搜档网
当前位置:搜档网 › 原核生物的同源重组

原核生物的同源重组

原核生物的同源重组
原核生物的同源重组

原核生物的同源重组

在生物细胞中,DNA或RNA分子间或分子内的同源序列能在自然条件下以一定的频率发生重新组合,这个过程称为同源重组(Homologous Recombination)。同源重组的频率与DNA 或RNA序列的同源程度(即序列的相似程度)、同源区域大小以及生物个体的遗传特性密切相关,一般而言,同源程度越高、同源区域越大,重组的频率就越高。同源重组是生物进化的一种重要方式,对于原核细菌、噬菌体和病毒而言,同源重组现象的发生尤为普遍。

3.1.1 原核细菌的基因转移程序

原核细菌的基因转移程序是基于物理学和生物学的原理建立起来的,将质粒或噬菌体DNA导入细菌受体细胞的方法主要有以下几种:

1.Ca2+诱导转化法

1970年,有人发现用CaCl2处理过的大肠杆菌能够吸收噬菌体DNA,此后不久,对这种程序进一步的优化实现了质粒DNA转化大肠杆菌的感受态细胞,其整个操作程序如图3-1所示。将处于对数生长期的细菌置入0℃的CaCl2低渗溶液中,使细胞膨胀,同时Ca2+协助细胞膜磷脂层形成液晶结构,使得位于外膜与内膜间隙中的部分核酸酶离开所在区域,这就构成了大肠杆菌人工诱导的感受态。此时加入DNA,Ca2+又与DNA结合形成抗脱氧核糖核酸酶(DNase)的羟基-磷酸钙复合物,并粘附在细菌细胞膜的外表面上。经短暂的42℃热脉冲处理后,细菌细胞膜的液晶结构发生剧烈扰动,随之出现许多间隙,致使通透性增加,DNA 分子便趁机进入细胞内。此外在上述转化过程中,Mg2+的存在对DNA的稳定性起很大的作用,MgCl2和CaCl2又对大肠杆菌某些菌株感受态细胞的建立具有独特的协同效应。1983年,有人除了用CaCl2和MgCl2处理细胞外,还设计了一套用二甲基亚砜(DMSO)和二巯基苏糖醇(DTT)进一步诱导细胞产生高频感受态的程序,从而大大提高了大肠杆菌的转化效率。目前,Ca2+诱导法已成功地用于大肠杆菌、葡萄球菌以及其它一些革兰氏阴性菌的转化。

2.原生质体转化法

在高渗培养基中生长至对数生长期的细菌,用含有适量溶菌酶的等渗缓冲液处理,剥除其细胞壁,形成原生质体,它丧失了一部分定位在膜上的DNase,有利于双链环状DNA分子

的吸收。此时,再加入含有待转化的DNA样品和聚乙二醇的等渗溶液,均匀混合。通过离心除去聚乙二醇,将菌体涂布在特殊的固体培养基上,再生细胞壁,最终得到转化细胞。这种方法不仅适用于芽孢杆菌和链霉菌等革兰氏阳性细菌,也对酵母菌、霉菌甚至植物等真核细胞有效。只是不同种属的生物细胞,其原生质体的制备与再生的方法不同。

3.电穿孔转化法

电穿孔(Electroporation)是一种电场介导的细胞膜可渗透化处理技术。受体细胞在电场脉冲的作用下,细胞壁上形成一些微孔通道,使得DNA分子直接与裸露的细胞膜脂双层结构接触,并引发吸收过程。这项技术最早用于将重组DNA导入真核细胞,但最近已被发展用来转化大肠杆菌等其它原核生物。理论上来说,较高的电压和较长的脉冲时间有利于转化效率的提高,但在这种情况下细胞的生存率也大幅度降低,使得表观转化效率受到很大影响。因此,针对受体细胞的性质合理优化电场强度、脉冲时间和DNA浓度是获得最佳转化效率的必要条件。对于大肠杆菌来说,大约50l的细菌与DNA样品混合后,置于装有电极的槽内,然后选用大约25微法拉第、千伏和200欧姆的电场强度处理毫秒,每微克DNA可获得109~1010个转化子的理想转化率。虽然电穿孔法转化较大的重组质粒(>100 kb)的转化效率比小质粒(约3 kb)低1000倍,但比Ca2+诱导和原生质体转化方法效果要好,因为这两种方法几乎不能转化大于100 kb的质粒DNA。几乎所有的细菌均可找到一套与之匹配的电穿孔操作条件,因此电穿孔转化方法有可能成为细菌转化的标准程序。

4.碱金属离子法

用高浓度的碱金属离子溶液(尤其是钾离子)处理细菌,可以提高质粒的转化率。这种方法的优点是能同时转化单体和线型质粒DNA。将细胞悬浮在氯化钾溶液中,然后在35%PEG 的存在下,用质粒DNA进行转化,每微克DNA可获得103个转化子。研究表明,单价阳离子能诱导细菌细胞内自溶酶系统的活化,这是转化得以实现的机制。

5.接合转化法

接合(Conjugation)是指通过细菌细胞之间的直接接触导致DNA从一个细胞转移至另一个细胞的过程。这个过程是由接合型质粒完成的,它通常具有促进供体细胞与受体细胞有效接触的接合功能以及诱导DNA分子传递的转移功能,两者均由接合型质粒上的有关基因编码。在DNA重组中常用的绝大多数载体质粒缺少接合功能区,因此不能直接通过细胞接合方

法转化受体细胞,然而如果在同一个细胞中存在着一个含有接合功能区域的辅助质粒,则有些克隆载体质粒便能有效地接合转化受体细胞。因此,首先将具有接合功能的辅助质粒转移至含有重组质粒的细胞中,然后将这种供体细胞与难以用上述转化方法转化的受体细胞进行混合,促使两者发生接合作用,最终导致重组质粒进入受体细胞。接合转化的标准程序如图3-2所示。

整个过程涉及到包括受体菌在内的三种菌株的混合,即受体菌、含有接合质粒的辅助菌以及含有待转化重组质粒的供体菌。三者混合后,接合质粒即可从辅助菌株转移至供体菌,也可直接进入受体菌。含有两种相容型质粒的供体菌再与受体菌或辅助菌发生接合反应。此时细菌混合液中已出现多种形式的细胞,因为任何菌株接合发生频率都不可能达到100%。为了迅速而准确地筛选出仅接纳了重组质粒的受体细胞(即接合转化细胞),必须依赖于所使用的菌种和质粒上相应的遗传标记,例如携带接合质粒的菌株A不能在最小培养基上生长,且对抗生素X敏感;含有待转化的重组质粒的菌株B,也不能在最小培养基生长,它如果失去含有X抗性基因的重组质粒,则同样对X敏感;受体细胞C能在最小培养基中生长,且在抗生素X和Y存在时不能生长。三种菌株首先在无抗生素的完全培养基中进行混合,短暂培养启动接合转化,然后迅速涂布在含有抗生素的最小培养基上进行筛选。此时,只有接纳了重组质粒的受体细胞才能长成菌落(克隆),其中为数极少的菌落含有双质粒。随机选择几个菌落,将之涂布在含有抗生素的最小培养基上,凡是在这种培养基中不能生长的菌落即为只含有重组质粒的受体转化克隆,因为只有接合质粒所携带的Y抗生素抗性基因能赋予受体细胞对Y的抗性。应当特别指出的是,在接合转化过程中使用的重组质粒与接合质粒必须具有互为相容性,否则两者难以稳定地存在于供体菌中。

6.噬菌体转导法

以-DNA为载体的重组DNA分子,由于其分子量较大,通常采取转染的方法将之导入受体细胞内。在转染之前必须对重组DNA分子进行人工体外包装,使之成为具有感染活力的噬菌体颗粒。用于体外包装的蛋白质可以直接从大肠杆菌的溶原株中制备,现已商品化。这些包装蛋白通常被分成分离放置且功能互补的两部分,一部分缺少E组份,另一部分缺少D 组份。包装时,只有当这两部分的包装蛋白与重组-DNA分子三者混合后,包装才能有效进行,任何一种蛋白包装溶液被重组分子污染后均不能包装成有感染活力的噬菌体颗粒,这

种设计是基于安全考虑。整个包装操作过程与转化一样简单:将-DNA和外源DNA片段的连接反应液与两种包装蛋白组份混合,在室温下放置一小时,加入一滴氯仿,离心除去细菌碎片,即得重组噬菌体颗粒的悬浮液。将之稀释合适的倍数,并和处于对数生长期的大肠杆菌受体细胞混合涂布,过夜培养即可用于筛选与鉴定。

3.1.2 与同源重组有关的原核生物基因

原核生物细胞中的同源重组是个较为复杂的过程,涉及到下列多个基因的联合作用: 1.recA基因

在一项以高频转导细菌为供体、F-细胞为受体的大肠杆菌接合实验中,人们筛选出无法产生选择性突变子的F-克隆,从而分离得到recA突变子。它与野生型亲本株的不同点在于其转导缺陷特征,对紫外线和X射线呈现高度耐受性,既不为紫外线所突变,也不能使紫外线失活的-噬菌体回复突变,更无法通过紫外线诱导溶源噬菌体进入裂解循环。

进一步的研究结果表明,大肠杆菌recA基因编码的RecA蛋白是一个39 kDa的单一多链肽,它作为一种重要的重组酶参与同源重组,其主要作用包括促进DNA同源片段的联会以及DNA分子间的单链交换。由于RecA蛋白具有依赖于单链DNA的ATP酶活性,因此涉及到所有耗能的DNA反应,如互补单链DNA区域的退火、线状单链DNA和环状双链DNA间D-噜噗结构的形成、线状双链DNA和环状单链DNA转变成线状单链DNA和环状双链DNA、两条线状双链DNA分子间的单链交联(即同源重组Holliday机制的中间体,图3-3)等。

RecA介导的同源重组反应对单链DNA的结构要求与同源DNA分子间的联会机制有关。在中性pH的条件下,RecA能大量结合于单链DNA,每个单体与单链DNA上的3-5个碱基结合,而且这种结合作用呈现高度的协同效应。此外,RecA还具有依赖pH和ATP等三磷酸核苷酸的双链DNA结合活性。这种持续的结合作用使得双链DNA有效地解离为单链,直到与含有大于50碱基的同源区域发生联会,并形成Holliday中间体hDNA。在RecA蛋白催化的D-噜噗分叉迁移反应中,单链DNA同化是单方向的,速度极慢,每秒仅几个碱基,并且存在着1%以上的错配碱基。

RecA介导的链同化反应对于DNA底物具有较强的选择性,两种不同类型的反应证明了

这一点。只有当双链DNA的3’端同源并互补于单链环状DNA分子时,它们的重组才能形成稳定的hDNA;类似地,在SSB蛋白存在的情况下,只有当线状单链DNA的3’端与环状双链DNA同源时,hDNA结构才能产生。这说明单链同化反应只能沿着的固定方向进行,这个方向对双链DNA上的互补链来说是3’→5’;而对于入侵的单链DNA来说则是5’→3’。RecA 蛋白要求单链或双链DNA分子上具有3’同源末端以启动稳定的链同化反应。

RecA促进DNA同源重组反应并形成稳定的重组产物,要求底物具备三个条件:即DNA 分子间或分子内存在较高的同源序列、至少一种DNA底物呈单链结构、至少一条DNA链具有自由末端。但值得注意的是,当拓扑异构酶参与反应时,最后一个条件并不是必需的。对纯化的RecA蛋白和完整细胞的研究表明,有效重组事件的发生至少需要40~50个碱基对的同源性,30个同源碱基对通常不能发生联会作用。

类似RecA的蛋白质广泛存在于各种细菌中,鼠伤寒沙门氏杆菌(Salmonella typhimurium)和奇异变形杆菌(Proteus mirabilis)等细菌均含有能互补大肠杆菌recA 突变株的DNA片段,并诱导SOS反应。它们所编码的蛋白质结构呈高度保守性,并且具有相近的分子量(约40 kDa),这表明由RecA蛋白介导的同源重组机制具有广泛的代表性。

2.recBCD基因

RecA蛋白质无疑是同源重组中最重要的蛋白组份之一,但是它只能催化同源联会和链交换反应,不能控制重组过程中的其他步骤,如单链DNA区域的形成、连锁分子的拆分等。根据对大肠杆菌各种重组突变体的研究发现,除了RecA蛋白之外,还需要recB、recC、recD、recE、recF、recG、recJ、recK、recL和recN等基因的编码产物。

在筛选大肠杆菌重组缺陷型突变株的过程中,相继鉴定了recB和recC突变子。其它细菌中也发现了与大肠杆菌RecBCD酶性质相同的ATP-依赖型脱氧核糖核酸酶,第一个关于这方面的报道来自于藤黄微球菌(Microccus luteus)。

大肠杆菌的recB、recC和recD基因分别编码130 kDa、120 kDa和60 kDa的多肽链,三者构成一个在同源重组中的功能单位RecBCD蛋白复合物。它是一个多功能的酶系,具有依赖于ATP的单链和双链DNA外切酶的性质,因此又称为外切核酸酶V。它能利用水解ATP 释放的能量使线型DNA解旋,此外还呈现序列特异性的DNA单链内切酶活性。

体外实验结果表明,如果系统中缺少SSB,RecBCD能进攻线型双链DNA的末端,一次解

旋1000 bp左右的区域,其中一条链被切成4~5碱基的寡核苷酸,另一条链则成为1000个碱基左右的单链尾巴。RecBCD对线型双链DNA的外切活性最高,而对于平头末端的双链DNA 来说,螺旋酶活性占主导地位。RecBCD只对具有平头末端或者几乎平头结构的线型DNA分子呈现解旋功能,而对超螺旋、缺刻、含10到774个碱基缺口的环状双链DNA或含大于30碱基的单链结构的线型DNA分子均无活性。由RecBCD产生的单链DNA可能是RecA促进联会反应的主要底物。

从理论上讲,RecA蛋白介导的同源重组反应可以发生在DNA链上的任何同源序列之间,但是实际上某些序列(即重组热点)发生重组的频率要远远高于其它序列。迄今已知的重组热点主要是Chi位点,最初是在突变的-噬菌体中发现的。纯化的RecBCD酶切割含Chi 位点的DNA比不含Chi的DNA有效得多,在Chi处重组频率显著增加,而位于Chi上游约~ kb 处的重组呈指数减弱。RecBCD解旋DNA后,从Chi位点伸出的单链结构是RecA和SSB蛋白形成D-噜噗的有效底物。大量的实验结果证实,所有RecBCD酶介导的重组过程都要求Chi 或类似Chi的位点,而Chi位点只激活RecBCD重组途径,对RecE、RecF或Red途径不起作用。

通常,recBC无效突变株比recA突变株的重组水平高,这表明在大肠杆菌细胞内至少还存在着另一种依赖RecA但却独立于RecBCD的低水平重组途径。一种能强化这些低水平重组途径并同时使recBC突变株恢复重组能力的突变体被分离出来,经鉴定证实其中的关键基因为sbc,其编码产物实质上是recBC基因表达的抑制因子。

3.sbcABC基因

某些sbcA缺陷的大肠杆菌K-12株,可以通过sbcA基因的回复突变,或者与不含rac 原噬菌体的F-菌株接合,重新产生具有重组活性的rac原噬菌体。相关实验发现,-噬菌体的red-gam突变体在含rac原噬菌体的大肠杆菌宿主中,会产生极少量的拟回复突变体,但这种现象在其它大肠杆菌中并不出现。进一步研究表明,这些-噬菌体的拟回复突变体中含有部分rac原噬菌体,并在其裂解循环中产生不依赖ATP的核酸酶。对含有recBC-sbcA 双重突变的大肠杆菌重组缺陷株的遗传分析发现,rac原噬菌体基因组上的recE位于控制它表达的sbc A附近,编码核酸外切酶ExoVIII,由3或4个约140 kDa的多肽组成。DNA 序列分析表明,sbc A突变子呈现一系列的结构改变,如点突变、缺失和倒位等。此外,sbc A

基因的突变能使recE基因与另一个基因融合,或者通过改变转录和翻译调控位点激活recE 的表达。

从rac原噬菌体缺陷的大肠杆菌菌株中,还可以分离出recBC的第二种抑制基因sbcB。与具有核酸酶活性的sbcA突变株不同的是,sbcB突变株缺乏ExoI的核酸酶活性。ExoI从3’端消化单链DNA,同时释放出5’单核苷酸。一种可能的假设是,ExoI破坏了趋向形成重组子的DNA结构。xon和sbcB是等位基因,因为它们的突变都会使ExoI失活。

此外研究结果还表明,单独的sbcB突变不足以恢复recBC突变株的重组功能,必须在另一位点sbcC的突变才能使recBC突变株有效进行DNA重组反应。recBC-sbcB突变株中常伴随着sbcC的突变,这一现象暗示recBC突变株DNA重组过程的抑制同时需要sbcB和 sbcC 两个基因的协同作用。

4.recE基因

recE突变株是通过筛选无法与高频转导菌株同源重组产生原养型噬菌体的recBC-sbcA 突变株时获得的。recE靠近sbcA,通常表达少量的ExoVIII。ExoVIII从3’端将双链DNA 中的一条链降解成5’-单核苷酸,它对双链末端结构具有明显的偏爱性,缺刻或缺口DNA 不是良好的底物。外切反应形成的单链DNA分子或含3’突出末端的双链DNA分子,能与其他的双链DNA片段相连,这是同源重组过程中的一个重要步骤。ExoVIII、-核酸外切酶与RecBCD一样,都能作用于线型双链DNA分子并产生3’末端结构,但后者是通过解旋DNA 起作用的。

5.recF基因

与recE突变株相同,recF突变株也是在筛选recBC-sbcB-sbcC突变菌是获得的,它位于dnaN和gyrB之间。突变区域的DNA序列分析结果表明,此处含有一个编码357个氨基酸的开放型阅读框架,与dnaN基因重叠一个碱基,并于gyrB编码区的前28个碱基处结束。体外实验结果表明,在-噬菌体强启动子P L和P R的控制下,recF基因低水平表达一个40 kDa 的多肽,其功能可能是调节RecA蛋白的DNA链传递活性或者调控相关调节基因的表达。

3.1.3 同源重组途径

在综合分析recBC和sbc突变株遗传特性的基础上,可以建立大肠杆菌同源重组途径的

大致轮廓,这些途径与氨基酸等小分子的生物合成反应序列非常相似。

在野生型大肠杆菌细胞中,recBCD途径对同源重组过程起主导作用;而recBC-sbc A和recBC-sbcB突变株则分别启用recE途径和recF途径。事实上,上述三条同源重组途径并不是完全孤立的,因为它们都要求recA基因的表达产物,共享RecA蛋白的催化反应。RecBCD 和ExoVIII产生单链DNA的3’-OH末端作为RecA蛋白的作用底物,这与recBCD和recE 途径中这两种酶在RecA蛋白催化反应发生之前已经相互作用的事实相符。而且,假设ExoI 在RecA蛋白之前发挥作用,那么它对单链DNA 3’-OH末端的破坏可以解释其在recF途径中受到抑制的实验结果。这里必须指出的是,目前还没有直接证据表明这些反应发生的严格次序。某些对同源重组过程发挥重要功能的蛋白因子(如RecBCD复合物等),在或早或迟的步骤中都有活性,这对于重组途径的理解增加了复杂性。

recBC-sbcA突变菌株中的接合重组需要recF基因的产物,它是recE和recF途径的共同效应物都要求RecF的作用;另一方面,recE和recF两个途径也都需要recJ、recN和ruv 基因的参与,因此这两个途径有很大一部分重叠,它们可能仅仅在初始阶段不同。此外,由于只有recE和recF途径需要recF、recJ、recN、recO、recQ和ruv基因的编码产物,而recBCD途径并不需要这么多的蛋白因子,迄今尚未有证据表明recBCD途径中的SSB蛋白、DNA 聚合酶I、DNA连接酶和DNA解旋酶同时在recE和recF途径中起作用,因此recBCD 途径与recE和recF途径很可能仅在RecA蛋白催化的反应处是相同的。

大量的研究结果表明,细胞内的DNA同源重组采用何种途径取决于重组双方的分子结构。例如,recBC-sbcA突变株中的-型同源重组(red-)并不需要RecA蛋白,但recBC-sbcB 或recBC-sbcC的突变株却依赖于RecA的功能。类似地,在recBC-sbcA突变株中,质粒DNA 之间的重组也不需要RecA,这可能是由于当联会中的DNA分子能自行复制时,recE途径不要求RecA蛋白。总之,不同的DNA底物分子选择激活并使用不同的重组途径。

3.1.4同源重组模型

在不同的同源重组机制中,单链DNA的3’OH末端侵入双链DNA是非常关键的一步。本节阐述产生3’OH单链末端以及形成重组交联分子的不同机制,这些机制依赖于在不同重组途径中发挥作用的蛋白因子和酶系,而归根结底取决于重组双方不同DNA底物分子的结构特

性。

1.RecBCD复合物和Chi位点介导的同源重组模型

这个模型建立在对酶活力、Chi位点遗传特性以及RecBCD突变株的分析研究基础上,其中Chi位点是肠道细菌中相关酶的激活信号,因此非肠道细菌不通过Chi序列进行重组。

RecBCD复合物首先与双链DNA末端结合,同时解旋DNA产生噜噗环,进而形成兔耳结构(即双噜噗环)。当它遇到一个正确定位的Chi位点时,就会切割含5’-GCTGGTGG-3’序列的DNA链,将一个噜噗结构转变成两条单链DNA。RecBCD复合物持续地解旋延伸3’-OH 尾巴(末端含Chi位点),并同时重旋缩短5’末端,直到导致第二个噜噗结构的消失。此时,RecBCD复合物从含缺口的双链DNA分子上产生一条约数千碱基长的3’-OH单链DNA尾巴,RecA和SSB蛋白则促进这一单链侵入到另一个双链DNA分子(由DNA促旋酶协助形成超螺旋)中,并产生D-噜噗结构,而被置换的另一条DNA链在RecA和SSB蛋白因子的帮助下与第一条链的单链缺口互补配对,这个过程可能需要DNA拓扑酶I的参与或者由RecBCD 复合物切开D-噜噗结构。链交联形成的hDNA可以通过RecBCD复合物的解旋作用以及RecA 和SSB蛋白的链传递作用不断延伸,在此期间Holliday中间体被切开(可能由RecBCD催化完成),并交换DNA末端形成两对重组分子,之后由DNA聚合酶补平缺口,DNA连接酶修复相应的磷酸二酯键(图3-4)。

由于RecBCD复合物只有当从右向左解旋DNA时才能切开Chi序列,因而可以其解释对Chi位点的定向依赖性。D-噜噗结构是在RecA和SSB蛋白因子的催化下形成的,只有当单链DNA 3’-OH末端与双链DNA具有同源性、且双链DNA呈负超螺旋构象时,这种结构才能产生。这些性质与Chi序列和RecBCD酶的反应极性以及DNA促旋酶对RecBCD催化的重组反应的要求是一致的。

研究结果表明,-噬菌体基因组的lac遗传位点与F’性因子DNA上的lac基因通过RecBCD复合物发生高频重组,但它与大肠杆菌染色体上的lac位点交联却属于RecBCD非依赖型的低频重组。质粒DNA与染色体DNA之间的同源重组独立于RecBCD复合物的性质与这些分子的环状结构相吻合,它们主要通过recE和recF途径进行同源重组。

2.recE和recF同源重组途径的模型

在recE和recF的同源重组途径中,RecA蛋白促进同源的单链DNA与双链DNA之间的

配对过程,ExoI(sbcB)和ExoVIII(recE)则破坏或者促进作为RecA蛋白底物的3’-OH 单链结构的形成。实验结构证实,recBC突变株能产生的重组的DNA分子,但它很快就被ExoI 破坏了;sbc B突变株中的ExoI失活导致DNA同源重组沿recF途径进行;而激活recE基因表达的sbc A突变株则通过recE途径进行同源重组重组。由此可见,RecA、ExoI和ExoVIII 的特性符合3’-OH单链DNA末端作为recE和recF途径主要中间物的假说。

ExoVIII只作用于线型双链DNA底物,而超螺旋、缺刻或含缺口的环状DNA分子均不能为ExoVIII作用,这与RecBCD复合物的底物要求相同。事实上,recE途径和recBCD途径一样可以进行高频重组,ExoVIII也能作用于RecBCD复合物的同一系列底物。ExoVIII在双链DNA的末端附近产生3’-OH单链结构并启动重组过程,就象RecBCD复合物在Chi位点附近所发生的反应完全一样。与recBCD途径不同的是,recE和recF途径可以促进环状DNA 分子(如质粒)之间的同源重组,但线型DNA与环状DNA(如-噬菌体基因组的lac位点与大肠杆菌染色体上的lac)之间的重组则较难发生,这可能是由于上述双链DNA分子中的缺口结构出现频率较低所致。

DNA的3’-OH单链末端在细胞中通常低频存在,而且极易被ExoI降解,但在RecBCD 复合物的存在下,这种结构能高频产生,不被相对弱的ExoI酶破坏。形成这种3’-OH单链DNA结构的酶系由在recF途径中起作用的recF、rec J、rec N、rec O、rec Q或ruv基因编码,但不属于recBCD途径中的基因。由于recE和recF途径也需要RecA蛋白,可以预计这两个途径同样包含了RecA蛋白在recBCD途径中所负责的反应,此外,recBCD途径中其他的蛋白因子(如SSB蛋白、DNA促旋酶、DNA 聚合酶和DNA连接酶)在recE和recF途径中仍然催化类似的同源重组反应。

3.1.5同源重组的影响因素

在一项研究中,通过测定微质粒VX上胰岛素编码区与-噬菌体DNA同源序列之间的重组频率,分析出大肠杆菌细胞内重组频率与DNA序列同源性的正相关性。

DNA分子间同源重组的最小长度比形成DNA双螺旋稳定结构物的长度略长,也比存在于大肠杆菌染色体上的具有独立遗传性的寡核苷酸的长度略长。Vb质粒和-噬菌体之间的

重组频率随长度的增加而不断提高,并以大约74个碱基对为转折点。在74~313个碱基对的同源序列之间的重组率随长度呈线性提高,即313个碱基对的重组率是74个碱基对的3倍,也就是说在这一同源长度范围内,重组频率与可进行重组的位点数目成比例。当同源碱基对数少于74时,重组率随同源长度减少呈指数下降,例如同源碱基对数从74依次减少到53、30、20时,每一步的重组率几乎都分别比前一步降低10倍。在T4噬菌体系统中,重组率与50~200的同源碱基对数呈线性关系,T4噬菌体与含T4-DNA的质粒之间的重组在同源DNA长度达到76碱基对时明显上升。Vb和-hI1DNA之间16个同源碱基对的重组频率只有20个碱基对的1/100,也就是说,从16碱基对到20碱基对重组率的大幅度提高不仅仅是DNA 双螺旋结构稳定性的要求,而且还可能是重组过程本身需要增加同源性,以形成包括蛋白质和DNA在内的稳定的同源复合体。最小同源重组碱基对数为20的系统发生异源重组的概率只有最小碱基对数为15的1/1000。

3.1.6 同源重组在途径操作中的实际应用

利用质粒DNA(或重组DNA)与宿主细胞染色体DNA之间的同源性引入遗传重组是一种非常简单有效的方法,已有许多成功的例子:

(1)将携带温度敏感型复制子的质粒pSC101转化大肠杆菌宿主菌,在质粒不能复制的极限温度44℃时,转化子的染色体DNA与质粒上的同源序列发生同源重组,此时可以筛选出质粒整合子。当生长温度逐步下降到允许质粒复制的30℃时,转化子发生第二次重组,整合型的质粒从染色体DNA上脱落下来,此时染色体上或发生基因置换或保留基因原拷贝(图3-5)。由于可以借助于选择压力维持剥落的重组质粒,因而这种方法也可用来缺失宿主细胞染色体上的生理必需基因,即所谓的基因敲除战略。

(2)利用大肠杆菌的单链DNA整合型载体转化绿色产色链霉菌(Streptomyces viridochromogenes),被硫链丝菌素抗性基因(ts r)灭活的pat基因置换了宿主染色体上的同源基因(图3-6),并分离出不能合成PTT的重组突变株,这是第一个利用非复制型大肠杆菌载体以DNA单链形式产生抗生素合成缺陷型突变株的报道。当供体DNA呈单链结构时,绿色产色链霉菌的整合频率大幅度提高。

(3)ColE1型重组衍生质粒(如pBR322)在宿主细胞中独立于染色体而进行的自主复

制需要polA基因编码的DNA聚合酶I的参与。将此类载体质粒或重组质粒转化polA缺陷型的突变株中,能有效启动同源重组的发生,而且该系统的宿主范围较广,包括大肠杆菌和沙门氏杆菌等,因而具有很强的实用价值。

(4)利用大肠杆菌中多拷贝质粒分配的不均匀性分离染色体基因发生置换的突变株,也是一种独特的思路(图3-7)。在大多数情况下,多拷贝质粒在两个子细胞中的分配是随机的,含有较少质粒拷贝的细胞在分裂过程中往往会形成无质粒的后代,而多拷贝质粒的集聚以及外源DNA大片段的插入都会造成质粒的分配不稳定性,因而只要是染色体基因可分配并具备发生同源重组条件的菌株,就可以用此法构建相应的突变株。

如上所述,利用同源重组技术可以在宿主染色体DNA上造成序列特异性的插入、缺失或置换突变,包括扩增途径关键基因、定向灭活靶基因、以及引入新基因等,这是途径工程操作的重要有效手段。其中,根据同源重组原理合理设计和构建不同结构的重组质粒就能分别甚至达到上述目的。

1.利用同源重组技术定向灭活靶基因

首先克隆待灭活的靶基因,然后体外构建该基因结构部分缺失的重组质粒,后者导入宿主细胞,质粒上的缺陷基因通过与染色体上的靶基因发生两次同源重组将之交换下来,同时自身进入染色体中。当重组质粒被消除后,转化子原靶基因控制的性状便会消失。

例如,林可链霉菌(Streptomyces lincolnensis)B48株的染色体上含有林可霉素生物合成基因簇,将含有被ts r灭活的部分林可霉素生物合成基因的大肠杆菌重组质粒转化林可链霉菌B48株的原生质体,并用每毫升5微克的低浓度硫链丝菌素筛选转化子,获得两个长出浓密孢子的菌落YY1和YY2。以ts r基因为探针进行第一轮杂交,两个菌株皆呈现 kb 的阳性片段,说明它们是同源重组子;再以大肠杆菌载体质粒上的lacZ基因为探针进行第二轮杂交,只有YY2出现 kb的阳性条带,说明它是同源整合子,而YY1则是同源交换子或二次重组子。

如果待灭活的靶基因是宿主细胞生长代谢所必需的,那么就要充分考虑必需基因的灭活会抑制细菌的生长。为此,需要采用先整合后脱落的程序筛选突变株(图3-8):先将含有被卡那霉素抗性基因(Km)灭活的asp同源基因的无复制子质粒整合到宿主的染色体上,然后再向细胞内补充必需基因,使得染色体上的两个同源拷贝之间发生二次重组。在此情况下,

染色体上丢失了Km标记基因的克隆即为所需的同源重组子。最后,再以同源基因取代必需基因拷贝,就可以达到改造代谢途径的目的。

2.利用同源重组技术扩增途径关键基因

为了疏通细胞内代谢途径中的限速步骤,常采用扩增关键酶基因拷贝数的战略。为此,可将克隆到的关键酶基因加装强启动子,与标记基因串联到无复制能力的载体质粒上,并转化宿主细胞进行同源整合反应,最后利用标记基因筛选所需要的同源整合子(图3-9)。本法操作简便,但缺点是整合后染色体的双拷贝之间易发生第二次重组,所以在大规模生产应用过程中需定时更新菌种,以保证其不退化。

3.利用同源重组技术引入新基因

在宿主染色体DNA的特定位点上引入新基因,首先需要克隆包括该位点的一段序列,然后体外将待引入的新基因和一个合适的筛选标记基因插在其内部,并与无复制能力的载体质粒进行拼接。上述构建的重组分子转化宿主细胞,新基因和标记基因两侧的DNA序列与染色体上的同源序列便发生同源交换,最终以标记基因筛选突变株(图3-10)。

原核生物和真核生物的主要区别

原核生物和真核生物的主要区别 人教版高一必修一生物 一、协作学习任务设计 1、展示原核生物和真核生物的图片或者视频 生物体可以分为非细胞结构和细胞结构。科学家又根据细胞内有无以核膜为界限的细胞核,将细胞分为两类,原核细胞和真核细胞。 提出问题:原核生物和真核生物的主要区别在哪? 二、教师进行指导,并提供资源 (一)回顾并总结原核生物、真核生物在细胞结构上的特点以及主要类群 (二)原核细胞和真核细胞的结构特点进行比较 (三)在认识和比较的基础上,探讨原核细胞和真核细胞之间的相关性及其发展史。 学习资源 1、教材 2、生物进化史课本 三、开展协作学习 学生之间进行分组,组内进行收集资料,讨论、总结。 四、开展学习活动 五、小组内部进行分工,可以按照老师的指导进行收集资料、进行总结。 原核生物的结构特点: 1、细胞大小:支原体是原核生物中最小的生物体。 2、细胞壁:肽聚糖(糖类与蛋白质结合而成的化合物),不含纤维素。 3、细胞膜:与真核细胞的相似。 4、细胞质:只有核糖体,无其他复杂的细胞器。 5、拟核:有丝状DNA分子,分布于细胞质的一定区域,没有核膜。 原核生物的主要类群: 蓝藻,含有(藻蓝素)和(叶绿素),可进行光合作用。 细菌,(球菌、杆菌、螺旋菌、和乳酸菌) 放线菌,(链霉菌) 支原体,衣原体,立克次氏体 真核生物的结构特点: 1.生物膜结构:以生物膜为基础而形成的膜性结构和细胞器 2.细胞骨架结构:包括细胞质骨架和核骨架 3.细胞质溶胶:为均质半透明液体,是代谢反应进行的场所 4:细胞核:遗传信息储存、表达的部位 真核生物的主要类群: 动物 植物 真菌(青霉菌,酵母菌,蘑菇)

原核生物基因组和真核生物基因组比较区别

原核生物基因组和真核生物基因组的区别: 1、真核生物基因组指一个物种的单倍体染色体组(1n)所含有的一整套基因。还包括叶绿体、线粒体的基因组。 原核生物一般只有一个环状的DNA分子,其上所含有的基因为一个基因组。 2、原核生物的染色体分子量较小,基因组含有大量单一顺序 (unique-sequences),DNA仅有少量的重复顺序和基因。 真核生物基因组存在大量的非编码序列。包括: .内含子和外显子、.基因家族和假基因、重复DNA序列。真核生物的基因组的重复顺序不但大量,而且存在复杂谱系。 3、原核生物的细胞中除了主染色体以外,还含有各种质粒和转座因子。质粒常为双链环状DNA,可独立复制,有的既可以游离于细胞质中,也可以整合到染色体上。转座因子一般都是整合在基因组中。 真核生物除了核染色体以外,还存在细胞器DNA,如线粒体和叶绿体的DNA,为双链环状,可自主复制。有的真核细胞中也存在质粒,如酵母和植物。 4、原核生物的DNA位于细胞的中央,称为类核(nucleoid)。 真核生物有细胞核,DNA序列压缩为染色体存在于细胞核中。 5、真核基因组都是由DNA序列组成,原核基因组还有可能由RNA组成,如RNA病毒。 原核生物和真核生物区别(从细胞结构、基因组结构和遗传过程分析)主要差别 由真核细胞构成的生物。包括原生生物界、真菌界、植物界和动物界。真核细胞与原核细胞的主要区别是:

【从细胞结构】 1.真核细胞具有由染色体、核仁、核液、双层核膜等构成的细胞核;原核细胞无核膜、核仁,故无真正的细胞核,仅有由核酸集中组成的拟核 2.真核细胞有内质网、高尔基体、溶酶体、液泡等细胞器,原核细胞没有。 真核细胞有发达的微管系统,其鞭毛(纤毛)、中心粒、纺锤体等都与微管有关,原核生物则否。 3.真核细胞有由肌动、肌球蛋白等构成的微纤维系统,后者与胞质环流、吞噬作用等密切相关;而原核生物却没有这种系统,因而也没有胞质环流和吞噬作用。 真核细胞的核糖体为80S型,原核生物的为70S型,两者在化学组成和形态结构上都有明显的区别。 4.原核细胞功能上与线粒体相当的结构是质膜和由质膜内褶形成的结构,但后者既没有自己特有的基因组,也没有自己特有的合成系统。真核生物的植物含有叶绿体,它们亦为双层膜所包裹,也有自己特有的基因组和合成系统。与光合磷 酸化相关的电子传递系统位于由叶绿体的内膜内褶形成的片层上。原核生物中的蓝细菌和光合细菌,虽然也具有进行光合作用的膜结构,称之为类囊体,散布于细胞质中,未被双层膜包裹,不形成叶绿体。 【从基因组结构】 1.真核生物中除某些低等类群(如甲藻等)的细胞以外,染色体上都有5种或4种组蛋白与DNA结合,形成核小体;而在原核生物则无。 2.真核生物中除某些低等类群(如甲藻等)的细胞以外,染色体上都有5种或4种组蛋白与DNA结合,形成核小体;而在原核生物则无。 3.真核细胞含有的线粒体,为双层被膜所包裹,有自己特有的基因组、核酸合成系统与蛋白质合成系统,其内膜上有与氧化磷酸化相关的电子传递链

高中生物必修二减数分裂详尽分析

有丝分裂和减数分裂 有丝分裂 ①着丝点分裂, 后期:一分为二向两极。末期:两消两现新壁现。 一、 减数分裂 (一)相关概念 ①. 同源染色体:两个形状、大小一般都相同,一个来自父方,一个来自母方,在减数分裂中要配对的染色体。 1和2或3和4 都是一对同源染色体 (数目:同源染色体的对数

= 体细胞染色体数减半) ②.联会:同源染色体两两配对的行为。如图 ③.四分体:含有四个姐妹染色单体的配对的一对同源染色体。1和2或3和4各组成一个四分体 (一个四分体中有两个着丝点、两条染色体、四个DNA分子,四条染色单体)(数目:四分体数 = 同源染色体对数 = 体细胞染色体数减半) ④.非姐妹染色单体:不是连在同一个着丝点上的染色单体 同源染色体分 离向细胞两 极,非同源染 着丝点分裂, 染色体一分为

第一次分裂第二次分裂 1个极体 2个极体 滋长(2N)(N)3个极体 1个卵原细胞 1个初级卵母细胞 1个极体(N)(2N)复制(2N) 1个次级母细胞 (N)1个卵细胞(N) 精原复制初级四分体(交叉互换)次级单体分开精变形精 细胞精母分离(自由组合)精母细胞子 染色体 2N 2N N 2N N N DNA 2C 4C 4C 2C 2C C C

三、DNA 和染色体的数目变化曲线图 1 、减数分裂DNA 和染色体的数目变化曲线图 精子细胞 母细胞 母细胞 母细胞 母细胞 减数分裂过程中DNA 的复制发生在间期,此时DNA 数目加倍但是染色体数目不变。染色体和DNA 数目减半发生在减数第一次分裂.......,原因是同源染色体分离并进入不...........同的子细胞.....。所以减数第二次分裂过程中无同源染色体......。 2、有丝分裂中DNA 和染色体的数目变化曲线图 期 末期 有丝分裂过程中DNA 的复制发生在间期,此时DNA 数目加倍但是染色体数目不变。在后期时由于着丝点分裂染色单体分开,此时染色体数目加倍,但是DNA 数目不变。染色体和DNA 数目减半发生在末期..,原因是染色体分离并进入不同的...........子细胞...。有丝分裂过程中始终有同源染色体.....存在..。

原核生物和真核生物的比较

原核生物和真核生物基因组的比较(我好想比较过了,是不是?) 原核生物和真核生物DNA复制的特点: 原核:一般只有一个复制起点,即一个复制子,复制子较长,复制起始点oriC含有3个13bp 的串联重复保守序列,复制起始之后在OriC上形式两个复制叉沿着整个基因组双向等速移动,并且形成θ形中间产物,两个复制叉在距离起点180°处汇合,在快速生长时,一个复制起点上可以形成多个复制叉,可以连续开始新的DNA复制; 真核:有多处复制起点,复制子相对较小,复制叉的移动速度较慢,由于有多个复制起点,所以后随链是以半不连续的方式复制的,在染色体全部完成复制之前,各个起始点上的DNA 的复制不能再开始。 原核生物和真核生物DNA转录的特点: 相同点:都是以DNA双链中的反义链为模板,在RNA聚合酶催化下,以4种核糖核苷酸为原料,根据碱基互补配对原则,各核苷酸间以磷酸二酯键相连,不需要引物的参与,按5’- 3’方向合成 不同点:真核生物RNA聚合酶必须借助辅助蛋白才能与启动子结合;原核生物中一种RNA 聚合酶几乎负责所有mRNA、rRNA、tRNA的合成,真核生物有3类RNA聚合酶:I负责rRNA 合成,II负责hnRNA(前体mRNA)合成,III负责tRNA合成;原核生物基因启动区范围较小,而真核生物的启动区范围较大。 真核生物和原核生物mRNA的特征比较(这个也总结过了吧) 真核生物和原核生物在基因结构、转录和翻译方面的总体差异: (1)真核细胞中,一条mRNA链只能翻译出一条多肽链,原核生物则以多基因操纵子形式存在; (2)真核细胞DNA与组蛋白和大量非组蛋白结合,只有一小部分DNA是裸露的; (3)高等真核细胞DNA中很大一部分不转录,存在很多重复序列,而且基因内部还存在不被翻译的内含子; (4)真核生物能够有序根据生长发育阶段的需要进行DNA片段重排,还能根据需要改变基因的拷贝数,原核生物中则非常少见; (5)原核生物转录的调节区很小,而真核生物基因转录的调节区则大得多; (6)真核生物RNA在细胞核中合成,需要通过核膜进入细胞质才能被翻译,原核生物中不存在这样严格的空间间隔; (7)真核生物的基因只用经过复杂的成熟和剪接过程才能被顺利翻译为蛋白质。 原核生物和真核生物细胞的比较: 相同点:都有细胞膜,都含有核糖体合成蛋白,都含有细胞质基质作为生理生化反应的场所,都以DNA作为遗传物质,都遵循碱基互补配对原则以半保留复制方式进行DNA复制; 不同点:(1)真核细胞有核膜包被的细胞核,原核细胞只有核区、没有核膜包被的细胞核;(2)真核细胞含有以高尔基体、内质网为代表的细胞内膜系统,原核细胞则没有;(3)真核细胞DNA与组蛋白及非组蛋白结合为染色质,原核细胞DNA则是裸露的DNA分子;(4)原核生物DNA一般边转录边翻译,而真核生物mRNA则需要先转录然后转运至细胞质基质中再进行翻译

人教版高一年级生物下学期一单元原核细胞与真核细胞知识点

人教版高一年级生物下学期一单元原核细 胞与真核细胞知识点 相同点: 有细胞膜细胞质,均有核糖体,均能进行转录与翻译过程合成蛋白质。 2.均有DNA和RNA,且均以DNA为遗传物质。 区别: 1.大小区别:小、大。 2.种类区别:细菌、蓝藻、放线菌、衣原体、支原体 动物、植物、真菌、衣藻、绿藻、红藻等 3. 细胞壁:为肽聚糖、真核为纤维素和果胶 4.细胞质中细胞器:不含复杂的细胞器,但有的能、。其场所分别在中、细胞膜上进行。例、蓝藻、硝化细菌等。高等植物成熟的叶肉细胞特有:细胞壁、大的液泡、叶绿体低等的特有: 细胞壁、液泡、叶绿体、中心体特有:中心体,(无细胞壁、叶绿体和大的液泡)。 5.均以DNA为遗传物质:DNA在拟核、质粒中。无染色体结构。(染色体由DNA和蛋白质组成)DNA在细胞核、线粒体或叶绿体中。

6.的遗传不遵循孟德尔的遗传规律,其变异靠基因突变,细胞不能进行有丝分裂和减数分裂。真核生物的遗传遵循孟德尔的遗传规律,其变异来源有基因突变、基因重组、染色体变异。 7.生殖方式:只进行,主要进行分裂生殖进行有性生殖,但酵母菌在不良的环境下进行有性生殖,在良好的环境下进行。 8.从生态系统的组成成分上看:某些能进行活化能合成作用的原核生物属于生产者,为自养生物。例、蓝藻、硝化细菌等。多数细菌为分解者,例大肠杆菌、乳酸菌等;有的为消费者,例根瘤菌等。 练习题: 1.用高倍显微镜观察黑藻叶绿体时,可见叶绿体( ) A.具有双层膜 B.呈绿色带状 C.内部有许多基粒 D.呈绿色椭球形 答案:D 2.细胞质基质是细胞结构的重要组成部分,下列关于细胞质基质的叙述,错误的是( ) A.影响细胞的一系列活动 B.是活细胞进行新陈代谢的主要场所

高中生物练习-基因重组使子代出现变异(1)(教师版)

4.2 基因重组使子代出现变异 一、选择题 1.下列高科技成果中,根据基因重组原理进行的是() ①我国科学家袁隆平利用杂交技术培育出超级水稻 ②我国科学家将苏云金杆菌的某些基因移植到棉花体内,培育出抗虫棉 ③我国科学家通过返回式卫星搭载种子培育出太空椒 ④我国科学家通过体细胞克隆技术培养出克隆牛 A.① B.①② C.①②③ D.②③④ 【答案】B 【解析】考查基因重组原理及学生对生物科技的关注.培育太空椒是种子在失去重力作用下提高基因突变频率;“克隆”是一项无性繁殖技术,不经过两性生殖细胞的结合.杂交技术和转基因技术都是利用基因重组原理. 2.以下有关基因重组的.叙述,正确的是() A.非同源染色体的自由组合能导致基因重组 B.姐妹染色单体间相同片段的交换导致基因重组 C.基因重组导致纯合体自交后代出现性状分离 D.同卵双生兄弟间的性状差异是基因重组导致的 【答案】A 【解析】本题考查的是基因重组的几种类型.基因重组主要有以下几种类型:在生物体进行减数分裂形成配子时,同源染色体分开,非同源染色体自由组合,这样非同源染色体上的基因就进行了重组;还有就是在减数分裂形成四分体时期,位于同源染色体上的等位基因有时会随着非姐妹染色单体的交叉互换而发生交换,导致基因重组;还有一种类型就是基因工程.因此可见选项A是正确的;选项B中相同片段是相同基因,不是等位基因;C中纯合体自交不会出现性状分离;D中同卵双生兄弟间的性状差异是基因突变引起的. 3.右图中①和②表示发生在常染色体上的变异. ①和②所表示的变异类型分别属于() A.重组和易位 B.易位和易位 C.易位和重组 D.重组和重组

高一生物减数分裂和受精作用知识点复习

高一生物减数分裂和受精作用知识点复习 高一生物减数分裂和受精作用知识点 一、减数分裂 1、减数分裂概念 1条件:进行有性生殖的生物,产生成熟生殖细胞时。 2主要特点:染色体只复制一次,细胞分裂两次。 3结果:成熟生殖细胞中染色体数目比原始生殖细胞减少一半。 4理解如下表: 范围进行有性生殖的生物 时期从原始生殖细胞→成熟生殖细胞 特点染色体只复制一次,二细胞分裂两次 结果染色体数目减少一半 场所有性生殖器官 2、减数分裂的过程 1间期:DNA复制,有关蛋白质合成 染色体复制、每条染色体含两条姐妹染色单体 3点拨:细胞的减数分裂是一个动态的渐变过程,每一个时期的转变都需要一定时间,所以判断不同时期时要根据该时期的主要特征。 减数分裂的结果是核DNA随染色体数目减半而减半,但质DNA不一定平分,因此质DNA不一定减半。 二、受精作用 1、概念:卵细胞和精子相互识别、融合成为受精卵的过程。 2、过程 1精子的头部进入卵细胞,尾部留在外面。 2卵细胞的细胞膜会发生复杂的生理反应,以阻止其他精子再进入。

3精子的细胞核与卵细胞的细胞核相融合,使彼此的染色体会合在一起。 3、结果:受精卵中的染色体数目又恢复到体细胞中的数目,其中一半染色体来自精子父方,一半来自卵细胞母方。 4、意义 减数分裂和受精作用对于维持每种生物前后代体细胞中染色体数目的恒定,对于生物的遗传和变异,都是十分重要的。 5、配子中染色体组合多样性的原因 1同源染色体的分离和非同源染色体的自由组合。 2同源染色体上非姐妹染色单体的交叉互换。 三、观察蝗虫精母细胞减数分裂固定装片的步骤 1 低倍显微镜观察蝗虫精母细胞减数分裂固定装片,识别初级精母细胞、次级精母细胞和精细胞 2 根据染色体的形态、位置和数目,利用低倍镜和高倍镜识别不同时期的细胞。 3 根据观察结果绘制不同时期的细胞简图。 感谢您的阅读,祝您生活愉快。

真核生物与原核生物的区别

真核生物的特征 原核细胞功能上与线粒体相当的结构是质膜和由质膜内褶形成的结构,但后者既没有自己特有的基因组,也没有自己特有的合成系统。 真核生物的植物含有叶绿体,它们亦为双层膜所包裹,也有自己特有的基因组和合成系统。与光合磷酸化相关的电子传递系统位于由叶绿体的内膜内褶形成的片层上。原核生物中的蓝细菌和光合细菌,虽然也具有进行光合作用的膜结构,称之为类囊体,散布于细胞质中,未被双层膜包裹,不形成叶绿体。 原核生物的特点 ①核质与细胞质之间无核膜因而无成形的细胞核(拟核或类核); ②遗传物质是一条不与组蛋白结合的环状双螺旋脱氧核糖核酸(DNA)丝,不构成染色体(有的原核生物在其主基因组外还有更小的能进出细胞的质粒DNA); ③以简单二分裂方式繁殖,无有丝分裂或减数分裂; ④没有性行为,有的种类有时有通过接合、转化或转导,将部分基因组从一个细胞传递到另一个细胞的准性行为(见细菌接合); ⑤没有由肌球、肌动蛋白构成的微纤维系统,故细胞质不能流动,也没有形成伪足、吞噬作用等现象; ⑥鞭毛并非由微管构成,更无“9+2”的结构,仅由几条螺旋或平行的蛋白质丝构成; ⑦细胞质内仅有核糖体而没有线粒体、高尔基器、内质网、溶酶体、液泡和质体(植物)、中心粒(低等植物和动物)等细胞器; ⑧细胞内的单位膜系统除蓝细菌另有类囊体外一般都由细胞膜内褶而成,其中有氧化磷酸化的电子传递链(蓝细菌在类囊体内进行光合作用,其他光合细菌在细胞膜内褶的膜系统上进行光合作用;化能营养细菌则在细胞膜系统上进行能量代谢); ⑨在蛋白质合成过程中起重要作用的核糖体散在于细胞质内,核糖体的沉降系数为70S;

⑩大部分原核生物有成分和结构独特的细胞壁等等。总之原核生物的细胞结构要比真核生物的细胞结构简单得多。 真核细胞与原核细胞的区别 真核细胞与原核细胞的主要区别是: ①真核细胞具有由染色体、核仁、核液、双层核膜等构成的细胞核;原核细胞无核膜、核仁,故无真正的细胞核,仅有由核酸集中组成的拟核。 ②真核细胞的转录在细胞核中进行,蛋白质的合成在细胞质中进行,而原核细胞的转录与蛋白质的合成交联在一起进行。 ③真核细胞有内质网、高尔基体、溶酶体、液泡等细胞器,原核细胞没有。 ④真核生物中除某些低等类群(如甲藻等)的细胞以外,染色体上都有5种或4种组蛋白与DNA 结合,形成核小体;而在原核生物则无。 ⑤真核细胞在细胞周期中有专门的DNA复制期(S期);原核细胞则没有,其DNA复制常是连续进行的。 ⑥真核细胞的有丝分裂是原核细胞所没有的。 ⑦真核细胞有发达的微管系统,其鞭毛(纤毛)、中心粒、纺锤体等都与微管有关,原核生物则否。 ⑧真核细胞有由肌动、肌球蛋白等构成的微纤维系统,后者与胞质环流、吞噬作用等密切相关;而原核生物却没有这种系统,因而也没有胞质环流和吞噬作用。 ⑨真核细胞的核糖体为80S型,原核生物的为70S型,两者在化学组成和形态结构上都有明显的区别。 ⑩真核细胞含有的线粒体,为双层被膜所包裹,有自己特有的基因组、核酸合成系统与蛋白质合成系统,其内膜上有与氧化磷酸化相关的电子传递链。 11真核生物细胞较大,一般10~100纳米,原核生物细胞较小,大约1~10纳米。

高中生物减数分裂的教学设计

《减数分裂和受精作用》教学设计 一、教材分析: 本节《减数分裂和受精作用》是高中人教版必修2第二章中的重点内容,同时也是高一生物乃至是高中生物的重点内容。它解释了有性生殖细胞(如精子,卵细胞)形成的过程和受精作用的大致过程。减数分裂是有丝分裂的延续和另一大分支,又是更好掌握第一章中分离定律、自由组合定律等遗传规律的细胞学基础。 这一节的新名词较多和知识点繁多,教材内容微观,与生活联系不大,使其内容非常抽象,并且此节的图形众多和相似度高,向来是学生头疼的章节。但是减数分裂这节内容的知识点却也是高考的热点内容。特别是减数分裂各个阶段,各个阶段的各个时期的染色体的形态及行为变化,和减数分裂过程中染色体、染色单体、DNA数目的变化及它们之间的关系都是高考的热点考点。 二、学情分析: 学生已经在初中已经接触减数分裂的相关知识,并且对生物生殖部分内容相当感兴趣。所以他们对减数分裂已经有了一定的了解,学习起来并不觉得完全陌生和难以接受。而且在高一第一学期已经详细地了解过有丝分裂的整个过程,对有丝分裂各个阶段的染色体形态的变化和染色体、DNA数目的变化已经有了深入的了解。由于减数分裂跟有丝分裂的所学重点都差不多,所以在减数分裂各个阶段的染色体形态的变化和染色体、DNA数目的变化的理解上已经有了一定的基础。学生的观察力、记忆力、想象力有了明显的提高,认知活动的自觉性,认知系统的自我评价和自我控制能力也有了相应的发展。 但正因为减数分裂与有丝分裂有一定的相似点,所以容易混淆,它们的区别

更是难点。但又因为这是高考的重点,所以他们需要的是老师给予的耐心指导和时间。又由于减数分裂过程较烦琐,内容抽象,图形多,易引起学生思维的混乱,这些都必须老师用各种教学方式去给予形象化的引导和梳理,需要老师将课本知识生活化,具体化,并且让学生自主地体会和发觉,理解,并转化为课本的知识。 三、设计理念: 《新课程标准》强调关注学习兴趣,倡导体验、实践、参与、合作与交流的学习方式和任务型的教学途径,发展学生的综合运用能力,培养理论联系实际意识,突出创新精神和实践能力的培养。教师应当通过设计各种形式(如多媒体,挂图,游戏,故事,诗句,比喻等),或学生以学习小组为单位通过共同合作,共同探究,集体讨论的方式,使学生在愉快和自信的情绪中,充分发挥他们的想象力、创造力、实践力使探究式学习和个性发展得到最大体验。 四、教法分析 本节课把多种教学方法融合在一起: 1)引导-探究法:在教师的启发和引导下,学生通过蝗虫生殖细胞形成的探究实验,了解减数分裂的大致过程和结果,符合知识的发生和发展规律 2)合作-构建模型法:学生自主学习,小组讨论染色体行为和数目的变化,通过橡皮泥制作的染色体模拟减数分裂过程,把抽象复杂的生命现象,转化为直观具体、肉眼可见的过程,完成自主构建知识的过程。 3)角色扮演法:学生角色扮演非同源染色体的自由组合,化抽象为具体,使学生在轻松愉快的游戏活动中获得深刻印象,并大大调动学生学习的主动性和积极性 4)多媒体辅助教学:利用多媒体技术手段,把减数分裂的动态过程演示出来,

真核生物和原核生物的异同

从DNA复制、RNA转录、蛋白质翻译3个方面,叙述真核生物和原核生物的异同。 一、真核生物和原核生物的不同点 A、真核生物和原核生物复制的不同点: 1.真核生物DNA的合成只是在细胞周期的S期进行,而原核生物则在整个细胞生长过程中都可进行DNA合成 2.原核生物DNA的复制是单起点的,而真核生物染色体的复制则为多起点的。真核生物中前导链的合成并不像原核生物那样是连续的,而是以半连续的方式,由一个复制起点控制一个复制子的合成,最后由连接酶将其连接成一条完整的新链。 3.真核生物DNA的合成所需的RNA引物及后随链上合成的冈崎片段的长度比原核生物要短。 4.原核生物中有DNA聚合酶Ⅰ、Ⅱ、Ⅲ三种聚合酶,并有DNA聚合酶Ⅲ同时控制两条链的合成。真核生物中有α、β、γ、ε、δ五种聚合酶。聚合酶α、δ是DNA 合成的主要酶,分别控制不连续的后随链以及前导链的生成。聚合酶β可能与DNA修复有关,聚合酶γ则是线粒体中发现的唯一一种DNA聚合酶. 5.染色体端体的复制不同。原核生物的染色体大多数为环状,而真核生物染色体为线状。末端有特殊DNA序列组成的结构成为端体。 B、真核生物和原核生物转录的不同点: 1.真核生物的转录在细胞核内进行,原核生物则在拟核区进行。 2.真核生物mRNA分子一般只编码一个基因,原核生物的一个mRNA分子通常含多个基因。 3.真核生物有三种不同的RNA聚合酶催化RNA合成,而在原核生物中只有一种RNA聚合酶催化所有RNA 的合成。 4.真核生物的RNA聚合酶不能独立转录RNA,三种聚合酶都必须在蛋白质转录因子的协助下才能进行RNA的转录,其RNA聚合酶对转录启动子的识别也比原核生物要复杂得多。原核生物的RNA聚合酶可以直接起始转录合成RNA。 C、真核生物和原核生物翻译的不同点: 1.氨基酸的活化:原核起始氨基酸是甲酰甲硫氨酸,真核是从生成甲硫氨酰-tRNAi开始的。 2.翻译的起始:原核的起始tRNA是fMet-tRNA(fMet上角标),30s小亚基首先与mRNA

原核生物与真核生物复制的区别

原核生物与真核生物复 制的区别 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

(二)D N A 的复制的必要条件 1、摸板:母链DNA 解链成单链后的两条链均可作为摸板。 2、原料:4种脱氧核苷三磷酸。 3、需要一小段RNA 作为引物,提供3'-OH 末段。 4、需要ATP 和无机离子。 5、需要多种酶和蛋白因子:如引物酶、DNA 聚合酶、拓扑酶、SSB 蛋白等。 以上必要条件中,原核生物和真核生物在DNA 的复制所需要引物、酶和蛋白因子等存在差别。其中DNA 聚合酶种类存在较大的差别。DNA 聚合酶是指以DNA 为摸板,在RNA 引物3'-OH 末段沿5'→3'方向按照碱基互补的原理催化合成DNA 链的酶,也称为依赖DNA 的DNA 聚合酶。原核生物和真核生物DNA 聚合酶的区别主要见下表1 表1 原核生物和真核生物DNA 聚合酶的区别 原核生物三种 DNA 聚合酶都有 5'→3'聚合活性和3'→5'外切酶活性,不同的是DNA-polⅠ还有5'→3'外切酶活性,即外切酶活性有双方向。真核生物五种DNA 聚合酶都有5'→3'外切酶活性,DNA-polα,DNA-polβ无3'→5'外切酶活性,DNA-polβ无5'→3'聚合活性。 原核生物DNA 聚合酶 真核生物DNA 聚合酶 DNA-polⅠ复制过程中的校读,填补缺口,修复。 DNA-polⅡDNA 损伤的应急修复。 DNA-polⅢ延长新链核苷酸的聚合。 DNA-polα起始引发,引物酶活性。 DNA-polβ低保真复制。 DNA-polγ催化线粒体DNA 的复制。 DNA-polδ延长子链的主要酶,解螺旋 酶活性。 DNA-polε填补引物空隙,切除修复,重组。 (三)DNA 复制的过程 原核生物和真核生物DNA 的过程大致可分为:起始+延长+终止三个阶段。 1、起始阶段表2 (1)解链/旋,解链/旋酶催化。 (2)起始点识别。 (3)原核生物形成复制叉。(真核生物形成多个复制单位) (4)引物酶催化引物合成。引发体与引物酶结合到DNA 链上,在引物酶的作用下合成一小段引物。 表2原核生物和真核生物DNA 复制的起始阶段的特点比较 原核生物 真核生物 复制起始点 起始点识别 引物 起始点长度 复制单位 参与的酶和蛋白因子 一个OriC DnaA 长、多 长 一个双向复制 DnaA 识别复制起始点 DnaB 解螺旋酶活性 DnaC 运载和协助DnaB DnaG 引物酶活性 多个 可能有“蛋白质-DNA 复合物 参与” 短、少 短 多个双向复制 DNA-polα起始引发,引物酶 活性 DNA-polδ解螺旋酶活性

高一生物《基因突变和基因重组》知识点归纳

高一生物《基因突变和基因重组》知识点归纳 名词: 1、基因突变:是指基因结构的改变,包括DNA碱基对的增添、缺失或改变。 2、基因重组:是指控制不同性状的基因的重新组合。 3、自然突变:有些突变是自然发生的,这叫~。 4、诱发突变(人工诱变):有些突变是在人为条件下产生的,这叫~。是指利用物理的、化学的因素来处理生物,使它发生基因突变。 5、不遗传的变异:环境因素引起的变异,遗传物质没有改变,不能进一步遗传给后代。 6、可遗传的变异:遗传物质所引起的变异。包括:基因突变、基因重组、染色体变异。 语句: 1、基因突变 ①类型:包括自然突变和诱发突变 ②特点:普遍性;随机性(基因突变可以发生在生物个体发育的任何时期和生物体的任何细胞。突变发生的时期越早,表现突变的部分越多,突变发生的时期越晚,表现突变的部分越少。);突变率低;多数有害;不定向性(一个基因可以向不同的方向发生突变,产生一个以上的等位基因。)。 ③意义:它是生物变异的根本来源,也为生物进化提供了最初的原材料。 ④原因:在一定的外界条件或者生物内部因素的作用下,使得DNA复制过程出现小小的差错,造成了基因中脱氧核苷酸排列顺序的改变,最终导致原来的基因变为它的等位基因。这种基因中包含的特定遗传信息的改变,就引起了生物性状的改变。

⑤实例:a、人类镰刀型贫血病的形成:控制血红蛋白的DNA上一个碱基对改变,使得该基因脱氧核苷酸的排列顺序—发生了改变,也就是基因结构改变了,最终控制血红蛋白的性状也会发生改变,所以红细胞就由圆饼状变为镰刀状了。b、正常山羊有时生下短腿“安康羊”、白化病、太空椒(利用宇宙空间强烈辐射而发生基因突变培育的新品种。)。 ⑥引起基因突变的因素:a、物理因素:主要是各种射线。b、化学因素:主要是各种能与DNA发生化学反应的化学物质。c、生物因素:主要是某些寄生在细胞内的病毒。 ⑦人工诱变在育种上的应用:a、诱变因素:物理因素---各种射线(辐射诱变),激光(激光诱变);化学因素—秋水仙素等b、优点:提高突变率,变异性状稳定快,加速育种进程,大幅度地改良某些性状。c、缺点:诱发产生的突变,有利的个体往往不多,需处理大量的材料。d、如青霉素的生产。 2、基因突变是染色体的某一个位点上基因的改变,基因突变使一个基因变成它的等位基因,并且通常会引起一定的表现型变化。 3、基因重组: ①类型:基因自由组合(非同源染色体上的非等位基因)、基因交换(同源染色体上的非等位基因)。 ②意义:非常丰富(父本和母本遗传物质基础不同,自身杂合性越高,二者遗传物质基础相差越大,基因重组产生的差异可能性也就越大。);基因重组的变异必须通过有性生殖过程(减数分裂)实现。丰富多彩的变异形成了生物多样性的重要原因之一。 4、基因突变和基因重组的不同点:基因突变不同于基因重组,基因重组是基因的重新组合,产生了新的基因型,基因突变是基因结构的改变,产生了新的基因,产生出新的遗传物质。因此,基因突变是生物产生变异的根本原因,为进

原核生物与真核生物DNA复制过程及异同点

原核生物与真核生物复制的过程及其异同点。 原核生物与真核生物复制的过程大体上均分为复制的起始、DNA链的延伸和复制的终止三个过程。 原核生物DNA的复制过程(以大肠杆菌为例): 复制起始:OriC起始位点由四个9个核苷酸(9-mer)的重复序列和三个13个核苷酸(13-mer)的重复序列组成。DnaA蛋白结合到9-mer结构上,使DNA形成一个环。结果,双链DNA在富含A-T碱基的13-mer区域分开成为单链。随后,DnaB-DnaC复合体结合到复制起始点上,形成预引发复合物。然后,DnaB利用其解旋酶的活性使解链部分延长,并激发DnaG引发酶,进而形成一段RNA引物,起始DNA的复制(DNA 聚合酶只能从3’羟基端起始复制)。 DNA链的延伸:DNA链一般形成两个复制叉进行双向复制。DNA链的复制是半不连续复制,以3’-5’方向DNA链为模板合成的子链为前导链,另一条为后随链,后随链的合成以合成冈崎片段的方式进行。延伸过程主要依靠DNA聚合酶III(核心酶由α、θ、ε构成),DNA聚合酶III靠其β夹钳牢固地结合在DNA链上并延DNA链移动。冈崎片段一端的引物由DNA聚合酶I以切口平移的方式去除,然后由DNA连接酶连接为一体。复制叉前进时由解旋酶依靠水解ATP的能量(一个ATP一个碱基)打开双链,单链与SSB结合并保持稳定。DNA拓扑异构酶去除正超螺旋。 复制的终止:复制叉前行,当遇到22个碱基组成的重复性终止子序列(Ter)时,Ter-Tus复合物使DnaB停止解链,复制叉前移停止,等相反方向复制叉到达后,由修复方式填补两个复制叉间的空缺。随后,在DNA拓扑异构酶IV的作用下复制叉解

真核生物和原核生物的异同

从DNA复制、RNA转录、蛋白质翻译3个方面,叙述真核生物与原核生物的异同。 一、真核生物与原核生物的不同点 A、真核生物与原核生物复制的不同点: 1、真核生物DNA的合成只就是在细胞周期的S期进行,而原核生物则在整个细胞生长过程中都可进行DNA合成 2、原核生物DNA的复制就是单起点的,而真核生物染色体的复制则为多起点的。真核生物中前导链的合成并不像原核生物那样就是连续的,而就是以半连续的方式,由一个复制起点控制一个复制子的合成,最后由连接酶将其连接成一条完整的新链。 3、真核生物DNA的合成所需的RNA引物及后随链上合成的冈崎片段的长度比原核生物要短。 4、原核生物中有DNA聚合酶Ⅰ、Ⅱ、Ⅲ三种聚合酶,并有DNA聚合酶Ⅲ同时控制两条链的合成。真核生物中有α、β、γ、ε、δ五种聚合酶。聚合酶α、δ就是DNA 合成的主要酶,分别控制不连续的后随链以及前导链的生成。聚合酶β可能与DNA修复有关,聚合酶γ则就是线粒体中发现的唯一一种DNA聚合酶、 5、染色体端体的复制不同。原核生物的染色体大多数为环状,而真核生物染色体为线状。末端有特殊DNA序列组成的结构成为端体。 B、真核生物与原核生物转录的不同点: 1、真核生物的转录在细胞核内进行,原核生物则在拟核区进行。 2、真核生物mRNA分子一般只编码一个基因,原核生物的一个mRNA分子通常含多个基因。 3、真核生物有三种不同的RNA聚合酶催化RNA合成,而在原核生物中只有一种RNA聚合酶催化所有RNA 的合成。 4、真核生物的RNA聚合酶不能独立转录RNA,三种聚合酶都必须在蛋白质转录因子的协助下才能进行RNA的转录,其RNA聚合酶对转录启动子的识别也比原核生物要复杂得多。原核生物的RNA聚合酶可以直接起始转录合成RNA。 C、真核生物与原核生物翻译的不同点: 1、氨基酸的活化:原核起始氨基酸就是甲酰甲硫氨酸,真核就是从生成甲硫氨酰-tRNAi开始的。 2、翻译的起始:原核的起始tRNA就是fMet-tRNA(fMet上角标),30s小亚基首先与mRNA模板相结合,再与fMet-tRNA(fMet上角标)结合,最后与50s大亚基结合。真核中起始tRNA就是Met-tRNA(Met上角标),40s小亚基首先与Met-tRNA(Met上角标)相结合,再与模板mRNA结合,最后与60s大亚基结合生成起始复合物。

高中生物基因重组

高中生物基因重组2019年3月21日 (考试总分:108 分考试时长: 120 分钟) 一、填空题(本题共计 2 小题,共计 8 分) 1、(4分)果蝇(2n=8)是遗传学经典材料,黑身、灰身由一对等位基因(A、a)控制。 (1)测定果蝇基因组序列,需对____条染色体进行DNA测序。 (2)黑身雌蝇甲与灰身雄蝇乙杂交,F1全为灰身,F1随机交配,F2雌雄果蝇表型比均为灰身:黑身=3:1。按照孟德尔遗传规律的现代解释,F2中出现这种表现型及其比例的原因是____。F2中灰身果蝇再随机交配,后代表现型及比例为:__________。 (3)现有一只黑身雌蝇丙,其细胞中的I、Ⅱ号染色体发生如图所示变异。变异细胞在减数分裂时,所有染色体同源区段联会且均相互分离。如果在该变异果蝇的一个细胞中观察到6条染色体,则该细胞处于_____分裂____时期。 2、(4分)下图是两种遗传病的家族系谱图。其中甲病与正常为一对相对性状,显性基因用A表示,隐性基因用a表示;乙病与正常为一对相对性状,显性基因用B表示,隐性基因用b表示。其中Ⅱ-3个体为纯合子。请根据家族系谱图回答下列问题: (1)控制甲病的基因最可能位于____染色体上,控制乙病的基因最可能位于_____染色体上。 (2)Ⅲ-12的基因型为_________________。 (3)假设Ⅲ-12与Ⅲ-13结婚,则他们生一个只患一种病的孩子的概率为_________,生一个正常男孩的概率为________。 二、单选题(本题共计 20 小题,共计 100 分) 3、(5分)下列有关生物变异及其影响的叙述,正确的是 A.基因型为Aa的个体自交,A和a基因的自由组合发生在减数第一次分裂后期 B.细胞凋亡是基因程序性调控的结果,细胞癌变是原癌基因和抑癌基因发生突变的结果 C.染色体倒位和易位不改变基因数量,对个体性状不会产生影响 D.镰刀型细胞贫血症的根本原因是正常血红蛋白分子中有一个氨基酸发生了改变 4、(5分)基因重组是指生物体进行有性生殖的过程中,控制不同性状的基因的重新组合,下列描述错误的是 A.基因重组是生物多样性的原因之一 B.基因重组有可能发生在有丝分裂的后期 C.基因重组可能发生在减数第一次分裂的后期 D.基因重组有可能发生在减数第一次分裂的四分体时期 5、(5分)图为某二倍体植物的一个正在分裂的细胞部分染色体组成。下列对于该细胞分裂的有关叙述正确的是 A.该细胞的基因组成是RRDd B.该细胞可能发生了基因重组 C.该细胞中染色体数目最多为8条 D.该细胞中含有4个染色体组 6、(5分)普通大肠杆菌能在基本培养基上生长,其突变体M和N均不能在基本培养基上生长,但M可在添加了氨基酸甲的基本培养基上生长,N可在添加了氨基酸乙的基本培养基上生长,将M和N在同时添加氨基酸甲和乙的基本培养基中混合培养一段时间后,再将菌体接种在基本培养基平板上,发现长出了大肠杆菌(X)的菌落。据此判断,下列说法最合理的是 A.突变体M和N可能来源于基因突变或染色体变异 B.突变体N的DNA与突变体M混合培养能得到X C.X与普通大肠杆菌的遗传物质完全相同 D.突变体M和N混合培养期间发生了基因突变 7、(5分)下列关于生物变异的叙述,错误的是 A.同源染色体的非姐妹染色单体之间的交叉互换属于基因重组 B.有丝分裂和无丝分裂都可能发生基因突变 C.基因重组一般发生在减数分裂过程中,可以产生多种新的基因型 D.基因突变一定会导致新基因和新性状的产生 8、(5分)下列有关遗传、变异、生物进化的相关叙述中,错误的是 A.基因型为AaBb的个体自交,其后代一定有4种表现型和9种基因型;该生物体中rRNA的合成一定与核仁有关 B.新物种的形成通常要经过突变和基因重组、自然选择及隔离三个基本环节,种群基因频率发生变化,不一定会形成新物种 C.减数分裂过程中同源染色体非姐妹染色单体的交换可引起基因重组;非同源染色体之间交换一部分片段导致染色体结构变异 D.“猫叫综合症”是染色体结构变异引起的疾病;基因突变是生物变异的根本来源 9、(5分)下图表示雄果蝇细胞分裂过程中DNA含量的变化。不考虑变异的情况下,下列叙述正确的是

高一生物基因突变和基因重组练习题

第1节基因突变和基因重组 一.选择题 1.原核生物中某一基因的编码区起始端插入了一个碱基对,在插入位点的附近,再发生下列哪种情况有可能对其编码的蛋白质结构影响最小 A.置换单个碱基对 B. 增加4个碱基对 C.缺失3个碱基对 D. 缺失4个碱基对 2.下列有关基因突变的叙述正确的是 A.生物随环境的改变而产生适应性的变异 B.由于细菌的数量多,繁殖周期短,因此其基因突变率很高 C.自然状态下的突变是不定向的,而人工诱变多时定向的 D.基因突变在自然界中广泛存在 3.人类发生镰刀型细胞贫血症的根本原因在于基因突变,其突变的方式是基因内 A.碱基发生改变(替换) B. 增添或缺失某个碱基对 C.增添一小段DNA D. 缺失一小段DNA 4.下面叙述的变异现象,可遗传的是 A.割除公鸡和母鸡的生殖腺并相互移植,因而部分改变的第二性征 B.果树修剪后所形成的树冠具有特定的形状 C.用生长素处理未经受粉的番茄雌蕊,得到的果实无籽 D.开红花的一株豌豆自交,后代部分植株开白花 5.一个碱基对可加到DNA分子或从DNA分子上除去,这种生物体DNA碱基顺序的变化是一种 A.基因重组 B.染色体变异 C.基因突变 D.不遗传的变异 6.进行有性生殖的生物,其亲.子代之间总是存在着一定差异的主要原因是 A.基因重组 B.染色体变异 C.基因突变 D.生活条件改变 7.人类的基因突变常发生在 A.有丝分裂的间期 B.减数第一次分裂 C.减数第二次分裂 D.有丝分裂的末期 8.下列高科技成果中,根据基因重组原理进行的是 ①我国科学家袁隆平利用杂交技术培养出超级水稻 ②我国科学家将苏云金杆菌的某些基因移植到棉花体内,培育出抗虫棉 ③我国科学家通过返回式卫星搭载种子培育出太空椒 ④我国科学家通过体细胞克隆技术培养出克隆牛 A.①④ B.①② C.①③ D.②④ 9.在一块栽种红果番茄的田地里,农民发现有一株番茄的果是黄色的,这是因为该株番茄

原核生物与真核生物

原核生物与真核生物 主要差异:1.有无真核(nucleolus),原核没有,真核有。2.有无细胞器。3.核糖体,原核生物的为70S,而真核生物的为80S。 原核生物(广义的细菌),是指一类细胞核无核膜包裹,只存在称作核区的裸露DNA的原始单细胞生物,包括真细菌和古生菌两大类。 根据外表特征,可以把它们分为细菌(狭义),放线菌,蓝细菌,支原体,立克氏体和衣原体。 细菌的一般形态 基本形态:球状,杆状,螺旋状 球状:细胞个体呈现球形或椭圆形,不同种的球菌在细胞分裂时会形成不同的空间排列方式,常被作为分类依据。 杆状:细胞呈杆状或圆柱形,一般其粗细(直径)比较稳定,而长度则常因培养时间、培养条件不同而有较大变化。 杆状细菌的排列方式常因生长阶段和培养条件而发生变化,一般不作为分类依据。 假单胞菌:不行成芽孢,革兰氏染色阴性。这是一群营养需求简单的化能有机营养细菌。假单胞菌群分布广泛,在土壤和水体中具有重要生态意义,能够分解动植物材料中许多可溶性化合物。 分支杆菌:分支杆菌不同于放线菌,其菌丝容易分裂成杆状或球状体,分支杆菌好氧,接触酶阳性。 芽孢杆菌属是芽孢杆菌目中数量很大的一个群体。革兰氏阳性杆菌,产芽孢,化能异养,周生鞭毛,能运动。好氧,厌氧或兼性厌氧,接触酶阳性。 梭菌:厌氧,并能形成抗高温芽孢,是引起食品甚至罐头食品腐坏的主因,破伤风梭菌引起破伤风。 螺旋状:弧菌:大多数为端生鞭毛,有些种为周生鞭毛。氧化酶阳性,弧菌能够发酵,兼性厌氧。菌体只有一个弯曲,其程度不足一圈,形似“C”字或逗号,鞭毛偏端生。 螺菌:螺旋形弯曲杆状,端生鞭毛运动。菌体回转如螺旋,螺旋数目和螺距大小因种而异。鞭毛二端生。细胞壁坚韧,菌体较硬。 螺旋体:菌体细长,柔韧,弯曲成螺旋状而得名。螺旋体靠轴丝伸缩运动,无鞭毛。不产生芽孢,裂殖。属于化能异养型,有腐生和寄生两大类。轴丝位于细胞壁和细胞膜之间,轴丝的超微结构和化学组成类似于一般细菌的鞭毛,轴丝和原生质柱状体由多层膜结构的外鞘包被。菌体柔软,用于运动的类似鞭毛的轴丝位于细胞外鞘内。 其它形状 柄杆菌 细胞上有柄(stalk)、菌丝(hyphae)、附器(appendages)等细胞质伸出物,细胞呈杆状或梭状,并有特征性的细柄。一般生活在淡水中固形物的表面,其异常形态使得菌体的表面积与体积之比增加,能有效地吸收有限的营养物; 星形细菌 方形细菌 细菌大小 球菌0.5 ~ 1 mm (直径)杆菌0.2~ 1 mm (直径)X 1~ 80 mm(长度) 螺旋菌0.3~ 1 mm (直径)X 1~ 50 mm(长度)(长度是菌体两端点之间的距离,而非实际长度) 细菌大小测量结果的影响因素 1.个体差异;

高中生物基因重组知识点总结

高中生物基因重组知识点总结 高中生物基因重组基础知识点 1、定义: 在生物体进行有性生殖的过程中,控制不同性状的基因的重新组合 2、发生时期: ➀减一前(四分体时期,同源染色体上的等位基因会随非姐妹染色单体的交换而发生交叉互换) ➁减一后(非同源染色体自由组合) ➂部分R型菌转化为S型菌 ➃基因工程(可定向改造生物性状) 3、意义: 生物变异的来源之一,对生物进化有重要意义。 4、基因重组在人工操作下也可实现,如基因工程、肺炎双球菌转化过程中都发生了基因重组。 5、基因重组使控制不同性状的基因重新组合,因此会产生不同于亲本的新类型,但只是原有的不同性状的重新组合,并不会产生新的性状。 6、基因重组发生的时间是在减数第一次分裂的后期和四分体时期,而不是在受精作用过程中。 7、基因重组为生物变异提供了极其丰富的来源,是形成生物多样性的重要原因之一。

高中生物基因重组练习 1.DNA分子经过诱变,某位点上的一个正常碱基(设为P)变成了尿嘧啶,该DNA连续复制两次,得到的4个子代DNA 分子相应位点上的碱基对分别为U-A、A-T、G-C、C-G,推测“P”可能是 ( ) A.胸腺嘧啶 B.腺嘌呤 C.胞嘧啶 D.胸腺嘧啶或腺嘌呤 2.下列有关基因突变和基因重组的叙述,正确的是( ) A.基因突变对于生物个体是利多于弊 B.基因突变属于可遗传的变异 C.基因重组能产生新的基因 D.基因重组普遍发生在体细胞增殖过程中 3.下列哪种是不可遗传的变异( ) A.正常夫妇生了一个白化儿子 B.纯种红眼果蝇的后代出现白眼果蝇 C.对青霉菌进行X射线照射后,培育成高产菌株 D.用生长素处理得到无子番茄 4.用一定剂量的α射线处理棉花,一段时间后,发现棉花不能再吸收K了,其他离 子却能正常吸收,最可能的原因是( ) A.α射线杀死了K载体 B.α射线破坏了K载体合成的酶

相关主题