搜档网
当前位置:搜档网 › 伍德里奇计量经济学第六版答案Chapter-10

伍德里奇计量经济学第六版答案Chapter-10

伍德里奇计量经济学第六版答案Chapter-10
伍德里奇计量经济学第六版答案Chapter-10

CHAPTER 10

TEACHING NOTES

Because of its realism and its care in stating assumptions, this chapter puts a somewhat heavier burden on the instructor and student than traditional treatments of time series regression. Nevertheless, I think it is worth it. It is important that students learn that there are potential pitfalls inherent in using regression with time series data that are not present for cross-sectional applications. Trends, seasonality, and high persistence are ubiquitous in time series data. By this time, students should have a firm grasp of multiple regression mechanics and inference, and so you can focus on those features that make time series applications different from cross-sectional ones.

I think it is useful to discuss static and finite distributed lag models at the same time, as these at least have a shot at satisfying the Gauss-Markov assumptions. Many interesting examples have distributed lag dynamics. In discussing the time series versions of the CLM assumptions, I rely mostly on intuition. The notion of strict exogeneity is easy to discuss in terms of feedback. It is also pretty apparent that, in many applications, there are likely to be some explanatory variables that are not strictly exogenous. What the student should know is that, to conclude that OLS is unbiased – as opposed to consistent – we need to assume a very strong form of exogeneity of the regressors. Chapter 11 shows that only contemporaneous exogeneity is needed for consistency. Although the text is careful in stating the assumptions, in class, after discussing strict exogeneity, I leave the conditioning on X implicit, especially when I discuss the no serial correlation assumption. As the absence of serial correlation is a new assumption I spend a fair amount of time on it. (I also discuss why we did not need it for random sampling.)

Once the unbiasedness of OLS, the Gauss-Markov theorem, and the sampling distributions under the classical linear model assumptions have been covered – which can be done rather quickly – I focus on applications. Fortunately, the students already know about logarithms and dummy variables. I treat index numbers in this chapter because they arise in many time series examples.

A novel feature of the text is the discussion of how to compute goodness-of-fit measures with a trending or seasonal dependent variable. While detrending or deseasonalizing y is hardly perfect (and does not work with integrated processes), it is better than simply reporting the very high R-squareds that often come with time series regressions with trending variables.

117

118

SOLUTIONS TO PROBLEMS

10.1 (i) Disagree. Most time series processes are correlated over time, and many of them

strongly correlated. This means they cannot be independent across observations, which simply represent different time periods. Even series that do appear to be roughly uncorrelated – such as stock returns – do not appear to be independently distributed, as you will see in Chapter 12 under dynamic forms of heteroskedasticity.

(ii) Agree. This follows immediately from Theorem 10.1. In particular, we do not need the homoskedasticity and no serial correlation assumptions.

(iii) Disagree. Trending variables are used all the time as dependent variables in a regression model. We do need to be careful in interpreting the results because we may simply find a spurious association between y t and trending explanatory variables. Including a trend in the regression is a good idea with trending dependent or independent variables. As discussed in Section 10.5, the usual R -squared can be misleading when the dependent variable is trending.

(iv) Agree. With annual data, each time period represents a year and is not associated with any season.

10.2 We follow the hint and write

gGDP t -1 = α0 + δ0int t -1 + δ1int t -2 + u t -1,

and plug this into the right-hand-side of the int t equation:

int t = γ0 + γ1(α0 + δ0int t-1 + δ1int t-2 + u t-1 – 3) + v t

= (γ0 + γ1α0 – 3γ1) + γ1δ0int t-1 + γ1δ1int t-2 + γ1u t-1 + v t .

Now by assumption, u t -1 has zero mean and is uncorrelated with all right-hand-side variables in the previous equation, except itself of course. So

Cov(int ,u t -1) = E(int t ?u t-1) = γ1E(21t u -) > 0

because γ1 > 0. If 2u σ= E(2t u ) for all t then Cov(int,u t-1) = γ12u σ. This violates the strict

exogeneity assumption, TS.2. While u t is uncorrelated with int t , int t-1, and so on, u t is correlated with int t+1.

10.3 Write

y* = α0 + (δ0 + δ1 + δ2)z* = α0 + LRP ?z *,

and take the change: ?y * = LRP ??z *.

119

10.4 We use the R -squared form of the F statistic (and ignore the information on 2R ). The 10% critical value with 3 and 124 degrees of freedom is about 2.13 (using 120 denominator df in Table G.3a). The F statistic is

F = [(.305 - .281)/(1 - .305)](124/3) ≈ 1.43,

which is well below the 10% cv . Therefore, the event indicators are jointly insignificant at the 10% level. This is another example of how the (marginal) significance of one variable (afdec6) can be masked by testing it jointly with two very insignificant variables.

10.5 The functional form was not specified, but a reasonable one is

log(hsestrts t ) = α0 + α1t + δ1Q2t + δ2Q3t + δ3Q3t + β1int t +β2log(pcinc t ) + u t ,

Where Q2t , Q3t , and Q4t are quarterly dummy variables (the omitted quarter is the first) and the other variables are self-explanatory. This inclusion of the linear time trend allows the dependent variable and log(pcinc t ) to trend over time (int t probably does not contain a trend), and the quarterly dummies allow all variables to display seasonality. The parameter β2 is an elasticity and 100?β1 is a semi-elasticity.

10.6 (i) Given δj = γ0 + γ1 j + γ2 j 2 for j = 0,1, ,4, we can write

y t = α0 + γ0z t + (γ0 + γ1 + γ2)z t -1 + (γ0 + 2γ1 + 4γ2)z t -2 + (γ0 + 3γ1 + 9γ2)z t -3

+ (γ0 + 4γ1 + 16γ2)z t -4 + u t = α0 + γ0(z t + z t -1 + z t -2 + z t -3 + z t -4) + γ1(z t -1 + 2z t -2 + 3z t -3 + 4z t -4)

+ γ2(z t-1 + 4z t -2 + 9z t -3 + 16z t -4) + u t .

(ii) This is suggested in part (i). For clarity, define three new variables: z t 0 = (z t + z t -1 + z t -2 + z t -3 + z t -4), z t 1 = (z t -1 + 2z t -2 + 3z t -3 + 4z t -4), and z t 2 = (z t -1 + 4z t -2 + 9z t -3 + 16z t -4). Then, α0, γ0, γ1, and γ2 are obtained from the OLS regression of y t on z t 0, z t 1, and z t 2, t = 1, 2, , n . (Following our convention, we let t = 1 denote the first time period where we have a full set of regressors.) The ?j δ can be obtained from ?j δ= 0?γ+ 1?γj + 2?γj 2.

(iii) The unrestricted model is the original equation, which has six parameters (α0 and the five δj ). The PDL model has four parameters. Therefore, there are two restrictions imposed in moving from the general model to the PDL model. (Note how we do not have to actually write out what the restrictions are.) The df in the unrestricted model is n – 6. Therefore, we would

obtain the unrestricted R -squared, 2ur R from the regression of y t on z t , z t -1, , z t -4 and the

restricted R -squared from the regression in part (ii), 2r R . The F statistic is

120

222()(6).(1)2

ur r ur R R n F R --=?-

Under H 0 and the CLM assumptions, F ~ F 2,n -6.

10.7 (i) pe t -1 and pe t -2 must be increasing by the same amount as pe t .

(ii) The long-run effect, by definition, should be the change in gfr when pe increases

permanently. But a permanent increase means the level of pe increases and stays at the new level, and this is achieved by increasing pe t -2, pe t -1, and pe t by the same amount.

10.8 It is easiest to discuss this question in the context of correlations, rather than conditional means. The solution here does both.

(i) Strict exogeneity implies that the error at time t , u t , is uncorrelated with the regressors in every time period: current, past, and future. Sequential exogeneity states that u t is uncorrelated with current and past regressors, so it is implied by strict exogeneity. In terms of conditional means, strict exogeneity is 11E(|...,,,,...)0t t t t u -+=x x x , and so u t conditional on any subset of 11(...,,,,...)t t t -+x x x , including 1(,,...)t t -x x , also has a zero conditional mean. But the latter

condition is the definition of sequential exogeneity.

(ii) Sequential exogeneity implies that u t is uncorrelated with x t , x t -1, …, which, of course, implies that u t is uncorrelated with x t (which is contemporaneous exogeneity stated in terms of zero correlation). In terms of conditional means, 1E(|,,...)0t t t u -=x x implies that u t has zero mean conditional on any subset of variables in 1(,,...)t t -x x . In particular, E(|)0t t u =x .

(iii) No, OLS is not generally unbiased under sequential exogeneity. To show unbiasedness, we need to condition on the entire matrix of explanatory variables, X , and use E(|)0t u =X for all t . But this condition is strict exogeneity, and it is not implied by sequential exogeneity.

(iv) The model and assumption imply

1E(|,,...)0t t t u pccon pccon -=,

which means that pccon t is sequentially exogenous. (One can debate whether three lags is

enough to capture the distributed lag dynamics, but the problem asks you to assume this.) But pccon t may very well fail to be strictly exogenous because of feedback effects. For example, a shock to the HIV rate this year – manifested as u t > 0 – could lead to increased condom usage in the future. Such a scenario would result in positive correlation between u t and pccon t +h for h > 0. OLS would still be consistent, but not unbiased.

SOLUTIONS TO COMPUTER EXERCISES

C10.1 Let post79 be a dummy variable equal to one for years after 1979, and zero otherwise. Adding post79 to equation 10.15) gives

3t i= 1.30 + .608 inf t+ .363 def t+ 1.56 post79t

(0.43) (.076) (.120) (0.51)

n = 56, R2 = .664, 2R = .644.

The coefficient on post79 is statistically significant (t statistic≈ 3.06) and economically large: accounting for inflation and deficits, i3 was about 1.56 points higher on average in years after 1979. The coefficient on def falls once post79 is included in the regression.

C10.2 (i) Adding a linear time trend to (10.22) gives

log()

chnimp= -2.37 -.686 log(chempi) + .466 log(gas) + .078 log(rtwex)

(20.78) (1.240) (.876) (.472)

+ .090 befile6+ .097 affile6- .351 afdec6+ .013 t

(.251) (.257) (.282) (.004) n = 131, R2 = .362, 2R = .325.

Only the trend is statistically significant. In fact, in addition to the time trend, which has a t statistic over three, only afdec6 has a t statistic bigger than one in absolute value. Accounting for a linear trend has important effects on the estimates.

(ii) The F statistic for joint significance of all variables except the trend and intercept, of course) is about .54. The df in the F distribution are 6 and 123. The p-value is about .78, and so the explanatory variables other than the time trend are jointly very insignificant. We would have to conclude that once a positive linear trend is allowed for, nothing else helps to explain

log(chnimp). This is a problem for the original event study analysis.

(iii) Nothing of importance changes. In fact, the p-value for the test of joint significance of all variables except the trend and monthly dummies is about .79. The 11 monthly dummies themselves are not jointly significant: p-value≈ .59.

121

C10.3 Adding log(prgnp) to equation (10.38) gives

prepop= -6.66 - .212 log(mincov t) + .486 log(usgnp t) + .285 log(prgnp t)

log()

t

(1.26) (.040) (.222) (.080)

-.027 t

(.005)

n = 38, R2 = .889, 2R = .876.

The coefficient on log(prgnp t) is very statistically significant (t statistic≈ 3.56). Because the dependent and independent variable are in logs, the estimated elasticity of prepop with respect to prgnp is .285. Including log(prgnp) actually increases the size of the minimum wage effect: the estimated elasticity of prepop with respect to mincov is now -.212, as compared with -.169 in equation (10.38).

C10.4 If we run the regression of gfr t on pe t, (pe t-1–pe t), (pe t-2–pe t), ww2t, and pill t, the coefficient and standard error on pe t are, rounded to four decimal places, .1007 and .0298, respectively. When rounded to three decimal places we obtain .101 and .030, as reported in the text.

C10.5 (i) The coefficient on the time trend in the regression of log(uclms) on a linear time trend and 11 monthly dummy variables is about -.0139 (se≈ .0012), which implies that monthly unemployment claims fell by about 1.4% per month on average. The trend is very significant. There is also very strong seasonality in unemployment claims, with 6 of the 11 monthly dummy variables having absolute t statistics above 2. The F statistic for joint significance of the 11 monthly dummies yields p-value≈ .0009.

(ii) When ez is added to the regression, its coefficient is about -.508 (se≈ .146). Because this estimate is so large in magnitude, we use equation (7.10): unemployment claims are estimated to fall 100[1 – exp(-.508)] ≈ 39.8% after enterprise zone designation.

(iii) We must assume that around the time of EZ designation there were not other external factors that caused a shift down in the trend of log(uclms). We have controlled for a time trend and seasonality, but this may not be enough.

C10.6 (i) The regression of gfr t on a quadratic in time gives

?

gfr= 107.06 + .072 t- .0080 t2

t

(6.05) (.382) (.0051)

n = 72, R2 = .314.

Although t and t2 are individually insignificant, they are jointly very significant (p-value≈ .0000).

122

gfr as the dependent variable in (10.35) gives R2≈.602, compared with about .727 (ii) Using

t

if we do not initially detrend. Thus, the equation still explains a fair amount of variation in gfr even after we net out the trend in computing the total variation in gfr.

(iii) The coefficient and t statistic on t3 are about -.00129 and .00019, respectively, which results in a very significant t statistic. It is difficult to know what to make of this. The cubic trend, like the quadratic, is not monotonic. So this almost becomes a curve-fitting exercise.

C10.7 (i) The estimated equation is

gc= .0081 + .571 gy t

t

(.0019) (.067)

n = 36, R2 = .679.

This equation implies that if income growth increases by one percentage point, consumption growth increases by .571 percentage points. The coefficient on gy t is very statistically significant (t statistic≈ 8.5).

(ii) Adding gy t-1 to the equation gives

gc= .0064 + .552 gy t+ .096 gy t-1

t

(.0023) (.070) (.069)

n = 35, R2 = .695.

The t statistic on gy t-1 is only about 1.39, so it is not significant at the usual significance levels. (It is significant at the 20% level against a two-sided alternative.) In addition, the coefficient is not especially large. At best there is weak evidence of adjustment lags in consumption.

(iii) If we add r3t to the model estimated in part (i) we obtain

gc= .0082 + .578 gy t+ .00021 r3t

t

(.0020) (.072) (.00063)

n = 36, R2 = .680.

The t statistic on r3t is very small. The estimated coefficient is also practically small: a one-point increase in r3t reduces consumption growth by about .021 percentage points.

123

124

C10.8 (i) The estimated equation is

t gfr = 92.05 + .089 pe t - .0040 pe t -1 + .0074 pe t -2 + .018 pe t -3 + .014 pe t -4

(3.33) (.126) (.1531) (.1651) (.154) (.105)

- 21.34 ww2t - 31.08 pill t

(11.54) (3.90)

n = 68, R 2 = .537, 2R = .483.

The p -value for the F statistic of joint significance of pe t -3 and pe t -4 is about .94, which is very weak evidence against H 0.

(ii) The LRP and its standard error can be obtained as the coefficient and standard error on pe t in the regression

gfr t on pe t , (pe t -1 – pe t ), (pe t -2 – pe t ), (pe t -3 – pe t ), (pe t -4 – pe t ), ww2t , pill t

We get LRP ≈ .129 (se ≈ .030), which is above the estimated LRP with only two lags (.101). The standard errors are the same rounded to three decimal places.

(iii) We estimate the PDL with the additional variables ww22 and pill t . To estimate γ0, γ1, and γ2, we define the variables

z0t = pe t + pe t -1 + pe t -2 + pe t -3 + pe t -4

z1t = pe t -1 + 2pe t -2 + 3pe t -3 + 4pe t -4

z2t = pe t -1 + 4pe t -2 + 9pe t -3 + 16pe t -4.

Then, run the regression gfrt t on z0t , z1t , z2t , ww2t , pill t . Using the data in FERTIL3.RAW gives (to three decimal places) 0?γ= .069, 1?γ= –.057, 2?γ= .012. So 0?δ= 0?γ = .069, 1?δ= .069 -

.057 + .012 = .024, 2?δ= .069 – 2(.057) + 4(.012) = .003, 3

?δ= .069 – 3(.057) + 9(.012) = .006, 4?δ= .069 – 4(.057) + 16(.012) = .033. Therefore, the LRP is .135. This is slightly above the .129 obtained from the unrestricted model, but not much.

Incidentally, the F statistic for testing the restrictions imposed by the PDL is about [(.537 - .536)/(1 - .537)](60/2) ≈ .065, which is very insignificant. Therefore, the restrictions are not rejected by the data. Anyway, the only parameter we can estimate with any precision, the LRP, is not very different in the two models.

C10.9 (i) The sign of 2β is fairly clear-cut: as interest rates rise, stock returns fall, so 2β< 0. Higher interest rates imply that T-bill and bond investments are more attractive, and also signal a future slowdown in economic activity. The sign of 1β is less clear. While economic growth can

be a good thing for the stock market, it can also signal inflation, which tends to depress stock prices.

(ii) The estimated equation is

rsp00= 18.84 + .036 pcip t- 1.36 i3t

5

t

(3.27) (.129) (0.54)

n = 557, R2 = .012.

A one percentage point increase in industrial production growth is predicted to increase the stock market return by .036 percentage points (a very small effect). On the other hand, a one percentage point increase in interest rates decreases the stock market return by an estimated 1.36 percentage points.

(iii) Only i3 is statistically significant with t statistic≈-2.52.

(iv) The regression in part (i) has nothing directly to say about predicting stock returns because the explanatory variables are dated contemporaneously with rsp500. In other words, we do not know i3t before we know rsp500t. What the regression in part (i) says is that a change in i3 is associated with a contemporaneous change in rsp500.

C10.10 (i) The sample correlation between inf and def is only about .098, which is pretty small. Perhaps surprisingly, inflation and the deficit rate are practically uncorrelated over this period. Of course, this is a good thing for estimating the effects of each variable on i3, as it implies almost no multicollinearity.

(ii) The equation with the lags is

3t i= 1.61 + .343 inf t+ .382 inf t-1-.190 def t+ .569 def t-1

(0.40) (.125) (.134) (.221) (.197)

n = 55, R2 = .685, 2R = .660.

(iii) The estimated LRP of i3 with respect to inf is .343 + .382 = .725, which is somewhat larger than .606, which we obtain from the static model in (10.15). But the estimates are fairly close considering the size and significance of the coefficient on inf t-1.

(iv) The F statistic for significance of inf t-1 and def t-1 is about 5.22, with p-value≈ .009. So they are jointly significant at the 1% level. It seems that both lags belong in the model.

C10.11 (i) The variable beltlaw becomes one at t = 61, which corresponds to January, 1986. The variable spdlaw goes from zero to one at t = 77, which corresponds to May, 1987.

(ii) The OLS regression gives

125

log()

totacc = 10.469 + .00275 t- .0427 feb + .0798 mar + .0185 apr

(.019) (.00016) (.0244) (.0244) (.0245)

+ .0321 may + .0202 jun + .0376 jul + .0540 aug

(.0245) (.0245) (.0245) (.0245)

+ .0424 sep + .0821 oct + .0713 nov + .0962 dec

(.0245) (.0245) (.0245) (.0245)

n = 108, R2 = .797

When multiplied by 100, the coefficient on t gives roughly the average monthly percentage growth in totacc, ignoring seasonal factors. In other words, once seasonality is eliminated, totacc grew by about .275% per month over this period, or, 12(.275) = 3.3% at an annual rate.

There is pretty clear evidence of seasonality. Only February has a lower number of total accidents than the base month, January. The peak is in December: roughly, there are 9.6% accidents more in December over January in the average year. The F statistic for joint significance of the monthly dummies is F = 5.15. With 11 and 95 df, this give a p-value essentially equal to zero.

(iii) I will report only the coefficients on the new variables:

totacc = 10.640 + … + .00333 wkends-.0212 unem

log()

(.063) (.00378) (.0034)

-.0538 spdlaw + .0954 beltlaw

(.0126) (.0142)

n = 108, R2 = .910

The negative coefficient on unem makes sense if we view unem as a measure of economic activity. As economic activity increases –unem decreases – we expect more driving, and therefore more accidents. The estimate that a one percentage point increase in the unemployment rate reduces total accidents by about 2.1%. A better economy does have costs in terms of traffic accidents.

(iv) At least initially, the coefficients on spdlaw and beltlaw are not what we might expect. The coefficient on spdlaw implies that accidents dropped by about 5.4% after the highway speed limit was increased from 55 to 65 miles per hour. There are at least a couple of possible explanations. One is that people because safer drivers after the increased speed limiting, recognizing that the must be more cautious. It could also be that some other change – other than the increased speed limit or the relatively new seat belt law – caused lower total number of accidents, and we have not properly accounted for this change.

126

The coefficient on beltlaw also seems counterintuitive at first. But, perhaps people became less cautious once they were forced to wear seatbelts.

(v) The average of prcfat is about .886, which means, on average, slightly less than one percent of all accidents result in a fatality. The highest value of prcfat is 1.217, which means there was one month where 1.2% of all accidents resulting in a fatality.

(vi) As in part (iii), I do not report the coefficients on the time trend and seasonal dummy variables:

prcfat = 1.030 + … + .00063 wkends-.0154 unem

(.103) (.00616) (.0055)

+ .0671 spdlaw -.0295 beltlaw

(.0206) (.0232)

n = 108, R2 = .717

Higher speed limits are estimated to increase the percent of fatal accidents, by .067 percentage points. This is a statistically significant effect. The new seat belt law is estimated to decrease the percent of fatal accidents by about .03, but the two-sided p-value is about .21.

Interestingly, increased economic activity also increases the percent of fatal accidents. This may be because more commercial trucks are on the roads, and these probably increase the chance that an accident results in a fatality.

C10.12 (i) OLS estimation using all of the data gives

inf = 1.05 + .502 unem

(1.55) (.266)

n = 56, R2 = .062, 2R = .045,

so there are 56 years of data.

(ii) The estimates are similar to those in equation (10.14). Adding the extra years does not help in finding a tradeoff between inflation and unemployment. In fact, the slope estimate becomes even larger (and is still positive) in the full sample.

(iii) Using only data from 1997 to 2003 gives

inf = 4.16 - .378 unem

(1.65) (.334)

127

n = 7, R2 = .204, 2R = .044.

The equation now shows a tradeoff between inflation and unemployment: a one percentage point increase in unem is estimated to reduce inf by about .38 percentage points. Not surprisingly, with such a small sample size, the estimate is not statistically different from zero: the two-sided p-value is .31. So, while it is tempting to think that the inflation-unemployment tradeoff reemerges in the last part of the sample, the estimates are not precise enough to draw that conclusion.

(iv) The regressions in parts (i) and (iii) are an example of this setup, with n1 = 49 and n2 = 7. The weighted average of the slopes from the two different periods is (49/56)?(.468) +

(7/56)?(-.378) ≈ .362. But the slope estimate on the entire sample is .502. Generally, there is no simple relationship between the slope estimate on the entire sample and the slope estimates on two sub-samples.

C10.13 (i) The estimated equation is

232

gwage = .0022 + .151 gmwage + .244 gcpi

(.0004) (.001) (.082)

n = 611, R2 = .293

The coefficient on gmwage implies that a one percentage point growth in the minimum wage is estimated to increase the growth in wage232 by about .151 percentage points.

(ii) When 12 lags of gmwage are added, the sum of all coefficients is about .198, which is somewhat higher than the .151 obtained from the static regression. Plus, the F statistic for lags 1 through 12 given p-value = .058, which shows they are jointly, marginally statistically significant. (Lags 8 through 12 have fairly large coefficients, and some individual t statistics are significant at the 5% level.)

(iii) The estimated equation is

gemp = -.0004 - .0019 gmwage-.0055 gcpi

232

(.0010) (.0228) (.1938)

n = 611, R2 = .000

The coefficient on gmwage is puny with a very small t statistic. In fact, the R-squared is practically zero, which means neither gmwage nor gcpi has any effect on employment growth in sector 232.

(iv) Adding lags of gmwage does not change the basic story. The F test of joint significance of gmwage and lags 1 through 12 of gmwage gives p-value = .439. The coefficients change sign and none is individually statistically significant at the 5% level. Therefore, there is little evidence

128

that minimum wage growth affects employment growth in sector 232, either in the short run or the long run.

129

计量经济学习题及答案汇总

《 期中练习题 1、回归分析中使用的距离是点到直线的垂直坐标距离。最小二乘准则是指( ) A .使 ∑=-n t t t Y Y 1)?(达到最小值 B.使∑=-n t t t Y Y 1达到最小值 C. 使 ∑=-n t t t Y Y 1 2 )(达到最小值 D.使∑=-n t t t Y Y 1 2)?(达到最小值 2、根据样本资料估计得出人均消费支出 Y 对人均收入 X 的回归模型为 ?ln 2.00.75ln i i Y X =+,这表明人均收入每增加 1%,人均消费支出将增加 ( ) A. B. % C. 2 D. % 3、设k 为回归模型中的参数个数,n 为样本容量。则对总体回归模型进行显著性检验的F 统计量与可决系数2 R 之间的关系为( ) ~ A.)1/()1()/(R 2 2---=k R k n F B. )/(1)-(k )R 1/(R 22k n F --= C. )/()1(22k n R R F --= D. ) 1()1/(2 2R k R F --= 6、二元线性回归分析中 TSS=RSS+ESS 。则 RSS 的自由度为( ) 9、已知五个解释变量线形回归模型估计的残差平方和为 8002=∑t e ,样本容量为46,则随机误 差项μ的方差估计量2 ?σ 为( ) D. 20 1、经典线性回归模型运用普通最小二乘法估计参数时,下列哪些假定是正确的( ) A.0)E(u i = B. 2 i )V ar(u i σ= C. 0)u E(u j i ≠ ) D.随机解释变量X 与随机误差i u 不相关 E. i u ~),0(2 i N σ 2、对于二元样本回归模型i i i i e X X Y +++=2211???ββα,下列各式成立的有( ) A.0 =∑i e B. 0 1=∑i i X e C. 0 2=∑i i X e D. =∑i i Y e E. 21=∑i i X X 4、能够检验多重共线性的方法有( )

计量经济学题库及答案

计量经济学题库 一、单项选择题(每小题1分) 1.计量经济学是下列哪门学科的分支学科(C)。 A.统计学 B.数学 C.经济学 D.数理统计学 2.计量经济学成为一门独立学科的标志是(B)。 A.1930年世界计量经济学会成立B.1933年《计量经济学》会刊出版 C.1969年诺贝尔经济学奖设立 D.1926年计量经济学(Economics)一词构造出来 3.外生变量和滞后变量统称为(D)。 A.控制变量 B.解释变量 C.被解释变量 D.前定变量4.横截面数据是指(A)。 A.同一时点上不同统计单位相同统计指标组成的数据B.同一时点上相同统计单位相同统计指标组成的数据 C.同一时点上相同统计单位不同统计指标组成的数据D.同一时点上不同统计单位不同统计指标组成的数据 5.同一统计指标,同一统计单位按时间顺序记录形成的数据列是(C)。 A.时期数据 B.混合数据 C.时间序列数据 D.横截面数据6.在计量经济模型中,由模型系统内部因素决定,表现为具有一定的概率分布的随机变量,其数值受模型中其他变量影响的变量是( A )。 A.内生变量 B.外生变量 C.滞后变量 D.前定变量7.描述微观主体经济活动中的变量关系的计量经济模型是( A )。 A.微观计量经济模型 B.宏观计量经济模型 C.理论计量经济模型 D.应用计量经济模型 8.经济计量模型的被解释变量一定是( C )。 A.控制变量 B.政策变量 C.内生变量 D.外生变量9.下面属于横截面数据的是( D )。 A.1991-2003年各年某地区20个乡镇企业的平均工业产值 B.1991-2003年各年某地区20个乡镇企业各镇的工业产值 C.某年某地区20个乡镇工业产值的合计数 D.某年某地区20个乡镇各镇的工业产值 10.经济计量分析工作的基本步骤是( A )。 A.设定理论模型→收集样本资料→估计模型参数→检验模型B.设定模型→估计参数→检验模型→应用

计量经济学第四版习题及参考答案

计量经济学(第四版)习题参考答案 潘省初

第一章 绪论 试列出计量经济分析的主要步骤。 一般说来,计量经济分析按照以下步骤进行: (1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析 计量经济模型中为何要包括扰动项? 为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。 什么是时间序列和横截面数据? 试举例说明二者的区别。 时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。 横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。 估计量和估计值有何区别? 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。在一项应用中,依据估计量算出的一个具体的数值,称为估计值。如Y 就是一个估计量, 1 n i i Y Y n == ∑。现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估 计量得出的均值估计值为 5.1074 130 96104100=+++。 第二章 计量经济分析的统计学基础 略,参考教材。 请用例中的数据求北京男生平均身高的99%置信区间 N S S x = = 4 5= 用?=,N-1=15个自由度查表得005.0t =,故99%置信限为

计量经济学题库(超完整版)及答案.详解

计量经济学题库 计算与分析题(每小题10分) 1 X:年均汇率(日元/美元) Y:汽车出口数量(万辆) 问题:(1)画出X 与Y 关系的散点图。 (2)计算X 与Y 的相关系数。其中X 129.3=,Y 554.2=,2X X 4432.1∑(-)=,2Y Y 68113.6∑ (-)=,()()X X Y Y ∑--=16195.4 (3)采用直线回归方程拟和出的模型为 ?81.72 3.65Y X =+ t 值 1.2427 7.2797 R 2=0.8688 F=52.99 解释参数的经济意义。 2.已知一模型的最小二乘的回归结果如下: i i ?Y =101.4-4.78X 标准差 (45.2) (1.53) n=30 R 2=0.31 其中,Y :政府债券价格(百美元),X :利率(%)。 回答以下问题:(1)系数的符号是否正确,并说明理由;(2)为什么左边是i ?Y 而不是i Y ; (3)在此模型中是否漏了误差项i u ;(4)该模型参数的经济意义是什么。 3.估计消费函数模型i i i C =Y u αβ++得 i i ?C =150.81Y + t 值 (13.1)(18.7) n=19 R 2=0.81 其中,C :消费(元) Y :收入(元) 已知0.025(19) 2.0930t =,0.05(19) 1.729t =,0.025(17) 2.1098t =,0.05(17) 1.7396t =。 问:(1)利用t 值检验参数β的显著性(α=0.05);(2)确定参数β的标准差;(3)判断一下该模型的拟合情况。 4.已知估计回归模型得 i i ?Y =81.7230 3.6541X + 且2X X 4432.1∑ (-)=,2Y Y 68113.6∑(-)=, 求判定系数和相关系数。 5.有如下表数据

计量经济学题库及答案

2.已知一模型的最小二乘的回归结果如下: i i ?Y =101.4-4.78X 标准差 () () n=30 R 2 = 其中,Y :政府债券价格(百美元),X :利率(%)。 回答以下问题:(1)系数的符号是否正确,并说明理由;(2)为什么左边是i ?Y 而不是i Y ; (3)在此模型中是否漏了误差项i u ;(4)该模型参数的经济意义是什么。 13.假设某国的货币供给量Y 与国民收入X 的历史如系下表。 某国的货币供给量X 与国民收入Y 的历史数据 根据以上数据估计货币供给量Y 对国民收入X 的回归方程,利用Eivews 软件输出结果为: Dependent Variable: Y Variable Coefficient Std. Error t-Statistic Prob. X C R-squared Mean dependent var Adjusted R-squared . dependent var . of regression F-statistic Sum squared resid Prob(F-statistic) 问:(1)写出回归模型的方程形式,并说明回归系数的显着性() 。 (2)解释回归系数的含义。 (2)如果希望1997年国民收入达到15,那么应该把货币供给量定在什么水平? 14.假定有如下的回归结果 t t X Y 4795.06911.2?-= 其中,Y 表示美国的咖啡消费量(每天每人消费的杯数),X 表示咖啡的零售价格(单位:美元/杯),t 表示时间。问: (1)这是一个时间序列回归还是横截面回归?做出回归线。 (2)如何解释截距的意义?它有经济含义吗?如何解释斜率?(3)能否救出真实的总体回归函数? (4)根据需求的价格弹性定义: Y X ?弹性=斜率,依据上述回归结果,你能救出对咖啡需求的价格弹性吗?如果不能,计算此弹性还需要其他什么信息? 15.下面数据是依据10组X 和Y 的观察值得到的: 1110=∑i Y ,1680 =∑i X ,204200=∑i i Y X ,315400 2=∑ i X ,133300 2 =∑i Y 假定满足所有经典线性回归模型的假设,求0β,1β的估计值; 16.根据某地1961—1999年共39年的总产出Y 、劳动投入L 和资本投入K 的年度数据,运用普通最小二乘法估计得出了下列回归方程:

计量经济学题库超完整版及答案

四、简答题(每小题5分) 令狐采学 1.简述计量经济学与经济学、统计学、数理统计学学科间的关系。 2.计量经济模型有哪些应用? 3.简述建立与应用计量经济模型的主要步调。4.对计量经济模型的检验应从几个方面入手? 5.计量经济学应用的数据是怎样进行分类的?6.在计量经济模型中,为什么会存在随机误差项? 7.古典线性回归模型的基本假定是什么?8.总体回归模型与样本回归模型的区别与联系。 9.试述回归阐发与相关阐发的联系和区别。 10.在满足古典假定条件下,一元线性回归模型的普通最小二乘估计量有哪些统计性质?11.简述BLUE 的含义。 12.对多元线性回归模型,为什么在进行了总体显著性F 检验之后,还要对每个回归系数进行是否为0的t 检验? 13.给定二元回归模型:01122t t t t y b b x b x u =+++,请叙述模型的古典假定。 14.在多元线性回归阐发中,为什么用修正的决定系数衡量估计模型对样本观测值的拟合优度? 15.修正的决定系数2R 及其作用。16.罕见的非线性回归模型有几种情况? 17.观察下列方程并判断其变量是否呈线性,系数是否呈线性,或

都是或都不是。 ①t t t u x b b y ++=310②t t t u x b b y ++=log 10 ③t t t u x b b y ++=log log 10④t t t u x b b y +=)/(10 18. 观察下列方程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。 ①t t t u x b b y ++=log 10②t t t u x b b b y ++=)(210 ③t t t u x b b y +=)/(10④t b t t u x b y +-+=)1(11 0 19.什么是异方差性?试举例说明经济现象中的异方差性。 20.产生异方差性的原因及异方差性对模型的OLS 估计有何影响。21.检验异方差性的办法有哪些? 22.异方差性的解决办法有哪些?23.什么是加权最小二乘法?它的基本思想是什么? 24.样天职段法(即戈德菲尔特——匡特检验)检验异方差性的基来源根基理及其使用条件。 25.简述DW 检验的局限性。26.序列相关性的后果。27.简述序列相关性的几种检验办法。 28.广义最小二乘法(GLS )的基本思想是什么?29.解决序列相关性的问题主要有哪几种办法? 30.差分法的基本思想是什么?31.差分法和广义差分法主要区别是什么? 32.请简述什么是虚假序列相关。33.序列相关和自相关的概念和规模是否是一个意思? 34.DW 值与一阶自相关系数的关系是什么?35.什么是多重共线

计量经济学习题及答案

第一章绪论 一、填空题: 1.计量经济学是以揭示经济活动中客观存在的__________为内容的分支学科,挪威经济学家弗里希,将计量经济学定义为__________、__________、__________三者的结合。 2.数理经济模型揭示经济活动中各个因素之间的__________关系,用__________性的数学方程加以描述,计量经济模型揭示经济活动中各因素之间__________的关系,用__________性的数学方程加以描述。 3.经济数学模型是用__________描述经济活动。 4.计量经济学根据研究对象和内容侧重面不同,可以分为__________计量经济学和__________计量经济学。 5.计量经济学模型包括__________和__________两大类。 6.建模过程中理论模型的设计主要包括三部分工作,即__________、____________________、____________________。 7.确定理论模型中所包含的变量,主要指确定__________。 8.可以作为解释变量的几类变量有__________变量、__________变量、__________变量和__________变量。 9.选择模型数学形式的主要依据是__________。 10.研究经济问题时,一般要处理三种类型的数据:__________数据、__________数据和__________数据。 11.样本数据的质量包括四个方面__________、__________、__________、__________。 12.模型参数的估计包括__________、__________和软件的应用等内容。 13.计量经济学模型用于预测前必须通过的检验分别是__________检验、__________检验、__________检验和__________检验。 14.计量经济模型的计量经济检验通常包括随机误差项的__________检验、__________检验、解释变量的__________检验。 15.计量经济学模型的应用可以概括为四个方面,即__________、__________、__________、__________。 16.结构分析所采用的主要方法是__________、__________和__________。 二、单选题: 1.计量经济学是一门()学科。 A.数学 B.经济

计量经济学题库超完整版)及答案-计量经济学题库

计量经济学题库一、单项选择题(每小题1分) 1.计量经济学是下列哪门学科的分支学科(C)。 A.统计学B.数学C.经济学D.数理统计学 2.计量经济学成为一门独立学科的标志是(B)。 A.1930年世界计量经济学会成立B.1933年《计量经济学》会刊出版 C.1969年诺贝尔经济学奖设立D.1926年计量经济学(Economics)一词构造出来 3.外生变量和滞后变量统称为(D)。 A.控制变量B.解释变量C.被解释变量D.前定变量4.横截面数据是指(A)。 A.同一时点上不同统计单位相同统计指标组成的数据B.同一时点上相同统计单位相同统计指标组成的数据 C.同一时点上相同统计单位不同统计指标组成的数据D.同一时点上不同统计单位不同统计指标组成的数据 5.同一统计指标,同一统计单位按时间顺序记录形成的数据列是(C)。 A.时期数据B.混合数据C.时间序列数据D.横截面数据6.在计量经济模型中,由模型系统内部因素决定,表现为具有一定的概率分布的随机变量,其数值受模型中其他变量影响的变量是()。 A.内生变量B.外生变量C.滞后变量D.前定变量7.描述微观主体经济活动中的变量关系的计量经济模型是()。 A.微观计量经济模型B.宏观计量经济模型C.理论计量经济模型D.应用计量经济模型 8.经济计量模型的被解释变量一定是()。 A.控制变量B.政策变量C.内生变量D.外生变量9.下面属于横截面数据的是()。

A.1991-2003年各年某地区20个乡镇企业的平均工业产值 B.1991-2003年各年某地区20个乡镇企业各镇的工业产值 C.某年某地区20个乡镇工业产值的合计数D.某年某地区20个乡镇各镇的工业产值 10.经济计量分析工作的基本步骤是()。 A.设定理论模型→收集样本资料→估计模型参数→检验模型B.设定模型→估计参数→检验模型→应用模型 C.个体设计→总体估计→估计模型→应用模型D.确定模型导向→确定变量及方程式→估计模型→应用模型 11.将内生变量的前期值作解释变量,这样的变量称为()。 A.虚拟变量B.控制变量C.政策变量D.滞后变量 12.()是具有一定概率分布的随机变量,它的数值由模型本身决定。 A.外生变量B.内生变量C.前定变量D.滞后变量 13.同一统计指标按时间顺序记录的数据列称为()。 A.横截面数据B.时间序列数据C.修匀数据D.原始数据 14.计量经济模型的基本应用领域有()。 A.结构分析、经济预测、政策评价B.弹性分析、乘数分析、政策模拟 C.消费需求分析、生产技术分析、D.季度分析、年度分析、中长期分析 15.变量之间的关系可以分为两大类,它们是()。 A.函数关系与相关关系B.线性相关关系和非线性相关关系 C.正相关关系和负相关关系D.简单相关关系和复杂相关关系 16.相关关系是指()。 A.变量间的非独立关系B.变量间的因果关系C.变量间的函数关系D.变量间不确定性

伍德里奇计量经济学第六版答案Appendix-E

271 APPENDIX E SOLUTIONS TO PROBLEMS E.1 This follows directly from partitioned matrix multiplication in Appendix D. Write X = 12n ?? ? ? ? ? ???x x x , X ' = (1'x 2'x n 'x ), and y = 12n ?? ? ? ? ? ??? y y y Therefore, X 'X = 1 n t t t ='∑x x and X 'y = 1 n t t t ='∑x y . An equivalent expression for ?β is ?β = 1 11n t t t n --=??' ???∑x x 11n t t t n y -=??' ??? ∑x which, when we plug in y t = x t β + u t for each t and do some algebra, can be written as ?β= β + 1 11n t t t n --=??' ???∑x x 11n t t t n u -=??' ??? ∑x . As shown in Section E.4, this expression is the basis for the asymptotic analysis of OLS using matrices. E.2 (i) Following the hint, we have SSR(b ) = (y – Xb )'(y – Xb ) = [?u + X (?β – b )]'[ ?u + X (?β – b )] = ?u '?u + ?u 'X (?β – b ) + (?β – b )'X '?u + (?β – b )'X 'X (?β – b ). But by the first order conditions for OLS, X '?u = 0, and so (X '?u )' = ?u 'X = 0. But then SSR(b ) = ?u '?u + (?β – b )'X 'X (?β – b ), which is what we wanted to show. (ii) If X has a rank k then X 'X is positive definite, which implies that (?β – b ) 'X 'X (?β – b ) > 0 for all b ≠ ?β . The term ?u '?u does not depend on b , and so SSR(b ) – SSR(?β) = (?β– b ) 'X 'X (?β – b ) > 0 for b ≠?β. E.3 (i) We use the placeholder feature of the OLS formulas. By definition, β = (Z 'Z )-1Z 'y = [(XA )' (XA )]-1(XA )'y = [A '(X 'X )A ]-1A 'X 'y = A -1(X 'X )-1(A ')-1A 'X 'y = A -1(X 'X )-1X 'y = A -1?β . (ii) By definition of the fitted values, ?t y = ?t x β and t y = t z β. Plugging z t and β into the second equation gives t y = (x t A )(A -1?β ) = ?t x β = ?t y . (iii) The estimated variance matrix from the regression of y and Z is 2σ(Z 'Z )-1 where 2σ is the error variance estimate from this regression. From part (ii), the fitted values from the two

计量经济学试题及答案最新

计量经济学试题及答案(3) ⒈(12分)某人试图建立我国煤炭行业生产方程,以煤炭产量为被解释变量,经过理论和经验分析,确定以固定资产原值、职工人数和电力消耗量变量作为解释变量,变量的选择是正确的。于是建立了如下形式的理论模型: 煤炭产量= 固定资产原值+ 职工人数+ 电力消耗量+μ 选择2000年全国60个大型国有煤炭企业的数据为样本观测值;固定资产原值用资产形成年当年价计算的价值量,其它采用实物量单位;采用OLS方法估计参数。指出该计量经济学问题中可能存在的主要错误,并简单说明理由。 ⒉(12分)以表示粮食产量,表示播种面积,表示化肥施用量,经检验,它们取对数后都是变量且互相之间存在关系。同时经过检验并剔除不显著的变量(包括滞后变量),得到如下粮食生产模型: (1) ⑴写出长期均衡方程的理论形式; ⑵写出误差修正项ecm的理论形式; ⑶写出误差修正模型的理论形式; ⑷指出误差修正模型中每个待估参数的经济意义。 ⒊(6分)对于上述粮食生产模型(1),假设所有解释变量与随机误差项都不相关。 ⑴如果采用普通最小二乘法估计,用非矩阵形式写出关于参数估计量的正规方程组; ⑵从以上正规方程组出发说明,为什么不能采用分部回归方法分别估计每个参数; ⒋(9分)投资函数模型 为一完备的联立方程计量经济模型中的一个方程,模型系统包含的内生变量为C(居民消费总额)、I(投资总额)和Y(国内生产总值),先决变量为(政府消费)、和。样本容量为。 ⑴可否用狭义的工具变量法估计该方程?为什么? ⑵如果采用2SLS估计该方程,分别写出2SLS估计量和将它作为一种工具变量方法的估计量的矩阵表达式; ⑶如果采用GMM方法估计该投资函数模型,写出一组等于0的矩条件。 ⒌(6分)建立城镇居民食品类需求函数模型如下: 其中V为人均购买食品支出额、Y为人均收入、为食品类价格、为其它商品类价格。 ⑴指出参数估计量的经济意义是否合理,为什么? ⑵为什么经常采用交叉估计方法估计需求函数模型? ⒍(9分)选择两要素一级CES生产函数的近似形式建立中国电力行业的生产函数模型: 其中Y为发电量,K、L分别为投入的资本与劳动数量,t为时间变量。 ⑴指出参数γ、ρ、m的经济含义和数值范围;

伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-第二篇(第10~12章)【圣才出品】

第二篇时间序列数据的回归分析 第10章时间序列数据的基本回归分析 10.1 复习笔记 考点一:时间序列数据★★ 1.时间序列数据与横截面数据的区别 (1)时间序列数据集是按照时间顺序排列。 (2)时间序列数据与横截面数据被视为随机结果的原因不同。 (3)一个时间序列过程的所有可能的实现集,便相当于横截面分析中的总体。时间序列数据集的样本容量就是所观察变量的时期数。 2.时间序列模型的主要类型(见表10-1) 表10-1 时间序列模型的主要类型 考点二:经典假设下OLS的有限样本性质★★★★

1.高斯-马尔可夫定理假设(见表10-2) 表10-2 高斯-马尔可夫定理假设

2.OLS估计量的性质与高斯-马尔可夫定理(见表10-3)

表10-3 OLS估计量的性质与高斯-马尔可夫定理 3.经典线性模型假定下的推断 (1)假定TS.6(正态性) 假定误差u t独立于X,且具有独立同分布Normal(0,σ2)。该假定蕴涵了假定TS.3、TS.4和TS.5,但它更强,因为它还假定了独立性和正态性。 (2)定理10.5(正态抽样分布) 在时间序列的CLM假定TS.1~TS.6下,以X为条件,OLS估计量遵循正态分布。而且,在虚拟假设下,每个t统计量服从t分布,F统计量服从F分布,通常构造的置信区间也是确当的。 定理10.5意味着,当假定TS.1~TS.6成立时,横截面回归估计与推断的全部结论都可以直接应用到时间序列回归中。这样t统计量可以用来检验个别解释变量的统计显著性,F

统计量可以用来检验联合显著性。 考点三:时间序列的应用★★★★★ 1.函数形式、虚拟变量 除了常见的线性函数形式,其他函数形式也可以应用于时间序列中。最重要的是自然对数,在应用研究中经常出现具有恒定百分比效应的时间序列回归。虚拟变量也可以应用在时间序列的回归中,如某一期的数据出现系统差别时,可以采用虚拟变量的形式。 2.趋势和季节性 (1)描述有趋势的时间序列的方法(见表10-4) 表10-4 描述有趋势的时间序列的方法

伍德里奇---计量经济学第8章部分计算机习题详解(STATA)

班级:金融学×××班姓名:××学号:×××××××C8.1SLEEP75.RAW sleep=β0+β1totwork+β2educ+β3age+β4age2+β5yngkid+β6male+u 解:(ⅰ)写出一个模型,容许u的方差在男女之间有所不同。这个方差不应该取决于其他因素。 在sleep=β0+β1totwork+β2educ+β3age+β4age2+β5yngkid+β6male+u模型下,u方差要取决于性别,则可以写成:Var u︳totwork,educ,age,yngkid,male =Var u︳male =δ0+δ1male。所以,当方差在male=1时,即为男性时,结果为δ0+δ1;当为女性时,结果为δ0。 将sleep对totwork,educ,age,age2,yngkid和male进行回归,回归结果如下: (ⅱ)利用SLEEP75.RAW的数据估计异方差模型中的参数。u的估计方差对于男人和女人而言哪个更高? 由截图可知:u2=189359.2?28849.63male+r

20546.36 (27296.36) 由于male 的系数为负,所以u 的估计方差对女性而言更大。 (ⅲ)u 的方差是否对男女而言有显著不同? 因为male 的 t 统计量为?1.06,所以统计不显著,故u 的方差是否对男女而言并没有显著不同。 C8.2 HPRICE1.RAW price =β0+β1lotsize +β2sqrft +β3bdrms +u 解:(ⅰ)利用HPRICE 1.RAW 中的数据得到方程(8.17)的异方差—稳健的标准误。讨论其与通常的标准误之间是否存在任何重要差异。 ● 先进行一般回归,结果如下: ● 再进行稳健回归,结果如下: 由两个截图可得:price =?21.77+0.00207lotsize +0.123sqrft +13.85bdrms 29.48 0.00064 0.013 (9.01) 37.13 0.00122 0.018 [8.48] n = 88, R 2=0.672 比较稳健标准误和通常标准误,发现lotsize 的稳健标准误是通常下的2倍,使得 t 统计量相差较大。而sqrft 的稳健标准误也比通常的大,但相差不大,bdrms 的稳健标准误比通常的要小些。 (ⅱ)对方程(8.18)重复第(ⅰ)步操作。 n =706,R 2=0.0016

计量经济学题目和答案

计量经济学期中考试题 一、写出多元线性回归模型得经典假设。 二、多重共线性、异方差、自相关分别违背了经典假设哪个条件?分别造成得后果就是什么? 三、739家上市公司绩效(NER)与基金持股比例(RATE)关系得OLS估计结果与残差值表如下: 残差值表: 1.计算(1)、(2)、(3)、(4)、(5)划线处得5个数字,并给出计算步骤(保留4位小数)。 2.根据计算机输出结果,写出一元回归模型表达式。 3.您认为上述回归式用考虑自相关问题吗? 4.异方差得White检验式估计结果如下, = 0、0604+0、0008RATE t-0、00004(RA TE t)2 (1、3) (0、1) (—0、3)R2=0、000327, F=739 (1)White统计量=?(2)White统计量服从何种分布?(3)结合

本例,相应自由度就是多少?(4)EViews给出得相应概率就是0、89,试判断原回归式误差项中就是否存在异方差。 5.假设上市公司绩效值(NER)服从正态分布,模型满足同方差假定条件。(1)作为样本,739个上市公司绩效值得(NER)分布得均值与方差就是多少?当基金持股比例(RATE)为0、40时,上市公司绩效值条件分布得均值与方差就是多少?(方差写出公式即可) 四、我们想要研究国内生产总值(GDP)、平均国外生产总值(FGDP)与实际有效汇率指数(REER)对出口贸易额(EX)得影响,建立线性模型: 样本区间为1979年-2002年,GDP与FGDP均以亿美元为计量单位.用普通最小二乘法估计上述模型,回归结果如下(括号内得数字为回归系数估计量得标准差): = —2200、90 +0、02*GDP+1、02*FGDP +9、49*R EER (830、52)(0、0026)(0、3895)(3、4315) R2=0、98, DW=0、50 white检验(有交叉)得统计量为:T*R2=20、96;GDP、FGDP =0、87,rGDP,REE与REER之间得相关系数分别为:rG DP,FGDP R= —0、24,rFGDP,REER= —0、28 1。判断上述模型就是否满足经典假定条件;如果不满足,简要写出修正方法(15分) 2.检验原假设:与()(5分) 3.检验整个方程得显著性()(6分) 4.解释回归参数估计值=0、02得经济意义(4)

计量经济学题库及答案71408

计量经济学题库(超完整版)及答案 一、单项选择题(每小题1分) 1.计量经济学是下列哪门学科的分支学科(C )。 A .统计学 B .数学 C .经济学 D .数理统计学 2.计量经济学成为一门独立学科的标志是(B )。 A .1930年世界计量经济学会成立 B .1933年《计量经济学》会刊出版 C .1969年诺贝尔经济学奖设立 D .1926年计量经济学(Economics )一词构造出来3.外生变量和滞后变量统称为(D )。 A .控制变量 B .解释变量 C .被解释变量 D .前定变量 4.横截面数据是指(A )。 A .同一时点上不同统计单位相同统计指标组成的数据 B .同一时点上相同统计单位相同统计指标组成的数据 C .同一时点上相同统计单位不同统计指标组成的数据 D .同一时点上不同统计单位不同统计指标组成的数据 5.同一统计指标,同一统计单位按时间顺序记录形成的数据列是(C )。 A .时期数据 B .混合数据 C .时间序列数据 D .横截面数据 6.在计量经济模型中,由模型系统内部因素决定,表现为具有一定的概率分布的随机变量,其数值受模型中其他变量影响的变量是()。 A .内生变量 B .外生变量 C .滞后变量 D .前定变量 7.描述微观主体经济活动中的变量关系的计量经济模型是()。 A .微观计量经济模型 B .宏观计量经济模型 C .理论计量经济模型 D .应用计量经济模型 8.经济计量模型的被解释变量一定是()。 A .控制变量 B .政策变量 C .内生变量 D .外生变量 9.下面属于横截面数据的是()。 A .1991-2003年各年某地区20个乡镇企业的平均工业产值 B .1991-2003年各年某地区20个乡镇企业各镇的工业产值 C .某年某地区20个乡镇工业产值的合计数 D .某年某地区20个乡镇各镇的工业产值10.经济计量分析工作的基本步骤是()。 A .设定理论模型→收集样本资料→估计模型参数→检验模型 B .设定模型→估计参数→检验模型→应用模型 C .个体设计→总体估计→估计模型→应用模型 D .确定模型导向→确定变量及方程式→估计模型→应用模型 11.将内生变量的前期值作解释变量,这样的变量称为()。 A .虚拟变量 B .控制变量 C .政策变量 D .滞后变量 12.()是具有一定概率分布的随机变量,它的数值由模型本身决定。 A .外生变量 B .内生变量 C .前定变量 D .滞后变量 13.同一统计指标按时间顺序记录的数据列称为()。 A .横截面数据 B .时间序列数据 C .修匀数据 D .原始数据 14.计量经济模型的基本应用领域有()。 A .结构分析、经济预测、政策评价 B .弹性分析、乘数分析、政策模拟 C .消费需求分析、生产技术分析、 D .季度分析、年度分析、中长期分析 15.变量之间的关系可以分为两大类,它们是()。 A .函数关系与相关关系 B .线性相关关系和非线性相关关系

计量经济学习题及答案 ()

计量经济学习题 一、名词解释 1、普通最小二乘法:为使被解释变量的估计值与观测值在总体上最为接近使Q= 最小,从而求出参数估计量的方法,即之。 2、总平方和、回归平方和、残差平方和的定义:TSS度量Y自身的差异程度,称为总平方和。TSS除以自由度n-1=因变量的方差,度量因变量自身的变化;RSS度量因变量Y的拟合值自身的差异程度,称为回归平方和,RSS除以自由度(自变量个数-1)=回归方差,度量由自变量的变化引起的因变量变化部分;ESS度量实际值与拟合值之间的差异程度,称为残差平方和。RSS除以自由度(n-自变量个数-1)=残差(误差)方差,度量由非自变量的变化引起的因变量变化部分。 3、计量经济学:计量经济学是以经济理论为指导,以事实为依据,以数学和统计学为方法,以电脑技术为工具,从事经济关系与经济活动数量规律的研究,并以建立和应用经济计量模型为核心的一门经济学科。而且必须指出,这些经济计量模型是具有随机性特征的。 4、最小样本容量:即从最小二乘原理和最大似然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限;即样本容量必须不少于模型中解释变量的数目(包扩常数项),即之。 5、序列相关性:模型的随机误差项违背了相互独立的基本假设的情况。 6、多重共线性:在线性回归模型中,如果某两个或多个解释变量之间出现了相关性,则称为多重共线性。 7、工具变量法:在模型估计过程中被作为工具使用,以替代模型中与随机误差项相关的随机解释变量。这种估计方法称为工具变量法。 8、时间序列数据:按照时间先后排列的统计数据。 9、截面数据:发生在同一时间截面上的调查数据。 10、相关系数:指两个以上的变量的样本观测值序列之间表现出来的随机数学关系。 11、异方差:对于线性回归模型提出了若干基本假设,其中包括随机误差项具有同方差;如果对于不同样本点,随机误差项的方差不再是常数,而互不相同,则认为出现了异方差性。 12、外生变量:外生变量是模型以外决定的变量,作为自变量影响内生变量,外生变量决定内生变量,其参数不是模型系统的元素。因此,外生变量本身不能在模型体系内得到说明。外生变量一般是确定性变量,或者是具有临界概率分布的随机变量。外生变量影响系统,但本身并不受系统的影响。外生变量一般是经济变量、条件变量、政策变量、虚变量。一般情况下,外生变量与随机项不相关。

计学(第六版)第七章课后练习答案

第七章 课后练习答案 7.1 (1)已知:96.1%,951,25,40,52/05.0==-===z x n ασ。 样本均值的抽样标准差79.0405== = n x σ σ (2)边际误差55.140 5 96.12/=? ==n z E σ α 7.2 (1)已知:96.1%,951,120,49,152/05.0==-===z x n ασ。 样本均值的抽样标准差14.249 15== = n x σ σ (2)边际误差20.449 1596.12 /=? ==n z E σ α (3)由于总体标准差已知,所以总体均值μ的95%的置信区间为 20.412049 1596.11202 /±=? ±=±n z x σ α 即()2.124,8.115 7.3 已知:96.1%,951,104560,100,854142/05.0==-===z x n ασ。 由于总体标准差已知,所以总体均值μ的95%的置信区间为 144.16741104560100 8541496.11045602 /±=? ±=±n z x σ α 即)144.121301,856.87818( 7.4 (1)已知:645.1%,901,12,81,1002/1.0==-===z s x n α。 由于100=n 为大样本,所以总体均值μ的90%的置信区间为: 974.181100 12645.1812 /±=? ±=±n s z x α 即)974.82,026.79(

(2)已知:96.1%,951,12,81,1002/05.0==-===z s x n α。 由于100=n 为大样本,所以总体均值μ的95%的置信区间为: 352.281100 1296.1812 /±=? ±=±n s z x α 即)352.83,648.78( (3)已知:58.2%,991,12,81,1002/05.0==-===z s x n α。 由于100=n 为大样本,所以总体均值μ的99%的置信区间为: 096.381100 1258.2812 /±=? ±=±n s z x α 即)096.84,940.77( 7.5 (1)已知:96.1%,951,5.3,25,602/05.0==-===z x n ασ。 由于总体标准差已知,所以总体均值μ的95%的置信区间为: 89.02560 5.39 6.1252 /±=? ±=±n z x σ α 即)89.25,11.24( (2)已知:33.2%,981,89.23,6.119,752/02.0==-===z s x n α。 由于75=n 为大样本,所以总体均值μ的98%的置信区间为: 43.66.11975 89.2333.26.1192 /±=? ±=±n s z x α 即)03.126,17.113( (3)已知:645.1%,901,974.0,419.3,322/1.0==-===z s x n α。 由于32=n 为大样本,所以总体均值μ的90%的置信区间为: 283.0419.332 974.0645.1419.32 /±=? ±=±n s z x α 即)702.3,136.3(

计量经济学题库(超完整版)及答案

四、简答题(每小题5分) 1.简述计量经济学与经济学、统计学、数理统计学学科间的关系。2.计量经济模型有哪些应用? 3.简述建立与应用计量经济模型的主要步骤。 4.对计量经济模型的检验应从几个方面入手? 5.计量经济学应用的数据是怎样进行分类的? 6.在计量经济模型中,为什么会存在随机误差项? 7.古典线性回归模型的基本假定是什么? 8.总体回归模型与样本回归模型的区别与联系。 9.试述回归分析与相关分析的联系和区别。 10.在满足古典假定条件下,一元线性回归模型的普通最小二乘估计量有哪些统计性质? 11.简述BLUE 的含义。 12.对于多元线性回归模型,为什么在进行了总体显著性F 检验之后,还要对每个回归系数进行是否为0的t 检验? 13.给定二元回归模型: 01122t t t t y b b x b x u =+++,请叙述模型的古典假定。 14.在多元线性回归分析中,为什么用修正的决定系数衡量估计模型对样本观测值的拟合优度? 15.修正的决定系数2R 及其作用。 16.常见的非线性回归模型有几种情况? 17.观察下列方程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。 ①t t t u x b b y ++=310 ②t t t u x b b y ++=log 10 ③ t t t u x b b y ++=log log 10 ④t t t u x b b y +=)/(10 18. 观察下列方程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。 ①t t t u x b b y ++=log 10 ②t t t u x b b b y ++=)(210 ③ t t t u x b b y +=)/(10 ④t b t t u x b y +-+=)1(110 19.什么是异方差性?试举例说明经济现象中的异方差性。

伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-多元回归分析:推断【圣才出品】

第4章多元回归分析:推断 4.1复习笔记 考点一:OLS估计量的抽样分布★★★ 1.假定MLR.6(正态性) 假定总体误差项u独立于所有解释变量,且服从均值为零和方差为σ2的正态分布,即:u~Normal(0,σ2)。 对于横截面回归中的应用来说,假定MLR.1~MLR.6被称为经典线性模型假定。假定下对应的模型称为经典线性模型(CLM)。 2.用中心极限定理(CLT) 在样本量较大时,u近似服从于正态分布。正态分布的近似效果取决于u中包含多少因素以及因素分布的差异。 但是CLT的前提假定是所有不可观测的因素都以独立可加的方式影响Y。当u是关于不可观测因素的一个复杂函数时,CLT论证可能并不适用。 3.OLS估计量的正态抽样分布 定理4.1(正态抽样分布):在CLM假定MLR.1~MLR.6下,以自变量的样本值为条件,有:∧βj~Normal(βj,Var(∧βj))。将正态分布函数标准化可得:(∧βj-βj)/sd(∧βj)~

Normal(0,1)。 注:∧β1,∧β2,…,∧βk的任何线性组合也都符合正态分布,且∧βj的任何一个子集也都具有一个联合正态分布。 考点二:单个总体参数检验:t检验★★★★ 1.总体回归函数 总体模型的形式为:y=β0+β1x1+…+βk x k+u。假定该模型满足CLM假定,βj的OLS 量是无偏的。 2.定理4.2:标准化估计量的t分布 在CLM假定MLR.1~MLR.6下,(∧βj-βj)/se(∧βj)~t n-k-1,其中,k+1是总体模型中未知参数的个数(即k个斜率参数和截距β0)。 t统计量服从t分布而不是标准正态分布的原因是se(∧βj)中的常数σ已经被随机变量∧σ所取代。t统计量的计算公式可写成标准正态随机变量(∧βj-βj)/sd(∧βj)与∧σ2/σ2的平方根之比,可以证明二者是独立的;而且(n-k-1)∧σ2/σ2~χ2n-k-1。于是根据t随机变量的定义,便得到此结论。 3.单个参数的检验(见表4-1) 表4-1单个参数的检验

相关主题