搜档网
当前位置:搜档网 › 线性代数应用案例

线性代数应用案例

线性代数应用案例
线性代数应用案例

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

《线性代数》教学中若干难点的探讨.doc

《线性代数》教学中若干难点的探讨- 摘要:在《线性代数》的教学过程中,有很多抽象的概念学生很难理解,比如线性相关、线性无关,极大线性无关组、向量组的秩等等。本文从笔者个人的教学实际出发,浅谈教学过程中的若干个教学难点,化抽象为具体,帮助学生理解并掌握这些难点,以提高学生对《线性代数》的学习兴趣。 关键词:线性相关;线性无关;极大线性无关组;向量组的秩 《线性代数》是高等学校理、工、经、管类各专业的一门重要基础课程。通过对本课程的学习,学生可以获得线性代数的基本概念、基本理论和基本运算技能,为后继课程的学习和进一步知识的获得奠定必要的数学基础。通过各个教学环节的学习,可以逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力以及自学能力,并具有比较熟练的运算能力和综合运用所学知识分析和解决问题的能力。另外,通过《线性代数》的学习,还可以培养学生的综合素质和提高学生的创新意识。因此,只有熟练掌握这门课程,才能较好地运用到各个专业中。由于该课程内容抽象,教学课时短,这无疑对教师的教学和学生的学习造成了极大的困扰。本文从笔者个人的教学实际出发,浅谈教学过程中的若干个教学难点,帮助学生理解并掌握这些难点,以提高学生对《线性代数》的学习兴趣。 一、线性相关性与线性无关性 线性方程组理论是线性代数的基本内容之一,而向量组的线性相关性和线性无关性又是解线性方程组的基础。教材第三章线性方程组开门见山,直接给出了线性相关及线性无关的定义。

线性相关是指一个向量组α1,α2,…,αs,如果存在一组不全为零的数λ1,λ2,…,λs,使得λ1α1+λ2α2+…+λsαs=0,则称该向量组α1,α2,…,αs线性相关。如果不存在这样一组不全为零的数,则称该向量组α1,α2,…,αs线性无关。单纯地称某向量组线性相关或线性无关,对于学生来说是比较抽象的,他们对这一定义总是感觉很模糊,很难理解,如何才能更好地更形象地理解这一定义呢?如果在教学中,把这块知识与解析几何联系起来,用几何知来解释什么是线性相关或线性无关,那么学生肯定更容易接受。例如,对于定义中λ1α1+λ2α2+…+λsαs=0,可以理解为b=(λ1,λ2,…,λs)这样的一个行向量。如果向量组有两个列向量构成,即α1,α2,则b=(λ1,λ2),λ1α1+λ2α2=0。若λ1≠0,则经过变换可以得到α1=■,这说明α1和α2共线。对于有三个向量构成的向量组,λ1α1+λ2α2+λ3α3=0,b=(λ1,λ2,λ3),若λ1≠0,经变换得到α1=■+■,这说明α1,α2,α3三个向量共面。 对于两个向量,线性相关指两向量平行(或者说是共线),此时只是在线上的关系,仅仅是一维,线性无关指两向量相交,确定了一个二维平面。线性无关提供了另一种维度,使得向量所在空间增加了一维。对于三个向量,线性相关指三向量共面,研究的是二维平面,而线性无关指三向量不共面,使得向量所在空间增加了一维,即三个向量若线性无关,那么它们不共面,存在于三维立体空间中。四个向量,五个向量,…,研究方法类似。结合几何知识,通过几何图像可以更直观地呈现出新的概念,学生更易于接受,而且还有助于提高学生对《线性代数》的学习兴趣。 二、极大线性无关组及向量组的秩

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

数学模型在《线性代数》教学中的应用实例(一)

数学模型在《线性代数》教学中的应用实例(一) 课 程: 线性代数 教 学 内 容: 矩阵 数 学 模 型: 生态学:海龟种群统计数据 该模型在高等数学教学应用的目的: 1. 通过生动有趣的实例激发学生的学习积极性,在分析问题和解决问题的过程中培养学生的创新意识。 2. 使学生掌握建立矩阵代数模型的基本过程,能熟练地将矩阵的知识应用于实际问题。培养学生将实际问题抽象成数学模型,又用数学模型的结果解释实际现象的能力。 3. 巩固矩阵的概念和计算。 生态学:海龟种群统计数据 管理和保护许多野生物种,依赖于我们建立种群的动态模型的能力。一个常规的建模技术是,把一个物种的生命周期划分为几个阶段。该模型假设:每阶段的种群规模只依赖于母海龟的种群数;每只母海龟能够存活到下一年的概率依赖于其处在生命周期的那个阶段,而与个体的具体年龄无直接关系。举例来说,可以用一个四阶段的模型来分析海龟种群的动态。 如果d i 表示第i 个阶段的持续时间,s i 表示该阶段的每年存活率,那么可以证明,在第i 阶段可以存活到下一年的比例是 111i i d i i i d i s p s s -??-= ?-?? 种群可以存活且在次年进入下一阶段的比例是 ()11i i d i i i d i s s q s -= - 如果用e i 表示第i 阶段的成员1年内产卵的平均数,构造矩阵

12341 2233 400000 p e e e q p L q p q p ?? ? ?= ? ??? 那么L 可以用来预测未来几年每阶段的种群数。上述形式的矩阵称为Leslie (莱斯利)矩阵,相应的种群模型有时也称为莱斯利种群模型。根据前面表格数据,我们模型的莱斯利矩阵是 0127790.670.73940000.000600000.810.8077L ?? ? ?= ? ??? 假设每阶段的初始种群数分别是200000、300000、500和1500,用向量x 0来表示,1年后 每阶段的种群数可以如下计算 100 0127792000001820000.670.73940030000035582000.000600500180000.810.807715001617x Lx ?????? ??? ? ??? ?=== ??? ? ??? ??????? (这里的计算进行了四舍五入)。为了得到2年后的种群数,再用矩阵L 乘一次。 2210x Lx L x == 一般来说,k 年后的种群数由公式0k k x L x =给出。为了了解更长时期的趋势,计算出x 10、 x 25和x 50,如下表所示。 这个模型预测50年后繁殖期的海龟总数下降了80%。 下面的文献[1]介绍了一个七阶段的种群动态模型,文献[2]是莱斯利原来那篇文章。 思考:海龟最终是否会灭绝?如果不灭绝,海龟种群数有无稳定值?该模型用到了那些数学知识?该模型可以进行怎样的推广? 参考文献 1. Crouse, Deborah T., Larry B. Crowder, and Hal Caswell, “A Stage-Based Population Model for Loggerhead Sea Turtles and Implications for Conservation,” Ecology , 68(5), 1987 2. Leslie, P. H., “On the Use of Matrices in Certain Population Mathematics,” Biometrika , 33, 1945.

线性代数期末考试试卷+答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示

线性代数重点难点

自考《线性代数》重难点解析 2011-02-17 11:09:49 | 作者: min | 来源: 考试大 | 查看: 第一章行列式 一、重点 1、理解:行列式的定义,余子式,代数余子式。 2、掌握:行列式的基本性质及推论。 3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。 二、难点 行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。 三、重要公式 1、若A为n阶方阵,则│kA│= kn│A│ 2、若A、B均为n阶方阵,则│AB│=│A│。│B│ 3、若A为n阶方阵,则│A*│=│A│n-1 若A为n阶可逆阵,则│A-1│=│A│-1 4、若A为n阶方阵,λi(i=1,2,…,n)是A的特征值,│A│=∏λi 四、题型及解题思路 1、有关行列式概念与性质的命题 2、行列式的计算(方法)

1)利用定义 2)按某行(列)展开使行列式降阶 3)利用行列式的性质 ①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。 ②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。 ③逐次行(列)相加减,化简行列式。 ④把行列式拆成几个行列式的和差。 4)递推法,适用于规律性强且零元素较多的行列式 5)数学归纳法,多用于证明 3、运用克莱姆法则求解线性方程组 若D =│A│≠0,则Ax=b有唯一解,即 x1=D1/D,x2= D2/D,…,xn= Dn/D 其中Dj是把D中xj的系数换成常数项。 注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。 4、运用系数行列式│A│判别方程组解的问题 1)当│A│=0时,齐次方程组Ax=0有非零解;非齐次方程组Ax=b不是唯一解(可能无解,也可能有无穷多解) 2)当│A│≠0时,齐次方程组Ax=0仅有零解;非齐次方程组Ax=b有唯一解,此解可由克莱姆法

线性代数应用实例

线性代数应用实例 ● 求插值多项式 右表给出函数()f t 上4个点的值,试求三次插值多项式230123()p t a a t a t a t =+++,并求(1.5)f 的近似值。 解:令三次多项式函数230123()p t a a t a t a t =+++过 表中已知的4点,可以得到四元线性方程组: ?????? ?=+++-=+++=+++=6 27931842033 210321032100 a a a a a a a a a a a a a 对于四元方程组,笔算就很费事了。应该用计算机求解了,键入: >>A=[1,0,0,0;1,1,1,1;1,2,4,8;1,3,9,27], b=[3;0;-1;6], s=rref([A,b]) 得到x = 1 0 0 0 3 0 1 0 0 -2 0 0 1 0 -2 0 0 0 1 1 得到01233,2,2,1a a a a ==-=-=,三次多项函数为23 ()322p t t t t =--+,故(1.5)f 近 似等于23 (1.5)32(1.5)2(1.5)(1.5) 1.125p =--+=-。 在一般情况下,当给出函数()f t 在n+1个点(1,2,,1)i t i n =+ 上的值()i f t 时,就可以用n 次多项式2012()n n p t a a t a t a t =++++ 对()f t 进行插值。 ● 在数字信号处理中的应用----- 数字滤波器系统函数 数字滤波器的网络结构图实际上也是一种信号流图。它的特点在于所有的相加节点都限定为双输入相加器;另外,数字滤波器器件有一个迟延一个节拍的运算,它也是一个线性算子,它的标注符号为z -1。根据这样的结构图,也可以用类似于例7.4的方法,求它 的输入输出之间的传递函数,在数字信号处理中称为系统函数。 图1表示了某个数字滤波器的结构图,现在要求出它的系统函数,即输出y 与输入u 之比。先在它的三个中间节点上标注信号的名称x1,x2,x3,以便对每个节点列写方程。

数学建模案例线性代数教学研究

数学建模案例线性代数教学研究 摘要:本文通过分析线性代数课程的特点和目前教学中出现的问题,从数学建模思想入手,结合几个案例探讨了线性代数中矩阵的概念与运算、特征值和特征向量的应用等知识点。具体阐述了将数学建模思想融入线性代数教学过程中的重要性,增强了学生利用数学建模思想解决实际问题的能力。 关键词:线性代数;数学建模;教学方法 线性代数是高校理工科专业大一新生的一门重要的公共基础课程,它不仅是很多高年级的课程的延伸和推广,而且它在数学、物理、控制科学、工程技术等领域也具有广泛的应用,特别是当前计算机科学技术人工智能的快速发展,使得线性代数的作用和地位得到更大的提升。因此,线性代数这门课程学习效果的好坏对学生知识能力的培养和后继课程的开展至关重要。但是,目前线性代数的教学仍然存在一些问题,具体表现为:第一,线性代数的教学模式偏重于理论教学,无法激起学生的学习兴趣。线性代数的概念多,理论性强,抽象晦涩,难以理解,更加加深了学生学习线性代数的难度,降低了学生的学习兴趣。第二,学生的基础较差,课程数较少,导致学生的学习困难。学生来源于不同的地区,生源素质差异较大,使得课堂出现两极分化现象,致使线性代数的教学质量无法全面提升。第三,教学中缺乏实际的应用背景,学生无法理解线性代数作为一门重要基础课程的意义。众所周知,数学建模就是根据实际问题建立数学模型,然后运用数学知识对模型求解,最后根据计算结果来解决实际问题的过程[1]。基于此,本文将数学建模的思想融入线性代数的教学过程中,通过适当引入典型的建模案例[2,3],达到吸引学生的注意力和学习兴趣的目的,从而活跃课堂教学氛围,提高教学效果。与此同时,在上课过程中讲授数学建模案例还可以增加老师和学生之间的互动性,丰富课堂教学的内容,开阔学生的眼界,使得原本抽象、枯燥乏味的概念和定理变得生动有趣,进而激发学生学习线性代数的兴趣,提升学生学习数学的素养。 1 数学建模案例在线性代数中的应用 线性代数教学中有许多定义和定理抽象晦涩、难以理解,学生上课中往往不知所云,更不知道学习了相关知识有什么作用。如果在教学过程中我们融入

大一线性代数期末考试试卷

线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1 A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( ) 。 ① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示

线性代数易错点及重点知识点

线性代数易错及重点知识点 翔翔总结,不晓得大家看得懂不 3 24712432的余子式是327134722412,而不是23271 上三角和下三角行列式都是a1a2a3.....an=A 反三角行列式为A*(-1)^n(n-1)/2 行列式的一行的代数余子式分别乘以另一行元素,值为零。 正反三角行列式如果不记得公式了,可以通过上下换行的形式变成正三角行列式。 克莱姆法则D=222112 11a a a a ,D1=22 2121a b a b D2=22211211a a a a x1=D1/D 同理x2=D2/D 范德蒙法则:行列式的值=(x n -x n-1)(x n -x n-2)……(x n -x 1)(x n-1-x n-2……)(x 2-x 1) 若一个线性方程组有非零解,则它的行列式式值等于零。 行列式中行叫c ,列叫r 写行列式变换过程中要在等号上写变换方法,如c2-c3.不然老师看不懂步骤,无法给分 化三角行列式先化第一列,在化第二列,按顺序来化,这样才不会出现问题。 n 维向量分横向量和列向量。 写向量时一定要记得在上面加箭头 任意一个n 维向量都能由n 个n 维单位向量线性表示 如果b1=k1a1+k2a2+k3a3,线性表示不一定要求k1,k2,k3不全为零。 如果一个向量a 线性相关,则a=0 由一个非零向量构成的向量组一定线性无关。即a ≠0则a 这个向量组线性无关。 含有零向量的向量组一定线性相关 例a1=(1,1)a2=(2,3)求这两个向量组是否线性相关 解:k1a1+k2a2=0 k1(1,1)+k2(2,3)=0 K1+2k2=0 k1+3k2=0 3 121≠0所以k 全是零解,所以线性无关 a3=a1+a2,则a1,a2,a3线性相关 一个向量组中的一个向量可由其他向量线性表示,那么这个向量组线性相关,能线性表示不一定要k 不全为零,但是线性相关一定要不全为零 两个向量线性相关除非他们对应分量成比例。 如果一个向量组一部分向量线性相关,则,整个向量组线性相关。 一个向量组线性无关,那么它的一部分也线性无关 向量组线性相关,减少其中几维一样线性相关,向量组线性无关,增加几维向量一样无关。 应用:要证线性相关,则增加维,如果增加后相关,则原向量组相关。 要证线性无关,则减少维,如果减少后无关,则原向量组无关。 要证线性相关,则增加向量个数,如果增加后相关,则原向量组相关。 要证线性无关,则减少向量个数,如果减少后无关,则原向量组无关。 向量个数大于维数一定线性相关 一个向量组的每个最大线性无关组中的向量个数一定相等 向量空间:线性无关组ab ……n 若a+b ……n 属于v Ramada a 属于v 则v 为向量空间v 的维数就是向量组的秩,a b ……n 称为空间的基

线性代数应用案例资料

线性代数应用案例

行列式的应用 案例1 大学生在饮食方面存在很多问题,多数大学生不重视吃早餐,日常饮 食也没有规律,为了身体的健康就需要注意日常饮食中的营养。大学生每天的配餐中需要摄入一定的蛋白质、脂肪和碳水化合物,下表给出了这三种食物提供的营养以及大学生的正常所需营养(它们的质量以适当的单位计量)。 试根据这个问题建立一个线性方程组,并通过求解方程组来确定每天需要摄入的上述三种食物的量。 解:设123,, x x x 分别为三种食物的摄入量,则由表中的数据可以列出下列 方程组 123231 23365113337 1.1352347445 x x x x x x x x ++=?? +=? ?++=? 利用matlab 可以求得 x = 0.27722318361443 0.39192086163701 0.23323088049177 案例2 一个土建师、一个电气师、一个机械师组成一个技术服务社。假设在 一段时间内,每个人收入1元人民币需要支付给其他两人的服务费用以及每个人的实际收入如下表所示,问这段时间内,每人的总收入是多少?(总收入=实际收入+支付服务费)

解:设土建师、电气师、机械师的总收入分别是123,,x x x 元,根据题 意,建立方程组 1232133 120.20.35000.10.47000.30.4600 x x x x x x x x x --=?? --=??--=? 利用matlab 可以求得 x = 1.0e+003 * 1.25648414985591 1.44812680115274 1.55619596541787 案例3 医院营养师为病人配制的一份菜肴由蔬菜、鱼和肉松组成,这份菜肴 需含1200cal 热量,30g 蛋白质和300mg 维生素c ,已知三种食物每100g 中的有关营养的含量如下表,试求所配菜肴中每种食物的数量。 解:设所配菜肴中蔬菜、鱼和肉松的数量分别为123,,x x x 百克,根据题意,建立方程组 12312312360300600120039630906030300 x x x x x x x x x ++=?? ++=? ?++=? 利用matlab 可以求得 x = 1.52173913043478 2.39130434782609

自考《线性代数》重难点解析与全真练习

自考《线性代数》重难点解析与全真练习 第一章行列式 一、重点 1、理解:行列式的定义,余子式,代数余子式。 2、掌握:行列式的基本性质及推论。 3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。 二、难点行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。 三、重要公式 1若A为n阶方阵,则|kA| = kn | A I 2、若A、B均为n阶方阵,AB丨=| A |。丨B丨 3、若A为n阶方阵,则|A* | = | A | n-1 若A为n阶可逆阵,则|A-1 | = | A | -1 4、若A为n阶方阵,入i (i=1 , 2,…,n)是A的特征值,| A | =口入i 四、题型及解题思路 1 、有关行列式概念与性质的命题 2、行列式的计算(方法) 1 )利用定义 2)按某行(列)展开使行列式降阶 3)利用行列式的性质 ①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。 ②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。 ③逐次行(列)相加减,化简行列式。 ④把行列式拆成几个行列式的和差。 4)递推法,适用于规律性强且零元素较多的行列式 5)数学归纳法,多用于证明 3、运用克莱姆法则求解线性方程组 若D = | A |丰0,则Ax=b有解,即 x1=D1/D, x2= D2/D ,…, xn= Dn/D 其中Dj是把D中xj的系数换成常数项。 注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。 4、运用系数行列式A 判别方程组解的问题 1)当| A | = 0时,齐次方程组Ax= 0有非零解;非齐次方程组解,也可 能有无穷多解) 2)当| A |丰0时,齐次方程组Ax= 0仅有零解;非齐次方程组克莱姆法则求出。 、重点 1 、理解:矩阵的定义、性质, 几种特殊的矩阵(零矩阵,上(下)对角矩阵,逆矩阵,正交矩阵,伴随矩阵,分块矩阵) 2、掌握: 1)矩阵的各种运算及运算规律 2)矩阵可逆的判定及求逆矩阵的各种方法Ax= b 不是解(可能无Ax= b 有解,此解可由三角矩阵,对称矩阵,

线性代数应用题

线性代数应用题集锦 郑波 重庆文理学院数学与统计学院 2011年10月

目录 案例一. 交通网络流量分析问题 (1) 案例二. 配方问题 (4) 案例三. 投入产出问题 (6) 案例四. 平板的稳态温度分布问题 (8) 案例五. CT图像的代数重建问题 (10) 案例六. 平衡结构的梁受力计算 (12) 案例七. 化学方程式配平问题 (15) 案例八. 互付工资问题 (17) 案例九. 平衡价格问题 (19) 案例十. 电路设计问题 (21) 案例十一. 平面图形的几何变换 (23) 案例十二. 太空探测器轨道数据问题 (25) 案例十三. 应用矩阵编制Hill密码 (26) 案例十四. 显示器色彩制式转换问题 (28) 案例十五. 人员流动问题 (30) 案例十六. 金融公司支付基金的流动 (32) 案例十七. 选举问题 (34) 案例十八. 简单的种群增长问题 (35) 案例十九. 一阶常系数线性齐次微分方程组的求解 (37) 案例二十. 最值问题 (39) 附录数学实验报告模板 (40)

这里收集了二十个容易理解的案例. 和各类数学建模竞赛的题目相比, 这些案例确实显得过于简单. 但如果学生能通过这些案例加深对线性代数基本概念、理论和方法的理解, 培养数学建模的意识, 那么我们初步的目的也就达到了. 案例一. 交通网络流量分析问题 城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。 图1 某地交通实况 图2 某城市单行线示意图 【模型准备】某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).

线性代数课程教学总结

线性代数课程教学总结 《线性代数课程教学总结》的范文,这里给大家。篇一:线性代数课程总结 线性代数精讲 曾经我学过线性代数,但是没有深入的学习,所有一直希望有一个机会能够深入学习线性代数的机会。没有想到的是,今年的选修课给了我这样一个机会。线性代数精讲,当我看到它的时候,毅然的选了这门选修课。 现在这学期快要结束了,当然这门选修课也即将结束,在这里我想总结一下这门选修课给我带来的帮助。首先从专业来说,对于学习计算机的人来说,数学的重要性不言而喻。打一个比方,数学就好比计算机的左膀右臂。对于想深入学习计算机的人来说,数学必须学得很好。所以线性代数这门课对我来说很重要,它与我们所讲的数据结构中的图有很大的联系。通过这门课程的学习,我已经深入了解了线性代数,它使我对原来学过的某些知识有种恍然大悟的感觉。以后我还会继续学习线性代数这门课程,我相信它给我带来的还远不止这些。 其次,从考研方面来说,对于考研考试中的数学试卷,线性代数占有很大的比重,这也显现出来线性代数对考研的学生来说有多么重要。我是一个将在后年要参加考研的学生,能听到线性代数精讲这样一门课,我很高兴。在这门课程的学习过程中,老

师深入地讲解了线性代数,让我的考研之路轻松了不少。而且,老师在将课的同时还插入例如考研真题,这是最让我感激的地方。有这样的辅导,我的线性代数还愁不过吗? 最后,我想从对实际生活的影响方面来说,生活中的思维模式是 数学思维模式的一种映射。从某一个方面来说吧,比如做数学中的证明题,每一步都不是凭空而来的,精品而是根据题中的实际要求一步一步推出来的,这就好比做生活中的某件事,如果没有一步一步踏踏实实的走过,是不可能有好的结果的。这门课的讲解,让我对数学的思维模式有了更深入地了解,对生活也有了更深入的认识。 通过这半学期的学习,让我学到了很多,我想说对老师说声谢谢。希望这门课能够一直的讲下去,让更多学弟学妹们受到帮助。 篇二:线性代数课程总结 线性代数课程总结 第一章行列式 1.1二阶、三阶行列式 (一)二阶行列式 (二)三阶行列式 1.2 (二)

线性代数期末考试试题含答案

线性代数期末考试试题含 答案 The final edition was revised on December 14th, 2020.

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( )

线性代数知识点归纳,超详细

线性代数复习要点 第一部分行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 行列式的定义 1.行列式的计算: ①(定义法) ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④若都是方阵(不必同阶),则 ⑤关于副对角线: ⑥范德蒙德行列式: 证明用从第n行开始,自下而上依次的由下一行减去它上一行的倍,按第一列展开,重复上述操作即可。 ⑦型公式: ⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨(递推公式法) 对阶行列式找出与或,之间的一种关系——称为递推公式,其中 ,,等结构相同,再由递推公式求出的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算. ⑩(数学归纳法) 2. 对于阶行列式,恒有:,其中为阶主子式;

3. 证明的方法: ①、; ②、反证法; ③、构造齐次方程组,证明其有非零解; ④、利用秩,证明; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系: 第二部分矩阵 1.矩阵的运算性质 2.矩阵求逆 3.矩阵的秩的性质 4.矩阵方程的求解 1.矩阵的定义由个数排成的行列的表称为矩阵. 记作:或 ①同型矩阵:两个矩阵的行数相等、列数也相等. ②矩阵相等: 两个矩阵同型,且对应元素相等. ③矩阵运算 a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减). b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为. c. 矩阵与矩阵相乘:设, ,则, 其中 注:矩阵乘法不满足:交换律、消去律, 即公式不成立.

大学线性代数期末考试试题

大学线性代数期末考试试 题 The Standardization Office was revised on the afternoon of December 13, 2020

a 0 0 一、选择题 线性代数测试 a 1 b 1 c 1 c 1 b 1 + 2c 1 a 1 + 2b 1 + 3c 1 1. 设行列式 D = a 2 b 2 c 2 ,则 D 1 = c 2 b 2 + 2c 2 a 2 + 2b 2 + 3c 2 = ( ) A. - D a 3 b 3 c 3 B. D c 3 C. 2D b 3 + 2c 3 a 3 + 2b 3 + 3c 3 D. - 2D 2. 下列排列是偶排列的是 . (A )13524876; (B )51324867; (C )38124657; (D )76154283. 3. 设 A m ?s , B t ?n , C s ?t ,则下列矩阵运算有意义的是( ) A. ACB ; B. ABC ; C. BAC ; D. CBA . 4. 设 A 是n 阶方阵, A 经过有限次矩阵的初等变换后得到矩阵 B ,则有() A. A = B ; B. A ≠ B ; C. R ( A ) = R (B ) ; D. R ( A ) ≠ R (B ) . 5. 设 A 是 4×5 矩阵, A 的秩等于 3,则齐次线性方程组 Ax = 0 的基础解系中所含解向量的个数为( ) A. 4 B.5 C.2 D.3 6. 向量组a 1 , a 2 , , a m ( m ≥ 2 )线性相关,则( ). A. a 1 , a 2 , , a m 中每一个向量均可由其余向量线性表示; B. a 1 , a 2 , , a m 中每一个向量均不可由其余向量线性表示; C. a 1 , a 2 , , a m 中至少有一个向量可由其余向量线性表示; D. a 1 , a 2 , , a m 中仅有一个向量可由其余向量线性表示. ? a b + 3 0 ? ? 7. 矩阵 A = a - 1 a 0 ? 为正定矩阵,则 a 满足 . ? ? ? 1 1 (1) a > 2 ; (B ) a > ; (C ) 2 a < ; (D )与b 有关不能确定. 2 8. 设 A , B 均为 n 阶方阵,并且 A 与 B 相似,下述说法正确的是 . (A ) A T 与 B T 相似; (B ) A 与 B 有相同的特征值和相同的特征向量; (C ) A -1 = B -1 ; (D )存在对角矩阵 D ,使 A 、 B 都与 D 相似. 二、判断题 1、如果n (n > 1) 阶行列式的值等于零,则行列式中必有两行元素对应成比例。 2、设向量组的秩为 r ,则向量组中任意 r 个线性无关的向量都是其极大无关组。 3、对 A 作一次初等行变换相当于在 A 的右边乘以相应的初等矩阵。 4、两个向量α1 ,α2 线性无关的充要条件是α1 ,α2 对应成比例. 5、若 A 是实对称矩阵,则 A 一定可以相似对角化. 三、填空题

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

相关主题