搜档网
当前位置:搜档网 › 线性代数应用实例

线性代数应用实例

线性代数应用实例
线性代数应用实例

线性代数应用实例 ● 求插值多项式

右表给出函数()f t 上4个点的值,试求三次插值多项式23

0123()p t a a t a t a t =+++,并

求(1.5)f 的近似值。

解:令三次多项式函数230123()p t a a t a t a t =+++过

表中已知的4点,可以得到四元线性方程组:

??????

?=+++-=+++=+++=6

279318420

33

210321032100

a a a a a a a a a a a a a 对于四元方程组,笔算就很费事了。应该用计算机求解了,键入:

>>A=[1,0,0,0;1,1,1,1;1,2,4,8;1,3,9,27], b=[3;0;-1;6], s=rref([A,b]) 得到x = 1 0 0 0 3 0 1 0 0 -2 0 0 1 0 -2 0 0 0 1 1

得到01233,2,2,1a a a a ==-=-=,三次多项函数为23

()322p t t t t =--+,故(1.5)f 近似等于23

(1.5)32(1.5)2(1.5)(1.5) 1.125p =--+=-。

在一般情况下,当给出函数()f t 在n+1个点(1,2,,1)i t i n =+L 上的值()i f t 时,就可以

用n 次多项式2012()n

n p t a a t a t a t =++++L 对()f t 进行插值。

● 在数字信号处理中的应用----- 数字滤波器系统函数

数字滤波器的网络结构图实际上也就是一种信号流图。它的特点在于所有的相加节点都限定为双输入相加器;另外,数字滤波器器件有一个迟延一个节拍的运算,它也就是一个

线性算子,它的标注符号为z -1

。根据这样的结构图,也可以用类似于例7、4的方法,求它

的输入输出之间的传递函数,在数字信号处理中称为系统函数。

图1表示了某个数字滤波器的结构图,现在要求出它的系统函数,即输出y 与输入u 之比。先在它的三个中间节点上标注信号的名称x1,x2,x3,以便对每个节点列写方程。

由于迟延算子z -1

不就是数,要用符号代替,所以取q = z -1

,按照图示情况,可以写出:

122331

23

118

44x qx u

x q x u x x =+??=-+ ???=

写成矩阵形式为

11223300

23

11008

4401

0q x x x q x x x ??????????????????????==-+? ??????????????????????????

?x u x =Qx -Pu

经过移项后,系统函数W 可以写成:

W =x/u =inv(I -Q)*P 现在可以列写计算系统函数的MATLAB 程序ea705,

syms q

% 规定符号变量

Q(1,2)=q; Q(2,3)=3/8*q -1/4; Q(3,1)=1; % 给非零元素赋值 Q(3,3)=0;

% 给右下角元素Q(3,3)赋值后,矩阵中未赋值元素都自动置零

P=[2;1/4;0]

% 给P 赋值

W=inv(eye(3)-Q)*P

% 用信号流图求传递函数的公式

程序运行的结果为

W = [-16/(-8+3*q^2-2*q)-2*q/(-8+3*q^2-2*q) ]

[ -2*(3*q -2)/(-8+3*q^2-2*q)-2/(-8+3*q^2-2*q)] [-16/(-8+3*q^2-2*q)-2*q/(-8+3*q^2-2*q)] 我们关心的就是以y =x3作为输出的系统函数,故再键入 pretty(W(3)) 整理后得到 1222116288

(3)832 1.54 1.54

y q q z W u q q q q z z -----++====-+--++-++

用线性代数方法的好处就是适用于任何复杂系统,并能用计算机解决问题。

信号与系统课程中的应用-----线性时不变系统的零输入响应

描述n 阶线性时不变(LTI)连续系统的微分方程为

,d d d d d d d d d d 111121u b t u b t

u b y a t y a t y a t y a m m m m n n n n n ++-+++=++++ΛΛ n ≥m

已知y 及其各阶导数的初始值为y (0),y (1)(0),…,y (n-1)

(0),求系统的零输入响应。

解:当LTI 系统的输入为零时,其零输入响应为微分方程的齐次解(即令微分方程等号右

端为0),其形式为(设特征根均为单根)

t p n t p t p n C C C t y e e e )(2121+++=Λ

其中p 1,p 2,…,p n 就是特征方程a 1λn +a 2λn -1+…+ a n λ+ a n +1

=0的根,它们可用roots(a)语句求得。各系数C 1,…,C n 由y 及其各阶导数的初始值来确定。对此有

C 1+ C 2+…+C n = y 0 y 0 = y (0)

p 1C 1+ p 2C 2+…+ p n C n =D y 0 (D y 0表示y 的导数的初始值y (1)(0)) …………………………………

011212111D y C p C p C p n n n n n n ----=+++Λ

写成矩阵形式为 ?????

???????=????????????????????????----0100211121121D D 111

y y y C C C p p p p p p n n n n n n n M M ΛM O M M ΛΛ 即 V ·C = Y 0 , 其解为 C =V \ Y 0

式中 112000[,,,];[,D ,,D ]n n C C C y y y -==T T

0C Y L L

?????

?

??????=---11211

21

111n n n n n p p p p p p Λ

M O

M

M ΛΛV V 为范德蒙矩阵,在MATLAB 的特殊矩阵库中有vander 函数可直接生成。

MATLAB 程序ea703、m

a=input('输入分母系数向量a=[a1,a2,、、、]= '); n=length(a)-1;

Y0=input('输入初始条件向量 Y0=[y0,Dy0,D2y0,、、、]= '); p=roots(a);V=rot90(vander(p));c= V\Y0'; dt=input('dt='); tf=input('tf= ') t=0:dt:tf; y=zeros(1,length(t)); for k=1:n y= y+c(k)*exp(p(k)*t);end plot(t,y),grid

? 程序运行结果

用这个通用程序来解一个三阶系统,运行此程序并输入

a=[3,5,7,1]; dt=0、2; tf=8;

而Y0取

[1,0,0];[0,1,0];[0,0,1]

三种情况,用hold on 语句使三次运行生成的图形画在一幅图上,得到图2。

● 减肥配方的实现

设三种食物每100克中蛋白质、碳水化合物与脂肪的含量如下表,表中还给出了80年代美国流行的剑桥大学医学院的简捷营养处方。现在的问题就是:如果用这三种食物作为每天的主要食物,那么它们的用量应各取多少?才能全面准确地实现这个营养要求。

营养 每100g 食物所含营养(g)

减肥所要求的每日营养量

脱脂牛奶

大豆面粉

乳清 蛋白质 36 51 13 33 碳水化合物 52 34 74 45 脂肪

7

1、1

3

设脱脂牛奶的用量为x 1个单位(100g),大豆面粉的用量为x 2个单位(100g),乳清的用量为x 3个单位(100g),表中的三个营养成分列向量为:

图2 三阶系统的零输入响应

12136511352,34,74,07 1.1a a a ????????????===??????????????????

则它们的组合所具有的营养为

11223312336511352347407 1.1x a x a x a x x x ??????

??????++=++??????

????????????

使这个合成的营养与剑桥配方的要求相等,就可以得到以下的矩阵方程:

12336

511333523474450

7 1.13x x Ax b x ??????

??????=?=??????

?????

???????

用MATLAB 解这个问题非常方便,列出程序ag763如下:

A=[36,51,13;52,34,74;0,7,1、1] b=[33;45;3] x=A\b

程序执行的结果为:

0.2772 0.3919 0.2332x ??

??=??????

即脱脂牛奶的用量为27、7g,大豆面粉的用量为39、2g,乳清的用量为23、3g,就能保证所

需的综合营养量。

人口迁徙模型

设在一个大城市中的总人口就是固定的。人口的分布则因居民在市区与郊区之间迁徙而变化。每年有6%的市区居民搬到郊区去住,而有2%的郊区居民搬到市区。假如开始时有30%的居民住在市区,70%的居民住在郊区,问十年后市区与郊区的居民人口比例就是多少?30年、50年后又如何?

这个问题可以用矩阵乘法来描述。把人口变量用市区与郊区两个分量表示,即

,ck k sk x x x ??

=????其中x c 为市区人口所占比例,x s 为郊区人口所占比例,k 表示年份的次序。在

k=0的初始状态:0000.30.7c s x x x ????

==??????

??。

一年以后,市区人口为x c1= (1-0、02) x c0+0、06x s0,郊区人口x s1= 0、02x c0 + (1-0、06)x s0,用矩阵乘法来描述,可写成:

11010.940.020.3 0.29600.060.980.7 0.7040c s x x Ax x ????????==?==????????

????

????

线性代数超强的总结(不看你会后悔的)

线性代数超强总结 ()0A r A n A Ax A A οο??

√ 行列式的计算: ① 若A B 与都是方阵(不必同阶),则 (1)mn A A A A B B B B A A B B οο οοο * = = =* *=- ②上三角、下三角行列式等于主对角线上元素的乘积. ③关于副对角线: (1)2 1121 21 1211 1 (1) n n n n n n n n n n n a a a a a a a a a ο οο ---* = =-K N N √ 逆矩阵的求法: ①1 A A A * -= ②1()()A E E A -????→M M 初等行变换 ③11a b d b c d c a ad bc --???? =????--???? T T T T T A B A C C D B D ?? ??=???????? ④1 2 11 11 2 1n a a n a a a a -???? ???? ? ???=???? ???? ??? ?? ? O O 2 1 1 1 12 1 1n a a n a a a a -???? ???? ? ???=???? ?????????? N N

线性代数应用实例

线性代数应用实例 ● 求插值多项式 右表给出函数()f t 上4个点的值,试求三次插值多项式230123()p t a a t a t a t =+++,并求(1.5)f 的近似值。 解:令三次多项式函数230123()p t a a t a t a t =+++过 表中已知的4点,可以得到四元线性方程组: ?????? ?=+++-=+++=+++=6 27931842033 210321032100 a a a a a a a a a a a a a 对于四元方程组,笔算就很费事了。应该用计算机求解了,键入: >>A=[1,0,0,0;1,1,1,1;1,2,4,8;1,3,9,27], b=[3;0;-1;6], s=rref([A,b]) 得到x = 1 0 0 0 3 0 1 0 0 -2 0 0 1 0 -2 0 0 0 1 1 得到01233,2,2,1a a a a ==-=-=,三次多项函数为23 ()322p t t t t =--+,故(1.5)f 近 似等于23 (1.5)32(1.5)2(1.5)(1.5) 1.125p =--+=-。 在一般情况下,当给出函数()f t 在n+1个点(1,2,,1)i t i n =+ 上的值()i f t 时,就可以用n 次多项式2012()n n p t a a t a t a t =++++ 对()f t 进行插值。 ● 在数字信号处理中的应用----- 数字滤波器系统函数 数字滤波器的网络结构图实际上也是一种信号流图。它的特点在于所有的相加节点都限定为双输入相加器;另外,数字滤波器器件有一个迟延一个节拍的运算,它也是一个线性算子,它的标注符号为z -1。根据这样的结构图,也可以用类似于例7.4的方法,求它 的输入输出之间的传递函数,在数字信号处理中称为系统函数。 图1表示了某个数字滤波器的结构图,现在要求出它的系统函数,即输出y 与输入u 之比。先在它的三个中间节点上标注信号的名称x1,x2,x3,以便对每个节点列写方程。

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

数学模型在《线性代数》教学中的应用实例(一)

数学模型在《线性代数》教学中的应用实例(一) 课 程: 线性代数 教 学 内 容: 矩阵 数 学 模 型: 生态学:海龟种群统计数据 该模型在高等数学教学应用的目的: 1. 通过生动有趣的实例激发学生的学习积极性,在分析问题和解决问题的过程中培养学生的创新意识。 2. 使学生掌握建立矩阵代数模型的基本过程,能熟练地将矩阵的知识应用于实际问题。培养学生将实际问题抽象成数学模型,又用数学模型的结果解释实际现象的能力。 3. 巩固矩阵的概念和计算。 生态学:海龟种群统计数据 管理和保护许多野生物种,依赖于我们建立种群的动态模型的能力。一个常规的建模技术是,把一个物种的生命周期划分为几个阶段。该模型假设:每阶段的种群规模只依赖于母海龟的种群数;每只母海龟能够存活到下一年的概率依赖于其处在生命周期的那个阶段,而与个体的具体年龄无直接关系。举例来说,可以用一个四阶段的模型来分析海龟种群的动态。 如果d i 表示第i 个阶段的持续时间,s i 表示该阶段的每年存活率,那么可以证明,在第i 阶段可以存活到下一年的比例是 111i i d i i i d i s p s s -??-= ?-?? 种群可以存活且在次年进入下一阶段的比例是 ()11i i d i i i d i s s q s -= - 如果用e i 表示第i 阶段的成员1年内产卵的平均数,构造矩阵

12341 2233 400000 p e e e q p L q p q p ?? ? ?= ? ??? 那么L 可以用来预测未来几年每阶段的种群数。上述形式的矩阵称为Leslie (莱斯利)矩阵,相应的种群模型有时也称为莱斯利种群模型。根据前面表格数据,我们模型的莱斯利矩阵是 0127790.670.73940000.000600000.810.8077L ?? ? ?= ? ??? 假设每阶段的初始种群数分别是200000、300000、500和1500,用向量x 0来表示,1年后 每阶段的种群数可以如下计算 100 0127792000001820000.670.73940030000035582000.000600500180000.810.807715001617x Lx ?????? ??? ? ??? ?=== ??? ? ??? ??????? (这里的计算进行了四舍五入)。为了得到2年后的种群数,再用矩阵L 乘一次。 2210x Lx L x == 一般来说,k 年后的种群数由公式0k k x L x =给出。为了了解更长时期的趋势,计算出x 10、 x 25和x 50,如下表所示。 这个模型预测50年后繁殖期的海龟总数下降了80%。 下面的文献[1]介绍了一个七阶段的种群动态模型,文献[2]是莱斯利原来那篇文章。 思考:海龟最终是否会灭绝?如果不灭绝,海龟种群数有无稳定值?该模型用到了那些数学知识?该模型可以进行怎样的推广? 参考文献 1. Crouse, Deborah T., Larry B. Crowder, and Hal Caswell, “A Stage-Based Population Model for Loggerhead Sea Turtles and Implications for Conservation,” Ecology , 68(5), 1987 2. Leslie, P. H., “On the Use of Matrices in Certain Population Mathematics,” Biometrika , 33, 1945.

线性代数公式总结大全

线性代数公式 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 8. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

线性代数应用案例资料

线性代数应用案例

行列式的应用 案例1 大学生在饮食方面存在很多问题,多数大学生不重视吃早餐,日常饮 食也没有规律,为了身体的健康就需要注意日常饮食中的营养。大学生每天的配餐中需要摄入一定的蛋白质、脂肪和碳水化合物,下表给出了这三种食物提供的营养以及大学生的正常所需营养(它们的质量以适当的单位计量)。 试根据这个问题建立一个线性方程组,并通过求解方程组来确定每天需要摄入的上述三种食物的量。 解:设123,, x x x 分别为三种食物的摄入量,则由表中的数据可以列出下列 方程组 123231 23365113337 1.1352347445 x x x x x x x x ++=?? +=? ?++=? 利用matlab 可以求得 x = 0.27722318361443 0.39192086163701 0.23323088049177 案例2 一个土建师、一个电气师、一个机械师组成一个技术服务社。假设在 一段时间内,每个人收入1元人民币需要支付给其他两人的服务费用以及每个人的实际收入如下表所示,问这段时间内,每人的总收入是多少?(总收入=实际收入+支付服务费)

解:设土建师、电气师、机械师的总收入分别是123,,x x x 元,根据题 意,建立方程组 1232133 120.20.35000.10.47000.30.4600 x x x x x x x x x --=?? --=??--=? 利用matlab 可以求得 x = 1.0e+003 * 1.25648414985591 1.44812680115274 1.55619596541787 案例3 医院营养师为病人配制的一份菜肴由蔬菜、鱼和肉松组成,这份菜肴 需含1200cal 热量,30g 蛋白质和300mg 维生素c ,已知三种食物每100g 中的有关营养的含量如下表,试求所配菜肴中每种食物的数量。 解:设所配菜肴中蔬菜、鱼和肉松的数量分别为123,,x x x 百克,根据题意,建立方程组 12312312360300600120039630906030300 x x x x x x x x x ++=?? ++=? ?++=? 利用matlab 可以求得 x = 1.52173913043478 2.39130434782609

线性代数总结归纳

行列式 1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展, 它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》? 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做 练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联 系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的 概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列?【知识点】:n阶全排列。 答:由n个数1,2,…,n组成的一个有序数组。 6.什么是标准排列?【知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123, n。 7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3 ,数4与1,数4与2 ,数5与3,数5与1 ,数5与2, 数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 & 什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312 的逆序数为8。 9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。

数学建模案例线性代数教学研究

数学建模案例线性代数教学研究 摘要:本文通过分析线性代数课程的特点和目前教学中出现的问题,从数学建模思想入手,结合几个案例探讨了线性代数中矩阵的概念与运算、特征值和特征向量的应用等知识点。具体阐述了将数学建模思想融入线性代数教学过程中的重要性,增强了学生利用数学建模思想解决实际问题的能力。 关键词:线性代数;数学建模;教学方法 线性代数是高校理工科专业大一新生的一门重要的公共基础课程,它不仅是很多高年级的课程的延伸和推广,而且它在数学、物理、控制科学、工程技术等领域也具有广泛的应用,特别是当前计算机科学技术人工智能的快速发展,使得线性代数的作用和地位得到更大的提升。因此,线性代数这门课程学习效果的好坏对学生知识能力的培养和后继课程的开展至关重要。但是,目前线性代数的教学仍然存在一些问题,具体表现为:第一,线性代数的教学模式偏重于理论教学,无法激起学生的学习兴趣。线性代数的概念多,理论性强,抽象晦涩,难以理解,更加加深了学生学习线性代数的难度,降低了学生的学习兴趣。第二,学生的基础较差,课程数较少,导致学生的学习困难。学生来源于不同的地区,生源素质差异较大,使得课堂出现两极分化现象,致使线性代数的教学质量无法全面提升。第三,教学中缺乏实际的应用背景,学生无法理解线性代数作为一门重要基础课程的意义。众所周知,数学建模就是根据实际问题建立数学模型,然后运用数学知识对模型求解,最后根据计算结果来解决实际问题的过程[1]。基于此,本文将数学建模的思想融入线性代数的教学过程中,通过适当引入典型的建模案例[2,3],达到吸引学生的注意力和学习兴趣的目的,从而活跃课堂教学氛围,提高教学效果。与此同时,在上课过程中讲授数学建模案例还可以增加老师和学生之间的互动性,丰富课堂教学的内容,开阔学生的眼界,使得原本抽象、枯燥乏味的概念和定理变得生动有趣,进而激发学生学习线性代数的兴趣,提升学生学习数学的素养。 1 数学建模案例在线性代数中的应用 线性代数教学中有许多定义和定理抽象晦涩、难以理解,学生上课中往往不知所云,更不知道学习了相关知识有什么作用。如果在教学过程中我们融入

线性代数矩阵性及应用举例

线性代数矩阵性及应用举例

————————————————————————————————作者:————————————————————————————————日期:

华北水利水电学院线性代数解决生活中实际问题 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2012年11月7日

关于矩阵逆的判定及求逆矩阵方法的探讨 摘 要:矩阵的可逆性判定及逆矩阵的求解是高等代数的主要内容之一。本文给出 判定矩阵是否可逆及求逆矩阵的几种方法。 关键词:逆矩阵 伴随矩阵 初等矩阵 分块矩阵 矩阵理论是线性代数的一个主要内容,也是处理实际问题的重要工具,而逆矩阵在矩阵的理论和应用中占有相当重要的地位。下面通过引入逆矩阵的定义,就矩阵可逆性判定及求逆矩阵的方法进行探讨。 定义1 n 级方阵A 称为可逆的,如果n 级方阵B ,使得 AB=BA=E (1) 这里E 是n 级单位矩阵。 定义2 如果B 适合(1),那么B 就称为A 的逆矩阵,记作1 -A 。 定理1 如果A 有逆矩阵,则逆矩阵是唯一的。 逆矩阵的基本性质: 性质1 当A 为可逆阵,则A A 1 1 = -. 性质 2 若A 为可逆阵,则k kA A (,1 -为任意一个非零的数)都是可逆阵,且A A =--1 1)( )0(1)(1 1≠= --k A k kA . 性质3 111 ) (---=A B AB ,其中A ,B 均为n 阶可逆阵. 性质4 A ()()'11 '=--A . 由性质3有 定理2 若)2(,21≥n A A A n Λ是同阶可逆阵,则n A A A Λ21,是可逆阵,且21(A A 下面给出几种判定方阵的可逆性及求逆矩阵的方法: 方法一 定义法 利用定义1,即找一个矩阵B ,使AB=E ,则A 可逆,并且B A =-1 。 方法二 伴随矩阵法 定义3 设)(ij a A =是n 级方阵,用ij A 表示A 的),(j i 元的代数余子式)1,(n j i Λ=,

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

线性代数超强总结

√ 关于12,,,n e e e ???: ①称为 n 的标准基, n 中的自然基,单位坐标向量; ②12,,,n e e e ???线性无关; ③12,,,1n e e e ???=; ④tr()=E n ; ⑤任意一个n 维向量都可以用12,,,n e e e ???线性表示. √ 行列式的计算: ① 若A B 与都是方阵(不必同阶),则 (1)mn A A A A B B B B A A B B οο οοο * = = =* *=- ②上三角、下三角行列式等于主对角线上元素的乘积. ③关于副对角线: (1)2 1121 21 1211 1 (1) n n n n n n n n n n n a a a a a a a a a ο οο ---* = =- √ 逆矩阵的求法: ①1 A A A * -= ②1()()A E E A -???? →初等行变换 ③11a b d b c d c a ad bc --???? =????--???? T T T T T A B A C C D B D ?? ??=???????? ④1 2 11 11 2 1n a a n a a a a -???? ???? ? ???=???? ???? ??? ?? ? 2 1 1 1 12 1 1n a a n a a a a -???? ???? ? ???=???? ??????????

⑤1 1111 2 21n n A A A A A A ----???? ???? ? ???=???? ???? ??? ?? ? 1 112 1 211 n n A A A A A A ----? ? ? ????? ? ???=???? ???? ?????? √ 方阵的幂的性质:m n m n A A A += ()()m n mn A A = √ 设1110()m m m m f x a x a x a x a --=++ ++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++ ++为A 的一个多项式. √ 设,,m n n s A B ??A 的列向量为12,,,n ααα???,B 的列向量为12,,,s βββ???,AB 的列向量为 12,, ,s r r r , 1212121122,1,2,,,(,,,)(,,,) ,(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==???=?? ==++?? ???则:即 用中简 若则 单的一个提 即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘, 与分块对角阵相乘类似,即:11 11 22 22 ,kk kk A B A B A B A B οοο ο ?? ?? ? ??? ? ???==???????????? √ 矩阵方程的解法:设法化成AX B XA B ==(I) 或 (II) 当0A ≠时, √ Ax ο=和Bx ο=同解(,A B 列向量个数相同),则: ① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系. √ 判断12,, ,s ηηη是0Ax =的基础解系的条件:

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

线性代数课程教学总结

线性代数课程教学总结 《线性代数课程教学总结》的范文,这里给大家。篇一:线性代数课程总结 线性代数精讲 曾经我学过线性代数,但是没有深入的学习,所有一直希望有一个机会能够深入学习线性代数的机会。没有想到的是,今年的选修课给了我这样一个机会。线性代数精讲,当我看到它的时候,毅然的选了这门选修课。 现在这学期快要结束了,当然这门选修课也即将结束,在这里我想总结一下这门选修课给我带来的帮助。首先从专业来说,对于学习计算机的人来说,数学的重要性不言而喻。打一个比方,数学就好比计算机的左膀右臂。对于想深入学习计算机的人来说,数学必须学得很好。所以线性代数这门课对我来说很重要,它与我们所讲的数据结构中的图有很大的联系。通过这门课程的学习,我已经深入了解了线性代数,它使我对原来学过的某些知识有种恍然大悟的感觉。以后我还会继续学习线性代数这门课程,我相信它给我带来的还远不止这些。 其次,从考研方面来说,对于考研考试中的数学试卷,线性代数占有很大的比重,这也显现出来线性代数对考研的学生来说有多么重要。我是一个将在后年要参加考研的学生,能听到线性代数精讲这样一门课,我很高兴。在这门课程的学习过程中,老

师深入地讲解了线性代数,让我的考研之路轻松了不少。而且,老师在将课的同时还插入例如考研真题,这是最让我感激的地方。有这样的辅导,我的线性代数还愁不过吗? 最后,我想从对实际生活的影响方面来说,生活中的思维模式是 数学思维模式的一种映射。从某一个方面来说吧,比如做数学中的证明题,每一步都不是凭空而来的,精品而是根据题中的实际要求一步一步推出来的,这就好比做生活中的某件事,如果没有一步一步踏踏实实的走过,是不可能有好的结果的。这门课的讲解,让我对数学的思维模式有了更深入地了解,对生活也有了更深入的认识。 通过这半学期的学习,让我学到了很多,我想说对老师说声谢谢。希望这门课能够一直的讲下去,让更多学弟学妹们受到帮助。 篇二:线性代数课程总结 线性代数课程总结 第一章行列式 1.1二阶、三阶行列式 (一)二阶行列式 (二)三阶行列式 1.2 (二)

线性代数论文设计(矩阵在自己专业中地应用及举例)

矩阵在自己专业中的应用及举例

摘要: I、矩阵是线性代数的基本概念,它在线性代数与数学的许多分支中都有重要的应用,许多实际问题可以用矩阵表达并用相关的理论得到解决。 II、文中介绍了矩阵的概念、基本运算、可逆矩阵、矩阵的秩等容。 III、矩阵在地理信息系统中也有许多的应用,比如文中重点体现的在计算机图形学中应用。 关键词: 矩阵可逆矩阵图形学图形变换 正文: 第一部分引言 在线性代数中,我们主要学习了关于行列式、矩阵、方程、向量等相关性比较强的容,而这些容在我们专业的其他一些学科中应用也是比较广泛的,是其它一些学科的很好的辅助学科之一。因此,能够将我们所学的东西融会贯通是一件非常有意义的事,而且对我们的学习只会有更好的促进作用。在计算机图形学中矩阵有一些最基本的应有,但是概念已经与线性代数中的有一些不同的意义。在计算机图形学中,矩阵可以是一个新的额坐标系,也可以是对一些测量点的坐标变换,例如:平移、错切等等。在后面的文章中,我通过查询一些相关的资料,对其中一些容作了比较详细的介绍,希望对以后的学习能够有一定的指导作用。在线性代数中,矩阵也占据着一定的重要地位,

与行列式、方程、向量、二次型等容有着密切的联系,在解决一些问题的思想上是相同的。尤其他们在作为处理一些实际问题的工具上的时候。 图形变换是计算机图形学领域的主要容之一,为方便用户在图形交互式处理过程中度图形进行各种观察,需要对图形实施一系列的变换,计算机图形学主要有以下几种变换:几何变换、坐标变换和观察变换等。这些变换有着不同的作用,却又紧密联系在一起。 第二部分 研究问题及成果 1. 矩阵的概念 定义:由n m ?个数排列成的m 行n 列的矩阵数表 ????? ???????ann an an n a a a n a a a ΛM ΛM M K Λ212222111211 称为一个n m ?矩阵,其中an 表示位于数表中第i 行第j 列的数,i=1,2,3,…n ,又称为矩阵的元素。A,B 元素都是实数的矩阵称为实矩阵。元素属于复数的矩阵称为复矩阵。 下面介绍几种常用的特殊矩阵。 (1)行距阵和列矩阵 仅有一行的矩阵称为行距阵(也称为行向量),如 A=(a11 a12 .... a1n), 也记为 a=(a11,a12,.....a1n). 仅有一列的矩阵称为列矩阵(也称为列向量),如

线代贴吧-线性代数超强总结

线性代数公式总结

()0A r A n A Ax A A οο??

③11a b d b c d c a ad bc --???? =????--???? T T T T T A B A C C D B D ?? ??=???????? ④1 2 11 11 2 1n a a n a a a a -???? ???? ? ???=???? ???? ??? ?? ? 2 1 1 1 12 1 1n a a n a a a a -???? ???? ? ???=???? ????????? ? ⑤1 11 11 2 21n n A A A A A A ----???? ???? ? ???=???? ???? ??? ?? ? 1 112 1 211 n n A A A A A A ----? ? ? ????? ? ???=??? ? ???? ????? ? √ 方阵的幂的性质:m n m n A A A += ()()m n mn A A = √ 设1110()m m m m f x a x a x a x a --=++ ++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++ ++为A 的一个多项式. √ 设,,m n n s A B ??A 的列向量为12,,,n ααα???,B 的列向量为12,,,s βββ???,AB 的列向量为 12,, ,s r r r , 1212121122,1,2,,,(,,,)(,,,) ,(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==???=?? ==++?? ???则:即 用中简 若则 单的一个提 即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘, 与分块对角阵相乘类似,即:11 11 22 22 ,kk kk A B A B A B A B οοοο ?? ?? ? ??? ? ???==???????????? 11112222 kk kk A B A B AB A B ο ο ????? ?=????? ?

线性代数总结归纳

线性代数总结归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

行列式 1.为何要学习《线性代数》 学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展,它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列【 知识点】:n阶全排列。 答:由n个数1,2,… ,n 组成的一个有序数组。 6.什么是标准排列【 知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123…n。 7.什么是n阶全排列的逆序【 知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3,数4与1,数4与2,数5与3,数5与1,数5与2,数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 8.什么是n阶排列的逆序数【 知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312的逆序数为8。 9.什么是奇排列和偶排列【

线性代数教学方案(正式打印版)

第(1)次课授课时间()

基本内容备注第一节二、三阶行列式的定义 一、二阶行列式的定义 从二元方程组的解的公式,引出二阶行列式的概念。 设二元线性方程组 ? ? ? = + = + 2 2 22 2 21 1 2 12 1 11 b x a x a b x a x a 用消元法,当0 21 12 22 11 ≠ -a a a a时,解得 21 12 22 11 1 21 2 11 2 21 12 22 11 2 12 1 22 1 , a a a a b a b a x a a a a b a b a x - - = - - = 令 21 12 22 11 22 21 12 11a a a a a a a a - =,称为二阶行列式,则 如果将D中第一列的元素 11 a,21a换成常数项1b,2b,则可得到 另一个行列式,用字母 1 D表示,于是有 22 2 12 1 1a b a b D= 按二阶行列式的定义,它等于两项的代数和: 21 2 22 1 a b a b-,这就是公 式(2)中 1 x的表达式的分子。同理将D中第二列的元素a 12,a 22换 成常数项b1,b2 ,可得到另一个行列式,用字母 2 D表示,于是有 2 12 1 11 2b a b a D= 按二阶行列式的定义,它等于两项的代数和: 1 21 2 11 b a b a-,这就是公式 (2)中 2 x的表达式的分子。

于是二元方程组的解的公式又可写为 ? ? ? ?? ? ? = = D D x D D x 2 2 1 1 其中0 ≠ D 例1.解线性方程组. 1 2 12 2 3 2 1 2 1 ? ? ? ? ? = + = - x x x x 同样,在解三元一次方程组 ? ? ? ? ? = + + = + + = + + 3 3 33 2 32 1 31 2 3 23 2 22 1 21 1 3 13 2 12 1 11 b x a x a x a b x a x a x a b x a x a x a 时,要用到“三阶行列式”,这里可采用如下的定义. 二、三阶行列式的定义 设三元线性方程组 ? ? ? ? ? = + + = + + = + + 3 3 33 2 32 1 31 2 3 23 2 22 1 21 1 3 13 2 12 1 11 b x a x a x a b x a x a x a b x a x a x a 用消元法解得 定义设有9个数排成3行3列的数表 33 32 31 23 22 21 13 12 11 a a a a a a a a a 记 33 32 31 23 22 21 13 12 11 a a a a a a a a a D=32 21 13 31 23 12 33 22 11 a a a a a a a a a+ + = 33 21 12 32 23 11 31 22 13 a a a a a a a a a- - -,称为三阶行列式,则

相关主题