要作用是:烧去催化剂上因反应而生成的积炭,使催化剂的活性得以恢复。再生用空气由主风机供给,空气通过再生器下面的辅助燃烧室及分布管进入。 在反应系统中加入水蒸汽其作用为: (1)雾化——从提升管底部进入使油气雾化,分散,与催化剂充分接触; (2)预提升——在提升管中输送油气; (3)汽提——从沉降器底部汽提段进入,使催化剂颗粒间和颗粒内的油气汽提, 减少油气损失和焦炭生成量,从而减少再生器负荷。汽提水蒸气占总水蒸气量的大部分。

几种催化裂化烟气脱硫技术

几种催化裂化烟气脱硫技术 一、主要技术简介 目前催化裂化烟气污染物排放控制技术可分别为干法、湿法两大类,进一步又可分为采添加脱SOx、NOx助剂,催化原料预处理技术,增设烟气脱SOx、脱NOx设施三类。国外工业运行的催化裂化烟气脱SOx技术以湿法为主,吸收剂(洗涤液)有钠碱、氢氧化镁Mg(OH)2和海水等。湿法洗涤脱SOx设施一般由吸收(洗涤)单元和废液净化处理单元组成,前者是烟气脱硫技术的核心。应用较多的有诺顿公司的VSS技术,DuPont BELCO公司的EDV和LABSORBTM 技术、Hamon公司的WGS技术、Shell公司的CANSOLV技术等。 1.1 ExxonMobil公司WGS技术 1974年,当时在Exxon公司工作的John Cunic先生(先就职于美国诺顿公司)开发了第一套FCCU烟气洗涤技术,将喷射式文丘里管JEV应用到催化裂化烟气脱硫装置上。也就是现在由Hamon公司出售的WGS技术(ExxonMobil 授权Hamon工程公司进行WGS技术的出售及设计工作)。 优点:采用JEV(喷射式文丘里管)时压降低。 缺点:采用HEV(高性能文丘里管)时压降高。 1.2 DuPont BELCO公司的EDV技术 该技术于1994年完成第一套商业应用。EDV由急冷喷嘴、多层吸收喷嘴及滤清模块(滤清模块有多个文丘里组成)水珠分离器组成。上世纪90年代,诺顿公司主要给ExxonMobil公司升级维护WGS系统,ExxonMobil公司又不允许将其WGS洗涤技术推广到其他石化企业,造成90年代到2000年,DuPont BELCO 公司销售了多套EDV系统。 优点:业绩较多 缺点:系统在添加滤清模块的情况下压降会升高,可达4-7Kpa 1.3 CANSOLV公司的CANSOLV技术 CANSOLV公司1997年成立于加拿大,CANSOLV再生脱硫2002年开始第一套工业化商业运行。CANSOLV再生胺法脱硫系统有两部分组成洗涤-吸收和再生-净化,在炼油厂成功业绩全世界只有1套,它主要由以下几点

炼油生产安全技术—催化裂化的装置简介类型及工艺流程

编订:__________________ 单位:__________________ 时间:__________________ 炼油生产安全技术—催化裂化的装置简介类型及工 艺流程 Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8978-61 炼油生产安全技术—催化裂化的装置简介类型及工艺流程 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、装置简介 (一)装置发展及其类型 1.装置发展 催化裂化工艺产生于20世纪40年代,是炼油厂提高原油加工深度的一种重油轻质化的工艺。 20世纪50年代初由ESSO公司(美国)推出了Ⅳ型流出催化装置,使用微球催化剂(平均粒径为60—70tan),从而使催化裂化工艺得到极大发展。 1958年我国第一套移动床催化裂化装置在兰州炼油厂投产。1965年我国自己设计制造施工的Ⅳ型催化装置在抚顺石油二厂投产。经过近40年的发展,催化裂化已成为炼油厂最重要的加工装置。截止1999年底,我国催化裂化加工能力达8809。5×104t/a,占

一次原油加工能力的33.5%,是加工比例最高的一种装置,装置规模由(34—60)×104t/a发展到国内最大300×104t/a,国外为675×104t/a。 随着催化剂和催化裂化工艺的发展,其加工原料由重质化、劣质化发展至目前全减压渣油催化裂化。根据目的产品的不同,有追求最大气体收率的催化裂解装置(DCC),有追求最大液化气收率的最大量高辛烷值汽油的MGG工艺等,为了适应以上的发展,相应推出了二段再生、富氧再生等工艺,从而使催化裂化装置向着工艺技术先进、经济效益更好的方向发展。 2.装置的主要类型 催化裂化装置的核心部分为反应—再生单元。反应部分有床层反应和提升管反应两种,随着催化剂的发展,目前提升管反应已取代了床层反应。 再生部分可分为完全再生和不完全再生,一段再生和二段再生(完全再生即指再生烟气中CO含量为10—6级)。从反应与再生设备的平面布置来讲又可分为高低并列式和同轴式,典型的反应—再生单元见图

催化裂化装置工艺流程及设备简图

催化裂化装置工艺流程及设备简图 “催化裂化”装置简单工艺流程 “催化裂化”装置由原料预热、反应、再生、产品分馏等三部分组成~其工艺流程见下图~主要设备有:反应器、再生器、分馏塔等。 1、反应器,又称沉降器,的总进料由新鲜原料和回炼油两部分组成~新鲜原料先经换热器换热~再与回炼油一起分为两路进入加热炉加热~然后进入反应器底部原料集合管~分六个喷嘴喷入反映器提升管~并用蒸汽雾化~在提升管中与560,600?的再生催化剂相遇~立即汽化~约有25,30%的原料在此进行反应。汽油和蒸汽携带着催化剂进入反应器。通过反应器~分布板到达密相段~反应器直径变大~流速降低~最后带着3,4?/?的催化剂进入旋风分离器,使其99%以上的催化剂分离,经料腿返回床层,油汽经集气室出沉降器,进入分馏塔。 2、油气进入分馏塔是处于过热状态,同时仍带有一些催 化剂粉末,为了回收热量,并洗去油汽中的催化剂,分馏塔入口上部设有挡板,用泵将塔底油浆抽出经换热及冷却到 0200,300C,通过三通阀,自上层挡板打回分馏塔。挡板以上为分馏段,将反应 物根据生产要求分出气体、汽油、轻柴油、重柴油及渣油。气体及汽油再进行稳定吸收,重柴油可作为产品,也可回炼,渣油从分馏塔底直接抽出。

3、反应生焦后的待生催化剂沿密相段四壁向下流入汽提段。此处用过热蒸汽提出催化剂,颗粒间及表面吸附着的可汽提烃类,沿再生管道通过单动滑阀到再生器提升管,最后随增压风进入再生器。在再生器下部的辅助燃烧室吹入烧焦用的空气,以保证床层处于流化状态。再生过程中,生成的烟通过汽密相段进入稀相段。再生催化剂不断从再生器进入溢流管,沿再生管经另一单动滑阀到沉降器提升管与原料油汽汇合。 4、由分馏塔顶油气分离出来的富气,经气压机增压,冷却后用凝缩油泵打入吸收脱吸塔,用汽油进行吸收,塔顶的贫气进入二级吸收塔用轻柴油再次吸收,二级吸收塔顶干气到管网,塔底吸收油压回分馏塔。 5、吸收脱吸塔底的油用稳定进料泵压入稳定塔,塔顶液态烃一部分作吸收剂,另一部分作稳定汽油产品。 设备简图 反应器、再生器和分馏塔高、重、大。具体如:分馏塔高41.856m,再生器塔高31m,反应器安装后塔顶标高达57m。再生器总重为390t,反应器总重为177t,分馏塔总重为175t。 3再生器最大直径9.6m,体积为2518m。 1(两器一塔的主要外型尺寸及参数 再生器的外型尺寸参数见下图。

催化裂化装置的主要设备催化裂化装置的主要设备

催化裂化装置的主要设备 催化裂化装置的主要设备 百克网:2008-5-30 14:50:14 文章来源:本站 催化裂化装置设备较多,本节只介绍几个主要设备。 一、提升管反应器及沉降器 (一)提升管反应嚣 提升管反应器是进行催化裂化化学反应的场所,是本装置的关键设备。随装置类型不同提升管反应器类型不同,常见的提升管反应器类型有两种: (1)直管式:多用于高低并列式提升管催化裂化装置。 (2)折叠式:多用于同轴式和由床层反应器改为提升管的装置。 图5—8是直管式提升管反应器及沉降器示意图 提升管反应器是一根长径比很大的管子,长度一般为30~36米,直径根据装置处理量决定,通常以油气在提升管内的平均停留时间1~4秒为限确定提升管内径。由于提升管内自下而上油气线速不断增大,为了不使提升管上部气速过高,提升管可作成上下异径形式。 在提升管的侧面开有上下两个(组)进料口,其作用是根据生产要求使新鲜原料、回炼油和回炼油浆从不同位置进入提升管,进行选择性裂化。

进料口以下的一段称预提升段(见图5—9),其作用是:由提升管底部吹入水蒸气(称预提升蒸汽),使由再生斜管来的再生催化剂加速,以保证催化剂与原料油相遇时均匀接触。这种作用叫预提升。 为使油气在离开提升管后立即终止反应,提升管出口均设有快速分离装置,其作用是使油气与大部分催化剂迅速分开。快速分离器的类型很多,常用的有:伞帽型,倒L型、T型、粗旋风分离器、弹射快速分离器和垂直齿缝式快速分离器(分州如图5—10中a、b、c、d、e、f所示)。 为进行参数测量和取样,沿提升管高度还装有热电偶管、测压管、采样口等。除此之外,提升管反应器的设计还要考虑耐热,耐磨以及热膨胀等问题。 (二)沉降器 沉降器是用碳钢焊制成的圆筒形设备,上段为沉降段,下段是汽提段。沉降段内装有数组旋风分离器,顶部是集气室并开有油气出口。沉降器的作用是使来自提升管的油气和催化剂分离,油气经旋风分离器分出所夹带的催化荆后经集气室去分馏系统;由提升管快速分离器出来的催化剂靠重力在沉降器中向下沉降,落入汽提段。汽提段内设有数层人字挡板和蒸汽吹入口,其作用是将催化剂夹带的油气用过热水蒸气吹出(汽提),并返回沉降段,以便减少油气损失和减小再生器的负荷。 沉降器多采用直筒形,直径大小根据气体(油气、水蒸气)流率及线速度决定,沉降段线速一般不超过0.5~0.6米/秒。沉降段高度由旋风分离器科腿压力平衡所需料腿长度和所需沉降高度确定,通常为9~12米。汽提段的尺寸一般由催化剂循环量以及催化剂在汽提段的停留时间决定,停留时间一般是1.5~3分钟。 二、再生器

催化裂化烟气脱硫工艺及污水处理方案

烟气脱硫污水处理方案 目前国催化裂化装置湿法烟气脱硫工艺有美国BELCO?公司的EDV工艺、德国GEA-Bischoff公司的EP-Absorber工艺、美国诺顿(NORTON)公司的文丘里洗涤脱硫工艺(VSS),所有烟气脱硫装置运行过程中排放的脱硫后废水为COD高的含盐污水,主要污染物为硫酸钠、亚硫酸钠溶液及固体颗粒物,成熟的烟气脱硫工艺都有配套的污水处理单元(PTU)来处理脱硫废水,经处理后的脱硫废水直接进入外排污水管网。 现总结几个公司烟气脱硫主要工艺和污水处理工艺。 德国GEA-Bischoff公司的EP-Absorber工艺——昌邑石化烟气脱硫介绍:

昌邑石化烟气脱硫除尘工艺流程图 外部氧化喷射系统图 昌邑石化烟气脱硫除尘单元采用德国GEA-Bischoff 公司 EP-Absorber 脱硫除尘一体化技术对烟气中的二氧化硫和粉尘处理,由二氧化硫吸收系统、静电除尘系统和烟囱三部分组成。废水处理单元采用德国 GEA Bischoff 公司专用的排液处理技术(PTU)处理脱硫除尘废水,主要有澄清器、汽提塔、砂滤几部分组成。 为使排出废液COD 更低,从吸收器底部池中抽取液体至外部氧吸收器

化系统氧化,再回流至吸收器池中。外部氧化系统由空气喷射器和高压泵等组成,液体被高压泵输送至动力喷嘴,通过喷嘴喷射后,体变成液滴,随后与喷射空气充分混合,使溶解在循环液中的亚硫酸盐与空气发生氧化反应。在空气喷射器之后,含有非常细微分散气泡的循环液回流至吸收器池内,在这些气泡上升至池面的过程中,残余的氧进一步与循环液发生氧化反应。 经PTU单元后外排废水排放指标 脱硫除尘进入PTU单元处理,悬浮的颗粒催化剂经压滤成饼作为固体排放物进行处理,清液经处理后外排至市政污水管网。 固体废物排放主要为脱硫除尘塔外排废液经脱水后产生的泥渣以及脱硝产生的废催化剂。脱硫废渣产生量1693t/a,主要成分为硫酸钠、亚硫酸钠、亚硫酸氢钠,经过滤后,进行无害化填埋。废催化剂属于危险固体废物,送至具有危险固体废物回收资质的单位进行回收。

催化裂化装置工艺流程

催化裂化装置工艺流程 催化裂化技术的发展密切依赖于催化剂的发展。有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。 催化裂化装置通常由三大部分组成,即反应?再生系统、分馏系统和吸收稳定系统。其中反应––再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下: 一反应––再生系统 新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370?左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650?~700?)催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。 积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上的少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650?~68 0?)。再生器维持0.15MPa~0.25MPa (表)的顶部压力,床层线速约0.7米/秒~1.0米/秒。再生后的催化剂经淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。 烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部分催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高而且含有约5%~10% CO,为了利用其热量,不少装置设有CO 锅炉,利用再生烟气产生水蒸汽。对于操作压力较高的装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电能。 二分馏系统

石油化工催化裂化装置工艺流程图.docx

炼油生产安全技术一催化裂化的装置简介类型及工艺流程 催化裂化技术的发展密切依赖于催化剂的发展。有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。 催化裂化装置通常由三大部分组成,即反应?再生系统、分馏系统和吸收稳定系统。其中反应--再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下: ㈠反应--再生系统 新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370 C左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650 C ~700C )催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化 剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。 积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催 化剂表面上的少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650 C ~68 0 C )。再生器维持0.15MPa~0?25MPa (表)的顶部压力,床层线速约0.7米/秒~1.0米/秒。再生后的催化剂经 淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。 烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部 分催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高而且含有约5%~10%CO 为了利用其热量,不少装置设有Co锅炉,利用再生烟气产生水蒸汽。对于操作压力较高的 装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电 能。 ㈡分馏系统 分馏系统的作用是将反应?再生系统的产物进行分离,得到部分产品和半成品。 由反应?再生系统来的高温油气进入催化分馏塔下部,经装有挡板的脱过热段脱热后进入分 馏段,经分馏后得到富气、粗汽油、轻柴油、重柴油、回炼油和油浆。富气和粗汽油去吸收稳定系统;轻、重柴油经汽提、换热或冷却后出装置,回炼油返回反应--再生系统进 行回炼。油浆的一部分送反应再生系统回炼,另一部分经换热后循环回分馏塔。为了取走 分馏塔的过剩热量以使塔内气、液相负荷分布均匀,在塔的不同位置分别设有4个循环回流:顶循环回流,一中段回流、二中段回流和油浆循环回流。 催化裂化分馏塔底部的脱过热段装有约十块人字形挡板。由于进料是460 C以上的带有催化 剂粉末的过热油气,因此必须先把油气冷却到饱和状态并洗下夹带的粉尘以便进行分馏和避免堵塞塔盘。因此由塔底抽出的油浆经冷却后返回人字形挡板的上方与由塔底上来的油 气逆流接触,一方面使油气冷却至饱和状态,另一方面也洗下油气夹带的粉尘。 ㈢吸收--稳定系统: 从分馏塔顶油气分离器出来的富气中带有汽油组分,而粗汽油中则溶解有C3 C4甚至C2 组分。吸收--稳定系统的作用就是利用吸收和精馏的方法将富气和粗汽油分离成干气 (≤ C2)、液化气(C3、C4)和蒸汽压合格的稳定汽油。 一、装置简介 (一)装置发展及其类型

80万吨年催化裂化装置设计计算书

第1章绪论 1.1 概述 1.1.1 催化裂化工业的意义与作用 石油工业是国民经济中最重要的支柱产业之一,是提供能源,尤其是提供交通运输燃料和有机化工原料的最重要的工业。据统计,全世界总能源需求的40%依赖于石油产品[1]。然而作为一种不可再生资源,石油的产量在不断的下降,而社会生产,人民生活却需要大量的汽油,柴油等轻质油品,但是石油不能直接作为产品使用,必须经过各种加工过程,炼制成多种符合使用要求的各种石油产品。而原油经过第一步加工只能得到少部分轻质油,大部分仍为渣油,因此需要对重质油进一步加工,催化裂化是对重质油加工的主要手段。 以我国目前的需要情况为例,对轻质燃料油,重质燃料油和润滑油三者需要的比例是20:6:1。另一方面,由于内燃机的发展对汽油的质量提出更高的要求,而直馏汽油一般难以满足这些要求。同时由于石油价格上涨和石油资源逐渐枯竭,许多国家都在努力寻找能替代石油的新能源。寻找新能源的工作近年来虽然取得很大的进展,但是至少在几十年内,由石油生产的轻质液体燃料仍然是不可能被替代的,而且对它的需求量还不断增大。所有的这一切都促使了石油的催化裂化工业的产生和发展。 1.1.2 催化裂化技术国内外发展现状 催化裂化是最重要的重质油轻质化过程之一,在汽油和柴油等轻质油品的生产中占有重要的地位。在一些原油加工深度较大的国家,例如德国和美国,催化裂化的处理能力达原油加工能力的30%以上。在我国,由于多数原油偏重,氢碳比(H/C)相对较高而金属含量相对较低,因此催化裂化过程,尤其是重油催化裂化过程的地位就显得更为重要。 在我国国内最早的工业催化裂化装置出现于1936年。几十年来,无论

催化裂化装置

催化裂化装置 一、催化裂化在炼油工业中的作用 催化裂化是重要的石油二次加工手段之一,催化裂化是现代化炼油厂用来改质重质馏分和渣油的核心技术。 一般原油经过一次加工(即常减压蒸馏)后可得到10~40%的汽油,煤油及柴油等轻质油品,其余的是重质馏分和残渣油。如果不经过二次加工它们只能作为润滑油原料或重质燃料油。但是国民经济和国防上需要的轻质油量是很大的,但市场对轻质油的需求量是很大的,以我国目前为例,对轻质燃料油、重质燃料油和润滑油的需求比例大约是20:6:1;另一方面,由于内燃机的发展,对汽油的质量提出了更高的要求,而一般直馏汽油则难以满足这些要求。如目前我国车用汽油标准里面所有汽油的研究法辛烷值都在90以上,随着我国高标号汽油(指研究法辛烷值为93及以上汽油)的消费量不断增长,高标号汽油产量所占的比例已由2003年的28.5%上升到2006年的56.5%。而直馏汽油的辛烷值一般只有40~60,不能满足上述要求。 催化裂化是目前石油炼制工业中最重要的二次加工过程,也是重油轻质化(生产汽、柴油)的核心工艺。催化裂化以各种重质油(VGO、CGO、AR、VR等)为原料,在500℃左右、0.2~0.4MPa及催化剂的作用下,通过催化裂化反应得到气体(干气和LPG)、高辛烷值汽油、催化柴油(LCO)、重质油及焦炭。因此,催化裂化是提高原油加工深度、增加轻质油收率的重要手段。就加工能力来说,我国的催化裂化位居其它二次加工过程之首,催化裂化几乎是所有石化企业最重要的二次加工手段。 催化裂化过程有以下几个特点: 轻质油收率高,可达70%~80%; 催化裂化汽油的辛烷值较高,安定性好; 催化裂化汽柴油十六烷值较低,常与直馏柴油调合才能使用; 催化裂化气体产品中,80%是C3和C4烃类(称为液化石油气LPG),其中丙烯和丁烯占一半以上,因此这部分产品是优良的石油化工和生产高辛烷值汽油组分的原料。 二、工艺原理概述

催化裂化烟气脱硫工艺及污水处理方案

催化裂化烟气脱硫工艺及污水处理方案 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

烟气脱硫污水处理方案 目前国催化裂化装置湿法烟气脱硫工艺有美国BELCO?公司的EDV工艺、德国GEA-Bischoff公司的EP-Absorber工艺、美国诺顿(NORTON)公司的文丘里洗涤脱硫工艺(VSS),所有烟气脱硫装置运行过程中排放的脱硫后废水为COD高的含盐污水,主要污染物为硫酸钠、亚硫酸钠溶液及固体颗粒物,成熟的烟气脱硫工艺都有配套的污水处理单元(PTU)来处理脱硫废水,经处理后的脱硫废水直接进入外排污水管网。 现总结几个公司烟气脱硫主要工艺和污水处理工艺。 德国GEA-Bischoff公司的EP-Absorber工艺——昌邑石化烟气脱硫介绍:

昌邑石化烟气脱硫除尘工艺流程图 吸收器 外部氧化喷射系统图 昌邑石化烟气脱硫除尘单元采用德国GEA-Bischoff公司EP-Absorber脱硫除尘一体化技术对烟气中的二氧化硫和粉尘处理,由二氧化硫吸收系统、静电除尘系统和烟囱三部分组成。废水处理单元采用德国 GEA Bischoff公司专用的排液处理技术(PTU)处理脱硫除尘废水,主要有澄清器、汽提塔、砂滤几部分组成。

为使排出废液COD更低,从吸收器底部池中抽取液体至外部氧化系统氧化,再回流至吸收器池中。外部氧化系统由空气喷射器和高压泵等组成,液体被高压泵输送至动力喷嘴,通过喷嘴喷射后,体变成液滴,随后与喷射空气充分混合,使溶解在循环液中的亚硫酸盐与空气发生氧化反应。在空气喷射器之后,含有非常细微分散气泡的循环液回流至吸收器池内,在这些气泡上升至池面的过程中,残余的氧进一步与循环液发生氧化反应。 脱硫除尘进入PTU单元处理,悬浮的颗粒催化剂经压滤成饼作为固体排放物进行处理,清液经处理后外排至市政污水管网。 固体废物排放主要为脱硫除尘塔外排废液经脱水后产生的泥渣以及脱硝产生的废催化剂。脱硫废渣产生量1693t/a,主要成分为硫酸钠、亚硫酸钠、亚硫酸氢钠,经过滤后,进行无害化填埋。废

催化裂化工艺介绍

1.0催化裂化 催化裂化是原料油在酸性催化剂存在下,在500℃左右、1×105~3×105Pa 下发生裂解,生成轻质油、气体和焦炭的过程。催化裂化是现代化炼油厂用来改质重质瓦斯油和渣油的核心技术,是炼厂获取经济效益的重要手段。 催化裂化的石油炼制工艺目的: 1)提高原油加工深度,得到更多数量的轻质油产品; 2)增加品种,提高产品质量。 催化裂化是炼油工业中最重要的一种二次加工工艺,是重油轻质化和改质的重要手段之一,已成为当今石油炼制的核心工艺之一。 1.1催化裂化的发展概况 催化裂化的发展经历了四个阶段:固定床、移动床、流化床和提升管。见下图: 固定床移动床 流化床提升管(并列式)在全世界催化裂化装置的总加工能力中,提升管催化裂化已占绝大多数。

1.2催化裂化的原料和产品 1.2.0原料 催化裂化的原料范围广泛,可分为馏分油和渣油两大类。 馏分油主要是直馏减压馏分油(VGO),馏程350-500℃,也包括少量的二次加工重馏分油如焦化蜡油等,以此种原料进行催化裂化称为馏分油催化裂化。 渣油主要是减压渣油、脱沥青的减压渣油、加氢处理重油等。渣油都是以一定的比例掺入到减压馏分油中进行加工,其掺入的比例主要受制于原料的金属含量和残炭值。对于一些金属含量低的石蜡基原有也可以直接用常压重油为原料。当减压馏分油中掺入渣油使通称为RFCC。以此种原料进行催化裂化称为重油催化裂化。 1.2.1产品 催化裂化的产品包括气体、液体和焦炭。 1、气体 在一般工业条件下,气体产率约为10%-20%,其中含干气和液化气。 2、液体产物 1)汽油,汽油产率约为30%-60%;这类汽油安定性较好。 2)柴油,柴油产率约为0-40%;因含较多芳烃,所有十六烷值较低,由重油催化裂化得到的柴油的十六烷值更低,这类柴油需经加氢处理。 3)重柴油(回炼油),可以返回到反应器内,已提高轻质油收率,不回炼时就以重柴油产品出装置,也可作为商品燃料油的调和组分。 4)油浆,油浆产率约为5%-10%,从催化裂化分馏塔底得到的渣油,含少量催化剂细粉,可以送回反应器回炼以回收催化剂。油浆经沉降出去催化剂粉末后称为澄清油,因多环芳烃的含量较大,所以是制造针焦的好原料,或作为商品燃料油的调和组分,也可作加氢裂化的原料。 3、焦炭 焦炭产率约为5%-7%,重油催化裂化的焦炭产率可达8%-10%。焦炭是缩合产物,它沉积在催化剂的表面上,使催化剂丧失活性,所以用空气将其烧去使催化剂恢复活性,因而焦炭不能作为产品分离出来。 1.3催化裂化工业装置的组成部分

炼油生产安全技术—催化裂化的装置简介类型及工艺流程详细版

文件编号:GD/FS-9840 The Daily Operation Mode, It Includes All The Implementation Items, And Acts To Regulate Individual Actions, Regulate Or Limit All Their Behaviors, And Finally Simplify Management Process. 编辑:_________________ 单位:_________________ 日期:_________________ (操作规程范本系列) 炼油生产安全技术—催化裂化的装置简介类型及工艺流程详细版

炼油生产安全技术—催化裂化的装 置简介类型及工艺流程详细版 提示语:本操作规程文件适合使用于日常的规则或运作模式中,包含所有的执行事项,并作用于规范个体行动,规范或限制其所有行为,最终实现简化管理过程,提高管理效率。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 一、装置简介 (一)装置发展及其类型 1.装置发展 催化裂化工艺产生于20世纪40年代,是炼油厂提高原油加工深度的一种重油轻质化的工艺。 20世纪50年代初由ESSO公司(美国)推出了Ⅳ型流出催化装置,使用微球催化剂(平均粒径为60—70tan),从而使催化裂化工艺得到极大发展。 1958年我国第一套移动床催化裂化装置在兰州炼油厂投产。1965年我国自己设计制造施工的Ⅳ型

催化装置在抚顺石油二厂投产。经过近40年的发展,催化裂化已成为炼油厂最重要的加工装置。截止1999年底,我国催化裂化加工能力达8809。5×104t/a,占一次原油加工能力的33.5%,是加工比例最高的一种装置,装置规模由(34—60)×104t/a发展到国内最大300×104t/a,国外为675×104t/a。 随着催化剂和催化裂化工艺的发展,其加工原料由重质化、劣质化发展至目前全减压渣油催化裂化。根据目的产品的不同,有追求最大气体收率的催化裂解装置(DCC),有追求最大液化气收率的最大量高辛烷值汽油的MGG工艺等,为了适应以上的发展,相应推出了二段再生、富氧再生等工艺,从而使催化裂化装置向着工艺技术先进、经济效益更好的方向发展。

相关主题