搜档网
当前位置:搜档网 › 设备状态监测和故障诊断

设备状态监测和故障诊断

设备状态监测和故障诊断
设备状态监测和故障诊断

设备状态监测和故障诊断

1、齿轮啮合频率产生的机理及齿轮故障诊断方法

1.1齿轮啮合频率产生的机理

啮合频率是对一对相互啮合的齿轮而言的,对单个齿轮谈啮合频率是没有意义的。另外,齿轮传动的特点是啮合过程中啮合点的位置和参与啮合的齿数都是周期性变化的,这就造成了齿轮轮齿的受力和刚度成周期性变化,由此而引起的振动必然含有周期性成分。

对于直齿圆柱齿轮,在齿轮啮合过程中,由于单、双齿啮合区的交替变换、轮齿啮合刚度的周期性变化、以及啮入啮出冲击,即使齿轮系统制造得绝对准确,也会产生振动,这种振动是以每齿啮合为基本频率进行的,该频率称为啮合频率,其计算公式如下:

11226060

m z n z n f == 式中, z 1、z 2 ————主、从动齿轮的齿数; n 1、n 2 ————主、从动齿轮的转速,r/min 。

对于斜齿圆柱齿轮,产生啮合振动的原因与直齿圆柱齿轮基本相同,但由于同时啮合的齿数较多,传动较平稳,所产生的啮合振动的幅值相对较低。 对于没有缺陷的正常齿轮,齿轮啮合频率产生的原因主要有啮合刚度的变化、啮合冲击和节线冲击。

1.2引起齿轮震动的部分原因

1.2.1啮合刚度的变化

齿轮的啮合刚度是指整个啮合接触区中参与啮合的各对轮齿的综合刚度。单对轮齿的等效刚度为:

12

12K K K K K =+

式中,K1、K2——主、从动齿轮的单齿刚度。

刚度的变化主要有两个方面:一是在齿高方向随着啮合位置的变化,参与啮合的单一轮齿的刚度发生了变化;二是参加啮合的齿数随时间作周期性变化。例如对于重合度在1到2之间的渐开线直齿轮,在节点附近是单齿啮合,在节线两侧单部位开始至齿顶、齿根区段为双齿啮合。显然,在双齿啮合时,整个齿轮的载荷由两个齿分担,故此时齿轮的啮合刚度就较大;同理,单齿啮合时啮合刚度较小。

从一个轮齿开始进入啮合到下一个轮齿进入啮合,齿轮的啮合刚度就变化一次。啮合刚度的变化频率与齿轮的啮合频率相等,说明啮合刚度的变化是啮合频率产生机理之一。

1.2.2啮合冲击

齿轮在啮合过程中,由于轮齿承载产生弹性变形,使得轮齿进入啮合点和退出啮合点与理论值发生偏差,因而在进入啮合和退出啮合时均会发生啮合冲击,啮合冲击的频率与啮合频率相等。说明啮合冲击也是啮合频率产生机理之一。

1.2.3节线冲击

齿轮在啮合过程中,轮齿表面既有相对滚动又有相对滑动。对于主动轮,啮合点从齿根移向齿顶,啮合半径逐渐增大,速度增高,而从动轮则恰好相反。主动轮和从动轮在啮合点上的速度差异形成了两者之间的滑动。在齿根部分,主动轮上啮合点的速度小于从动轮,因此滑动方向向下;而在齿顶部分,主动轮上啮合点的速度大于从动轮,因此滑动方向向上;在节线处,两轮上啮合点的速度相等,相对滑动速度为零。因此摩擦力在接线处改变了方向,形成了节线冲击。有节线冲击的形成原理可知,节线冲击的频率也与啮合频率相等。说明节线冲击也是啮合频率产生机理之一。

1.3齿轮故障诊断方法

齿轮及齿轮箱在机械设备中是一种非常关键的零部件,这种零部件非常通用,齿轮及齿轮箱主要是起连接和传递动力的作用。齿轮在工作过程中,齿轮、

轴承和轴都会产生振动信号,当振动信号产生了不同形式的变化时,则预示着零件可能发生了故障。振动信号一般都会携带运行状态信息,利用这些运行状态信息进行故障模式的识别是机械故障诊断中常用的方法。而这些方法中所用到的信号处理的主要数学工具有傅立叶变换、小波变换、相关分析等。随着工程应用和科学研究的不断提高,所涉及到的监测诊断问题日趋复杂和困难。

1.3.1齿轮的常见故障

通常齿轮在运转时,由于操作维护不善或制造不良会产生各种形式的故障。而故障形式又随运转状态、热处理、齿轮材料等因素的不同而不同,常见的齿轮故障形式有齿面接触疲劳和弯曲疲劳与断齿、齿面胶合和擦伤、齿面磨损等。(1)齿面磨料磨损。润滑油不清洁、磨损产物以及外部的硬颗粒侵入接触齿面都会在齿面滑动方向产生彼此独立的划痕,使齿廓改变,侧隙增大,甚至使齿厚过度减薄,导致断齿。

(2)齿面黏着磨损。重载、高速传动齿轮的齿面工作区温度很高,如润滑不好,齿面间油膜破坏,一个齿面上的金属会熔焊在另一个齿面上,在齿面滑动方向可看到高低不平的沟槽,使齿轮不能正常工作。

(3)齿面疲劳磨损。疲劳磨损是由于材料疲劳引起,当齿面的接触应力超过材料允许的疲劳极限时,在表面层将产生疲劳裂纹,裂纹逐渐扩展,就要使齿面金属小块断裂脱落,形成点蚀。严重时点蚀扩大连成一片,形成整块金属剥落,使齿轮不能正常工作,甚至使轮齿折断。

(4)轮齿断裂。轮齿如同悬臂梁,根部应力最大,且有应力集中,在变载荷作用下应力值超过疲劳极限时,根部要产生疲劳裂纹,裂纹逐渐扩大就要产生疲劳断裂。轮齿工作时由于严重过载或速度急剧变化受到冲击载荷作用,齿根危险截面的应力值超过极限就要产生过载断裂。

1.3.2齿轮的振动特性

在齿轮运转的状态下,随着内部故障的发生和发展,必然会产生振动上的异常。经实践证明,振动分析在齿轮故障检测的方法中是一种最有效的方法。当齿轮处于正常或异常状态时,啮合频率的振动部分及其倍频总是存在的,但这两种状

态下的振动水平是有差异的。如果仅仅依靠对齿轮振动信号的啮合频率和它的倍频成分的差异来判别齿轮的故障是远远不够的,因为故障对振动信号的影响往往是多方面的,这其中就包括幅值调制、频率调制和其他的频率成分。

(1)刚度变化引起的振动

在啮合过程中,由于啮合点的位置改变;由于参加啮合的齿数改变,啮合刚度要发生改变,这种改变每转动一齿就要重复一次,这种频率就是上节讨论的啮合频率。

(2)齿轮误差引起的振动

调幅振动——频率等于啮频、幅值受误差调制的调幅简谐振动。这是有误差的齿轮在时域中振动信号的显著特征。

调频振动——齿轮误差除产生幅值受调制的常规振动外,必然还引起转速波动,影响啮合频率,出现频率受误差调制的现象。可以证明由误差产生的调频振动与调幅振动一样,在谱图上也是在一系列啮频谱线两侧产生对称的一系列边频谱线组成的边频带,边频的间隔等于误差的频率。

由于调幅、调频是同时出现的,所以有误差的齿轮在谱图上的边频带应为两种调制单独作用时边频成分的叠加,由于边频成分具有不同的相位,所以叠加后边频带的对称性就不再存在了

(3)齿轮固有频率的振动

由于啮合时齿间撞击必然引起齿轮的轴向固有频率自由衰减振动和扭转固有频率自由衰减振动,固有频率在高频段,通常在1~10kHz内。

(4)齿轮损伤引起的振动(齿轮的故障振动)

有损伤的齿轮和有误差的齿轮一样,有相同的振动特征:在低频段产生调制效应有边频带,但幅值明显增大;在高频段有损伤的齿轮激发的固有频率振动也明显增强。齿轮故障振动的这些特点是我们诊断齿轮故障的有利依据。

1.3.3齿轮故障诊断的常用方法

(1)时域平均诊断

时域波形对故障反映直观、敏感,特别是局部损伤最为明显,因为局部损伤在时域中为短促陡峭的幅值变化,容易识别。但在频域中由于能量十分分散、幅

值变化很小,却不易识别。时域平均法诊断首先要采用时域平均技术,排除各种干扰,分离出所需齿轮的振动信号,然后才可根据分离出来的信号直接观察波形,确定齿轮的损伤。当然必要时也可进行频谱分析或其他分析。

信号同步平均的原理是按齿轮每转一周按脉冲的周期间隔截取信号,然后进行分段叠加处理,以消除随机信号和其它非周期信号的干扰影响。这种方法可以有效降低其他部件和振动源对于信号的影响,提高信噪比。

(2)细化谱分析法 齿轮的振动频谱图包含着丰富的信息,不同的齿轮故障具有不同的振动特征,其相应的谱线也会发生特定的变化。 细化谱分析法就是通过采用频率细化技术来增加频谱图中某些频段上的频率分辨率,即所谓的“局部频率扩展”法。在齿轮故障信号中,调制后得到的边频含有丰富的故障信息,但是在一般的频谱图上往往又找不出清晰、具体的边频,究其原因是频谱图的频率分辨率太低。频谱图上的频率分辨率则是由谱线和最高分析频率决定的,具体关系为下式:

//N c s f f n f ?==

式中:f ?——频率间隔,即频率分辨率;

c f ——分析频率范围,即最高分析频率;

s f ——采样频率,一般取s f =2.56c f ;

n ——谱线条数;

N ——采样点数。

(3)倒频谱分析法 有一对齿轮啮合的齿轮箱,在它的振动频谱图上,在啮频分量及其倍频分量两侧有两个系列边频谱线,一个是边频谱线的相互间隔为主动齿轮的转频;另一个是边频谱线的相互间隔为被动齿轮的转频。如果两齿轮的转频相差不多,这两个系列的边频谱线就十分靠近,即使采用频率细化技术也很难加以区别。有数对齿轮啮合的齿轮箱,在它的振动频谱图上,边频带的数量就更多,分布更加复杂,要识别它们就更加困难了。比较好的识别方法是倒频谱分析法,因为边频带具有明显的周期性,倒频谱分析法能将谱图上同一系列的边频谱线简化为倒频谱图上

的单根或几根谱线,谱线的位置是原谱图上边频的频率间隔,谱线的高度反映了这一系列边频成分的强度,因此使监测者便于识别有故障的是哪个齿轮及故障的严重程度。

倒频谱分析又称二次频谱分析,对于同时有数对齿轮啮合的齿轮箱振动频谱图,由于每对齿轮啮合都将产生边带频,几个边频带谱交叉分布在一起,仅进行频率细化分析是不行的,还需要进一步做倒频谱分析。

倒频谱能较好地检测出功率谱上的周期成分,将原来谱上成簇的边频带谱线简化为单根谱线,便于观察。 而齿轮发生故障时的振动频谱具有的边频带一般都具有等间隔的结构,利用倒频谱这个优点,可以检测出功率谱中难以辨识的周期性信号。 倒频谱还可以将输入信号与传递函数区分开来,便于识别;还能区分出因调制引起的功率谱中的周期量,找出调制源。

(4)边频带分析法

啮频振动分析主要用来诊断齿轮的分布故障(如轮齿的均匀磨损),对齿轮早期局部损伤不敏感。大部分齿轮故障是局部故障,它使常规振动受到调制,呈现明显的边频带。根据边频带的形状和谱线的间隔可以得到许多故障信息,所以功率谱边频带分析是普遍采用的诊断方法。

边频带出现的机理是齿轮啮合频率z f 的振动受到了齿轮旋转频率r f 的调制而产生,边频带的形状和分布包含了丰富的齿面状况信息。一般从两个方面进行边频带分析:一是利用边频带的频率对称性,找出z r f nf 的频率关系,确定是否为一组边频带。二是比较各次测量中边频带振幅的变化趋势。

2、滚动轴承故障的特征频率推导计算

当轴承元件的工作表面出现局部缺陷时,会以一定的通过频率(取决于转频、轴承型号)产生一系列的宽带冲击,称为轴承的“通过频率”或“故障频率”,实际中滚动轴承故障振动监测就是检测这个频率。

下面以角接触球轴承为例,通过分析轴承各元件之间的相对运动关系来推出轴承故障特征频率的计算公式。

图2.1 上图所示为滚动轴承各元件之间运动关系示意图。为简单起见,设轴承外圈固定,内圈的旋转频率为s f ,轴承节径为D ,滚动体直径为d ,接触角为a ,滚动体个数为z ;并假定滚动体与内外圈之间纯滚动接触。

由于外圈固定,所以滚动体上B 点的速度为零,而A 点的速度为

v 2(D cos )2A C s c v f d f D παπ==-=

由此可以得到

其中,c f 为滚动体的公转频率,即保持架的转动频率。

设滚动体的自转频率为b f ,则b f 可以这样求得:给整个轴承加一转动角速度

“-c f ”(相当于站在保持架上看轴承运动),则此时保持架固定不动,外圈以-c f 转动,滚动体只有自传角速度b f ,根据纯滚动关系,此时B 点的速度(注意此时滚

动体上的A 点绕其中心C 转动)

(D cos )B b c v df d f ππα==+

由此可得

进而可以推得 (1) z 个滚动体与外圈上某一固定点接触的频率为

(2) z 个滚动体与内圈上某一固定点接触的频率为

(3) 滚动体上某一固定点与外圈或内圈接触的频率为

o f 、i f 和r f 分别称为外圈、内圈和滚动体的通过频率。当上述的“某一点”是局部损伤点(例如点蚀点、剥落点、烧伤点等)时,o f 、i f 和r f 分别成为局部损伤点撞击滚动轴承元件的频率,所以又分别称为外圈、内圈和滚动体的故障特征频率。

综上所述,滚动轴承故障特征频率如下:

当外圈有缺陷时,外圈的故障特征频率为

当内圈有缺陷时,内圈的故障特征频率为

当滚动体有缺陷时,滚动体的故障特征频率为

3、汽轮机状态在线监测与故障诊断系统

汽轮机故障是指汽轮机功能失常,即其动态性能恶化,不符合技术要求。例如,运行失稳,机器发生异常振动和噪声,工作转速、输出功率发生变化,以及介质的温度、压力、流量异常等。其中振动测试是汽轮机状态监测和故障诊断的常用方法。

汽轮机的主要功能是由旋转动作完成的,所以转子是其最主要的部件。旋转机械发生故障的重要特征是机器伴有异常的振动和噪声,其振动信号从幅值域、频率域和时间域实时地反映了机器故障信息。因此,了解和掌握汽轮机在故障状态下的振动特征,在监测机器的运行状态和提高诊断故障的准确度方面具有重要的理论意义和实际工程应用价值。

3.1汽轮机常见的振动类型和故障形式

3.1.1汽轮机常见的振动类型

(1)按振动频率分类

①基频振动;

②倍频振动,例如2倍频、3倍频振动等;

③频率为基频的整分数(如1/2倍频,1/3倍频等)的振动;

(2)按振幅方位分类

①径向振动,即沿转轴截面直径方向的振动,一般又分为水平振动和垂直振动;

②轴向振动,及沿轴线方向的振动;

③扭转振动,即沿转轴旋转方向的振动;

(4)按振动原因分类

①转子不平衡所引起的振动;

②轴系不对中所引起的振动;

③滑动轴承与轴颈偏心所引起的振动;

④机器零部件松动所引起的振动;

⑤摩擦(如密封件摩擦等)引起的振动;

⑥滚动轴承损坏所引起的振动;

⑦滑动轴承油膜涡动和油膜振荡所引起的振动;

3.1.2汽轮机常见的故障形式

汽轮机故障有多种形式,但其比较常见的故障发生率占总数的95%以上。对大量故障案例进行分析统计的结果表明,汽轮机组中最常见的故障主要有转子不平衡、转子不对中、动静碰摩、油膜振荡、转子弯曲等。

(1)转子不平衡

转子不平衡是各种旋转机械中普遍存在的问题,也是最常见的振动故障之一。不平衡转子在旋转工作过程中,由于周期性的离心惯性力对转子的激励作用,将产生强迫振动而影响转子的平衡运转,严重时甚至会损坏转子。引起转子不平衡的原因是多方面的,如:由于结构设计不合理而造成的几何尺寸不同心,或几何中心线偏离旋转轴线;制造、安装误差;转子材质不均匀,或受热不均匀;转子初始弯曲;工作介质中的固体杂质在转子上不均匀沉积;转子在使用过程中被腐蚀、磨损;转子上零部件松动、脱落等。

(2)转子不对中

由于转子与转子之间利用连轴器进行连接时安装不好,或由于轴承中心线偏斜或偏移,或者是由于转子的弯曲、转子与轴承的间隙以及承载后转子与轴承的变形等原因,往往会造成转子之间对中不好,从而产生振动,并导致机械故障。这也是十分常见的机械故障之一。转子不对中的三种形式:平行不对中、偏角不对中和平行偏角不对中。平行不对中时,转子轴心线平行偏移。偏角不对中时,两转子轴心线相互交叉,或称偏角位移。平行偏角综合不对中时,两转子轴心线相互交错位移。

(3)动静碰摩

汽轮发电机组转动部件与静止部件的碰摩是运行中常见故障。随着现代机组向着高性能、高效率发展,动静间隙变小,碰摩的可能性随之增加。为提高机器效率,一般汽轮机的密封间隙和轴承间隙做得较小,以减少气体和润滑油的泄漏。但是,小间隙除了会引起流体动力激振之外,还会发生转子与静止部件的摩擦。例如转子因质量不平衡,热弯曲或不对中等原因,以及滑动轴承油膜振荡等引起

的振动,可能产生转子与静子的接触摩擦。这种摩擦又会造成转子的热不稳定,进一步加剧转子的热弯曲,从而又反过来促使摩擦加剧。碰摩使转子产生非常复杂的振动,是转子系统发生失稳的一个重要原因,轻者使得机组出现强烈振动,严重的可以造成转轴永久性弯曲,甚至整个轴系毁坏。

(4)油膜涡动与油膜振动

转轴在圆形的轴瓦中转动,如果转子不受外界扰动,它的中心与轴瓦中心重合,此时无涡动发生。如果转轴受到外扰,转轴中心偏离轴瓦中心,油从大间隙流进小间隙,油压逐渐升高,而流出小间隙后,油压逐渐降低。在油的高压区,产生了一个指向转轴中心的力,这个力被分解为2个分力:1个用于平衡轴承支撑反力,1个使轴产生涡动。

当油膜在外界一个偶然扰动力的作用下变形时,它除了产生一个沿着变形方向的弹性恢复力外,还产生一个垂直变形方向的切向分力。这个切向分力就是破坏轴颈在轴承内的稳定性引起涡动的根源,一般称这个切向分力为失稳分力。

3.2系统的硬件结构和测点布置

本系统是为大容量汽轮发电机组开发的在线状态监测及故障诊断系统,其总体设计要求较好地兼顾先进性与经济性,实时性与可靠性,实用性与通用性等各方面的要求。为了满足这些要求,在进行系统设计的时候就要考虑到各方面的问题,比如合理进行测点布置,合理设计系统硬件结构。

3.2.1系统的测点布置

在转轴上布置6个监测点(测点的具体位置如图3.1所示),在每个测点处安装两个电涡流传感器探头,两个探头分别安装在转轴垂直中心线每侧45o位置,并且将它们分别定义为X探头(水平方向)和Y探头(垂直方向)。径向位移测量采用两组共4个加速度传感器(每两个一组)对推力轴承端同时进行监测,这两个探头可以设置在轴的同一个端面,也可以是两个不同端面进行监测。安装方向相同时,一般将这两套传感器的测量结果通过“与”的逻辑关系控制机器;安装方向不同时,其逻辑关系要先“非”再“与”。

图3.1

3.2.2系统的硬件结构

由于整个系统的工作流程是先通过各种传感器进行信号的采集,然后将传感器采集的信息发送给计算机,计算机对采集到的信息进行适当的处理和分析,最后得出结论进行故障诊断,并且将诊断结果进行存储。因此,本系统的硬件结构主要包括三个方面:信号采集子系统,计算机子系统,辅助功能子系统。

(1)信号采集子系统

信号采集子系统的硬件主要包括加速度传感器、电涡流传感器及其前置器、数据采集卡和各种类型的电缆等。

其中,振动信号的采集是通过传感器来实现的,因此传感器的类型、性能和质量、安装方法、位置等是进行故障诊断必须考虑的问题。通常,位移传感器的输出电量与位移成正比,主要有:接触式应变位移计、非接触式、电容式和电涡流式传感器,而本系统中采用的就是电涡流式传感器。另外,通常测量大型旋转机械位移时,需要用两个相隔90 度的电涡流位移传感器来测量旋转轴的径向位移,这样不仅可以测得振动波形,还可以根据轴上某点的水平和垂直方向振幅变化绘制轴心轨迹。

由于转轴振动信号的频率成分很丰富,并且故障信息常常反映在低频段和高频段,频带很宽,所以现行的测量转轴振动所用的参数基本上是加速度(很少用

位移和速度),所用的传感器一般为压电加速度传感器。本系统中就采用了4个加速度传感器,并且将他们分为四组分别安装在汽轮机的不同位置,测点的具体布置见图3.1。

数据采集卡也是信号采集子系统的重要组成部分,数据采集卡应集信号调理仪和 A/D 的功能于一体,应当使用国际标准网络接口规范 TCP/IP 协议,还应具有自动数据采集功能和较高的数据传输效率,可圆满地实现实时数据处理、连续快速采集存盘等高级数采功能。

各种类型的电缆负责把各种传感器、数据采集卡和计算机等模块有效连接起来,让他们共同构成一个实现信号采集功能的有机整体。

(2)计算机子系统

计算机子系统是整个汽轮机状态在线监测与故障诊断系统的核心部分,它负责对信号采集子系统采集到的各种信息进行处理和分析,判断汽轮机当前的工作状态是否正常,如果不正常则要进行相应的故障诊断。

要实现计算机子系统的各种功能,也就需要相应的硬件配置。首先要进行复杂的数据处理和分析就至少需要一台主机,并且由于要接收信号采集子系统传送过来的各种信息和数据,所以也必须拥有相应的接口等。其次,计算机子系统可以独立进行汽轮机工作状态的监测和故障诊断,但是它也需要进行人机交互,比如查看系统工作状态,修改参数设置,更新程序等等,因此也就需要进行人机交互的显示器、键盘和鼠标等部件。

(3)辅助功能子系统

信号采集子系统和计算机子系统两部分的有效配合基本上就能进行汽轮机工作状态的监测和故障诊断,但是为了使整个系统的功能更加完善和运行更加稳定,所以还需要辅助功能子系统的加入。

为了实现整个汽轮机的在线的状态监测和故障诊断,需要进行相应网络结构的搭建。通过局域网的建立和相应通信过程的建立,就可以把实时的状态监测和故障诊断的结果传送到远程端,这样技术人员就既可以在现场查看系统运行情况,也可以在控制室远程控制整个状态监测和故障诊断过程。另外,要让整个系统更加稳定地运行,还应当配置某些辅助功能,比如对现场工作环境的监测以及相应的报警功能。

3.3系统的功能模块

汽轮机在线监测与故障诊断系统可以实现数据采集、工作状态实时监测、信号分析、故障诊断、系统管理等功能。系统各部分的功能模块图如图3.2所示。

图3.2

(1)数据采集模块

该模块负责汽轮机各个监测点数据的实时采集、转换。数据采集是由计算机控制完成的。主要包括传感器、信号调理、A/D 转换三部分。传感器信号经过放大、滤波等调理后,变成标准的模拟电压信号或模拟电流信号,电流信号可以转换为电压信号。标准模拟信号接入数据采集卡输入端。数据采集部分在工业计算机控制下对模拟信号进行 A/D 转换,转换结果和测量信号成线性关系,经过简单标定后即可进行实时显示和存储。

(2)状态监测模块

该模块包括汽轮机运行总貌图画面显示、测点实时数据波形显示、测点实时频谱显示、测点历史趋势显示、测点棒图显示、机组转速监测、轴心轨迹显示、汽轮机各种故障可能性大小显示以及汽轮机运行报警等子功能。它实现汽轮机运行状态的实时监测和超限报警,其功能实现形式主要可以分为模拟数字表监测和图形监测,模拟数字表监测根据所取得的数据进行实时数字显示,非常直观而人性化地提醒监测人员汽轮机出现的异常状态。图形监测则主要用于对快变信号进行实时波形显示,根据这些监测图,用户可直接了解汽轮机的实时运行状态。(3)信号分析模块

该模块为用户提供汽轮机振动信号分析功能,包括振动信号时域特性、频域

特性分析。应用该模块提供的各种分析方法,用户可以准确、快速地获取汽轮机的振动特征参数和故障信息。数据分析模块集成多种数字信号分析和处理方法,具体包括时域波形回放、轴心轨迹分析、数字滤波分析、相关分析、高通绝对值解调分析、检波滤波解调分析、频谱分析、全息谱分析、细化谱分析。

(4)故障诊断模块

该模块以模糊神经网络为推理机,结合专家系统对汽轮机运行中出现的故障进行诊断,并且提供故障发生的可能原因以及处理措施等。同时,该模块还要对发生的故障及其解决方法进行分类、记录,扩充汽轮机故障诊断和解决知识库,为以后进行故障诊断和解决提供方便。

(5)系统管理模块

该模块主要负责两个方面的管理工作。一个是进行用户管理,完成用户的注册与登录功能,并且为不同的用户设置不同的访问级别,让用户可以根据自己的权限访问不同的功能模块,查看系统的工作情况或者修改系统参数设置等。另一个就是进行数据库管理,记录、修改、删除样本数据库,历史数据库,特征数据库,故障诊断知识数据库等。

电气设备状态监测与故障诊断

电气设备状态监测与故障诊断 发表时间:2018-07-05T16:32:13.820Z 来源:《电力设备》2018年第9期作者:官韵[导读] 摘要:我国经济的快速发展离不开电力行业的大力支持,同时经济的发展带动电力行业的不断进步。 (国网重庆市电力公司江津区供电分公司 402260)摘要:我国经济的快速发展离不开电力行业的大力支持,同时经济的发展带动电力行业的不断进步。在电力工程中,输变电设备是电网的重要组成部分,输变电设备的可用性与稳定性直接影响到电网的安全运行。及时发现并排除输变电设备的潜伏性故障是电网企业关注的一项重要课题。随着我国电力工业的发展,一方面,电网规模不断发展,输变电设备数量激增,用户对供电可靠性要求不断提高;另一 方面,设备的信息化程度越来越高,设备状态监测技术日益成熟,设备运行数据与测试数据激增,基于大数据的电气设备在线监测与故障诊断技术地发展已经逐渐成为焦点,借助信息技术对设备进行故障诊断势在必行。 关键词:电气设备;状态监测;故障诊断引言 电力行业的快速发展和技术水平的提升在我国经济建设上发挥很大的作用。在电力行业中,电气设备就是电力系统中电力线路、变压器、发电机、断路器等的统称。依据不同测量方式和传感器来反映设备实际运行状态的化学量和物理量的一种方式就是设备状态监测,主要就是为了能够检测是否具备正常运行的设备状态。这种电气设备的状态监测与故障诊断技术属于新型的交叉科学,实际应用的时候还是处于初级研究阶段,由于不断发展科学技术,逐渐运用信号技术、数据仓库技术、计算机网络技术、电子技术、传感技术等,从而一定程度上提高了电气设备的状态监测与故障诊断技术的整体水平。 1电气设备状态监测与故障诊断系统功能 1.1数据浏览功能 在系统的状态监测与故障诊断系统中,需要通过网络技术来实现数据的浏览,用户在监控系统过程中,可以通过联网计算机实现对设备运行相关数据的查询和分析。其主要是由于在设备的运用过程中,通过传感器可以将设备运行的状态发送到计算机中,通过处理器的分析功能,可以实现对数据的整理和反馈,从而可以实现对设备运行状态的监控和诊断。 1.2信号变送和评估诊断 电器设备在线运行参数采用各种传感器进行采集,例如电压、电流、湿度、温度、压力等,将各项参数转换为电信号送入到后续单元,是在线监测系统是否准确的前提;对采集的信号通过先进的评估算法对设备运行状态进行评估,给出评估结果,为制定检修策略提供依据。 1.3智能诊断功能 在电气设备运行中,通过系统可以实现对设备的数据收集,而用户将专家系统、神经网络以及人工智能等手段应用于设备的监控中,可以实现对设备运行状态的综合诊断,降低了人力资源的使用率,同时提升了设备诊断的质量和效率。 2电气设备状态监测与故障诊断技术的方法 2.1电气设备在线状态监测与故障诊断技术 第一,局部放电监测技术。局部放电监测技术、超声波监测法及电容器祸合监测法、电容器祸合监测法。第二,油色谱监测技术。现阶段比较常用的UI中设备绝缘检测方式就是油中气体分析法。第三,介损监测技术。这种技术主要应用在电容型设备中,电容型设备实际上就是部分或者全部绝缘,依据电容式设计设备绝缘结构,主要目的就是用来检测设备介电特性。合理应用测量方式能够在一定程度上克服上述问题,也就是说在相同变电站中安装容性设备,并且对比分析容性设备绝缘情况,可以及时获得出现大变化容性设备。在对比分析相同电容型设备电容量比值和介损值的时候,需要合理利用介损差值变化量来对设备绝缘情况进行判断。 2.2发电机状态监测与故障诊断 发电机状态监测与故障诊断在实际应用的时候主要作用就是检测设备初始阶段的问题和缺陷,以便于能够有计划的对设备进行维修,最大限度降低设备停机概率。在设备运行使用的过程中尽可能缩短发电机维修时间以及延长无故障时间,可以在一定程度上降低维修发电机的费用,从而增加设备可用性。现阶段发电机就是在运行中利用发电机射频监视仪、发电机状态监视器以及发电机光纤测漏仪进行状态检测,上述系统可以监测和报警发电机内部故障,引导相关操作人员能够及时了解以及重视设备实际运行情况,为操作人员进一步调整负荷进行指导以及检测是否出现停机问题。国内现阶段也开始研究氢冷发电机,依据化学量分析方式来诊断氢气中杂质成分,以此来判断设备故障。发电机设备状态检测以及系统故障诊断的时候需要采集和观测很多机械、电气、物理、化学特征和数据,形成相应的数据处理系统,为监测提供正确的缺陷和异常数据信息。利用早期故障预报来判断和分析计算机故障情况,并且提供相对合理的检修方案。诊断发电机故障的时候主要包括以下几方面:定子类故障:绕组振动故障、引出线套管故障、绝缘故障、铁心故障;转子类故障:绕组故障、本体及护环故障、绝缘故障以及油系统故障、氢系统故障、水系统故障。 2.3真空断路器控制回路电气特性的在线监测 真空断路器控制回路电气特性的在线监测主要是针对断路器控制回路电流、电压的监测。如果真空断路器的分间速度过高,那么在触头接触时整个机构就会承受过大的冲击力与机械应力,严重时会对真空断路器的一些部件产生损坏,大大缩短真空断路器的使用寿命;真空断路器的机械特性参数对真空断路器的使用乃至整个电力系统的稳定运行都有至关重要的意义。电磁铁是触发断路器完成开关动作的关键元件,因此对控制回路电流、电压信号的监测中,最直观有效的方法就是对分、合闸电磁铁线圏电流、电压进行监测。分、合闸电磁铁作为真空断路器动作过程中的第一级控制元件,是操动机构中最重要的部件。它主要传递执行断路器发出的动作命令,以电磁力的形式触发断路器的机械传动机构,从而完成分、合闸动作。然而,断路器如果长期运行,分、合闸电磁铁随着动作时间和频率的增大就会出现各种故障,例如铁芯卡涩、匝间短路、接触不良等故障,甚至会进一步发展成严重的断路器拒合、拒分、误合、误分等故障,严重影响断路器的动作性能。在断路器的分、合闸动作过程中,操动机构任何运行状态或者健康状况的变化都有可能引起电磁铁线圈电流的变化,因此,线圈电流信号中包含着丰富的操动机构状态信息。这些信息能准确反映电磁铁本身以及操动机构其他运动部件的工作状况,如铁芯有无卡滞、脱扣、传动机构的变动情况、阻间短路或者接触不良等等,从而为在线监测和故障的针对性诊断提供了重要依据。 2.4系统的发展与展望

智能变电站二次设备的状态监测技术探析 许嘉玲

智能变电站二次设备的状态监测技术探析许嘉玲 发表时间:2018-06-08T11:14:00.270Z 来源:《基层建设》2018年第7期作者:许嘉玲 [导读] 摘要:随着相关技术的发展以及日益成熟,智能变电站在电力系统中的应用愈来愈广泛。 南通电力设计院有限公司 226000 摘要:随着相关技术的发展以及日益成熟,智能变电站在电力系统中的应用愈来愈广泛。智能变电站状态监测指的是对变电站设备进行实时监测,然后对数据进行保存和分析,从而掌握设备实际运行情况。本文对探讨了智能变电站的系统构成,对其二次设备的运行特征展开了合理的分析,然后阐述了状态监测技术在智能变电站二次设备监测中的应用。 关键词:智能变电站;二次设备;状态监测 现如今,电力市场发展迅速,供电公司逐渐意识到电力设备检验和维修保护的重要性,只有对电力设备进行状态监测,明确设备运行情况,并采取具体的养护维修措施,才能够保障设备正常运行,提高电力企业生产经营效益。 1 智能变电站的系统构成 (1)站控层 智能变电站站控层中有很多电力设备,包括站域保护设备、对视系统以及自动化系统等等。站控层的运行目标是对整个变电站中的一次设备进行监测和管控,同时还能够进行对数据、同步相量以及电能量进行采集,在保护信息管理方面应用优势明显。 (2)间隔层 智能变电站间隔层设备具体而言指的是继电保护装置、故障录波等二次设备。 (3)过程层 智能变电站过程层不仅包括智能设备,而且还包括一次设备、合并单元以及智能终端等等。通过过程层,能够实现变电站测量、分配、状态监测以及保护等工作。将一次设备应用于过程层中,能够更好的符合过程层和间隔层信息传递标准。 2 智能变电站二次设备的特点 2.1 绿色环保 现如今,智能变电站主要采用光纤电缆,同时还采用高集成且功耗较低的电子元件,并且淘汰传统的充油式互感器,改用电子式互感器,因此,在设备使用方面能够极大的降低能源消耗,不仅能够有效节约智能变电站运行成本,而且在生态保护方面也能够发挥十分重要的作用。 2.2 智能化管理 在智能变电站二次设备中,GOOSE 主要提供二次回路保护所需的各种信号,GOOSE 在二次设备保护方面应用优势明显,因此,可以有效避免二次接触可能会造成的不良影响。智能变电站中所用信息都是统一的,比如,智能变电站二次设备自动化优势明显,在二次设备管理方面,可以通过光纤传输信号,有利于提高智能变电站设备维护管理效率。 2.3 采用感应系统 在智能变电站中,所有信息都是统一进行录入的,同一个通信网络能够依据同一个通信标准介入变电内部通信网络所接受的所有数据信息。另外,智能变电站二次设备主要采用感应系统,而通过感应系统,能够有效避免在设备运行过程中发生安全事故。在传统变电站中,设备操作技术难度大、工序复杂,如果工作人员操作失误,就会造成严重的人员伤亡问题,而推广智能变电站就能够有效避免这类安全事故。 3 智能变电站的二次设备状态监测 由于智能变电站中综合运用了计算机技术以及网络技术,因此继电保护设备的自检能力比较强,而这也为二次设备状态监测创造了重要条件。与传统变电站相比,智能变电站的二次电流以及电压输入方式不同,主要采用光纤以太网传输的方式;另外,传统变电站保护动作出口主要是重合闸接点,而智能变电站光纤以太网传输信息为GOOSE 开关量。由此可见,智能变电站一次设备状态监测和二次设备状态监测有很大区别,前者需要另外安装监测设备,而后者由于继电保护设备具有自检能力和通讯功能,因此,不需要安装其他监测设备,只需要通过自身自检装置以及设备之间的互相监测,即可实现在线监测。在智能变电站二次设备在线监测系统的设计和建立方面,应该结合情况,开发出具有全面监测和保护功能的智能化设备。现阶段,在智能变电站继电保护装置监测活动中,主要的监测对象主要有以下几个方面:(1)继电保护装置电流、电压以及sv 通道的实际运行状态。(2)继电保护装置遥信、遥控等GOOSE 通道实际运行状态。(3)继电保护装置直流逆变电源的实际运行状态。(4)对于继电保护装置本身的自检,包括装置的重启次数、扇区健康状况以及看门狗是否发生动作等等。 由于智能变电站中配备有数字化保护测控装置,因此,在二次设备状态监测方面更加稳定、可靠,因此,智能变电站二次设备状态监测的优势十分明显。 3.1 分布式数字化保护装置的状态监测 在智能变电站中,IEC61850 标准由于提供了数字化变电站的通信框架,并且应用了电子式互感器ECT、EVT,因此,可以将模拟信号转变的数字信号,而且还能够将数字信号传以光纤传输的方式传送至保护装置中。当输出保护动作后,还能够应用光纤以太网有效传递GOOSE 信息,由此可见,智能变电站中继电保护状态监测实现方式更为便捷。智能变电站分布式保护装置具有单台IED 的功能,并且以间隔为单位。另外,在不同间隔之间,可以配置继电保护设备,在重要的间隔,还可以实行双重化配置,比如母线间隔、主变间隔等等。 在智能变电站中,由于采用电子式互感器,因此,更容易实现数字化保护装置的状态监测,在这种情况下,光数字信号可以顺利进入继电保护装置,因此,在数字信息采样以及状态监测的实现方面难度较小。另外,装置本身也能够监测SMV 采样值报文,如果在此过程中出现接收中断、数据帧丢失等问题,则必须尽快告警SMV 采样异常。 由于智能变电站中应用了数字化智能开关,因此,可以通过软件编程的方式实现二次控制系统控制智能化,这样一来,二次控制系统本身就会具备监测能力,突破常规变电站无法实现回路在线监测的问题。另外,智能变电站使用光纤传输信号的方式,因此,不需要对回路绝缘状况进行监测。除此以外,以太网通信技术的应用也能够有效提高智能变电站二次设备在线监测的有效性和可靠性。

《电气设备状态监测与故障诊断技术》复习提纲(附答案)

《电气设备状态监测与故障诊断技术》复习提纲 1 预防性试验的不足之处(P4) 答: 1、需停电进行试验,而不少重要电力设备,轻易不能停止运行。 2、停电后设备状态(如作用电压、温度等)与运行中不符,影响判断准确度。 3、由于是周期性定期检查,而不是连续的随时监测,绝缘仍可能在试验间隔期发生故障。 4、由于是定期检查和维修,设备状态即使良好时,按计划也需进行试验和维修,造成人力 物力浪费,甚至可能因拆卸组装过多而造成损坏,即造成所谓过度维修。 2 状态维修的原理(P4) 答:绝缘的劣化、缺陷的发展虽然具有统计性,发展的速度也有快慢,但大多具有一定的发展期。在这期间,会有各种前期征兆,表现为其电气、物理、化学等特性有少量渐进的变化。随着电子、计算机、光电、信号处理和各种传感技术的发展,可以对电力设备进行在线状态监测,及时取得各种即使是很微弱的信息。对这些信息进行处理和综合分析,根据其数值的大小及变化趋势,可对绝缘的可靠性随似乎做出判断并对绝缘的剩余寿命做出预测,从而能早期发现潜伏的故障,必要时可提供预警或规定的操作。 3 老化的定义(P12) 答:电气设备的绝缘在运行中会受到各种因素(如电场、热、机械应力、环境因素等)的作用,部将发生复杂的化学、物理变化,会导致性能逐渐劣化,这种现象称为老化。 4 电气设备的绝缘在运行常会受到哪些类型的老化作用?(P12) 答:有热老化、电老化、机械老化、环境老化、多应力老化等。 5 热老化的定义(P12) 答:由于在热的长期作用下发生的老化称为热老化。 6 什么是8℃规则?(P13) 答:根据V.M.Montsinger提出的绝缘寿命与温度间的经验关系式可知,lnL和t呈线性关系,并且温度每升高8℃,绝缘寿命大约减少一半,此即所谓8℃规则。 7 可靠性、失效与故障的定义(P21) 答:可靠性:产品在规定条件下和规定的时间区间完成规定功能的能力。 失效:产品终止完成规定功能的能力这样的事件。 故障:产品不能执行规定功能的状态。 8 典型的不可修复元件,其失效率曲线呈什么形状?有哪些组成部分?(P22) 答:典型的不可修复元件,一般为电子器件,其失效率曲线呈浴盆状,可分为三个部分:早期失效期、恒定失效期和耗损失效期。 9 寿命试验的目的和方式(26)

智能状态监测与故障诊断教程文件

智能状态监测与故障诊断 测控一班 高青春 20091398

第一章 绪论 在现代化的机械设备的生产和发展中,滚动轴承占很大的地位,同时它的故障诊断与监测技术也随着不断地发展,国内外学者对轴承的故障诊断做了大量的研究工作,各种方法与技巧不断产生、发展和完善,应用领域不断扩大,诊断精度也不断提高。时至今日,故障诊断技术己成为一门独立的跨学科的综合信息处理技术,它以可靠性理论、信息论、控制论、系统论为理论基础,以现代测试仪器和计算机为技术手段,总的来说,轴承故障诊断的发展经历了以下几个阶段:第一段:利用通用的频谱分析仪诊断轴承故障。第二阶段:利用冲击脉冲技术诊断轴承故障。第三阶段:利用共振解调技术诊断轴承故障。第四阶段:以计算机为中心的故障诊断。 国外的滚动轴承的故障诊断与监测技术要先于中国,而且这项技术的发展趋势啊已经趋向智能化状态,因为它机械化迅速,技术和设备都比较先进些,目前的技术也比较完善。但是总体来看,这其中的距离在不断拉近,我们相信不久的将来,中国也会使机械完善大国,也会完善和提高技术的精密度和准确度。【2】【3】

1.1轴承监测与故障诊断的意义 滚动轴承是机械各类旋转机械中最常用的通用零件部件之一,也是旋转机械易损件之一,在机械生产中的作用不可取代,据统计旋转机械的故障有30%是由轴承故障引起的,它的好坏对机器的工作状态影响极大,轴承的缺陷会导致机器剧烈振动和产生噪音,甚至会引起设备的损坏,因此,对重要用途的轴承进行状态监测与故障诊断是非常必要的【3】而且,可以生产系统的安全稳定运行和提高产品质量的重要手段和关键技术,在连续生产系统中,如果某台设备因故障而不能继续工作,往往会影响全厂的生产系正常统运行,从而会造成巨大的经济损失,甚至可能导致机毁人亡的严重后果。未达到设计寿命而出现故障的轴承没有被及时的发现,直到定期维修时才被拆下来报废,使得机器在轴承出现故障后和报废前这段时间内工作精度降低,或者未到维修时间就出现严重故障,导致整部机器陷于瘫痪状态。因此,进行滚动轴承工作状态及故障的早期检测与故障诊断,对于设备安全平稳运行具有重要的实际意义。【14】 1.2滚动轴承故障的分类: 滚动轴承的故障多种多样,有生产过程中产生的也有使用过程中后天造成一系列故障,其失效形式有: 1.2.1疲劳剥落: 指滚动体或滚道表剥落或脱皮在表面上,形成不规则 凹坑等甚至会一定深度下形成能裂纹,继扩展到接触表面发生剥落坑,最后大面积剥落,造成失效。【12】

二次设备在线监控规范

Q/GDW ***-**** ______________________________________________________________________________- 智能电网调度技术支持系统 应用功能系列规范 第505部分:二次设备在线监控 Strong & Smart Grid Dispatching Supporting System Series Application Specifications Part 505: 2009-XX-XX 发布 2009-XX-XX 实施 _______________________________________________________________________________ 国家电网公司发布 ICS 备案号: Q/GDW 国家电网公司企业标准

修订历史记录(暂时保留,正式发布时去掉)

目次 前言 (1) 1范围 (1) 2规范性引用文件 (1) 3术语和定义 (1) 4二次设备在线监控 (2) 4.1数据信息处理 (2) 4.1.1实时数据处理 (2) 4.1.2信息过滤 (2) 4.1.3数据类型 (2) 4.1.4二次设备模型管理 (3) 4.2运行监视 (3) 4.2.1装置运行工况 (3) 4.2.2运行信息监视 (3) 4.2.3动作信息告警 (3) 4.2.4事件报警监视 (4) 4.2.5在线故障显示 (4) 4.3装置定值查询与校核 (4) 4.3.1装置定值在线查询与存储 (4) 4.3.2定值核对 (4) 4.4远程控制功能 (5) 4.5统计查询 (6) 4.6全景回放 (6) 4.7界面要求 (6) 4.8数据接口 (6) 4.8.1数据输入 (6) 4.8.2数据输出 (7) 5性能 (7)

设备状态监测

1)设备状态监测的概念 对运转中的设备整体或其零部件的技术状态进行检查鉴定,以判断其运转是否正常,有无异常与劣化征兆,或对异常情况进行追踪,预测其劣化趋势,确定其劣化及磨损程度等,这种活动就称为状态监测(Condition Monitoring)。状态检测的目的在于掌握设备发生故障之前的异常征兆与劣化信息,以便事前采取针对性措施控制和防止故障地发生,从而减少故障停机时间与停机损失,降低维修费用和提高设备有效利用率。 对于在使用状态下的设备进行不停机或在线监测,能够确切掌握设备的实际特性有助于判定需要修复或更换的零部件和元器件,充分利用设备和零件的潜力,避免过剩维修,节约维修费用,减少停机损失。特别是对自动线、程式、流水式生产线或复杂的关键设备来说,意义更为突出。 (2)设备状态监测与定期检查的区别 设备的定期检查是针对实施预防维修的生产设备在一定时期内所进行的较为全面的一般性检查,间隔时间较长(多在半年以上),检查方法多靠主观感觉与经验,目的在于保持设备的规定性能和正常运转。而状态监测是以关键的重要的设备(如生产联动线、精密、大型、稀有设备,动力设备等)为主要对象,检测范围较定期检查小,要使用专门的检测仪器针对事先确定的监测点进行间断或连续的监测检查,目的在于定量地掌握设备的异常征兆和劣化的动态参数,判断设备的技术状态及损伤部位和原因,以决定相应的维修措施。 设备状态监测是设备诊断技术的具体实施,是一种掌握设备动态特性的检查技术。它包括了各种主要的非破坏性检查技术,如振动理论,噪音控制,振动监测,应力监测,腐蚀监测,泄漏监测,温度监测,磨粒测试(铁谱技术),光谱分析及其他各种物理监测技术等。 设备状态监测是实施设备状态维修(Condition Based Maintenance)的基础,状态维修根据设备检查与状态监测结果,确定设备的维修方式。所以,实行设备状态监测与状态维修的优点有:①减少因机械故障引起的灾害;②增加设备运转时间;③减少维修时间;④提高生产效率;⑤提高产品和服务质量。 设备技术状态是否正常,有无异常征兆或故障出现,可根据监测所取得的设备动态参数(温度、振动、应力等)与缺陷状况,与标准状态进行对照加以鉴别。表5-9列出了判断设备状态的一般标准。 表5-9 判断设备状态的一般标准

MDS-4000输变电设备状态监测与故障诊断系统

MDS-4000输变电设备状态监测与故障诊断系统 MDS-4000系统简介 MDS-4000输变电设备状态监测与故障诊断系统是为满足国家电网公司智能电网建设、集约化生产管理及“三集五大”中大生产体系集中监控要求而开发的重要技术支撑系统。 MDS-4000输变电设备状态监测与故障诊断系统是智能电网建设的重要内容,它通过各种先进的传感技术、数字化技术、嵌入式计算机技术、广域分布的通信技术、在线监测技术以及故障诊断技术实现各类电网设备运行状态的实时感知、监视、分析、预测和故障诊断。输变电设备状态监测技术是实现智能变电站建设的关键支撑技术,是智能变电站建设的核心内容。因此,输变电设备状态监测与故障诊断系统的建设对提高国家电网公司生产管理水平、加强状态监测检修辅助决策应用、推动智能电网建设具有积极而深远的意义。 MDS-4000系统可为智能变电站提供在线监测与故障诊断的整体解决方案。系统可对变压器温度及负荷、油中溶解气体、油中微水、套管绝缘、铁芯接地电流、局部放电、辅助设备(冷却风扇、油泵、瓦斯继电器、有载分接开关等)、断路器及GIS中SF6气体密度及微水、GIS局部放电、断路器动作特性、GIS室内SF6气体泄露、电流互感器及容性电压互感器绝缘、耦合电容器绝缘和避雷器绝缘等信息进行综合监测。MDS-4000系统具有准确性高、可靠性高、互换性好等特点,是按照统一的结构方式、通讯标准、数据格式等的全面集成。 MDS-4000输变电设备状态监测与故障诊断系统依据获得的电力设备状态信息,采用基于多信息融合技术的综合故障诊断模型,结合设备的结构特性和参数、运行历史状态记录以及环境因素,对电力设备工作状态和剩余寿命作出评估;对已经发生、正在发生或可能发生的故障进行分析、判断和预报,明确故障的性质、类型、程度、原因,指出故障发生和发展的趋势及其后果,提出控制故障发展和消除故障的有效对策,达到避免电力设备事故发生、保证设备安全、可靠、正常运行的目的。 MDS-4000系统特点 MDS-4000系统技术特点

智能变电站二次设备状态监测技术研究 张韶光

智能变电站二次设备状态监测技术研究张韶光 发表时间:2018-10-01T11:29:21.370Z 来源:《电力设备》2018年第16期作者:张韶光[导读] 摘要:社会进步和经济增长有效地促进了中国电力工业的发展,智能变电站建设规模不断扩大,为中国电力工业的进一步发展奠定了良好的基础。 (国网河北省电力有限公司检修分公司河北石家庄 050000) 摘要:社会进步和经济增长有效地促进了中国电力工业的发展,智能变电站建设规模不断扩大,为中国电力工业的进一步发展奠定了良好的基础。作为智能变电站的重要组成部分,二次设备的运行状态不仅影响整个变电站的安全,也影响整个变电站的运行。基于此,本文以智能变电站二次设备状态监测技术为主要研究对象,通过对智能变电站和二次设备特点的概述,进一步详细探讨了智能变电站二次设 备状态监测方法。 关键词:智能变电站;二次设备;状态监测变电站二次设备状态检修是强化变电设备安全管理及电网可靠性运行的重要举措。也是智能变电站发展的必然趋势。在电力系统设备中,不仅要重视一次设备的状态监测,二次设备也同样需要进行全面的状态监测,这样才能保证智能变电站的安全和效率。智能变电站状态监测系统通过对全站关键一次设备运行状态进行实时监测,保存历史监测数据,综合实时监测数据和历史监测数据对一次设备运行状态进行评估分析,给出预警信息和诊断结果。 1智能变电站概述 所谓的智能变电站,指的是利用先进的科学技术手段,将集成、环保的智能设备有效结合到一起,能够自动对电网进行控制,主动对电网进行调节的变电站。针对智能变电站内部结构作用的不同,可以将其分为三个部分:一是站控层,该层是智能变电站内最主要的一部分,其中由大量的电力设备构成,如自动化设备、保护设备等,其主要功能是监测变电站内的一次设备,获得相关的数据,从而为二次设备的运行提供良好的帮助。二是间隔层,该部分主要由机电保护设备、故障录波设备构成,其主要工作包括以下几个方面:①对一次设备提供保护;②将另外两层采集的信息进行整理;③提供闭锁功能;④针对其他两层的运行情况,发布相关的指令等。三是过程层,即对整个系统进行控制的结构,包括发电机、变压器等。其主要功能为对电气量进行监测,变电站内设备各项状态参数的监测等。 2智能变电站二次设备的特征 作为智能变电站中的重要组成部分,二次设备具有以下三个方面的特征:一是绿色环保。近年来,在科学技术快速发展的基础上,使得智能变电站也不断的更新与完善,大多数智能变电站都是通过光纤,将集成度较高,能耗较低的电子元件进行连接,同时,还抛弃了传统的充油互感器,安装了电子互感器,使得整个智能变电站运行过程中,有效减少了对能源的使用,从而达到了绿色环保的目的。二是智能化管理。智能变电站二次设备内,建立了goose模块,该模块能够为二次回路的保护,提供相应的信号,从而降低二次接触故障的出现,有效提升了智能变电站管理的效果。三是感应迅速。智能变电站运行过程中,全部数据均为同时输入,并且每个通信网络,都可以根据相应的通信标准,对全部信息进行分析。同时,在整个二次设备内,还加入了感应系统,使得变电站出现故障时,能够第一时间发出警报最大程度上降低了安全事故的发生。 3二次设备状态监测技术在智能变电站中的应用 3.1分布式数字化 目前,自我国大多数变电站中,主要的监测重点便是电压和电流的实时情况,而装置本身的检测包括看门狗检测、装置开启次数、工作区健康状况等。在智能变电站中,可利用数字化保护装置,对二次设备运行状态进行有效监测。例如,在智能变电站调度自动化系统监测过程中,相关工作人员可以利用变电站整体数字规划,与电子互感器相结合,将监测信号转化成数字信号,并利用光纤将信息传输到指定系统中。在光纤选择上,应根据相关标准,通过合并器加工而形成,主要应用于信息传递,确保相关装置接收到完整的信息。在分布式保护装置安装过程中,一定要保证装置本身具有LED功能,而且在每个间隔中安装独立接口程序和继电保护装置。有的保护装置发挥的作用较大,需对其进行双重配置,如主变间隔等。二次电压、电流的出现。另外,保护装置可以对数据采集工作进行监控,一旦出现信息丢失等情况,便会立刻报警,工作人员根据报警信息,可迅速恢复系统,以保证工作效率。 3.2集中式数字化 集中式数字化保护装置可以可以赋予很多设备LED功能。该保护装置可同时进行多条线路监测工作,提高工作效率。一般情况下,集中式数字化在工作中需要两套或者以上的保护装置。集中式与分布式存在很大不同,它靠监测对象的减少,实现了操作的简化,可以让监测内容更加一目了然。双套保护成功避开了装置和自检间的互相检测,简化了操作过程。集中保护可以将分布装置看做是不同的监测个体,在每一个装置上都配有软压板监测等不同功能,而这些功能在集中式保护装置上又实现了完美统一,大大缩小了监测范围,只需一个监测通道便可以实现多个设备的实施监测,实现了工作量的有效降低。与此同时,工作人员还可以在变电站运行过程中及时发现问题,例如,集中式保护可以通过电源数量的减少,增加对二次设备的监测效果,为监测工作增加便捷性,避免因为工作量大导致变电站运行出现混乱。 3.3 智能变电站二次设备状态监测 在对智能变电站建造时,应用了大量先进的科学技术,如计算机技术,互联网技术等,正是这些先进技术的存在,使得智能变电站运行过程中,具有非常强大的自检功能,从而为二次设备状态监测奠定了良好基础。与常规的变电站相比,不论是二次电流,还是电压输入方式,均存在一定差异,并且对信息进行传递时,以光纤为主。此外,常规变电站进行保护时,主要在重合闸接点处完成的,而在智能变电站内,则加入了大量的 goose 开关量,通过其对保护动作进行控制。所以说,对与智能变电站来说,一次设备的状态监测与二测设备的状态监测存在非常明显的差异。其中,对一次设备进行监测时,应通过其他装置完成,而对二次设备进行监测时,无需其他装置,自身即可完成整个监测活动。而在当前的智能变电站二次设备运行的过程中,主要对下述几项内容进行监测:①整个系统内电流、电压与 SV 通道的运行状态;②遥信、遥控等 goose 通道的运行状态;③继电保护装置自身运行的状态等。通过上述几个方面的监测,使得整个监测结构更加精确,从而为智能变电站的运行提供了重要帮助。 4智能变电站二次设备状态监测技术的发展

状态监测与故障诊断的基本图谱

状态监测与故障诊断的基本图谱 一、常规图谱 常规图谱又称稳态图谱,是在转速相对稳定、没有大幅度变化情况下的有关图谱,因此其不含开停车信息。 1. 机组总貌图 机组总貌图显示了机组的总貌,可了解机型、转子支撑方式、轴承位置、运行转速等,主要是查看探头的位置及位号。 2. 单值棒图 较为形象、直观地显示实时振动值,并可知低报、高报报警值及转速。 3. 多值棒图 多值棒图显示实时通频值及各主要振动分量的振动值,可大致了解机组运行是否正常。 正常运转状态下的多值棒图通常是:一倍频最大、且与通频相差不大,二倍频小于一倍频的一半,0.5倍频微量或无,可选频段很小,残余量不大。 其中: (1)通频值~即总振动值,为各频率振动分量相互矢量迭加后的总和。 (2)一倍频~为转子实际运行转速n下的频率f,又称工频、基频、转频, f = n/60 [Hz];转子动不平衡及轴弯曲、轴承不良(偏心)、热态对中不良、支承刚度异常、在临界转速区运行、电机气隙偏心等,都会引起一倍频振动分量的增大,发生概率依次降低。 (3)二倍频~二倍工频,转子热态不对中、裂纹、松动、水平方向上支承刚度过差等,都会引起二倍频振动分量增大,绝大多数是轴系不对中。 (4)0.5倍频~0.5倍工频,又称半频,油膜涡动会引起该频率段增大,轴承工作不良也会引起该段频率增大;旋转失速、摩擦也都有可能。 (5)可选频段~由用户根据机组常见故障自己定义的频段,一般可选择(0.4~0 .6)倍工频或(0.3~0 .8)倍工频,用来监测是否发生亚异步振动,如油膜涡动、旋转失速、密封流体激振、进汽(气)脉动、摩擦、松动等。主要是轴承因紧力、接触、摇摆、油档及油温等问题引起的油膜失稳、摩擦、旋转失速、进汽脉动。 (6)残余量~除上述频率成分外,剩余频率成分振动分量的总和,该部分振值高时,转子有可能发生摩擦、高频气流脉动等。 4. 波形图 波形图显示了振动位移与时间的关系,又称幅值时域图。 波形图显示了振幅、周期(即频率)、相位,特别是波形的形状和状态。 图中:① 振幅为正峰与负峰之间的位移量,比较各周期对应的峰高,即可知振幅值是否稳定;② 二个亮点之间为一个旋转周期,波形图的周期数可以选取,想了解波形重复性

状态监测与故障诊断

状态监测与故障诊断与飞设密不可分 刚刚接触这门课的时候,我只知道这是民航飞行学院开设的课程,但还不知道这门课到底讲什么东西,对我们飞设来说到底有什么借鉴之处。经过几周的学习,我初步了解了这门课。简单说,状态监测与故障诊断和飞设之间有着密切的联系。他们是一种表里关系,是一种感知和应用的关系,两者互为支撑,共同促进了航空工业的进步发展。 状态监测与故障诊断促进了设计行业的发展。 状态监测与故障诊断为设计飞机提供了大量的、可靠的数据。 这提供了一种实验。通过对飞行器飞行状态、各个零部件的工作状态、各个系统的运行情况进行检测,我们可以获得大量的实时数据,进而进行详细的分析,即故障诊断。一方面我们可以检测出飞行器的故障来源,对飞行器进行维修。同时,我们可以统计飞行器各部分发生故障的频率和原因等,进而分析得出设计上的缺陷。这也可以作为设计飞机的依据,比如发动机轴承要用什么材质,设计寿命多长时间最为合适。再者,分析得到的数据可以对目前的设计理论进行验证,这对飞行器设计来说更为至关重要。 状态监测与故障诊断也可以给设计提出新的问题与要求。比如国内大气污染严重,飞机的空调系统收到了巨大的影响。这就要求飞机设计时采取某些措施来防止这些问题发生。 设计行业也促进了状态监测与故障诊断的发展。 飞行器设计理论可以指导状态监测与故障诊断的实际应用。 应用已经提出验证的的理论,我们可以初步分析出各部件的特性,这样便可以某些易损坏或是极度危险的零部件进行重点监控,这样不但更具可行性,而且还大大节约了人力物力,降低航空公司的运营成本。比如发动机是飞行器的核心部分之一,构建复杂,极易出现故障,所以要重点监测。 同时已有的理论基础可以为状态监测提供必要的手段,使其具有可行性。最简单的就是发动机的涡轮叶片,我们可以通过测量转子的惯性矩来分析判断叶片是否有松动,这样方便可行。 在理论方面,飞行器设计理论也在指导状态监测与故障诊断的发展,经过传感器采集的数据杂乱无章而且数目极为庞大。如果没有现有理论的指导,我们很难得到数据处理的方向方法,这样就得不到有价值的数据,更不要说进行故障诊断了。而应用现有理论我们可以有方向,有目的的对数据进行处理,这样我们就可以判断出是哪一方面有问题,到底有什么样的问题。 总之,状态监测与故障诊断给了我一个新的视角去看待问题,从另一个角度认识飞设这个专业。打个比方,过去我们专业所关注的是从已知到要求的问题,我们知道各种数据,所做的是对数据的分析与应用。而状态监测与故障诊断则是从要求到已知的问题,是一个反问题,我们要做的是我们如何才能得到我们所需要的数据,如何才能保证所得导数据的可靠性等。 除此之外,还有就是这门课的感受吧。 这门课也进行大半了,但是自己并没有达到自己想要的水平。总感觉有些遗憾。很多东西还是一知半解,还不能应用。我想一方面与专业基础有关系,很多基础性东西我们不懂不会,这就对理解内容造成了困难,先是听不懂,然后就不想听了,紧接着更听不懂了,直至彻底放弃掉。当然这也和上课态度以及这门课是拓展课有关吧。有的人说这门课对我没用,但我想说大

电气设备状态监测与故障诊断

电气设备状态监测与故障诊断 1前言 1.1状态监测与故障诊断技术的含义 电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。 监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。设备的故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。简言之,状态监测”是特征量的收集过程,而故障诊断”是特征量收集后的分析判断过程。 广义而言,诊断”的含义概括了状态监测”和故障诊断”:前者是诊”;后者是断”。 1.2状态监测与故障诊断技术的意义 电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。但这样会导致制造成本增加。此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那用过即丢”。因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。 早期是对设备使用直到发生故障,然后维修,称为事故维修。但是,如前所

电气设备状态监测与故障诊断word版本

电气设备状态监测与故障诊断 1 前言 1.1 状态监测与故障诊断技术的含义 电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。 “监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。“诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。设备的“故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。简言之,“状态监测”是特征量的收集过程,而“故障诊断”是特征量收集后的分析判断过程。 广义而言,“诊断”的含义概括了“状态监测”和“故障诊断”:前者是“诊”;后者是“断”。 1.2 状态监测与故障诊断技术的意义 电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。但这样会导致制造成本增加。此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那“用过即丢”。因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。 早期是对设备使用直到发生故障,然后维修,称为事故维修。但是,如前所

设备状态监测及故障诊断

设备状态监测及故障诊断 近年来,为了提高设备管理与维修的现代化水平,在省设协和油田设备处的大力支持与帮助下,我厂应用状态监测及故障诊断技术,及时发现并解决了许多设备隐患,提高了设备运行可靠度,为电厂长周期、满负荷生产奠定了良好的基础。 1 开展状态监测与故障诊断工作的缘由 1.1 状态监测与故障诊断是一种新的管理理念 电厂生产的特点是自动化水平高、生产连续性强,一旦某台设备发生故障,将迫使机组降低负荷,甚至停机。多年的摔打与磨练告诉我们:单凭眼看、手摸、耳听、鼻嗅等感观经验来判断设备故障已无法适应现代化生产的需要,只有开展状态监测和故障诊断工作才能彻底摆脱这种落后的管理模式。 1.2 状态监测和故障诊断是提高设备管理水平的需要 我厂已搞过8次大修,在检修项目的确立和设备系统部件的更换上,虽然针对性、方向性有了很大提高,但确切性、适宜性、经济性仍有差距。根据“四个凡是”的贯标精神要求,设备、系统的大小修的立项应更具科学性、针对性,减少盲目性,要解决这一问题,惟有开展状态监测和故障诊断。 1.3 状态监测和故障诊断是降本增效的需要。我厂检修费用一年比一年紧缩,降本增效压力逐年递增,如何进一步降低发电成本,是摆在全厂干部职工面前的一个现实问题。从历年大修情况来看,部分单位存在不同程度的欠修和过剩检修。过剩检修意味着工作量加大,费用增加,造成人、财、物的浪费,而欠修将给设备运行带来隐患。开展状态监测和故障诊断可有效避免欠修和过剩检修,做到物尽其用,达到降本增效的目的。 1.4 状态监测和故障诊断是二期投产的需要 我厂二期两台机组相继投产,如果按照过去三年一大修的计划,每年至少要安排一台机组大修,甚至一年安排两台机组的大修。我厂经过8次机组大修,积累了丰富的检修经验,对设备、系统的性能特点有了更深的了解。特别是1999年和2000年的机组技改性大修,使设备的可靠性有了明显提高,基本具备了把机组三年一大修改为四年一大修的条件。延长大修周期的保证是开展状态监测和故障诊断,延长设备使用寿命,避免突发性故障。 近几年来,通过实践逐步提高了对状态监测和故障诊断工作的认识,通过对设备定时、定点、定人监测,特别是#2机组在线监测系统,避免了多起设备事故,更坚定了我们开展这项工作的决心。 2 开展状态监测及故障诊断技术的依据

智能变电站二次设备状态监测技术 官立军

智能变电站二次设备状态监测技术官立军 发表时间:2018-04-04T15:04:46.293Z 来源:《基层建设》2017年第34期作者:官立军 [导读] 摘要:变电站二次设备状态检修是强化变电设备安全管理及电网可靠性运行的重要举措。 内蒙古电力(集团)有限责任公司锡林郭勒电业局内蒙古锡林郭勒 026000 摘要:变电站二次设备状态检修是强化变电设备安全管理及电网可靠性运行的重要举措。也是智能变电站发展的必然趋势。在电力系统设备中,不仅要重视一次设备的状态监测,二次设备也同样徐誉滕进行全面的状态监测,这样才能保证智能变电站的安全和效率。 关键词:智能变电站;二次设备;状态监测技术 在电力系统设备中,不仅要重视一次设备的状态监测,二次设备也同样需要进行全面的状态监测,这样才能保证智能变电站的安全和效率。智能变电站状态监测系统通过对全站关键一次设备运行状态进行实时监测,保存历史监测数据,综合实时监测数据和历史监测数据对一次设备运行状态进行评估分析,给出预警信息和诊断结果。 1智能变电站的系统构成 在《智能变电站技术导则》中给出了智能变电站的定义:采用先进、可靠、集成和环保的智能设备、以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,同时具备支持电网实时自动控制、智能调节、在线分析决策和协同互动等高级功能的变电站。按照实现功能和作用的不同,智能变电站分为三层:站控层、间隔层、过程层。 1.1站控层 站控层包括了站域保护、自动化系统和对视系统以及通信系统等设备。站控层在工作中,是为了实现面向全站或一个以上一次设备的测量与控制,合理有效的进行数据采集、操作闭锁和监视控制及进行同步的相量采集和电能量采集、并达到保护信息管理等功能。 1.2间隔层 间隔层的设备一般是指继电保护装置和测控装以及故障录波的二次设备,间隔层是通过光纤和过程层通信。 1.3过程层 过程层包含了一次设备及智能设备、合并单元、智能终端等,用来完成变电站在分配、变换、传输、测量、计量、控制、保护、状态监测等工作。一次设备的智能化发展与非常规互感器在应用中,满足了过程层和间隔层在信息通信中光纤化和信息化标准化的需求。 二次设备和一次设备之间的最大不同是与电力没有没直接的联系,所以二次设备的定位是辅助性设备,虽然二次设备的主要作用是辅助一次设备的运行,但是在智能变电站的电力设备运行中同样有着重要的作用。在电力使用高峰期,一次设备会发生故障,这时候二次设备的重要性就能得到体现,有了二次设备对一次设备的辅助,发生故障时能够及时的进行调节和控制。所以,进行状态监测,二次设备运行的故障率也会大幅度的减少,才能保证电能稳定的输送给客户。 2状态监测的主要内容 2.1交换机状态 智能变电站的主要技术特点是通信网络化,智能变电站利用间隔层,借助网络方式,实现了与智能终端通信以及合并单元通信,实现了数据的实时采集。智能变电站自动化系统是基于通信网络建设的,因此,对交换机状态进行评估有着现实意义。对交换机状态的监测评估多采取模糊综合评价法来定量化处理。如果结果异常,则会及时告警并且提示,在通信网络影响系统运行前,及时将安全隐患消除。 2.2智能组件跳闸回路 在智能变电站二次设备状态监测中,智能组件跳闸回路定检是主要内容。为了避免保护出口跳闸回路发生触点粘连以及失效等问题,在设计智能变电站自动化系统时,将后台监控系统与智能组件连接,以实现跳闸触点定检告警。基于硬件软件化,改进操作箱功能,进而实现在线监测以及离线定检。当开关处于合位时,能实现在线监测,监测定位跳闸回路。当开关处于分位时,变电站智能终端能够及时接收系统命令,进而实现分闸回路离线定检功能以及合闸预置功能等。 2.3过程层通信状态 智能变电站自动化系统中,利用间隔层以及过程层网络通信可实现信号电缆的功能,利用SV以及GOOSE实现信息传送。如果SV与GOOSE收发出现异常时,则可以立即诊断,明确是间隔层装置故障,还是智能组件故障。在进行诊断时,可以采取报文分析仪诊断法,通过分析SV与GOOSE特性,明确传输机制,通过判断接收端是否可以接收信号,进而来判断通信状态,非直接监测发送端状态。在实际诊断中,间隔层装置将GOOSE发送给智能组件,再利用另外的GOOSE将其传输给间隔层装置,再将状态值传递给监控后台,实现间隔层装置与智能组件的GOOSE发送与传输。利用间隔层运行状态可以判断智能组件的发送以及接收状态。通常情况下,1个智能组件能够将SV以及GOOSE发送给多个装置,也可以接收多个GOOSE。故障监测原理是通过判断发送与接受端口等来实现的,当某路发送端口/接收端口能够正常通信,则此网口正常。当全部端口属于上述情况,则可以判定网口故障。 3监测技术的应用 智能变电站二次设备状态监测是基于微电子技术与网络技术等,监测GOOSE通道状态、SV通道状态和继电保护装置自检,最终实现状态监测。继电保护装置与安装自动装置通常要具备自检功能,通过装置互检与自检,可实现在线状态监测。 3.1分布式数字化继电保护装置监测技术 对分布式数字化保护装置进行状态监测,基于IEC61850标准,其提供的通信框架利用电子式互感器ECT以及EVT进行数字信号转换。保护装置中的信号是经过合并器加工,满足IEC61850标准,利用以太网光纤而转化成的数字信号。继电保护主要是基于以太网进行GOOSE信息传输、继电保护装置状态监测的,基于分布式保护装置极易实现。将分布式保护装置作为间隔单位,以一对一的形式实现单台IED功能,以间隔为单位,配置间隔时,独立保护装置需要双重化设置,且过程层接口也需要双重化配置,比如,母线间隔以及220kV以上线路等。数字化智能开关的应用能确保二次设备控制系统回路利用软件编程来实现智能化,且数字化智能开关自身能够实现在线监测,能解决传统操作回路监测继电保护运行中所遇到的问题。 3.2集中式数字化继电保护装置监测技术 集中式数字化保护装置监测能实现多条线路的保护测控,且可以实现多台LED保护测控功能,极大程度上提升了设备维护的便捷性以

相关主题