搜档网
当前位置:搜档网 › 番茄基因组学研究获重大 番茄果实进化和发育的基因组学基

番茄基因组学研究获重大 番茄果实进化和发育的基因组学基

番茄基因组学研究获重大 番茄果实进化和发育的基因组学基

番茄基因组与其它重要茄科植物马铃薯、茄子、辣椒、烟草基因组的共线性研究

Tomato:番茄,Potato:马铃薯,

Eggplant:茄子,Pepper:辣椒,

Nicotiana:烟草栽培番茄与其近缘野生种醋栗番茄的果实与果实中类胡萝卜素、番茄红素含量比较A. 栽培番茄(左)与其近缘野生种醋栗番茄(右)的果实大小比较B. 栽培番茄(黑色)与其近缘野生种醋栗番茄(红色)果实中类胡萝卜素(?-carotene)、番茄红素(Lycopene)的高效液相色谱(HPLC)分析比较。项目简介

番茄是重要的蔬菜作物,也是植物学研究,特别是果实发育研究的经典模式系统。历经8年多的艰苦努力,由来自14个国家的300多位科学家组成的“番茄基因组研究国际协作组”完成了对栽培番茄及其近缘野生种醋栗番茄全基因组的精细序列分析。在解码的番茄基因组中共鉴定出约34,727个基因,其中97.4%的基因已经精确定位到染色体上。比较基因组分析发现了番茄果实进化和发育的基因组学基础,番茄基因组经历的两次三倍化使基因家族产生了特异控制果实发育及营养品质的新成员。这项成果于2012年5月

31日以封面文章发表在Nature 上(485:635-641)。番茄基因组的解读是科学家通过国际合作完成的又一个高质量的模式植物的基因组序列分析。中国科学院遗传与发育生物学研究所和中国农业科学院蔬菜花卉研究所组织国内60多位科学家参与了这项工作,高质量地完成了番茄基因组测序任务的1/6,标志着我国是番茄基因组学研究的强国之一。该成果的取得必将对茄科植物的功能基因组学与比较基因组学研究起到极大的推动作用,并为培育具有高产、优质、抗病虫、抗逆等优良性状的番茄新品种打下良好的基础,对促进我国乃至全世界的番茄生产具有重要意义。完 成 人: 李传友、薛勇彪、程祝宽、凌宏清、左建儒、黄三文

完成单位: 中国科学院遗传与发育生物学研究所

中国农业科学院蔬菜花卉研究所

番茄基因组学研究获重大突破揭秘番茄果实进化和发育的基因组学基础番茄基因组研究成果以封面文章在Nature发表番茄基因组研究成果被美国《科学家》杂志(The Scientist)评为2012年度最受科学家关注的基因组。

05

基因组学对我们的影响

基因组学对我们的影响 基因组学是研究生物基因组和如何利用基因的一门学问。用于概括涉及基因作图、测序和整个基因组功能分析的遗传学分支。该学科提供基因组信息以及相关数据系统利用,试图解决生物,医学,和工业领域的重大问题。基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学和以基因功能鉴定为目标的功能基因组学,又被称为后基因组研究,成为系统生物学的重要方法。 基因组是1924年提出用于描述生物的全部基因和染色体组成的概念。1986年由美国科学家ThomasRoderick提出的基因组学是指对所有基因进行基因组作图(包括遗传图谱、物理图谱、转录本图谱),核苷酸序列分析,基因定位和基因功能分析的一门科学。自从1990年人类基因组计划实施以来,基因组学发生了翻天覆地的变化,已发展成了一门生命科学的前沿和热点领域。 现在广泛公布的人类以及一系列其他生物体的基因组序列为我们描绘出了最基础的生物学以及生物医学信息。这些仍然很难破译的密码包含了细胞的结构和功能的的全部遗传指令信息,而这一信息又是揭开生物系统复杂性所必需的。阐明基因组的结构以及确定大量编码元素的功能可以建立基因组学与生物学的联系,从而加速我们对所有生命科学领域的探索。 把基于基因组的知识转化为人类健康的福祉,人类基因组测序,以及基因组学其他最近及预期的研究成果,极大地有助于我们了解遗传因素在人类健康和疾病中的角色,精确确定非遗传因素,并迅速将

新发现用于疾病的预防、诊断和治疗。美国国家研究院在其为HGP的最初远景规划中清楚地表明,人类基因组序列将改善人的健康状况,而它后来的五年计划也再一次明确了这一观点。但是这一点怎样才能实现还未得到更清晰的说明。随着HGP最初目标的完成,现在正是广泛发展和应用基因组战略改善人类健康、并预见和避免潜在伤害的时机。鉴定基因和路径在健康和疾病中的角色,测定它们与环境因素之间的关系;发展、评价以及应用以基因组为基础的诊断方法来预测对疾病的易感性,预测药物反应,疾病的早期诊断,疾病在分子水平上的精确分类;开发和应用促进基因组信息转化成治疗进步的方法。 促进基因组学的应用,最大程度地发挥效益,将危害降到最低基因组学通过学术研究和政策讨论一直处于对科学技术对社会的冲击进行严密关注的最前沿。如上文所述,基因组学主要能够造福于健康方面,但是除此之外,基因组学还能在社会其他领域有贡献。就像HGP和相关研究在基础生物学和健康方面开拓的新领域,同时为研究社会问题创造了机会,甚至可以使我们更全面地了解如何定义自己和他人。 在未来的几年内,社会不仅会为基因组学引起的无数的问题而探讨,而且还必须制定和贯彻相应的政策来解决它们。除非研究能够给出可信的数据和严格的方法作为决断的依据,否则这些政策就将是错误的,还可能会给我们大家带来潜在的危害。要想获得成功,这个研究就必须包含发展概念上的工具和共享语言的“基础”调查,和更多使用这些工具来探索制定适当的综合不同的观点的公共政策的“应用

进化基因组学研究进展

研究进化基因组学进展 摘要:进化基因组学是利用基因组数据研究差异基因功能、生物系统演化、从基因在水平探索生物进化的学科。随着近年来基因组数据的不断增加,进化基因组学得到了长足的发展。进化基因组学主要包括从基因组水平理解和诠释生物进化和新基因分析研究探索两方面的内容。本文介绍了进化基因组学研究的主要内容和较为常用的方法,以及近年来在细菌、酵母、果蝇进化基因组学方面的研究进展。 关键词:进化基因组学系统进化比较基因组学新基因 正文 随着基因测序技术的不断进步以及基因组学的飞速的发展,人们积累了大量的基因组学数据,利用所得的大量的基因组数据与进化生物学相结合,在基因组水平研究生物进化机制,随即产生了进化基因组学。 近年来进化基因组学取得了长足的进展,在研究差异基因功能、生物系统演化、从基因在水平探索生物进化的终极方式等方面有重大突破,对人类理解生命现象和过程有重要作用。 研究系统进化学通常包括两个关键步骤:一方面,在不同物种中鉴定同源性特佂,另一方面利用构建系统进化树的方法比较这些特征,进而重新构建这些物种的进化历史[1]。针对这两个关键步骤,传统系统进化学,常采用基于形态学数据和单个基因研究的同源性状鉴定和重建系统进化树(常包括距离法、最大简约法、概率法)[1]的方法来研究。在目前拥有丰富基因组数据的条件下,我们可以分析基因组数据,利用进化基因组学研究系统进化。 一、目前进化基因组学的研究内容主要集中于两个方面:(1)在比较不同生物的基因数据的基础上,从基因组水平理解和诠释生物进化;(2)通过对新基因的分析研究探索基因进化过程的规律两个方面。在进行全基因组进化分析方面,进化基因组学主要集中于构建系统进化树、研究基因组进化策略、研究生物功能变化和进化机制、进化和生态功能基因组学、基因注释的等方面;在新基因方面

番茄VKOR基因的克隆、生物信息学分析及功能初步研究

番茄VKOR基因的克隆、生物信息学分析及功能初步研究 维生素K环氧化物还原酶(Vitamin K epoxide reductase,VKOR),是一种广泛存在于高等动物内质网上的整合膜蛋白。该基因的同源物在植物中普遍存在,拟南芥VKOR缺失突变体研究表明,该基因对植物的生长具有非常重要的作用,但有关其它高等植物VKOR的研究尚未见报道。 本研究以番茄作为材料,利用RACE技术克隆了番茄VKOR基因,并在GenBank 上注册(JF951971),命名为LeVKOR。我们对其进行了一系列的生物信息学预测,并对其他植物的VKOR的同源物,进行了生物信息学分析。 此外,还利用原核表达和植物转基因的技术对该基因的功能进行了初步研究。具体结果如下:(1)用RACE技术克隆了番茄VKOR基因的全长。 从NCBI上通过BLAST,查到1个注册的番茄VKOR的cDNA序列,设计上下 游引物,扩增该序列,扩增得到的基因片段与数据库公布的序列不完全相符,在3′末端缺失终止密码子。我们利用RACE技术克隆了该基因的3′端,得到基因全长的cDNA序列,通过序列比对发现该基因定位在番茄的2号染色体上,该基因(LeVKOR)由7段外显子组成,其开放阅读框架包括1122bp,共编码373个 氨基酸残基。 LeVKOR共有10个半胱氨酸残基,其8个是保守的半胱氨酸,而保守的半胱氨酸中有四个半胱氨酸以CXXC基序的形式存在。(2)利用在线软件预测LeVKOR 的信号肽及高级结构。 利用多种软件预测了该基因产物的亚细胞定位,该基因定位于叶绿体上,其 N端有一段包括47个氨基酸残基的信号肽。高级结构预测结果显示,LeVKOR基因,是一个融合蛋白,有两个结构域组成,包括一个跨膜结构域和一个可溶性结

水稻基因组进化的研究进展

水稻基因组进化的研究进展 水稻是世界上重要的粮食作物之一,养活着全世界近一半的人口。同时南于水稻基冈组较小、易于转化及与其他禾本科植物基因组的同线性和共线性等特点,一直被作为禾本科植物基因组研究的模式作物。水稻是第一个被全基因组测序的作物,目前栽培稻2个亚种全基因组测序工作已经完成:粳稻品种日本晴(Nipponbare)通过全基因组鸟枪法和逐步克隆法被测序,籼稻品种扬稻6号(9311)通过全基因组鸟枪法被测序。除核基因组外,水稻叶绿体和线粒体基因组也于1989年和2002年分别被测序。水稻2个亚种的全基因组测序完成,一方面开启了植物比较基因组学的大门,另一方面为人们在基冈组水平上鉴定出所有水稻基因并分析其功能奠定了基础,同时也使得人们对植物进化的认识,尤其是对禾本科植物进化的了解,逐步从系统分类和分子标记水平进入到了基因组序列水平。许多研究者通过对水稻基因组序列的分析,利用生物信息学工具,对水稻在基因组水平上的进化进行了大量研究。 1 水稻及其他禾本科植物基因组的古多倍体化过程 水稻是典型的二倍体植物,其核基因组中共有12条染色体。在水稻基因组被完整测序之前,人们就已经采用分子标记、DNA重复元件等方法探究水稻基因组的古多倍体化(polyploidization)过程,并发现了一些重复的染色体片段。随着水稻基因组测序计划的完成,越来越多的证据表明水稻基因组曾发生过全基因组复制(whole genome duplication),即古多倍体化过程。 Golf等利用鸟枪法完成了粳稻品种日本晴全基因组的测序工作,并利用同义替换率分布方法(Ks- based age distribution)提出水稻基因组可能发生过一次全基因组复制过程。此后多家研究机构和一些研究者对水稻基因组中的重复片段进行了研究,虽然得出的结论不尽相同,但均发现水稻基因组中存在大量的重复片段。根据所采用方法和参数的不同,这些重复片段占整个水稻基因组的15%~62%。Yu 等在水稻基因组中发现了18对大的重复片段,大约占整个基因组的65.7%。其中17对重复片段形成的时间很相近,发生在禾本科物种分化之前;最近的一次片段复制事件发生在水稻11和12号染色体之间,在禾本科物种分化之后。 水稻基因组被测序之后,许多科研机构对基因组数据进行了详尽的注释。其中应用比较广泛的是美国基因组研究院(the institute for genome research,TIGR)和日本农业生物科学研究所(national in- stitute of agrobiological sciences,NIAS)的水稻基因组注释信息。TIGR根据其注释的结果和基因相似性矩阵(gene homology matrix,GHM)方法,检测到大量染色体间的重复片段,这些重复片段几乎覆盖了整个水稻基因组。TIGR水稻基因组注释数据库从第4版开始便增加了对片段重复的注释,该分析是利用DAGChainer程序进行的,重复片段采用100 kb和500 kb 2种参数模型进行了染色体片段的基因共线性分析(图1),这是全基因组复制的有力证据。根据复制片段上同源基因的分子进化分析,估计全基因组复制发生在大约7 000万年前,在禾本科物种分化之前。此外,Zhang等利用TIGR更新的数据进行分析,采用同义替换率分布方法检测到另一次更古老的(单、双子叶植物分化前)基因组复制事件,说明水稻基因组至少经历了2次全基因组复制过程。 全基因组复制或多倍体化是植物尤其是禾本科作物物种形成和进化过程中非常重要的事件,大部分开花植物在进化过程中均经历了多倍体化过程。基因组加倍后,再经历所谓的二倍体化过程(diploidization),进化成当代的二倍体物种,并造成大量重复片段中基因的重排和丢失。Salse等研究发现基因组复制事件对禾本科植物的物种形成和演变具有重要作用。他们认为禾本科植物的祖先物种是一个基因组内包含5条染色体的物种,在进化过程中,首先在距今5 000~7 000万年前经基因组复制产生了10条染色体;此后,在基因组内发生了2次染色体置换和融合而形成了12条中间态染色体。以这12条中间态染色体为基础,逐渐分化出水稻、小麦、玉米和高粱的基因组,其中水稻基因组保留了原有的12条中间态染色体,而小麦、玉米和高粱均又发生了染色体丢失和融合才形成了现有的基因组。水稻全基因组复制片段是至今为止在动、植物基因组中发现的最为清晰、完整的基因组复制的遗迹。水稻之所以保存这么完整,一方面是水稻基因组保持了12条中间态染色体的基本形态,另一方面可能与水稻基因组相对较稳定有关。 2水稻籼粳2个亚种的分化 水稻是世界上最重要的粮食作物之一,在其11 500多年的栽培历史中,因适应不同的农业生态环境而产生了丰富的遗传多样性和明显的遗传分化。长期以来,基于形态性状、同工酶以及对一些化合物不同反应的研究,把亚洲栽培稻(Oryza sativa L.)分为籼稻(indica)和粳稻(japonica)2个亚种。其中籼亚种耐湿耐热,主要适应于热带和亚热带等低纬度地区,而粳亚种则耐寒耐弱光,适应于高纬度和高海拔地区种植。这2个亚种间不仅产生了生殖隔离的基因库,还在形态特征、农艺性状和生理生化反应等方面存在明显的差异。近期群体

转基因番茄研究进展

转基因番茄研究进展 摘要:利用转基因技术培育,已经获得延熟、抗病、抗虫、抗逆、抗除草剂和品质改良的转基因番茄,并主要介绍转基因技术在这些方面的研究成果和研究进展,此外简单介绍了转基因番茄的优势及其展望。 关键词:转基因番茄进展 番茄(Lycopersicon eseulentem.Mil)是茄科( Solanaceae) 番茄属 ( Lycopersicon) 的一年生或多年生植物,是世界上重要的蔬菜作物之一。番茄需求量大,种植广泛,同时对其的遗传理论研究较为深入,番茄已经成为蔬菜基因工程研究的模式植物之一,且在1994年成为世界上第一例商品化生产的转基因作物——转基因延熟番Flavr-SavrTM,其由美国Calgene公司培育成功并获准进入市场。其后几年利用转基因技术培育出抗病虫害、抗除草剂、抗逆和高品质的优良番茄品种。番茄的基因转化技术主要采用农杆菌介导的基因转化方法。此外,黄永芬等[1]利用花粉管导入法进行番茄的基因转化,将整合了抗冻蛋白基因的Ti 质粒直接注入番茄子房或花粉管中进行转化获得了抗冻番茄。 1.转基因番茄研究进展 1.1 延熟转基因番茄 目前利用基因转化技术延熟番茄有两种方法,一是抑制细胞壁的降解,二是抑制乙烯的合成,在防止其腐烂方面取得了较好的效果。 1.1.1 抑制番茄细胞壁降解的研究 细胞壁水解酶对果实的成熟有促进作用,通过抑制阻止细胞壁水解酶活性,可抑制果实细胞壁的降解,延缓成熟与衰老。 主要包括两类酶,一类是多聚半乳糖醛酸酶(PG),可将细胞壁中的多聚半乳糖苷降解为低聚半乳糖苷,在果实成熟过程中,PG的mRNA水平可提高100倍。叶志彪等[2]将PG基因的Hindfi 片段反向克隆在植物转化载体Bin19的花椰菜病毒( CaMV) 的35S启动子和3' 端非翻译区( nos) 终止子之间,经农杆菌与番茄无菌苗子叶外植体共培养,获得转化植株,这种转反义PG基因的番茄果

番茄基因 究取得重大突破 - Sol Genomics Network

组 番茄基因究取得重大突破 2012年5月31日,北京。由来自中国、美国、荷兰、以色列等14个国家的300多位科学家组成的“番茄基因组研究国际协作组”完成了对栽培番茄全基因组的精细序列分析。这项成果于2012年5月31日以封面文章发表在国际权威学术期刊《自然(Nature)》。 番茄是研究果实发育的经典模式植物,其基因组有12条染色体,约9亿个碱基对。协作组坚持采用“克隆连克隆”和“全基因组鸟枪法”相结合的测序策略,历经8年多的艰苦努力,终于获得了高质量的番茄基因组序列。在解码的番茄基因组中共鉴定出约34,727个基因,其中97.4% (33,840个)的基因已经精确定位到染色体上。进化分析表明番茄基因组经历的两次三倍化使基因家族产生了特异控制果实发育及营养品质的新成员。协作组同时绘制了栽培番茄祖先种野生醋栗番茄基因组的框架图,两个基因组仅有0.6%的区别。比较分析发现了番茄果实进化的基因组学基础:经过人工驯化和育种选择,栽培番茄比野生番茄果实更大,品质更好,番茄红素、β-胡萝卜素和维生素C等生物活性物质含量明显提高。同时,基因组序列的获得为在育种中进一步利用野生资源的优异基因提供了有力的工具。 中国科学家在番茄基因组研究中做出了重要贡献。中国科学院遗传与发育生物学研究所李传友研究员作为中方协调人负责第3号染色体的测序工作。中国农业科学院蔬菜花卉研究所黄三文研究员和杜永臣研究员作为中方协调人负责第11号染色体的测序工作。中国科学家高质量地完成了番茄基因组测序总任务的1/6。番茄基因组研究取得的成功与多个部委和单位的支持是分不开的。科技部、农业部科教司和国家自然科学基金委等提供了经费支持。番茄基因组研究也是中国科学院遗传与发育生物学研究所和中国农业科学院蔬菜花卉研究所等国内15家单位通力协作完成的,是国内不同科研单位之间协同创新的典型案例之一。 番茄基因组的解读是科学家通过国际合作完成的又一个高质量的模式植物的基因组序列分析,对于不同物种之间的比较基因组学研究具有重要价值。这项工作将极大推动番茄乃至包括马铃薯、辣椒、茄子等在内的茄科植物的功能基因组研究,为培育具有高产、优质、抗病虫害、抗逆等优良性状的番茄新品

进化基因组学研究进展

进化基因组学研究进展 刘超 (山东大学生命科学学院济南250100) 摘要:进化基因组学是利用基因组数据研究差异基因功能、生物系统演化、从基因在水平探索生物进化的学科。随着近年来基因组数据的不断增加,进化基因组学得到了长足的发展。进化基因组学主要包括从基因组水平理解和诠释生物进化和新基因分析研究探索两方面的内容。本文介绍了进化基因组学研究的主要内容和较为常用的方法,以及近年来在细菌、酵母、果蝇进化基因组学方面的研究进展。 关键词:进化基因组学系统进化比较基因组学新基因 前言 随着基因测序技术的不断进步以及基因组学的飞速的发展,人们积累了大量的基因组学数据,利用所得的大量的基因组数据与进化生物学相结合,在基因组水平研究生物进化机制,随即产生了进化基因组学(Evolutional Genomics)。 近年来进化基因组学取得了长足的进展,在研究差异基因功能、生物系统演化、从基因在水平探索生物进化的终极方式等方面有重大突破,对人类理解生命现象和过程有重要作用。 1进化基因组学研究内容 研究系统进化学通常包括两个关键步骤:一方面,在不同物种中鉴定同源性特佂,另一方面利用构建系统进化树的方法比较这些特征,进而重新构建这些物种的进化历史[1]。针对这两个关键步骤,传统系统进化学,常采用基于形态学数据和单个基因研究的同源性状鉴定和重建系统进化树(常包括距离法、最大简约法、概率法)[1]的方法来研究。在目前拥有丰富基因组数据的条件下,我们可以分析基因组数据,利用进化基因组学研究系统进化。

目前进化基因组学的研究内容主要集中于两个方面:(1)在比较不同生物的基因数据的基础上,从基因组水平理解和诠释生物进化;(2)通过对新基因的分析研究探索基因进化过程的规律两个方面[2](如图1)。在进行全基因组进化分析方面,进化基因组学主要集中于构建系统进化树、研究基因组进化策略、研究生物功能变化和进化机制、进化和生态功能基因组学[2]、基因注释的等方面;在新基因方面主要分析基因产生机制和新基因固定及其动力学研究。 图1 进化基因组学主要研究内容 目前进化基因组学的研究有力的解决了一些基础性的进化问题,但也出现了一些未来需要急需解决的挑战。例如生物进化的本质和目前重建系统进化树方法的限制[1]。 2研究进化基因组学的方法 研究进化基因组学的方法主要包括利用基因组数据分析和研究新基因的产生和演化两种。 2.1利用基因组数据进行系统进化分析 利用基因组数据进行系统进化分析,常有基于基因序列的方法和基于全基因特征的方法。(如图2)

基因组学重点整理

生物五界:动物、植物、真菌、原生生物和原核生物;生物三界:真细菌、古细菌、真核生物 具有催化活性的RNA分子称为核酶(ribozyme)核酶催化的生化反应有:自我剪接、催化切断其它RNA、合成多肽键、催化核苷酸的合成 新基因的产生:基因与基因组加倍1)整个基因组加倍;2)单条或部分染色体加倍;3)单个或成群基因加倍。DNA水平转移:原核生物中的DNA水平转移可通过接合转移,噬菌体转染,外源DNA的摄取等不同途径发生,水平转移的基因大多为非必须基因。动物中由于种间隔离不易进行种间杂交,但其主要来源于真核细胞与原核细胞的内共生。动物种间基因转移主要集中在逆转录病毒及其转座成分。 外显子洗牌与蛋白质创新:产生全新功能蛋白质的方式有二种:功能域加倍,功能域或外显子洗牌 基因冗余:一条染色体上出现一个基因的很多复份(复本)当人们分离到某一新基因时,为了鉴定其生物学功能,常常使其失活,然后观察它们对表型的影响。许多场合,由于第二个重复的功能基因可取代失活的基因而使突变型表型保持正常。这意味着,基因组中有冗余基因存在。看家基因很少重复,它们之间必需保持剂量平衡,因此重复的拷贝很快被淘汰。与个体发育调控相关的基因表达为转录因子,具有多功能域的结构。这类基因重复拷贝变异可使其获得不同的表达控制模式,促使细胞的分化与多样性的产生,并导致复杂形态的建成,具有许多冗余基因。 非编码序列扩张方式:滑序复制、转座因子 模式生物海胆、果蝇、斑马鱼、线虫、蟾蜍、小鼠、酵母、水稻、拟南芥等。模式生物基因组中G+C%含量高, 同时CpG 岛的比例也高。进化程度越高, G+C 含量和CpG 岛的比例就比较低 如果基因之间不存在重叠顺序,也无基因内基因(gene-within-gene),那么ORF阅读出现差错的可能只会发生在非编码区。细菌基因组中缺少内含子,非编码序列仅占11%, 对阅读框的排查干扰较少。细菌基因组的ORF阅读相对比较简单,错误的机率较少。高等真核生物DNA的ORF阅读比较复杂:基因间存在大量非编码序列(人类占70%);绝大多数基因内含有非编码的内含子。高等真核生物多数外显子的长度少于100个密码子 内含子和外显子序列上的差异:内含子的碱基代换很少受自然选择的压力,保留了较多突变。由于碱基突变趋势大多为C-T,故A/T的含量内含子高于外显子。由于终止密码子为TAA\TAG\TGA,如果以内含子作为编码序列,3种读码框有很高比例的终止密码子。 基因注释程序编写的依据:1)信号指令,包括起始密码子,终止密码子,终止信号,剪接受体位和供体位,多聚嘧啶序列,分支点保守序列2)内容指令,密码子偏好,内含子和外显子长短 基因功能的检测:基因失活、基因过表达、RNAi干涉 双链DNA的测序可从一端开始,亦可从两端进行,前者称单向测序,后者称双向测序。 要获得大于50 kb的DNA限制性片段必需采用稀有切点限制酶。 酵母人工染色体(YAC)1)着丝粒在细胞分裂时负责染色体均等分配。2)端粒位于染色体端部的特异DNA序列,保持人工染色体的稳定性3)自主复制起始点(ARS)在细胞中启动染色体的复制 合格的STS要满足2个条件:它应是一段序列已知的片段,可据此设计PCR反应来检测不同的DNA片段中是否存在这一顺序;STS必需在染色体上有独一无二的位置。如果某一STS在基因组中多个位点出现,那么由此得出的作图数据将是含混不清的。 遗传图绘制主要依据由孟德尔描述的遗传学原理,第一条定律为等位基因随机分离,第二条定律为非等位基因自由组合,显隐性规律/不完全显性、共显性、连锁 衡量遗传图谱的水平覆盖程度饱和程度 基因类型:transcribed, translatable gene (蛋白基因) ;transcribed but non-translatable gene ( RNA基因)Non- transcribed, non-translatablegene ( promoter, operator ) rRNA基因,tRNA基因, scRNA基因, snRNA基因, snoRNA基因, microRNA基因 基因组(genome):生物所具有的携带遗传信息的遗传物质总和。 基因组学(genomic):用于概括涉及基因作图、测序和整个基因功能分析的遗传学分支。 染色体组(chromosome set):不同真核生物核基因组均由一定数目的染色体组成,单倍体细胞所含有的全套染色体。 比较基因组学(comparative genomics):比较基因组学是基因组学与生物信息学的一个重要分支。通过模式生物基因组与人类基因组之间的比较与鉴别,为分离重要的候选基因,预测新的基因功能,研究生物进化提供依据。(目标)

生物信息学的主要研究内容

常用数据库 在DNA序列方面有GenBank、EMBL和等 在蛋白质一级结构方面有SWISS-PROT、PIR和MIPS等 在蛋白质和其它生物大分子的结构方面有PDB等 在蛋白质结构分类方面有SCOP和CATH等 生物信息学的主要研究内容 1、序列比对(Alignment) 基本问题是比较两个或两个以上符号序列的相似性或不相似性。序列比对是生物信息学的基础,非常重要。两个序列的比对有较成熟的动态规划算法,以及在此基础上编写的比对软件包BLAST和FASTA,可以免费下载使用。这些软件在数据库查询和搜索中有重要的应用。 2、结构比对 基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性。已有一些算法。 3、蛋白质结构预测,包括2级和3级结构预测,是最重要的课题之一 从方法上来看有演绎法和归纳法两种途径。前者主要是从一些基本原理或假设出发来预测和研究蛋白质的结构和折叠过程。分子力学和分子动力学属这一范畴。后者主要是从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构。同源模建(Homology)和指认(Threading)方法属于这一范畴。虽然经过30余年的努力,蛋白结构预测研究现状远远不能满足实际需要。 4、计算机辅助基因识别(仅指蛋白质编码基因)。最重要的课题之一 基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.这是最重要的课题之一,而且越来越重要。经过20余年的努力,提出了数十种算法,有十种左右重要的算法和相应软件上网提供免费服务。原核生物计算机辅助基因识别相对容易些,结果好一些。从具有较多内含子的真核生物基因组序列中正确识别出起始密码子、剪切位点和终止密码子,是个相当困难的问题,研究现状不能令人满意,仍有大量的工作要做。 5、非编码区分析和DNA语言研究,是最重要的课题之一 在人类基因组中,编码部分进展总序列的3~5%,其它通常称为“垃圾”DNA,其实一点也不是垃圾,只是我们暂时还不知道其重要的功能。分析非编码区DNA 序列需要大胆的想象和崭新的研究思路和方法。DNA序列作为一种遗传语言,不仅体现在编码序列之中,而且隐含在非编码序列之中。 6、分子进化和比较基因组学,是最重要的课题之一 早期的工作主要是利用不同物种中同一种基因序列的异同来研究生物的进化,构建进化树。既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化。以上研究已经积累了大量的工作。近年来由于较多模式生物基因组测序任务的完成,为从整个基因组的角度来研究分子进化提供了条件。 7、序列重叠群(Contigs)装配 一般来说,根据现行的测序技术,每次反应只能测出500或更多一些碱基对的序列,这就有一个把大量的较短的序列全体构成了重叠群(Contigs)。逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配。拼接EST数据以发现全长新基因也有类似的问题。已经证明,这是一个NP-完备

叶绿体系统发育基因组学的研究进展

叶绿体系统发育基因组学的研究进展* 张韵洁,李德铢** (中国科学院昆明植物研究所生物多样性与生物地理学重点实验室,云南昆明650201) 摘要:系统发育基因组学是由系统发育研究和基因组学相结合产生的一门崭新的交叉学科。近年来,在植物系统发育研究中,基于叶绿体基因组的系统发育基因组学研究优势渐显端倪,为一些分类困难类群的系统学问题提出了解决方案,但同时也存在某些问题。本文结合近年来叶绿体系统发育基因组学研究中的一些典型实例,讨论了叶绿体系统发育基因组学在植物系统关系重建中的价值和应用前景,并针对其存在问题进行了探讨,其中也涉及了新一代测序技术对叶绿体系统发育基因组学的影响。 关键词:系统发育基因组学;叶绿体基因组;新一代测序技术;长枝吸引 中图分类号:Q75,Q949文献标识码:A文章编号:2095-0845(2011)04-365-11 Advances in Phylogenomics Based on Complete Chloroplast Genomes ZHANG Yun-Jie,LI De-Zhu** (Key Laboratory of Biodiversity and Biogeography,Kunming Institute of Botany,Chinese Academy of Sciences,Kunming650201,China) Abstract:Phylogenomics is a new synthesized discipline which combines genomics with phylogenetics.Phylogenom-ics based on chloroplast genomes has shown many great advantages in plant phylogenetic research in recent years,providing resolutions for phylogeny of some taxonomically difficult groups of plants.However,there are some prob-lems coming along with chloroplast phylogenomics as well.In this review,the application prospects and potential problems of chloroplast phylogenomics in plant phylogenetic reconstruction were discussed based on recent phylog-enomic case studies.The influence of next-generation sequencing on chloroplast phylogenomics was also discussed.Key words:Phylogenomics;Chloroplast genome;Next-generation sequencing;Long-branch attraction 地球上的生命形式多种多样,它们因有着共同的进化历史而有着或近或远的渊源。正确理解不同生物类群之间的关系不仅是进化生物学研究的前提,生物分类和命名的依据,而且也是开展生物学其它分支学科研究的基础。因而构建可靠的系统发育树(即将各生物类群之间的关系形象地以树的形式描绘出来)不仅是系统发育研究的重点,也是生物学研究的重要内容之一。早期系统发育学家通过对化石记录、比较形态学和比较生理学的研究,构建出了物种进化历史的主要框架(Nei和Kumar,2000)。20世纪80年代以后,随着分子生物学的快速发展,系统发育研究开始由比较形态学转向分子系统学研究领域,即利用生物大分子(如DNA序列、氨基酸序列等)所提供的信息来推断生物的进化历史(Li和Olmstead,1997;Nei和Kumar,2000;田欣和李德铢,2002)。分子系统学研究的出现使我们对生命进化过程有了更深刻的认识。然而随着分子证据的不断积累,基于不同分子片段对同一类群所进行的分子系统学研究结果之间存在的差异, 植物分类与资源学报2011,33(4):365 375 Plant Diversity and Resources DOI:10.3724/SP.J.1143.2011.10202 ***基金项目:中国科学院现代农业科技创新基地重要方向性项目“重要野生禾本科植物的比较基因组学和重要功能基因的研究(KSCX2-YW-N-029)” 通讯作者:Author for correspondence;E-mail:dzl@mail.kib.ac.cn 收稿日期:2010-11-15,2010-12-01接受发表 作者简介:张韵洁(1984-)女,在读硕士研究生,主要从事植物系统发育基因组学研究。

转基因番茄口服疫苗的研究进展

DOI:10.3969/cmba.j.issn.1673-713X.2010.01.013 · 综述· 转基因番茄口服疫苗的研究进展 郑卿,郭书巧,葛才林,倪万潮 第 1 例转基因烟草表达链球菌变异株 SpaA(surface protein antigen A)蛋白疫苗的成功研制[1],开启了利用植物表达动物病原抗原蛋白的新纪元。1992 年,Mason 等[2]提出了“转基因植物疫苗”的概念,标志着植物口服疫苗成为新药研发新途径的全面展开。 口服转基因植物疫苗不仅能诱导机体产生全身性的体液免疫和细胞免疫应答,还能同时激活黏膜免疫。口服疫苗到达肠内黏膜诱导部位之前经过胃内的不利环境时必须受到保护,否则有可能被降解而失去免疫原性。而植物细胞壁作为天然的生物胶囊,可保护细胞内的疫苗免受消化道酸性环境和各种酶的降解,使表达的疫苗在小肠内缓慢释放,被小肠上皮的 M 细胞(membrane cell)识别并转运,APC (antigen presenting cell)细胞加工递呈,使机体产生黏膜和全身性的免疫反应,发挥对机体的全面保护作用[3]。因此,利用植物作为抗原表达和递送的载体已经成为当今生物技术研究的热点,并取得了长足的发展。但是食物的加工对目标蛋白有一定的破坏,并可能影响其免疫原性。番茄(Lycopersicon esculentum)作为具备良好加工特性的蔬菜,具有全世界的普及性,其口感好,营养丰富,是植物口服疫苗的理想载体。因此,番茄作为生物反应器来生产可食性疫苗具有较好应用前景。 1 番茄口服疫苗的优点 番茄作为外源蛋白的表达系统,除具有植物所共有的优点外还具有以下鲜明的特点: ⑴番茄是全球广泛栽培的一种植物,不易受地域条件的限制,因此有利于进行规模化生产,降低生产成本。 ⑵番茄作为一种茄科植物的模式植物,在遗传学和分子生物学方面有着较为深入的研究,许多成熟的技术可以直接应用于番茄的研究中,这为番茄作为生物反应器技术平台的建立创造了有利条件。 ⑶表达外源蛋白的转基因番茄果实可以直接食用,在预防或治疗疾病的同时也可以增加营养。还可以将果实制成粉末,进行有效以及长时间的储存,这样在植物疫苗和其他药用蛋白用于疾病的预防或治疗时,不需要经过繁杂的分离以及纯化步骤,不仅降低了成本和患者的负担,而且使患者能够从情感上易于接受。 2 番茄口服疫苗的研究进展 利用转基因技术,番茄可被用于生产在医学上有重要应用价值的酶或蛋白质。目前研究人员已经利用番茄作为生物反应器,在生产药用蛋白、抗体、口服疫苗以及其他工业用品方面做了广泛的尝试,多种外源基因已经成功转入番茄,并表达出有效的蛋白质,小鼠实验[4-8]证明,这些转基因番茄表达的蛋白可以引起有效的免疫反应,取得了可喜的成果,研究较多的番茄口服疫苗主要有以下几种:乙肝病毒疫苗、口蹄疫病毒疫苗、霍乱弧菌疫苗、狂犬病病毒疫苗、呼吸道合胞病毒疫苗等。 2.1 乙肝病毒转基因番茄口服疫苗 乙肝病毒(hepatitis B virus,HBV)是引发严重慢性肝炎的病原,目前乙肝病毒疫苗的获得是利用酵母细胞通过发酵途径产生的,属于生物技术产物下的亚单位疫苗。HBV 在肝 DNA 病毒家族中属于双链 DNA 病毒。HBV 基因组包括四个基因:pol、env、precore和X,分别编码病毒的 DNA 聚合酶、外壳蛋白、前核心区蛋白和 X 蛋白。乙肝病毒表面抗原(hepatitis B virus surface antigen,HBsAg)的主要成分蛋白即是由 env 基因编码的 S 蛋白。由于 HBsAg 颗粒可以使人体产生专一的抗体,能对病毒的感染起预防作用[9],因此科学家在进行疫苗研制时都将编码乙肝病毒表面抗原的基因作为研究的重点。 Shchelkunov 等[4]将表达人免疫缺陷病毒(human immunodeficiency virus,HIV)的表位 ENV、GAG 和编码HBsAg 的基因融合,以 CaMV35S 为启动子构建载体,获得转基因番茄。用表达融合蛋白的转基因番茄果实干粉每2 周饲喂一次小鼠,每 7 d 取一次全血检测,结果表明,小鼠对两种病毒均产生免疫反应,说明融合基因可以足量地表达引起免疫反应的抗原。Lou 等[10]为了使乙肝病毒表面抗原能在转基因番茄中更好地表达,将烟草致病相关蛋白(tobacco pathogenesis-related protein S)PR-S 信号肽融合到改良目的基因的 5’ 端,同时将表达氨基酸序列 SEKDEL 的基因融合到 3’ 端,利用果实特异性表达的启动子 2A11,使 HBsAg 大蛋白基因在转基因番茄的果实中特异表达。目的蛋白的最高表达水平占转基因番茄果实可溶蛋白总数的 0.02%,并且在成熟果实中的表达量是其他组织的 65 ~ 171 倍。用免疫金标记方法检测到重组 HBsAg 大蛋白在内质网附近累积,并且证明所捕获的 HBsAg 大蛋白微粒仍旧可以保持与人血清中获得的 HBsAg 具有相同的物理性质, 基金项目:国家转基因专项(2008ZX08005-001) 作者单位:225009 扬州大学生物技术学院(郑卿、葛才林);210014 南京,江苏省农业科学院生物技术所(郑卿、郭书巧、倪万潮) 通讯作者:倪万潮,Email:niwc@https://www.sodocs.net/doc/863514606.html,;葛才林,Email:gecailin10@ https://www.sodocs.net/doc/863514606.html, 收稿日期:2009-09-14

番茄果实结果期技术管理要点

番茄结果期技术管理要点 一、喷花授粉 1、常温授粉药选用果霉宁,药剂使用安全性高。根据药液高温时浓度变小,低温时浓度变大的特点,目前授粉药浓度为每袋兑水2.5斤,在西红柿1-2穗果之间,尤其是第一穗果开花时常温达到37度,浓度低时授粉药性质不稳定。有些棚中出现僵果的原因就是授粉药受高温的影响浓度达不到,以至于果实长到鸡蛋大小时就不再膨果,形成僵果。另外授粉药配置受水质影响大,水中矿物质、重金属和微量元素对授粉药的寿命和稳定性影响特别大,原则要求尽量用纯净水配授粉药,纯净水能起脱盐分和重金属的作用。 2、授粉尽量选择晴天上午,一般日出半小时后至中午11或接近12点,这一段时间叶子进行光合作用药液被吸传导膨果快。下午授粉,叶子不进行光合作用,药液在花朵上存留,第二天才能被吸收传导,容易因温度过高、蒸发量大造成授粉不良出现僵果、畸形果等。 二、调节温度 要想出高产量高品质的果实,必须降低下午的温度,使温度控制在30度以内,28度左右。因为番茄上午叶子进行光合作用的光合产物比较多,下午要进入同化阶段把养分转化贮存,就像人吃饭一样,要把食物消化掉才有力气。同化作用的同时需要低温,温度低养分积累就多,所以下午要把棚口、放风口放大通风降温,不至于在同化过程中消耗太多的养分。如果下午温度过高,同化的同时大部分养分被消耗掉了,到晚上真正需要养分的时候就没了,因为西红柿叶片白天制造养分,晚上把养分运输到果实上去。 要想植株长势好,开花多,昼夜温差必须在10摄氏度以上。为了降低白天温度,可以加遮阳网,或往棚膜上甩泥浆。 三、去下部老叶 叶子和果实的关系是,叶子不向上面的果实上输送养分,而向其下面的果实上输送养分。当最底部的叶子变老变黄时就失去了供养能力,它制造的养分还不如消耗的多,此时可打掉果实下面的老叶。

番茄抗病基因Tm-2、Pto、Sw-5和Ve1的SNP标记检测.

园艺学报 2014,41(10):2012–2020 http: // www. ahs. ac. cn Acta Horticulturae Sinica E-mail: yuanyixuebao@https://www.sodocs.net/doc/863514606.html, 番茄抗病基因Tm-2、Pto、Sw-5和Ve1的SNP 标记检测 苏晓梅*,高建昌*,王孝宣,国艳梅,杜永臣,胡鸿** (中国农业科学院蔬菜花卉研究所,农业部园艺作物生物学与种质创制重点实验室,北京 10081) 摘 要:针对番茄4个抗病基因Tm-2、Pto、Sw-5和Ve1,根据其序列的碱基差异设计引物,经过引物特异性检测和PCR产物克隆测序比对之后,采用高分辨率熔解曲线(High resolution melting,HRM) 技术进行多态性检测,共开发了5个SNP标记。经过验证,所开发的标记均能将抗病基因型不同的番茄 材料分型,并且分型结果与已知材料的抗病性状完全一致。这些标记可以作为功能标记在番茄抗病育种 中应用。 关键词:番茄;抗病基因;功能标记;HRM 中图分类号:S 641.2 文献标志码:A 文章编号:0513-353X(2014)10-2012-09 Detection of SNP Markers of the Important Disease Resistance Genes in Tomato SU Xiao-mei*,GAO Jian-chang*,WANG Xiao-xuan,GUO Yan-mei,DU Yong-chen,and HU Hong**(Institute of Vegetables and Flowers,Chinese Academy of Agricultural Sciences,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops,Ministry of Agriculture,Beijing 100081,China) Abstract:According to the gene sequence differences,primers were designed for 4 disease resistance genes in tomato,Tm-2,Pto,Sw-5 and Ve1. After checking of primer specificity and aligning of the clone sequences of the PCR products,the HRM(High resolution melting)technology was used for polymorphism detection. In this study,5 SNPs were developed,all of which could distinguish the materials with different genotypes. What’s more,the genotype was completely consistent with the known gene. So they can be used as functional markers in tomato disease resistance breeding. Key words:tomato;disease resistance gene;functional marker;HRM 分子标记辅助选择技术已成为番茄抗病育种的常规手段,但连锁分子标记选择的准确性取决于标记与抗病基因的连锁程度,即便是紧密连锁的分子标记,也会由于在分离后代中出现标记与抗病基因的交换而导致假阳性,降低选择效率。抗病基因的功能标记(基因内部标记)是其特异性标记,其选择准确率为100%(Arens et al.,2010),能够克服连锁标记的缺点。 收稿日期:2014–05–20;修回日期:2014–07–24 基金项目:国家‘863’计划项目(2012AA100103);国家现代农业产业技术体系建设专项资金项目(CARS-25-A-09);农业部园艺作物生物学与种质创制重点实验室项目 * 同等贡献作者 ** 通信作者Author for correspondence(E-mail:huhong@https://www.sodocs.net/doc/863514606.html,)

基因组学(结构基因组学和功能基因组学).

问:基因组学、转录组学、蛋白质组学、结构基因组学、功能基因组学、比较基因组学研究有哪些特点? 答:人类基因组计划完成后生物科学进入了人类后基因组时代,即大规模开展基因组生物学功能研究和应用研究的时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。以功能基因组学为代表的后基因组时代主要为利用基因组学提供的信息。 基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(struc tural genomics和以基因功能鉴定为目标的功能基因组学(functional genomics。结构基因组学代表基因组分析的早期阶段,以建立生物体高分辨率遗传、物理和转录图谱为主。功能基因组学代表基因分析的新阶段,是利用结构基因组学提供的信息系统地研究基因功能,它以高通量、大规模实验方法以及统计与计算机分析为特征。 功能基因组学(functional genomics又往往被称为后基因组学(postgenomics,它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究。这是在基因组静态的碱基序列弄清楚之后转入基因组动态的生物学功能学研究。研究内容包括基因功能发现、基因表达分析及突变检测。 基因的功能包括:生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等采用的手段包括经典的减法杂交,差示筛选,cDNA代表差异分析以及mRNA差异显示等,但这些技术不能对基因进行全面系统的分析。新的技术应运而生,包括基因表达的系统分析,cDNA微阵列,DNA芯片等。鉴定基因功能最有效的方法是观察基因表达被阻断或增加后在细胞和整体水平所产生的表型变异,因此需要建立模式生物体。 功能基因组学

相关主题