搜档网
当前位置:搜档网 › (整理)高压隔离脉冲变压器设计

(整理)高压隔离脉冲变压器设计

(整理)高压隔离脉冲变压器设计
(整理)高压隔离脉冲变压器设计

高压隔离脉冲变压器设计

摘要:介绍了高压隔离脉冲变压器对铁心材料的要求及低Br 超微晶合金磁性能对脉冲波形

各参数内在的关系,并简单叙述应用和实验结果。

关键词:雷达发射机;脉冲变压器; 高压隔离; 超微晶

1引言

高压隔离脉冲变压器在雷达发射机浮动板调制器中得到了广泛的应用,随着脉冲技术的

发展,此类脉冲变压器成为浮动板调制器中的关键件,其要求变换脉冲宽度从几微秒到几百微秒,重复频率从几百赫兹到几千赫兹,高压隔离电压从几千伏到几百千伏,并要求脉冲波形失真度小,以及重量轻,体积小,工作时变压器要求可靠稳定。在设计此类脉冲变压器时采用超微晶合金低B r ,高脉冲磁导率的铁心,能较好地解决上述问题。

2 问题的提出

在浮动板调制器设计中,高压隔离脉冲变压器是必不可少的。它要求体积小,其电路图见图1 。电性能参数如下:

脉冲宽度: t

= 4~120μs

d

≤0. 2μs

脉冲前沿: t

r

脉冲电压: U1 = 15V

变压比: n = 2∶1

次级负载阻抗:50Ω

初次级绕组高压隔离电压:10kV

顶降:λ≤3 %

综合以上脉冲变压器的各项技术指标的要求,要提供高质量的脉冲变压器,必须有一个高质量的铁心,它是脉冲变压器成败的关键。

2

3铁心对脉冲变压器电性能的影响

从脉冲变压器的理论分析和实践证明,铁心是脉冲变压器的核心,其磁性能的指标直接影响脉冲变压器的性能。而此种高压隔离变压器的脉冲宽度和重复频率变化范围很大,既要适应窄脉冲、高重复频率的工作状态,又要适应宽脉冲、低重复频率的工作状态,而且要求输出波形的前沿和顶部失真小。因此,必须了解铁心磁性能能否满足波形的需要,这样就有必要了解铁心磁性能和变压器电性能参数之间的关系。

在研究脉冲变压器铁心物理现象时,变压器绕组的电阻、漏感以及分布电容的数值都很小。为了研究

问题的方便,假设这些参数都等于零。

假设脉冲变压器的次级绕组开路, 在初次级绕组上施加电压为U1 为常数的阶越脉冲。根据电磁感

应定律,所加的电压和绕组中的电势相等。

我们知道,要减小脉冲变压器输出波形的前沿失真,必须要使漏感和分布电容减到最小值。减小漏感和分布电容的方法,除使绕组结构形式得到改善外,最有效、最简单的方法是提高ΔB值,减小绕组的匝数,使脉冲前沿陡直。从下面的脉冲前沿与ΔB值的关系可十分清楚地得到证明:

式中, K与脉冲变压器绕组结构形式有关的系数。

从式中可以看出, U1和t d是给定的指标要求,当铁心截面积Sc和常数K一定时,磁感应增量ΔB

值越高,则脉冲前沿t r保持基本不变时,ΔB值越高,则铁心截面积S c可以得到减小,从而减小了

脉冲变压器的体积。

在脉冲顶部时间里,对脉冲变压器脉冲波形顶部发生作用的参数只有励磁电流。电路阻抗和脉冲源动态内阻。从脉冲顶部瞬态特性推导出来的顶降的计算公式为

式(5)、(6)表明,脉冲顶降λ与励磁电感L m成反比,而励磁电感L m与脉冲磁导率μp成正比,在其它条件相同的情况下,当脉冲磁导率μp越高,则顶降λ就越小。

通过以上可以看出,对铁心的磁性能的各种参数对脉冲变压器电性能影响是至关重要的,同时设计高品质的脉冲变压器是必不可少的, 因此必须选择具有高Bs(铁心材料本身具备最大的磁感应强度) ,

油浸电力变压器设计手册-沈阳变压器(1999) 6负载损耗计算

目录 1 概述SB-007.6 第 1 页 2 绕组导线电阻损耗(P R)计算SB-007.6 第 1 页 3 绕组附加损耗(P f)计算SB-007.6 第1页3.1 层式绕组的附加损耗系数(K f %)SB-007.6 第 1 页3.2 饼式绕组的附加损耗系数(K f %)SB-007.6 第 2 页3.3 导线中涡流损耗系数(K w %)计算SB-007.6 第 2 页 3.3.1 双绕组运行方式的最大纵向漏磁通密度(B m)计算SB-007.6 第 2 页3.3.2 降压三绕组变压器联合运行方式的最大纵向漏磁通密度(B m)计算SB-007.6 第 3 页 SB-007.6 第3 页3.3.3 升压三绕组(或高-低-高双绕组)变压器联合运行方式的最大纵向漏 磁通密度(B m)计算 3.3.4 双绕组运行方式的涡流损耗系数(K w %)简便计算SB-007.6 第4 页3.4 环流损耗系数(K C %)计算SB-007.6 第 4 页3. 4.1 连续式绕组的环流损耗系数(K C %)计算SB-007.6 第4 页3.4.2 载流单螺旋―242‖换位的绕组环流损耗系数(K C1 %)计算SB-007.6 第5 页 SB-007.6 第5 页3.4.3 非载流(处在漏磁场中间)单螺旋―242‖换位的绕组环流损耗系数 (K C2 %)计算 3.4.4 载流双螺旋―交叉‖换位的绕组环流损耗系数(K C1 %)计算SB-007.6 第6 页 SB-007.6 第7 页3.4.5 非载流(处在漏磁场中间)双螺旋―交叉‖ 换位的绕组环流损耗 系数(K C2 %)计算 4引线损耗(P y)计算SB-007.6 第7 页5杂散损耗(P ZS)计算SB-007.6 第8 页5.1小型变压器的杂散损耗(P Z S)计算SB-007.6 第8 页5.2中大型变压器的杂散损耗(P Z S)计算SB-007.6 第9 页5.3 特大型变压器的杂散损耗(P Z S)计算SB-007.6 第10 页

MOS管驱动变压器隔离电路分析和应用

MOS管驱动变压器隔离电路分析和应用 今天在研究全桥电路,资料和书上谈到的,大多数基于理想的驱动器(立即充电完成)。这里 一篇幅把MOS管驱动的来龙去脉搞搞清楚。 预计要分几个篇幅: 1.MOS管驱动基础和时间功耗计算 2.MOS管驱动直连驱动电路分析和应用 3.MOS管驱动变压器隔离电路分析和应用 4.MOS管网上搜集到的电路学习和分析 今天主要分析MOS管驱动变压器隔离电路分析和应用和MOS管驱动基础和时间功耗计算。 参考材料: 《Design And Application Guide For High Speed MOSFET Gate Drive Circuits》是一份很好的材料《MOSFET 驱动器与MOSFET 的匹配设计》也可以借鉴。 首先谈一下变压器隔离的MOS管驱动器: 如果驱动高压MOS管,我们需要采用变压器驱动的方式和集成的高边开关。 这两个解决方案都有自己的优点和缺点,适合不同的应用。 集成高边驱动器方案很方便,优点是电路板面积较小,缺点是有很大的导通和关断延迟。 变压器耦合解决方案的优点是延迟非常低,可以在很高的压差下工作。常它需要更多,缺点是需要很多的元件并且对变压器的运行有比较深入的认识。 变压器常见问题和与MOS管驱动相关的问题: 变压器有两个绕组,初级绕组和次级绕组实现了隔离,初级和次级的匝数比变化实现了电压缩放,对于我们的设计一般不太需要调整电压,隔离却是我们最注重的。 理想情况下,变压器是不储存能量的(反激“变压器”其实是耦合电感)。不过实际上变压器还是储存了少量能量在线圈和磁芯的气隙形成的磁场区域,这种能量表现为漏感和磁化电感。对于功率变压器来说,减少漏感可以减少能量损耗,以提高效率。MOS管驱动器变压器的平均功率很小,但是在开通和关闭的时候传递了很高的电流,为了减少延迟保持漏感较低仍然是必须的。 法拉第定律规定,变压器绕组的平均功率必须为零。即使是很小的直流分量可能会剩磁,最终导致磁芯饱和。这条规则对于单端信号控制的变压器耦合电路的设计有着重大影响。 磁芯饱和限制了我们绕组的伏秒数。我们设计变压器必须考虑最坏情况和瞬时的最大的伏秒数。(在运行状态下,最坏情况和瞬时的,最大占空比和最大电压输入同时发生的情况),唯一我们确定的是变压器有一个稳定的电源电压。 对于单端应用的功率变压器来说,很大一部分开关周期需要保留来保证磁芯的正确复位(正激变换器)。复位时间大小限制电路运行的占空比。不过由于采用交流耦合实现了双向磁化,即使对于单端

收集的驱动变压器资料

(1)、驱动变压器的原边感量应该取大些,但是不能过大,过大会的导致Q值过高,从而在动态的时候会有问题。当电感量加大的时候,驱动波形中开起和关断的时候,震荡慢慢减小,最后消失 (2)、可能,高磁导率的磁芯绕制的变压器,可以获得更高的原边电感,减小激磁电流,因此可以减小所需的驱动电流。 用高磁导率的磁芯,匝比不变,电感一定,圈数可以少一点,寄生参数影响小,波形失真小 (3)、电感量越大阻抗越大,则耦合次级的波形越正常: (4)、问:电感量越高越好吗?? 答:也不是肯定有个极限 一般来说前面有个隔直电容,那么就形成一个串联谐振电路,对于这个谐振电路1)如果L取得太大,就会造成谐振周期很大,可能起机稳定之前震荡中直流偏置复位不及时磁芯饱和,所以一般应该保持在10mH以下 2)另外与开关频率有关,一定要保证LC的谐振频率离驱动频率越远越好,否则在会造成电感上的电压=Q*Vdriver,驱动电压可能会飙升到几十伏去,而电感量越大其谐振频率越小越不容易进入开关频率周围,另外L越大Q越大其选频性能越好越不容易受到影响。 所以一般来说对于一个驱动电路基本上参数都是确定的,没有什么好改变的,隔直电容100nF左右,电感量1-10mH左右,磁芯大小只跟开关频率有关,频率大些就能选小点的磁芯 (5)、那么这里面有几个参数:Tr 上升时间,时间越短,也就是我们平常说的越陡,怎么才能做到这点,方波是由正弦波叠加二成,越到脉冲的边沿频率越高,而我们的变压器的分布电容和漏感组成低通滤波器,如国变压器绕制工艺不好,分布参数大,那么更多高频成分被滤除掉,那么就出现“丢波”那么上升沿就是斜线二不是直线了! (6)、那么怎么改变分布参数呢?首先我们知道绕组越接近磁心表面漏感越小,绕组匝数越少,越容易作到这点;另外磁心的电感系数越高、磁导率越高,导磁能力越好,漏感越小。那么达到要求的电感量或者是初级阻抗的匝数越少。所以我们大多驱动变压器、网络变压器都用高导材料来做。另外在一个变压器中分布电容和漏感是两个矛盾的参数,但是通过绕制方法可以折中处理。 (7)、

MOSFET驱动变压器设计详解

MOSFET驱动变压器设计详解 今天在研究全桥电路,资料和书上谈到的,大多数基于理想的驱动器(立即充电完成)。这里 一篇幅把MOS管驱动的来龙去脉搞搞清楚。 预计要分几个篇幅: 1.MOS管驱动基础和时间功耗计算 2.MOS管驱动直连驱动电路分析和应用 3.MOS管驱动变压器隔离电路分析和应用 4.MOS管网上搜集到的电路学习和分析 今天主要分析MOS管驱动变压器隔离电路分析和应用和MOS管驱动基础和时间功耗计算。 参考材料: 《Design And Application Guide For High Speed MOSFET Gate Drive Circuits》是一份很好的材料《MOSFET 驱动器与MOSFET 的匹配设计》也可以借鉴。 首先谈一下变压器隔离的MOS管驱动器: 如果驱动高压MOS管,我们需要采用变压器驱动的方式和集成的高边开关。 这两个解决方案都有自己的优点和缺点,适合不同的应用。 集成高边驱动器方案很方便,优点是电路板面积较小,缺点是有很大的导通和关断延迟。 变压器耦合解决方案的优点是延迟非常低,可以在很高的压差下工作。常它需要更多,缺点是需要很多的元件并且对变压器的运行有比较深入的认识。 变压器常见问题和与MOS管驱动相关的问题: 变压器有两个绕组,初级绕组和次级绕组实现了隔离,初级和次级的匝数比变化实现了电压缩放,对于我们的设计一般不太需要调整电压,隔离却是我们最注重的。 理想情况下,变压器是不储存能量的(反激“变压器”其实是耦合电感)。不过实际上变压器还是储存了少量能量在线圈和磁芯的气隙形成的磁场区域,这种能量表现为漏感和磁化电感。对于功率变压器来说,减少漏感可以减少能量损耗,以提高效率。MOS管驱动器变压器的平均功率很小,但是在开通和关闭的时候传递了很高的电流,为了减少延迟保持漏感较低仍然是必须的。 法拉第定律规定,变压器绕组的平均功率必须为零。即使是很小的直流分量可能会剩磁,最终导致磁芯饱和。这条规则对于单端信号控制的变压器耦合电路的设计有着重大影响。 磁芯饱和限制了我们绕组的伏秒数。我们设计变压器必须考虑最坏情况和瞬时的最大的伏秒数。(在运行状态下,最坏情况和瞬时的,最大占空比和最大电压输入同时发生的情况),唯一我们确定的是变压器有一个稳定的电源电压。 对于单端应用的功率变压器来说,很大一部分开关周期需要保留来保证磁芯的正确复位(正激变换器)。复位时间大小限制电路运行的占空比。不过由于采用交流耦合实现了双向磁化,即使对于单端MOS管驱动变压器也不是问题。

LED驱动变压器的制作

中心议题: * 反激式开关电源变压器的设计步骤 解决方案: * 选定原边感应电压V * 确实原边电流波形的参数 * 选定变压器磁芯 * 计算变压器的原边匝数 * 确定次级绕组的参数,圈数和线径 反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我算变压器的方法。 算变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下面我就来算了一个输入85V到265V,输出5V,2A 的电源,开关频率是100KHZ。 第一步就是选定原边感应电压VOR,这个值是由自己来设定的,这个值就决定了电源的占空比。可能朋友们不理解什么是原边感应电压,是这样的,这要从下面看起,慢慢的来, 这是一个典型的单端反激式开关电源,大家再熟悉不过了,来分析一下一个工作周期,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的I=Vs*ton/L,这三项分别是原边输入电压,开关开通时间,和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的I=VOR*toff/L,这三项分别是原边感应电压,即放电电压,开关管关断时间,和电感量.在经过一个周期后,原边电感电流的值会回到原来,不可能会变,所以,有VS*TON/L=VOR*TOFF/L,,上升了的,等于下降了的,懂吗,好懂吧,上式中可以用D来代替TON,用1-D来代替TOOF,移项可得,D=VOR/(VOR+VS)。此即是最大占空比了。比如说我设计的这个,我选定感应电压为80V,VS为90V ,则D=80/(*80+90)=0.47

某电力变压器继电保护设计(继电保护)

1 继电保护相关理论知识 1.1 继电保护的概述 研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。 1.2.1 继电保护的任务 当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。 1.2.2继电保护基本原理和保护装置的组成 继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。依据反映的物理量的不同,保护装置可以构成下述各种原理的保护:(1)反映电气量的保护 电力系统发生故障时,通常伴有电流增大、电压降低以及电流与电压的比值(阻抗)和它们之间的相位角改变等现象。因此,在被保护元件的一端装没的种种变换器可以检测、比较并鉴别出发生故障时这些基本参数与正常运行时的差别.就可以构成各种不同原理的继电保护装置。 例如:反映电流增大构成过电流保护; 反映电压降低(或升高)构成低电压(或过电压)保护; 反映电流与电压间的相位角变化构成方向保护; 反映电压与电流的比值的变化构成距离保护。 除此以外.还可根据在被保护元件内部和外部短路时,被保护元件两端电流相位或功率方向的差别,分别构成差动保护、高频保护等。 同理,由于序分量保护灵敏度高,也得到广泛应用。 新出现的反映故障分量、突变量以及自适应原理的保护也在应用中。

开关电源隔离驱动变压器设计方案

开关电源隔离驱动变压器设计 因为电子设备的电路变得更为复杂,故要求成熟的电气工程设 计参数具有更加临界的数值。在设计电路的每一个阶段,精确的工程计算是基本的要求。同时,在其零部件设计时,这一点也是同样重要的。所以,必须精心地设计开关电源(SMPS中门脉冲驱动变压器的每一个零部件。 门脉冲驱动变压器在开关电源中被要求用来控制电路之间的 同步动作。这些器件用来为开头电源半导件元器件如高压功率MOSFET或IGBTs提供电脉冲。这种变压器也用作电压隔离和阻抗匹配。门脉冲驱动变压器是用来驱动电子开关器件门电路的基本脉冲变压器。设计这类变压器时,是假定其脉冲的上升、下降和上冲时间都是最佳的值。使用中要辨别它们是门脉冲驱动变压器还是其它变压 在基础门脉冲驱动变压器设计中,存在一系列设计变数,其中 的每个变数由其专项应用决定。它们的一些通用简图及其相应的转换关系见图1所示

1^:2 1 :1 1 : 2 3 1-------- ---------- 3 11-14OT ??? ? 2OT - 2OT2OL 40120T . wuw* a I'ttngon. com -4 2— 4 6 ■4OT (a) (b) (c} Ifll 代&门!ft 11咏冲驳戍变!L器的嗎电Jfi细态 典型的门脉冲驱动变压器是用铁氧体磁心设计制造的,这样可以降低成本。常用磁心的外形大多数是EE EER ETD型。它们都是 由“E”型磁心和相应的骨架组成。这些骨架可以采用表面安装法或通 孔安装法装配。在有些情况下,也采用环形磁心设计制作门脉冲驱动变压器。典型的脉冲变压器设计所要求的参数列于表1。

设计变压器的基本公式精编版

设计变压器的基本公式 为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:T) Bm=(Up×104)/KfNpSc 式中:Up——变压器一次绕组上所加电压(V) f——脉冲变压器工作频率(Hz) Np——变压器一次绕组匝数(匝) Sc——磁心有效截面积(cm2) K——系数,对正弦波为4.44,对矩形波为4.0 一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。 变压器输出功率可由下式计算(单位:W) Po=1.16BmfjScSo×10-5 式中:j——导线电流密度(A/mm2) Sc——磁心的有效截面积(cm2) So——磁心的窗口面积(cm2) 3对功率变压器的要求 (1)漏感要小 图9是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。 图9双极性功率变换器波形 功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。 (2)避免瞬态饱和

一般工频电源变压器的工作磁通密度设计在B-H曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。它衰减得很快,持续时间一般只有几个周期。对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,这是不允许的。所以一般在控制电路中都有软启动电路来解决这个问题。 (3)要考虑温度影响 开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱和磁通密度的降低应尽量小。在设计和选用磁心材料时,除了关心其饱和磁通密度、损耗等常规参数外,还要特别注意它的温度特性。一般应按实际的工作温度来选择磁通密度的大小,一般铁氧体磁心的Bm值易受温度影响,按开关电源工作环境温度为40℃考虑,磁心温度可达60~80℃,一般选择Bm=0.2~0.4T,即2000~4000GS。 (4)合理进行结构设计 从结构上看,有下列几个因素应当给予考虑: 漏磁要小,减小绕组的漏感; 便于绕制,引出线及变压器安装要方便,以利于生产和维护; 便于散热。 4磁心材料的选择 软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点,而被广泛应用于开关电源中。 软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列,锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体的组成部分是Fe2O3,NiO,ZnO 等,主要用于1MHz以上的各种调感绕组、抗干扰磁珠、共用天线匹配器等。 在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为高导磁率磁心,其材料牌号多为R4K~R10K,即相对磁导率为4000~10000左右的铁氧体磁心,而用于主变压器、输出滤波器等多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。 开关电源用铁氧体磁性材应满足以下要求:

电力变压器课程设计

1 前言 随着工农业生产和城市的发展,电能的需要量迅速增加。为了解决热能资源(如煤田)和水能资源丰富的地区远离用电比较集中的城市和工矿区这个矛盾,需要在动力资源丰富的地区建立大型发电站,然后将电能远距离输送给电力用户。同时,为了提高供电可靠性以及资源利用的综合经济性,又把许多分散的各种形式的发电站,通过送电线路和变电所联系起来。这种由发电机、升压和降压变电所,送电线路以及用电设备有机连接起来的整体,即称为电力系统。 电力系统是有各种电力系统元件组成的,它们包括发电、输变电、负荷等机械、电气主设备以及控制、保护等二次辅助设备。WDT-Ⅲ型电力系统综合自动化试验系统是一个完整的电力系统典型模型,它为我们提供了一个自动化程度很高的多功能实验平台,是为了适应现代化电力系统对宽口径“复合型”高级技术人才的需要而研制的电力类专业新型教学试验系统。 本设计所要完成的工作是利用VC语言开发WDT电力系统综合自动化实验台监控软件,主要是完成准同期控制器监控软件的编写,它要求能显示发电机及无穷大系统的相关参数,如电压、频率和相位角,并能发送准同期合闸命令。

2 电力系统实验台 WDT-Ⅲ型电力系统综合自动化实验教学系统主要由发电机组、试验操作台、无穷大系统等三大部分组成(如图2.1所示)。 图 2.1 WDT-Ⅲ型电力系统综合自动化试验系统 2.1 发电机组 该系统的发电机组主要由原动机和发电机两部分构成,另外,它还包括了测速装置和功率角指示器(用于测量发电机电势与系统电压之间的相角 ,即发电机转子相对位置角),测得的发电机的相关数据传输回实验操作台,与无穷大系统的相关参数进行比较,从而确定系统是否满足了发电机并网条件。 2.1.1 原动机 在实际的发电厂中,原动机一般用的是水轮机、气轮机、柴油机或者其他形式的动力机械,将水流,气流,燃料燃烧或原子核裂变产生的能量转换为带动发电机轴旋转的机械能,从而带动发电机转子的旋转。 在WDT-Ⅲ型电力系统综合自动化试验台的发电机组中,原动机是由直流发电机(P N=2.2kW,U N=220V)模拟实现其功能的。直流电动机(模拟原动机)与发电机的结

电力变压器设计分析

所需输入数据 一般数据 1.制造商 2.变压器类型(例如:移动式、变电站用、整流器用等)3.数据来源:测试数据或规格参数 3.a.频率 4.自耦变压器:是或不是 5.空载损耗 6.负载损耗kW值以及在标准接线端和中间抽头处的基准温度7.阻抗在额定功率MV A基本接点和抽头位置处的阻抗8.铁芯与线圈总重量 9.额定容量每个绕组的MV A值 10.冷却方式 11.针对每一种额定容量及冷却方式,给出: a)顶层变压器油的温升 b)各绕组引起的温升 c)绕组的平均温升 12.绕组数目以及在铁芯上的位置 13.每个绕组的BIL(绝缘基本冲击耐压水平) 14.每个绕组的额定电压 15.每个绕组的连接形式:星型或三角型 16.每个绕组单相的电阻 17.每个绕组并联的电路数 18.有无低温冷却方式:有或没有 如果有:用在哪个绕组上? 最大抽头电压 最小抽头电压 该绕组的抽头数 接线位置数 连接方式 19.有无“无负载”抽头:有或没有 如果有:在哪个绕组上? 最大抽头电压 最小抽头电压 该绕组的抽头数

所需输入数据(续) 铁芯数据 20.截面积:毛截面与净截面 21.铁芯:a) 共有多少条 b) 每条的宽度 c) 每条的叠数 d) 芯体的周长或直径 22.通量密度 23.窗口尺寸:高度及宽度 23.a.窗口中心线的位置 24.接缝方式:全斜角接缝或半斜角接缝 25.材料:钢材等级及钢片厚度 25.a.在基准通量密度下的瓦/公斤数: 空隙数据 26.间隙:铁芯与绕组导线之间的空隙 27.间隙:绕组与绕组之间(绕组的导线与导线之间)的空隙28.间隙:相与相之间(导线与导线之间)的空隙 29.每个绕组的留空系数[1] 30.每个绕组的填充和抽头空间[2](沿高度的方向) 31.每个绕组的边缘距离 a)导线至线圈边缘 b)导线至铁芯箍圈 31a.每个绕组的高度: 径向: 轴向: 32.每个绕组的线槽: 径向:数量及尺寸[3] 轴向:数量及尺寸[4]

20170502-开关电源中的变压器隔离驱动电路(二)

开关电源中的变压器隔离驱动电路(二) 普高(杭州)科技开发有限公司 张兴柱 博士 图1(a)是另一种隔离驱动电路,其原边类似于不对称半桥中的接法,副边的电容和二极管 (a) (b) 图1: 隔离驱动电路#2 来实现隔离后信号的恢复,当原边和副边匝数相同时,该隔离驱动电路在二极管D1上的波形将与隔离前的驱动信号具有完全相同的形状,而且其幅度为Vcc_s 。2R 、3R 、1ZD 的作用与隔离驱动电路#1中对应的元件类似。这个隔离驱动电路的占空比没有限制,其变压器对称地工作于B-H 的I 、III 象限,变压器的激磁电流平均值为零。如前面所说的,该隔离驱动变压器的设计可先按原则选好铁芯的材料和铁芯的形状及尺寸,然后按下面的公式计算匝数: 8_102)1(××?= s c m s cc p f A B V D D N (匝) 其中:sat m B B <,为工作磁密幅度,单位(Gass );c A 为所选铁芯的截面积,单位2)(cm ,D 为驱动信号的占空比,s f 驱动信号的频率,单位为(Hz ) ,s cc V _为隔离驱动电路原边供

电电源,单位(V ),显然在5.0=D 时,上式最大,所以有: 8_10125.0××= s c m s cc p f A B V N (匝) 对计算的匝数取整数,并取p s N N =,然后在所选择的铁芯上按安规要求绕制这两个绕组,看看是否可以绕下,如果能够绕下,且实验波形没有失真,则该隔离变压器的设计就是成功的,否则就要选择一个大一些的铁芯来重新进行计算。从变压器匝数计算公式可知,同样频率、同样截面积的铁芯,在隔离驱动电路#2中的变压器匝数会远少于隔离驱动电路#1中(昨天介绍的)的变压器匝数,所以当处理的功率相同时,隔离驱动电路#2中的变压器会比隔离驱动电路#1中的变压器小。 图1(a)的隔离驱动电路,在产品的大动态过程或电源保护后再恢复工作的过程中,常会因为二极管1D 的没有及时导通,而导致其控制的MOSFET 不能被可靠关断,从而损坏主电路。图1(b)是用一个PNP 三极管3Q 、一个电阻4R 和一个电容3C 组成的电路来代替二极管1D ,以保证只要变压器的副边一有负电压,三极管3Q 就会立即导通,从而确保其控制的MOSFET 无论在什么样的大动态下,都能可靠关断。

电力变压器设计原则

电力变压器设计原则 1.铁心设计 1.1铁心空载损耗计算:P 0=k p ?p 0?G W 其中:k p ——铁心损耗工艺系数,见表2; p 0——电工钢带单位损耗(查材料曲线),W/kg ; G ——铁心重量,kg 。 1.2铁心空载电流计算 空载电流计算中一般忽略有功部分。 (1)三相容量≤6300 kV A 时: 1230()10t f N G G G k q S n q I S ++??+??= ? % 其中:G 1、G 2、G 3——分别为心柱重量、铁轭重量、角重,kg ; k ——铁心转角部分励磁电流增加系数,全斜接缝k=4; q f ——铁心单位磁化容量(查材料曲线),V A/ kg ; S ——心柱净截面积,cm 2; S N ——变压器额定容量,k V A ; n ——铁心接缝总数,三相三柱结构n=8; q j ——接缝磁化容量,V A/ cm 2,根据B m 按表1进行计算。

(2)三相容量>6300 kV A :010i t N k G q I S ??= ? % k i ——空载电流工艺系数,见表2; G ——铁心重量,kg ; q t ——铁心单位磁化容量(查材料曲线),V A/ kg ; S N ——变压器额定容量,k V A 。 表2 铁心性能计算系数(全斜接缝) 注(1)等轭表示铁心主轭与旁轭的截面相等。 1.3铁心圆与纸筒之间的间隙见表3 表3 铁心圆与纸筒间隙 1.4铁心直径与撑条数量关系见表4 表4 铁心直径与撑条数量关系 续表4 铁心直径与撑条数量关系

1.5铁心直径与夹件绝缘厚度关系见表5 2.绝缘结构 2.1 10kV级变压器 2.1.1纵绝缘结构 (1)高压绕组(LI75 AC35) 1)饼式结构 导线匝绝缘0.45,绕组不直接绕在纸筒上,所有线段均垫内径垫条1.0mm;各线饼轴向油道宽度见表15;分接段位于绕组中部。 中断点油道 4.0mm,分接段之间(包括分接段与正常段之间)油道2.0mm,正常段之间0.5mm纸圈。整个绕组增加9.0mm调整油道。 2)层式结构 层式绝缘:首层加强0.08×2,第2层与末层加强0.08×1。当绕组不直接绕在纸筒上时,所有线段均垫内径垫条1.0mm。 (2)低压绕组(AC5) 当绕组不直接绕在纸筒上时,所有线段垫内径垫条 1.0mm,所有线段之间垫0.5mm纸圈。。 当高压绕组为饼式结构时,对应高压分接段处应注意安匝平衡。 2.1.2主绝缘结构 (1)铁心圆与纸筒之间的间隙见表3;低压绕组内纸筒厚2.0mm。当

1、电力变压器仿真模型的设计

电力变压器仿真模型的设计 摘要 随着电力系统的飞速发展,对变压器的保护要求也越来越高。研究三相变压器地暂态过程,建立一个完善的变压器仿真模型,对变压器保护方案的设计具有非常重要地意义。 本文在Matlab的编程环境下,分析了当前的变压器仿真的方法。在单相情况下,分析了在饱和和不饱和的励磁涌流现象,和单相励磁涌流的特征。在三相情况下,在用分段拟和加曲线压缩法的基础上,分别用两条修正的反正切函数,和两条修正的反正切函数加上两段模拟饱和情况的直线两种方法建立了Yd11、Ynd11、Yny0和Yy0四种最常用接线方式下三相变压器的数学仿真模型,并在Matlab下仿真实现。通过对三相励磁涌流和磁滞回环波形分析,三相励磁涌流的特征分析,总结出影响三相变压器励磁涌流地主要因素。最后,分析了两种方法的优劣,建立比较完善的变压器仿真模型。 关键词:三相变压器、励磁涌流、仿真、数学模型

Abstract Along with the electric power system’ development, the request of the protection of the transformer is more and more high. It has count for much meaning to the transformer protecting project to study the transient of a three-phase transformer, and found a perfect three-phase transformer’s digital model. This paper is worked with Matlab, analyzes the current methods of transformer’s digital model. In single-phase transformer, it is analyzed that the inrush current in saturate and unsaturated states, and the characters of the single-phase transformer’s inrush current. In three-phase transformer, with the foundation of the method of compressing curves, we use respectively two modified functions, and two modified functions and two straight line to establish four kinds of transformer’s digital model, such as Yd11, Ynd11, Yny0, Yy0, and realize these with Matlab. After analyzing the wave form of the three-phase transformer’s inrush current and hysteresis, and the characters of three-phase transformer’s inrush current, it is concluded that the primary factors which affect three-phase transformer’s inrush current. Finally, after analyzing the advantages and disadvantages of two methods, a good digital model of three-phase transformer is established. Keywords:three-phase transformer, inrush current, simulation, digital model

电力变压器继电保护设计

电力变压器继电保护设 计 标准化管理部编码-[99968T-6889628-J68568-1689N]

课程设计报告书 题目:电力变压器继电保护设计 院(系)电气工程学院_______ 专业电气工程及其自动化____ 学生姓名冉金周__________ 学生学号 指导教师张祥军蔡琴______ 课程名称电力系统继电保护课程设计 课程学分 2____________ 起始日期

课程设计任务书 一、目的任务 电力系统继电保护课程设计是一个实践教学环节,也是学生接受专业训练的重要环节,是对学生的知识、能力和素质的一次培养训练和检验。通过课程设计,使学生进一步巩固所学理论知识,并利用所学知识解决设计中的一些基本问题,培养和提高学生设计、计算,识图、绘图,以及查阅、使用有关技术

资料的能力。本次课程设计主要以中型企业变电所主变压器为对象,主要完成继电保护概述、主变压器继电保护方案确定、短路电流计算、继电保护装置整定计算、各种继电器选择、绘图等设计和计算任务。为以后深入学习相关专业课、进行毕业设计和从事实际工作奠定基础。 二、设计内容 1、主要内容 (1)熟悉设计任务书,相关设计规程,分析原始资料,借阅参考资料。 (2)继电保护概述,主变压器继电保护方案确定。 (3)各继电保护原理图设计,短路电流计算。 (4)继电保护装置整定计算。 (5)各种继电器选择。 (6)撰写设计报告,绘图等。

2、原始数据 某变电所电气主接线如图1所示,已知两台变压器均为三绕组、油浸式、 强迫风冷、分级绝缘,其参数如下:S N =;电压为110±4×2.5%/ ±2×2.5%/11 kV;接线为Y N /y/d 11 (Y /y/Δ-12-11);短路电压U HM (%) =,U HL (%)=17,U ML (%)=6。两台变压器同时运行,110kV侧的中性点只有一台 接地,若只有一台运行,则运行变压器中性点必须接地,其余参数如图1。 3、设计任务 结合系统主接线图,要考虑两条长的110kV高压线路既可以并联运行也可以单独运行。针对某一主变压器的继电保护进行设计,即变压器主保护按一台变压器单独运行为保护的计算方式。变压器的后备保护(定时限过电流电流)作为线路的远后备保护。 图1 主接线图 注: 学号尾号为1、2、3的同学,用图中S kmax =1010MVA,S kmin =510 MVA进行计 算; 学号尾号为4、5、6的同学,用图中S kmax =1100MVA,S kmin =520 MVA进行计 算; 学号尾号为7、8、9、0的同学,用图中S kmax =1110MVA,S kmin =550 MVA进行 计算。 三、时间、地点安排

25WLED隔离驱动变压器设计

25WLED隔离驱动变压器设计 关键词:LED驱动,隔离,简单低成本,EMI 设计LED驱动,主要的是变压器参数的设计。不管是隔离还是非隔离,只是隔离是一个有两个绕组的变压器,非隔离是个一个绕组的电感。 上一遍文章中(基于SIC95123WLED的驱动制作)着重介绍了非隔离电感制作的参数设计,本文通过介绍基于SIC9655-制作的25WLED隔离驱动,着重介绍隔离变压器参数的设计。 下面先简单地介绍一下SIC655芯片。 SIC9655是PIP-8封装的LED驱动芯片。工作在DCM模式,适合全电压范围工作,良好的线性调整率、负载调整率以及优异的恒流特性。采用原边反馈技术,无需光耦及TL431反馈,无需辅助绕组供电和检测,系统实现成本低,线路简单。具有输出开短路保护、过压保护、过温自适应调节等。 下面以SIC655设计输入功率为25W的驱动过程着重介绍如何确认变压器参数。 输入要求: Vin:100-264; Vout:36V; Iled:600mA。 PF≥0.50, EMI:pass. 通过公司提供的应用原理图以及以上输入参数的要求,为能通过EMC测试,应在电源加进电感及X电容,压敏电阻,用于保护MOS管的RCD及RC电路等。画出原理图。上图。然后通过以下步骤设计出驱动(重点是确认变压器参数)。 设计步骤: 1:确定采样电阻Risen; 2:确认变压器参数; 3:开路电阻设置Radj。 4:确定输入输出端电容,输出二极管等主要原器件。 5:续流二极管的RCD及RC电路。 6:设计PCB板。 7:电路调试。 8:打印清单; 开始: 1:确定采样电阻Risen: SIC9655工作在DCM模式中,其内部具有一个400mV的基准电压,这个基准电压与我们设

10kV电力变压器设计资料

( 二 〇 一五 年 六 月 本科毕业设计说明书 学校代码: 10128 学 号: 201111202005 题 目:10kV 电力变压器的电磁计算与分析 学生姓名:朱 磊 学 院:电力学院 系 别:电力系 专 业:电气工程及其自动化 班 级:电气11-2 指导教师:陈艳宁 讲师

摘要 电力变压器在电力系统中占有重要的地位,其发展趋势是安全可靠、节省生产资本、低损耗运行。因此,进行电力电压器的电磁计算与分析就显得非常重要。 本文早参考了大量文献的基础上,根据变压器设计的基本思路,按照一般压器设计的基本步骤,完成了一台1600kV A/10kV的电力变压器设计。本文章根据一般变压器设计方法针对给定的的电力变压器做了详细的设计。根据所设计变压器的技术参数选用合理的导线和铁心,使其能够安全可靠的运行。通过计算高、低压绕组匝数,对高、低压绕组进行了设计。计算出每匝电动势,进而计算获得低压绕组的匝数,通过变比可得到高压绕组的匝数。高低压绕组的设计包括设计绝缘结构,绕组材料,绕组结构阻抗与负载损耗计算等。计算空载特性是计算空载损耗和空载电流,进而判断所设计的变压器是否合理。计算短路特性是计算变压器的短路电压百分数、铜耗和短路阻抗,若短路阻抗太大则会产生很大的附加损耗,也会使变压器局部过热。变压器温升计算值不仅关系到变压器的安全性、可靠性、使用寿命,也关系到变压器的制造成本。所以本文对温升做了详细的计算。最后则对变压器的结构改进做了详细的介绍。 关键词:电力变压器;电磁计算;结构改进

Abstract Power transformers plays an important role in the power system, and its development trend is safe and reliable, saving production capital, low-loss run, trying to improve the quality of the product. Therefore, it is very important to calculate and analyze the electromagnetic power voltage device. This article reference to the vast literatures on the basis in early, according to the basic idea of transformer design, in accordance with the basic steps of the general press is designed to complete the design of a power transformer 1600kVA / 10kV . This design transformer design according to the general method for the design of power transformers made a detailed design. A reasonable choice of wire and an iron core transformer according to the design specifications to enable safe and reliable operation. High and low voltage windings are designed By calculating the high and low voltage winding turns. Calculating the quantity per turn, and then calculating the number of turns of the low voltage winding can be obtained through high voltage winding turns ratio. Design of high and low voltage winding insulation structure including design, winding material, winding structure impedance and load loss calculation. Computing load characteristic is to calculate load loss and no-load current, and then to determine the design of the transformer is reasonable. Calculating short-circuit characteristic is to calculate the percentage of the transformer short-circuit voltage, short-circuit impedance copper consumption and, if too short-circuit impedance will have a huge additional losses, but also make local overheating transformer. Calculating transformer temperature rise is not only related to the transformer of safety, reliability, service life, but also to the manufacturing cost of the transformer. Therefore, this essay have made a detailed calculation of the temperature rise. Finally, I made a detailed presentation to improve the structure of the transformer. Keywords: power transformer; electromagnetic calculation; structure improvement

20170502-开关电源中的变压器隔离驱动电路(一)

开关电源中的变压器隔离驱动电路(一) 普高(杭州)科技开发有限公司 张兴柱 博士 图1是非常常用的隔离驱动电路,其原边类似于正激变换器中的接法,第三绕组c N 和 (gs V 图1: 隔离驱动电路#1 二极管c D 串联用来对原边激磁电感的去磁,一般情况下,可选择p c N N =,且将c N 和p N 双股并绕。副边绕组s N 与二极管2D 、三极管2Q 及3R 、4R 来恢复原边驱动信号的波形,并实现隔离,其中调节4R 的大小,可以调节隔离驱动信号的驱动能力,2Q 与3R 的作用是保证MOSFET S1在断开瞬间,其门源电荷上电压的快速放电,以便提高 S1的关断速度。5R 与1ZD 则是用来保护S1免受损坏的两个元件,加5R 后,可避免在控制电路还没有工作,功率级已经加电时因S1的DG 电容和GS 电容所引起的 S1之误导通及相应的损坏,其阻值可选为5K~50K ;加ZD2是用来保证各种动态下S1的GS 电压不会超过其规定的最大值,以避免S1的门源损坏,其稳压值可取18V 左右。原边的Q1既可用MOSFET ,也可用三极管,电阻1R 和2R 的选择比较容易,在Q1用MOSFET 时,1R 可取几十到数百殴姆,2R 可取几千殴姆。 上述隔离驱动电路在p c N N =时,能隔离的驱动信号,其最大占空比要小于0.5,否则其变压器会因为伏秒不平衡而饱和。所以这种隔离驱动电路多用在二极管去磁双正激变换器和对称驱动半桥变换器中。如前面所说的,隔离驱动变压器的设计可先按原则选好铁芯的材料和铁芯的形状及尺寸,然后按下面的公式计算匝数: 8_max 10×?×= s c s cc p f BA V D N (匝) 其中:r B B B ?=?max ,sat B B

相关主题