搜档网
当前位置:搜档网 › 实验二 MATLAB的符号计算与可视化

实验二 MATLAB的符号计算与可视化

实验二  MATLAB的符号计算与可视化
实验二  MATLAB的符号计算与可视化

实验二MATLAB的符号计算与可视化

1、目的和要求

(1)熟练掌握MATLAB符号表达式的创建、代数运算及化简。

(2)熟悉符号方程的求解。

(3)熟练掌握MATLAB二维曲线、三维图形的绘制。

(4)熟练掌握各种特殊图形的绘制。

2:实验内容:

(1)完成教材实验三第1节“1.创建符号表达式和符号表达式的操作”中(1)-(5)部分的内容,分别用sym和syms创建符号表达式f和g,并对它们进行相关操作,

思考每一条命令的作用是什么,并提交命令行和结果;

3:实验内容:

(1)完成教材实验三第1节“1.创建符号表达式和符号表达式的操作”中(1)-(5)部分的内容,分别用sym和syms创建符号表达式f和g,并对它们进行相关操作,

思考每一条命令的作用是什么,并提交命令行和结果;

(1)创建符号表达式:

使用sym命令创建符号表达式:

f=sym('sin(x)')

f =

sin(x)

>> g=sym('y/exp(-2*t)')

g =

y*exp(2*t)

使用syms命令创建符号表达式:>> syms x y t

>> f=sym(sin(x))

f =

sin(x)

>> g=sym(y/exp(-2*t))

g =

y*exp(2*t)

(2):自变量的确定:

>> symvar(g)

ans =

[ t, y]

>> symvar(g,1)

ans =

y

>> findsym(g,2)

ans =

y,t

(3):用常数替换符号变量:>> x=0:10;

>> y=subs(f,x)

Columns 1 through 8

0 0.8415 0.9093 0.1411 -0.7568 -0.9589 -0.2794 0.6570

Columns 9 through 11

0.9894 0.4121 -0.5440

(4):符号对象与数值的转换和任意精度控制:

>> f1=subs(f,'5')

f1 =

sin(5)

>> y1=double(f1)

y1 =

-0.9589

>> y2=eval(f1)

y2 =

-0.9589

采用digits和vpa实现任意精度控制:

>> digits

Digits = 32

>> vpa(f1)

ans =

-0.95892427466313846889315440615599 >> vpa(f1,10)

ans =

-0.9589242747

(5):求反函数和复合函数

用finverse函数求f,g的反函数

>> f=sym('sin(x)');

>> g=sym('y/exp(-2*t)')

g =

y*exp(2*t)

>> finverse(f)

Warning: finverse(sin(x)) is not unique. ans =

asin(x)

>> finverse(g)

ans =

y/exp(2*t)

>> finverse(g,'t')

ans =

log(t/y)/2

用compose函数求f,g的复合函数

>> compose(f,g)

ans =

sin(y*exp(2*t))

>> compose(f,g,'z')

ans =

sin(z*exp(2*t))

(2)自建两个一元四次符号表达式,分别进行其符号表达式的加、减、乘等运算,并提交命令行和结果;

>> syms x

>> f=x^4+2*x^3-5*x^2+6*x+8

f =

x^4 + 2*x^3 - 5*x^2 + 6*x + 8 >> class(f)

ans =

sym

>> g=2*x^4-5*x^3+8*x^2+7*x-2 g =

2*x^4 - 5*x^3 + 8*x^2 + 7*x - 2 >> f+g

ans =

3*x^4 - 3*x^3 + 3*x^2 + 13*x + 6

>> f-g

ans =

- x^4 + 7*x^3 - 13*x^2 - x + 10

>> f*g

ans =

(x^4 + 2*x^3 - 5*x^2 + 6*x + 8)*(2*x^4 - 5*x^3 + 8*x^2 + 7*x - 2)

(3)自建一个可化简一元五次多项式和一个三角函数符号表达式,依次使用pretty, horner, factor, simplify和simple等函数对该表达式进行化简,并提交命令行和结果;

syms x y

>> f=x^5+x^4+2*x+2

f =

x^5 + x^4 + 2*x + 2

>> g=cos(y)^2-sin(y)^2

g =

cos(y)^2 - sin(y)^2 >> class(f)

ans =

sym

>> class(g)

ans =

sym

>> pretty(f)

5 4

x + x + 2 x + 2 >> horner(f)

ans =

x*(x^3*(x + 1) + 2) + 2 >> factor(f)

ans =

(x + 1)*(x^4 + 2)

>> simplify(f)

ans =

(x^4 + 2)*(x + 1)

>> simple(f) simplify:

x^5 + x^4 + 2*x + 2

radsimp:

x^5 + x^4 + 2*x + 2 simplify(100):

(x^4 + 2)*(x + 1) combine(sincos):

x^5 + x^4 + 2*x + 2 combine(sinhcosh): x^5 + x^4 + 2*x + 2

combine(ln):

x^5 + x^4 + 2*x + 2 factor:

(x + 1)*(x^4 + 2) expand:

x^5 + x^4 + 2*x + 2 combine:

x^5 + x^4 + 2*x + 2 rewrite(exp):

x^5 + x^4 + 2*x + 2 rewrite(sincos):

x^5 + x^4 + 2*x + 2 rewrite(sinhcosh): x^5 + x^4 + 2*x + 2 rewrite(tan):

x^5 + x^4 + 2*x + 2 mwcos2sin:

x^5 + x^4 + 2*x + 2

collect(x):

x^5 + x^4 + 2*x + 2 ans =

(x^4 + 2)*(x + 1)

>> pretty(g)

2 2 cos(y) - sin(y) >> horner(g)

ans =

cos(y)^2 - sin(y)^2

>> factor(g)

ans =

(cos(y) - sin(y))*(cos(y) + sin(y)) >> simplify(g)

ans =

cos(2*y)

>> simple(g)

simplify:

cos(2*y)

radsimp:

cos(y)^2 - sin(y)^2

simplify(100):

cos(2*y)

combine(sincos): cos(2*y)

combine(sinhcosh): cos(y)^2 - sin(y)^2 combine(ln):

cos(y)^2 - sin(y)^2 factor:

(cos(y) - sin(y))*(cos(y) + sin(y))

expand:

cos(y)^2 - sin(y)^2

combine:

cos(y)^2 - sin(y)^2

rewrite(exp):

((1/exp(y*i))/2 + exp(y*i)/2)^2 - ((i*exp(i*y))/2 - i/(2*exp(i*y)))^2 rewrite(sincos):

cos(y)^2 - sin(y)^2

rewrite(sinhcosh):

cosh(-y*i)^2 + sinh(-y*i)^2

rewrite(tan):

(tan(y/2)^2 - 1)^2/(tan(y/2)^2 + 1)^2 - (4*tan(y/2)^2)/(tan(y/2)^2 + 1)^2 mwcos2sin:

1 - 2*sin(y)^2

collect(y):

cos(y)^2 - sin(y)^2

ans =

cos(2*y)

(4)完成教材实验四第1节“1.绘制二维图线”中的所有内容,绘制4种二维曲线,把图形窗口分割为2行2列,并分别标明图名、坐标值等;

2行2列子图的第1个图:

>> subplot(2,2,1)

>> t1=0:0.1:2;

>> y1=sin(2*pi*t1);

>> plot(t1,y1)

>> title('y=sin(2\pit)')

2行2列子图的第2个图:

>> subplot(2,2,2)

>> t2=0:0.1:2;

>> y2=[exp(-t2);exp(-2*t2);exp(-3*t2)];

>> plot(t2,y2)

>> axis([0 2 -0.2 1.2]);

>> title('y=e-t,y=e-2t,y=e-3t

2行2列的第3个图:

subplot(2,2,3);

>> t3=[0 1 1 2 2 3 4];

>> y3=[0 0 2 2 0 0 0];

>> plot(t3,y3);

实验MATLAB符号运算

实验四 MATLAB 符号运算 一、实验目的 掌握符号变量和符号表达式的创建,掌握MATLAB 的symbol 工具箱的一些基本应用。 二、实验内容 (1) 符号变量、表达式、方程及函数的表示。 (2) 符号微积分运算。 (3) 符号表达式的操作和转换。 (4) 符号微分方程求解。 三、实验步骤 1. 符号运算的引入 在数值运算中如果求x x x πsin lim 0→,则可以不断地让x 接近于0,以求得表达式接近什么数,但是终究不能令0=x ,因为在数值运算中0是不能作除数的。MATLAB 的符号运算能解决这类问题。输入如下命令: >>f=sym('sin(pi*x)/x') >>limit(f,'x',0) >> f=sym('sin(pi*x)/x') f = sin(pi*x)/x >> limit(f,'x',0) ans = Pi 2. 符号常量、符号变量、符号表达式的创建 1) 使用sym( )创建 输入以下命令,观察Workspace 中A 、B 、f 是什么类型的数据,占用多少字节的内存空间。 >> A=sym('1') >> B=sym('x') >> f=sym('2*x^2+3*y-1') >> clear >> f1=sym('1+2') >> f2=sym(1+2) >> f3=sym('2*x+3') >> f4=sym(2*x+3) >> x=1 >> f4=sym(2*x+3) > A=sym('1') A = 1

>> B=sym('x') B = x >> f=sym('2*x^2+3*y-1') f = 2*x^2+3*y-1 >> clear >> f1=sym('1+2') f1 = 1+2 >> f2=sym(1+2) f2 = 3 >> f3=sym('2*x+3') f3 = 2*x+3 >> f4=sym(2*x+3) ??? Undefined function or variable 'x'. >> x=1 x = >> f4=sym(2*x+3) f4 =

实验MATLAB符号计算

实验四符号计算 符号计算的特点:一,运算以推理解析的方式进行,因此不受计算误差积累问题困扰;二,符号计算,或给出完全正确的封闭解,或给出任意精度的数值解(当封闭解不存在时);三,符号计算指令的调用比较简单,经典教科书公式相近;四,计算所需时间较长,有时难以忍受。 在MATLAB中,符号计算虽以数值计算的补充身份出现,但涉及符号计算的指令使用、运算符操作、计算结果可视化、程序编制以及在线帮助系统都是十分完整、便捷的。 MATLAB的升级和符号计算内核Maple的升级,决定着符号计算工具包的升级。但从用户使用角度看,这些升级所引起的变化相当细微。即使这样,本章还是及时作了相应的更新和说明。如MATLAB 6.5+ 版开始启用Maple VIII的计算引擎,从而克服了Maple V计算“广义Fourier变换”时的错误(详见第5.4.1节)。 5.1符号对象和符号表达式 5.1.1符号对象的生成和使用 【例5.1.1-1】符号常数形成中的差异 a1=[1/3,pi/7,sqrt(5),pi+sqrt(5)] % <1> a2=sym([1/3,pi/7,sqrt(5),pi+sqrt(5)]) % <2> a3=sym([1/3,pi/7,sqrt(5),pi+sqrt(5)],'e') % <3> a4=sym('[1/3,pi/7,sqrt(5),pi+sqrt(5)]') % <4> a24=a2-a4 a1 = 0.3333 0.4488 2.2361 5.3777 a2 = [ 1/3, pi/7, sqrt(5), 6054707603575008*2^(-50)] a3 = [ 1/3-eps/12, pi/7-13*eps/165, sqrt(5)+137*eps/280, 6054707603575008*2^(-50)] a4 = [ 1/3, pi/7, sqrt(5), pi+sqrt(5)] a24 = [ 0, 0, 0, 189209612611719/35184372088832-pi-5^(1/2)] 【例5.1.1-2】演示:几种输入下产生矩阵的异同。 a1=sym([1/3,0.2+sqrt(2),pi]) % <1> a2=sym('[1/3,0.2+sqrt(2),pi]') % <2> a3=sym('[1/3 0.2+sqrt(2) pi]') % <3> a1_a2=a1-a2 % a1 = [ 1/3, 7269771597999872*2^(-52), pi] a2 = [ 1/3, 0.2+sqrt(2), pi] a3 = [ 1/3, 0.2+sqrt(2), pi] a1_a2 = [ 0, 1.4142135623730951010657008737326-2^(1/2), 0]

matlab符号运算函数大全

m a t l a b符号运算函数大 全 The Standardization Office was revised on the afternoon of December 13, 2020

算术符号操作 命令 +、-、*、.*、\、.\、/、./、^、.^、’、.’ 功能符号矩阵的算术操作 用法如下: A+B、A-B 符号阵列的加法与减法。 若A与B为同型阵列时,A+B、A-B分别对对应分量进行加减;若A与B中至少有一个为标量,则把标量扩大为与另外一个同型的阵列,再按对应的分量进行加减。 A*B 符号矩阵乘法。 A*B为线性代数中定义的矩阵乘法。按乘法定义要求必须有矩阵 A的列数等于矩阵B的行数。即:若 A n*k* B k*m=(a ij)n*k.*(b ij)k*m= C n*m=(c ij)n*m,则,i=1,2,…,n; j=1,2,…,m。或者至少有一个为标量时,方可进行乘法操作,否则 将返回一出错信息。 A.*B 符号数组的乘法。 A.*B为按参量A与B对应的分量进行相乘。A与B必须为同型 阵列,或至少有一个为标量。即: A n*m.* B n*m=(a ij)n*m.*(b ij)n*m= C n*m=(c ij)n*m,则c ij= a ij* b ij, i=1,2,…,n;j=1,2,…,m。 A\B 矩阵的左除法。 X=A\B为符号线性方程组A*X=B的解。我们指出的是,A\B近 似地等于inv(A)*B。若X不存在或者不唯一,则产生一警告信 息。矩阵A可以是矩形矩阵(即非正方形矩阵),但此时要求方 程组必须是相容的。 A.\B 数组的左除法。 A.\B为按对应的分量进行相除。若A与B为同型阵列时, A n*m.\ B n*m=(a ij)n*m.\(b ij)n*m= C n*m=(c ij)n*m,则c ij= a ij\ b ij,i=1,2,…,n; j=1,2,…,m。若若A与B中至少有一个为标量,则把标量扩大为 与另外一个同型的阵列,再按对应的分量进行操作。 A/B 矩阵的右除法。 X=B/A为符号线性方程组X*A=B的解。我们指出的是,B/A粗 略地等于B*inv(A)。若X不存在或者不唯一,则产生一警告信 息。矩阵A可以是矩形矩阵(即非正方形矩阵),但此时要求方 程组必须是相容的。 A./B 数组的右除法。 A./B为按对应的分量进行相除。若A与B为同型阵列时, A n*m./ B n*m=(a ij)n*m./(b ij)n*m= C n*m=(c ij)n*m,则c ij= a ij/b ij,i=1,2,…,n; j=1,2,…,m。若A与B中至少有一个为标量,则把标量扩大为与 另外一个同型的阵列,再按对应的分量进行操作。 A^B 矩阵的方幂。

MATLAB符号计算实验报告

实验六符号计算 学院:数计学院班级:1003班姓名:黄晓丹学号:1051020144 一、实验目的 1、了解富符号对象和数值对象之间的差别,以及它们之间的互相转换 2、了解符号运算和数值运算的特点、区别和优缺点 3、掌握符号对象的基本操作和运算,以及符号运算的基本运用 二、实验内容 1、符号常数形成和使用 (1)符号常数形成中的差异 >> a1=[1/3,pi/7,sqrt(5),pi+sqrt(5)] a1 = 0.3333 0.4488 2.2361 5.3777 >> a2=sym([1/3,pi/7,sqrt(5),pi+sqrt(5)]) a2 = [ 1/3, pi/7, sqrt(5),

6054707603575008*2^(-50)] >> a3=sym('[1/3,pi/7,sqrt(5),pi+sqrt(5)]') a3 = [ 1/3, pi/7, sqrt(5), pi+sqrt(5)] >> a24=a2-a3 a24 = [ 0, 0, 0, 189209612611719/35184372088832-pi-5^(1/2)] (2)把字符表达式转化为符号变量 >> y=sym('2*sin(x)*cos(x)') y = 2*sin(x)*cos(x) >> y=simple(y)

y = sin(2*x) (3)用符号计算验证三角等式 >> syms fai1 fai2;y=simple(sin(fai1)*cos(fai2)-cos(fai1)*sin(fai2)) y = sin(fai1-fai2) (4)求矩阵的行列式值、逆和特征值 >> syms a11 a12 a21 a22;A=[a11,a12;a21,a22] A = [ a11, a12] [ a21, a22] >> DA=det(A),IA=inv(A),EA=eig(A) DA =

Matlab符号计算(含作业)

第 2 章符号计算 符号计算: 解算数学表达式、方程不是在离散化的数值点上进行,而是凭借一系列恒等式,数学定理,通过推理和演绎,获得解析结果。 符号计算建立在数值完全准确表达和推演严格解析的基础之上,所得结果完全准确。 特点: 一.相对于MATLAB的数值计算“引擎”和“函数库”而言,符号计算的“引擎”和“函数库”是独立的。 二.在相当一些场合,符号计算解算问题的命令和过程,显得比数值计算更自然、更简明。 三.大多数理工科的本科学生在学过高等数学和其他专业基础课以后,比较习惯符号计算的解题理念和模式。 2.1符号对象和符号表达式 MATLAB依靠基本符号对象(包括数字、参数、变量)、运算符及一些预定义函数来构造和衍生符号表达式和符号方程。 2.1.1基本符号对象和运算算符 1.生成符号对象的基本规则 ●任何基本符号对象(数字、参数、变量、表达式、函数)都必须借助 专门的符号命令sym、syms、symfun定义。 ●任何包含符号对象的表达式或方程,将继承符号对象的属性。

2.精准符号数字和符号常数 符号(类)数字的定义: sym(Num) 采用精准数值类数创建精准的符号数字(推荐格式!) sc=sym(Num) 采用精准数值类数创建精准的符号常数sc(推荐格式!) 说明:若输入量Num是精准的浮点数(如0.321、10/3等),能生成精准的符号数字; 若输入量Num是诸如sin(0.3)的数值表达式,那么就只能生成由数字表达式获得的16位精度的近似符号数字。 sym('Num') 采用有理分数字符串创建精准的符号数字 sc=sym('Num') 采用有理分数字符串创建精准的符号常数sc 说明: Num必须处于(英文状态下的)单引号内,构成字符串(关于字符串参见附录A); 只有当字符串数字'Num'采用诸如321/1000、10/3等整数构成的有理分数形式表达时,sym('Num') 才能生成精准的符号数字; 若字符串数字用诸如0.321、3.21e-1等“普通小数或科学记述数”表达,那么只能产生“近似符号数字”。在默认情况下,该近似符号数字为32位精度。 【例2.1-1】 (1)创建完全精准的符号数字或数字表达式 clear all R1=sin(sym(0.3)) % 输入量为普通小数 R2=sin(sym(3e-1)) % 输入量为科学记述数 R3=sin(sym(3/10)) % 输入量为有理分数 R4=sin(sym('3/10')) % 输入量为“整数构成的有理分数”字符串数字 disp(['R1属于什么类别?答:',class(R1)]) disp(['R1与R4是否相等?(是为1,否为0)答:',int2str(logical(R1==R4))]) R1 = sin(3/10) R2 = sin(3/10) R3 = sin(3/10) R4 = sin(3/10) R1属于什么类别?答:sym R1与R4是否相等?(是为1,否为0)答:1 (2)产生具有32位精度的“近似”符号数字(杜绝使用!) S1=sin(sym('0.3')) % sym的输入量是字符串小数,生成32位精度下的 % 近似符号数,进而在sin作用下给出近似符号数。 S2=sin(sym('3e-1')) % syms的输入量是字符串科学记述数。 eRS=vpa(abs(R1-S1),64); disp(['S1属于什么类别?答:',class(S1)]) disp(['S1与R1是否相同?答: ',int2str(logical(R1==S1))]) disp('S1与R1的误差为') disp(double(eRS)) S1 = 0.29552020666133957510532074568503

matlab实验五多项式和符号运算

实验五:Matlab多项式和符号运算 一、实验目的 1.掌握Matlab多项式的运算。 2.了解符号运算。 二、实验内容 1.将多项式()(2)(3)(7)(1) =-+-+化为x的降幂排列。 P x x x x x syms x; y=(x-2)*(x+3)*(x-7)*(x+1); expand(y) ans = x^4-5*x^3-19*x^2+29*x+42 2.求一元高次方程的根。 98765432 --++--++= 53015027313658204100576-28800 x x x x x x x x x syms x y; y=x^9-5*x^8-30*x^7+150*x^6-1365*x^4-820*x^3+410 0*x^2+576*x-2880; solve(y,x) ans = 6.81947687944124431946 1.42761488953013276419+.8192491831*i 2.865487219+2.49263348244446271927*i

-1.887673354+1.812452594*i -.9583509633 -5.922730991 -1.887673354-1.812452594*i 2.865487219-2.49263348244446271927*i 1.42761488953013276419-.8192491831*i 3.求一元高次方程的根,并画出左边多项式函数在[2,2] x∈-区间内的曲线。 42 -+= x x 210 a=[1 0 -2 0 1]; r=roots(a) syms x; x=-2:2; y=[1 0 -2 0 1]; plot(x,y) r = 1.0000 + 0.0000i 1.0000 - 0.0000i -1.0000 -1.0000

MatLab常见函数和运算符号解读

MatLab常见函数和运算符号 基本运算 convhull :凸壳函数 cumprod :累计积 cumsum :累计和 cumtrapz :累计梯形数值积分 delaunay :Delaunay三角化 dsearch :求最近点(这是两个有趣的函数 factor :质数分解inpolygon :搜索多边形内的点 max :最大元素 mean :平均值 median :数组的中间值 min :最小值 perms :向量所有排列组成矩阵 polyarea :多边形的面积 primes :生成质数列表 prod :数组元素积 sort :元素按升序排列 sortrows :将行按升序排列

std :标准差 sum :元素和 trapz :梯形数值积分 tsearch :搜索Delaunay三角形var :方差 voronoi :Voronoi图 del2 :Laplacian离散 diff :差分和近似微分gradient:数值梯度 corrcoef :相关系数 cov :协方差矩阵 xcorr :互相关系数 xcov :互协方差矩阵 xcorr2 :二维互相关 conv :卷积和多项式相乘conv2 :二维卷积 deconv :反卷积 filter :滤波 filter2 :二维数字滤波

傅立叶变换 abs :绝对值和模 angle :相角 cplxpair :按复共扼把复数分类 fft :一维快速傅立叶变换 fft2 :二维快速傅立叶变换 fftshit :将快速傅立叶变换的DC分量移到谱中央ifft :以为逆快速傅立叶变换 ifft2 :二维逆快速傅立叶变换 ifftn :多维逆快速傅立叶变换 ifftshift :逆fft平移 nextpow2 :最相邻的2的幂 unwrap :修正相角 cross :向量叉积 intersect:集合交集 ismember :是否集合中元素 setdiff :集合差集 setxor :集合异或(不在交集中的元素 union :两个集合的并

完整word版,MATLAB符号运算

符号运算 科学计算包括数值计算和符号计算两种计算,数值计算是近似计算;而符号计算则是绝对精确的计算。 符号变量的生成和使用 1、符号变量、符号表达式和符号方程的生成 (1)、使用sym函数定义符号变量和符号表达式 单个符号变量 sqrt(2) sym(sqrt(2)) %显示精确结果 a=sqrt(sym(2)) %显示精确结果 double(a) sym(2)/sym(3) %显示精确结果 2/5+1/3 sym(2/5+1/3) %显示精确结果 sym(2)/sym(5)+sym(1)/sym(3) %显示精确结果 sym函数定义符号表达式:单个变量定义法,整体定义法 单个变量定义法 a=sym('a') b=sym('b') c=sym('c') x=sym('x') f=a*x^2+b*x+c 整体定义法 f=sym('a*x^2+b*x+c') g=f^2+4*f-2 (2)、使用syms函数定义符号变量和符号表达式 一次可以创建任意多个符号变量syms var1 var2 var3… syms a b c x f=a*x^2+b*x+c g=f^2+4*f-2 (3)、符号方程的生成 函数:数字和变量组陈的代数式 方程:函数和等号组成的等式 用sym函数生成符号方程: equation1=sym('sin(x)+cos(x)=1') 2、符号变量的基本操作 (1)、findsym函数用于寻找符号变量 findsym(f):找出f表达式中的符号变量 findsym(s,n):找出表达式s中n个与x接近的变量 syms a alpha b x1 y findsym(alpha+a+b)

matlab符号计算实验报告

1. 已知x=6,y=5, 利用符号表达式求z =>> syms x >> z=(x+1)/(sqrt(x+3)-sqrt(y)); >> subs(z,x,5) ans =6/(8^(1/2)-y^(1/2)) >> subs(ans,6) ans = 15.8338 2. 分解因式。 (1)x y -44; >> syms x y >> factor(x^4-y^4) ans =(x-y)*(x+y)*(x^2+y^2) (2)x x x +++642 12575151 >> syms x >> factor(125*x^6+75*x^4+15*x^2+1) ans =(5*x^2+1)^3 3. 化简表达式 (1)sin cos cos sin ββββ-1212; >> syms x y >> f=sin(x).*cos(y)-cos(x).*sin(y); >> sfy1=simple(f) 结果:sfy1 =sin(x-y) (2)x x x +++248321 >> syms x >> f=(4*x^2+8*x+3)/(2*x+1);sfy1=simplify(f) sfy1 =2*x+3 4、求下列极限,将完成实验的程序写到文件sy1.m 中: (1) (2) (3) (4) (5) (1)>> syms x >> F1=atan(x)/(x); >> w=limit(F1) w =1 (2)>> syms x F2=((1+x)/(1-x))^(1/x); >> w=limit(F2) w =exp(2) (3)>> syms x F3=(x.*log(1+x))/(sin(x^2)); >> w=limit(F3) w =1 (4)>> syms x F4=atan(x)/(x); >> w=limit(F4,x,inf) w =0 (5)>> syms x F5=(1/(1-x)-1/(1-x^3)); >> w=limit(F5,x,1) w =NaN 5、求下列函数的导数,将完成实验的程序写到文件sy2.m 中: 1、 >> x = sym('x'); >> y1=(cos(x))^3-cos(3*x); >> diff(y1)ans =-3*cos(x)^2*sin(x)+3*sin(3*x) 2、 >> x = sym('x'); >> y2=x.*sin(x).*(log(x)); >> diff(y2)ans =sin(x)*log(x)+x*cos(x)*log(x)+sin(x) 3、 >> x = sym('x'); >> y3=(x.*exp(x)-1)/sin(x); >> diff(y3) ans =(exp(x)+x*exp(x))/sin(x)-(x*exp(x)-1)/sin(x)^2*cos(x) 4、 x x x x F 1011lim 2??? ??-+=→3 1115lim()11x F x x →=---20sin )1ln(lim 3x x x F x +=→x x F x arctan lim 10→=arctan 4lim x x F x →∞=x x y 3cos cos 13-=x x x y ln sin 2=x xe y x sin 13-=cos x y e x =

MATLAB实验——符号运算讲解

实验一符号运算 班级:电气4班姓名:叶元亮学号:B2012052409 一、实验目的 1、了解符号、数值、字符等数据类型的差别 2、了解符号运算的特点、优缺点 3、掌握符号变量的创建和运算,以及其运算的基本应用 4、掌握基本的符号绘图指令 二、实验内容 1、指出下面的 M1,M2,M3 分别是什么,并上机验证。 取a=1、b=2、c=3、d=4,M1=[a,b;c,d],M2='[a,b;c,d]',M3=sym('[a,b;c,d]'); >> a=1,b=2,c=3,d=4 a = 1 b = 2 c = 3 d = 4 >> M1=[a,b;c,d] M1 =

1 2 3 4 >> M2='[a,b;c,d]' M2 = [a,b;c,d] >> M3=sym('[a,b;c,d]') M3 = [ a, b] [ c, d] 结论:M1是矩阵,2是字符串,M3是字符变量。 2、下面2种取值情况下,计算b a b a- + 并赋给相应情况下的c1、c2,问c1、c2相等吗,为什么?上机验证。 (1) a1=1010; b1=10-10; (2)将a1、a2作为符号变量赋给a2、b2; >> a1=1e10; b1=1e-10; >> c1=(a1+b1-a1)/b1 c1 = >> a2=sym(a1); b2=sym(b1); >> c2=(a2+b2-a2)/b2 c2 = 1

结果:c1~=c2,因为c1=0,c2=1,a1、b1是具体的数值,a2、b2是符号变量。 3、符号表达式中自由变量的确定生成符号变量a 、b 、x 、X 、Y 、 k=3、z=a y w c sin +,表达式为 Y k bx azX f )(2++=。 (1)找出f 中的全部自由符号变量 (2)在f 中确定最优先的自由符号变量 (3)在f 中确定2个和3个自由变量时的执行情况 (4)试通过对各符号变量与x 的ASCII 值做绝对差值,分析自 由变量优秀顺序,能得出什么结论? >> syms a b x X Y k=sym('3'); z=sym('c*sqrt(w)+y*sin(a)'); f=a*z*X+(b*x^2+k)*Y; >> findsym(f) ans = X, Y, a, b, c, w, x, y >> findsym(f,1) ans = x >> findsym(f,2) ans = x,y

matlab符号运算符

Matlab符号运算符的使用 一、&&/||/&/| |:数组逻辑或 ||:先决逻辑或 &:数组逻辑与 &&:先决逻辑与 &&和||被称为&和|的short circuit形式。 先决逻辑符号含义: 先判断左边是否为真;若为真,则不再判断右边;若为假,才继续进行或运算 先判断左边是否为假;若为假,则不再判断右边;若为真,才继续进行与运算两种运算符号的区别: 先决逻辑运算的运算对象只能是标量 数组逻辑运算可为任何维数组,运算符两边维数要相同 举例分析: A&B :首先判断A的逻辑值,然后判断B的值,然后进行逻辑与的计算。 A&&B:首先判断A的逻辑值,如果A的值为假,就可以判断整个表达式的值为假, 就可以判断整个表达式的值为假,就不需要再判断B的值。这种用法非常有用, 如果A是一个计算量较小的函数,B是一个计算量较大的函数,那么首先判断A 对减少计算量是有好处的。 另外这也可以防止类似被0除的错误。 Matlab中的if和while语句中的逻辑与和逻辑或都是默认使用short-circuit形式。// 这可能就是有时候用&和| 会报错的原因。

二、系统结构体内的变量 一般都是小写。 matlab区分大小写。 三、== 表示逻辑相等,返回结果,相等为1,不等为0。 四、.*(times)点乘 times Array multiply 数组乘 Syntax c = a.*b c = times(a,b) Description c = a.*b multiplies arrays a an d b element-by-element and returns th e result in c. Inputs a and b must have the same size unless one is a scalar. 注释:a、b要同尺寸,或其中一个为标量。 c = times(a,b) is calle d for th e syntax a.*b when a or b is an object. Example a = [1 2 3]'; b = [5 6 7]'; c = a.*b; 五、矩阵或向量共轭转置“’”和转置“.’” 若矩阵由实数构成,二者作用一样;

实验3 Matlab 符号运算及求函数极值

实验3 Matlab 符号运算及求函数极值一、实验目的和要求 掌握用Matlab软件进行符号运算以及求函数的极值。 二、实验环境 Windows系列操作系统,Matlab软件。 三、实验内容 1.用MATLAB进行符号运算; 2.编程求函数的极值。 四、实验步骤 3.开启软件平台——Matlab,开启Matlab编辑窗口; 4.根据求解步骤编写M文件; 5.保存文件并运行; 6.观察运行结果(数值或图形); 7.根据观察到的结果和体会写出实验报告。 五、示例 1.计算一元函数的极值 例1求 2 2 344 1 x x y x x ++ = ++ 的极值 解首先建立函数关系: s yms x y=(3*x^2+4*x+4)/( x^2+x+1); 然后求函数的驻点: dy=diff(y); xz=solve(dy) xz= [0] [-2] 知道函数有两个驻点x 1=0和x 2 =-2, 接下来我们通过考察函数的图形,则它的极值情况和许多其它特性是一目了然的。而借助MATLAB的作图功能,我们很容易做到这一点。 例2 画出上例中函数的图形

解 syms x y=(3*x^2+4*x+4)/( x^2+x+1); 得到如下图形 ezplot(y) 2.计算二元函数的极值 MATLAB 中主要用diff 求函数的偏导数,用jacobian 求Jacobian 矩阵。 例1 求函数42823z x xy y =-+-的极值点和极值. 首先用diff 命令求z 关于x,y 的偏导数 >>clear; syms x y; >>z=x^4-8*x*y+2*y^2-3; >>diff(z,x) >>diff(z,y) 结果为 ans =4*x^3-8*y ans =-8*x+4*y 即348,84z z x y x y x y ??=-=-+??再求解方程,求得各驻点的坐标。一般方程组的符号解用solve 命令,当方程组不存在符号解时,solve 将给出数值解。求解方程的MA TLAB 代码为:

实验二2MATLAB地符号计算与可视化

实验二MATLAB的符号计算与可视化 1:完成教材实验三第1节“1.创建符号表达式和符号表达式的操作”中(1)-(5)部分的内容,分别用sym和syms创建符号表达式f和g,并对它们进行相关操作,思考每一条命令的作用是什么,并提交命令行和结果; (1)创建符号变量。 ①使用sym命令创建符号表达式: >> f=sym('sin(x)') f = sin(x) >> g=sym('y/exp(-2*t)') g = y*exp(2*t) ②使用syms命令创建符号表达式: >> syms x y t >> f=sym(sin(x)) f = sin(x) >> g=sym(y/exp(-2*t)) g = y*exp(2*t) (2):自由变量的确定:

>> symvar(g) ans = [ t, y] >> symvar(g,1) ans = y >> findsym(g,2) ans = y,t (3):用常数替换符号变量: >> x=0:10; >> y=subs(f,x) y = Columns 1 through 8 0 0.8415 0.9093 0.1411 -0.7568 -0.9589 -0.2794 0.6570 Columns 9 through 11 0.9894 0.4121 -0.5440 练习:用y替换x,查看结果及其数据类型。 z=subs(f,y) z = Columns 1 through 8

0 0.7456 0.7891 0.1407 -0.6866 -0.8186 -0.2758 0.6107 Columns 9 through 11 0.8357 0.4006 -0.5176 >> class(z) ans = double (4):符号对象与数值的转换和任意精度控制: >> f1=subs(f,'5') f1 = sin(5) >> y1=double(f1) y1 = -0.9589 >> y2=eval(f1) y2 = -0.9589 练习:将y1用sym函数转换为符号对象,并用’d’,’f’,’e’,’r’4种格式表示。>> y2=sym(y1,'d') y2 = -0.95892427466313845396683746002964

MATLAB符号计算函数用法总结

MATLAB符号计算函数用法总结 符号计算是对未赋值的符号对象(可以是常数、变量、表达式)进行运算和处理。MTALAB具有符号数学工具箱(Symbolic Math toolbox),将符号运算结合到MATLAB的属具运算环境。符号数学工具箱是建立在Maple软件基础上的。 算术符号操作: 命令有:+、-、*、.*、\、.\、/、./、^、.^、’、.’ 用法如下: A+B、A-B符号阵列的加法和减法。 若A与B为同型阵列时,A+B、A-B分别对对应分量进行加减;若A与B中至少有一个为标量,则把标量扩大为与另外一个同型的阵列,再按对应的分量进行加减。 A*B符号矩阵乘法。 A*B为线性代数中定义的矩阵乘法。按乘法定义要求必须有矩阵A的列数等于矩阵B的行数。即:若 An*k*Bk*m=(aij)n*k.*(bij)k*m=Cn*m=(cij)n*m,则,i=1,2,…,n;j=1,2,…,m。 或者至少有一个为标量时,方可进行乘法操作,否则将返回一出错 信息。 A.*B符号数组的乘法。 A.*B为按参量A与B对应的分量进行相乘。A与B必须为同型阵列,或至少有一个为标量。即: An*m.*Bn*m=(aij)n*m.*(bij)n*m=Cn*m=(cij)n*m,则cij= aij* bij,i=1,2,…,n; j=1,2,…,m。 A\B矩阵的左除法。 X=A\B为符号线性方程组A*X=B的解。我们指出的是,A\B近似地等于inv(A)*B。若X不存在或者不唯一,则产生一警告信息。矩阵A可以是矩形矩阵(即非正方形矩阵),但此时要

求方程组必须是相容的。 A.\B数组的左除法。 A.\B为按对应的分量进行相除。若A与B为同型阵列时, An*m.\Bn*m=(aij)n*m.\(bij)n*m=Cn*m=(cij)n*m,则cij= aij\ bij,i=1,2,…,n; j=1,2,…,m。若若A与B中至少有一个为标量,则把标量扩大为与另外一个同型的阵列,再按对应的分量进行操作。 A/B矩阵的右除法。 X=B/A为符号线性方程组X*A=B的解。我们指出的是,B/A粗略地等于B*inv(A)。若X不存在或者不唯一,则产生一警告信息。矩阵A可以是矩形矩阵(即非正方形矩阵),但此时要求方程组必须是相容的。 A./B数组的右除法。 A./B为按对应的分量进行相除。若A与B为同型阵列时, An*m./Bn*m=(aij)n*m./(bij)n*m=Cn*m=(cij)n*m,则cij= aij/bij,i=1,2,…,n; j=1,2,…,m。若A与B中至少有一个为标量,则把标量扩大为与另外一个同型的阵列,再按对应的分量进行操作。 A^B矩阵的方幂。 计算矩阵A的整数B次方幂。若A为标量而B为方阵,A^B用方阵B的特征值与特征向量计算数值。若A与B同时为矩阵,则返回一错误信息。 A.^B数组的方幂。 A.^B为按A与B对应的分量进行方幂计算。若A与B为同型阵列时, An*m..^Bn*m=(aij)n*m..^(bij)n*m=Cn*m=(cij)n*m,则cij= aij^bij,i=1,2,…,n; j=1,2,…,m。若A与B中至少有一个为标量,则把标量扩大为与另外一个同型的阵列,再按对应的分量进行操作。 A'矩阵的Hermition转置。 若A为复数矩阵,则A'为复数矩阵的共轭转置。即,若A=(aij)=(xij+i*yij),则 。

matlab符号运算函数大全

3.1算术符号操作 命令+、-、*、.*、\、.\、/、./、^、.^、’、.’ 功能符号矩阵的算术操作 用法如下: A+B、A-B 符号阵列的加法与减法。 若A与B为同型阵列时,A+B、A-B分别对对应分量进行加减;若A与B中至少有一个为标量,则把标量扩大为与另外一个同型的阵列,再按对应的分量进行加减。 A*B 符号矩阵乘法。 A*B为线性代数中定义的矩阵乘法。按乘法定义要求必须有矩阵A的列数等于矩 阵B的行数。即:若A n*k*B k*m=(a ij)n*k.*(b ij)k*m=C n*m=(c ij)n*m,则,i=1,2,…,n; j=1,2,…,m。或者至少有一个为标量时,方可进行乘法操作,否则将返回一出错信 息。 A.*B 符号数组的乘法。 A.*B为按参量A与B对应的分量进行相乘。A与B必须为同型阵列,或至少有一 个为标量。即:A n*m.*B n*m=(a ij)n*m.*(b ij)n*m=C n*m=(c ij)n*m,则c ij= a ij* b ij,i=1,2,…,n; j=1,2,…,m。 A\B 矩阵的左除法。 X=A\B为符号线性方程组A*X=B的解。我们指出的是,A\B近似地等于inv(A)*B。 若X不存在或者不唯一,则产生一警告信息。矩阵A可以是矩形矩阵(即非正方 形矩阵),但此时要求方程组必须是相容的。 A.\B 数组的左除法。 A.\B为按对应的分量进行相除。若A与B为同型阵列时, A n*m.\ B n*m=(a ij)n*m.\(b ij)n*m= C n*m=(c ij)n*m,则c ij= a ij\ b ij,i=1,2,…,n;j=1,2,…,m。若若 A与B中至少有一个为标量,则把标量扩大为与另外一个同型的阵列,再按对应 的分量进行操作。 A/B 矩阵的右除法。 X=B/A为符号线性方程组X*A=B的解。我们指出的是,B/A粗略地等于B*inv(A)。 若X不存在或者不唯一,则产生一警告信息。矩阵A可以是矩形矩阵(即非正方 形矩阵),但此时要求方程组必须是相容的。 A./B 数组的右除法。 A./B为按对应的分量进行相除。若A与B为同型阵列时, A n*m./ B n*m=(a ij)n*m./(b ij)n*m= C n*m=(c ij)n*m,则c ij= a ij/b ij,i=1,2,…,n;j=1,2,…,m。若A 与B中至少有一个为标量,则把标量扩大为与另外一个同型的阵列,再按对应的 分量进行操作。 A^B 矩阵的方幂。 计算矩阵A的整数B次方幂。若A为标量而B为方阵,A^B用方阵B的特征值 与特征向量计算数值。若A与B同时为矩阵,则返回一错误信息。 A.^B 数组的方幂。 A.^B为按A与B对应的分量进行方幂计算。若A与B为同型阵列时, A n*m..^ B n*m=(a ij)n*m..^(b ij)n*m= C n*m=(c ij)n*m,则c ij= a ij^b ij,i=1,2,…,n;j=1,2,…,m。若 A与B中至少有一个为标量,则把标量扩大为与另外一个同型的阵列,再按对应 的分量进行操作。

实验四 MATLAB符号运算

实验四MATLAB符号运算 一、实验目的: 1、掌握定义符号对象的方法; 2、掌握符号表达式的运算法则以及符号矩阵运算。 3、掌握求符号函数极限及导数的方法。 4、掌握求符号函数定积分和不定积分的方法。 二、实验原理 1、符号常量、符号变量、符号表达式的创建 (1) 使用sym( )创建 输入以下命令,观察Workspace 中A、B、f是什么类型的数据,占用多少字节的内存空间。 >>A=sym('1') %符号常量 >>B=sym('x') %符号变量 >>f=sym('2*x^2+3y-1') %符号表达式 >>clear >>f1=sym('1+2') %有单引号,表示字符串 >>f2=sym(1+2) %无单引号 >>f3=sym('2*x+3') >>f4=sym(2*x+3) %为什么会出错 >>x=1 >>f4=sym(2*x+3) 通过看MATLAB 的帮助可知,sym( )的参数可以是字符串或数值类型,无论是哪种类型都会生成符号类型数据。 (2) 使用syms 创建 >>clear >>syms x y z %注意观察x,y,z都是什么类型的,它们的内容是什么 >>x,y,z >>f1=x^2+2*x+1 >>f2=exp(y)+exp(z)^2 >>f3=f1+f2 通过以上实验,知道生成符号表达式的第二种方法:由符号类型的变量经过运算(加减乘除等)得到。又如: >>f1=sym('x^2+y +sin(2)') >>syms x y >>f2=x^2+y+sin(2) >>x=sym('2') , y=sym('1') >>f3=x^2+y+sin(2)

2014秋实验四_MATLAB的符号计算二

2014年10月26日星期日 湖北科技学院 MATLAB 专业:电气工程及其自动化班级:电气一班 姓名:尹锥(133521015)指导教师:刘芳华 电子与信息工程学院

实验四MATLAB的符号计算(二) 一、实验目的 1.掌握MATLAB7.0 subs、simple、simplify、finverse等函数的应用; 2.掌握利用MATLAB7.0计算极限和级数的方法,计算复合、反函数的方法; 3.了解利用MATLAB7.0计算taylor级数。 4.掌握利用MATLAB7.0来求解常微分方程的方法。 5.掌握利用MATLAB7.0符号计算中的ezplot及ezplot3绘图方法。 二、实验内容 1.设x为符号变量, 42 ()21 f x x x =++,32 ()635 g x x x x =+++,试进行如下运算。 (1) ()() f x g x +, (2) ()() f x g x ?, (3)对 () f x进行因式分解, (4)求 () g x的反函数。 2

2.(1)指出下面程序中的f1、f2、f3、f4、f5的值。f5=subs(f,{a,x},{0:6,0:pi/6:pi}) 3

(2)指出下面替换的结果。 3. 用符号计算验证三角等式: sin(?1)cos(?2)-cos(?1)sin(?2) =sin(?1-?2) 4

4.设,求 7.求微分方程的解:y'''-y''=x,y''(2)=4,y'(1)=7,y(1)=8 5

8.计算函数级数 2 1 n x S n ∞ = =∑ 9. f(x)=e x分别求5阶、6阶泰勒展开式 10.符号函数绘图法绘制函数x=sin(3t)cos(t),y=sin(3t)sin(t)的图形,t的变化范围为[0,2π]。 6

实验 MATLAB符号运算功能

实验3 MATLAB 符号运算功能 实验目的:掌握MATLAB 符号运算功能的基本使用方法 1.符号矩阵的建立及符号矩阵的运算; 2.符号矩阵的简化; 3.符号矩阵的极限和微积分; 4.代数方程求解; 5.一元函数图象简易画法. 实验内容: 1. 设)1()(--=x e x x g x 1) 将)(x g 写成MATLAB 符号表达式; 2) 求出符号表达式)('x g ; 3) 利用"subs "命令求出)4(g 和)4('g ; 4) 利用"plot "命令画出函数)(x g 在区间[-3,3]上的光滑图象; 5) 利用"ezplot "命令画出函数)(x g 在区间[-3,3]上的图象并与4)所得结果进行比较. 比较. 运行命令: syms x; g=[x*(exp(x)-x-1)] diff(g) G=subs(g,[4]) G1=subs(diff(g),4) x=-3:0.01:3; y=x.*(exp(x)-x-1); plot(x,y) ezplot(g,[-3,3]) 程序运行结果: g = x*(exp(x)-x-1) ans = exp(x)-x-1+x*(exp(x)-1) G = 198.3926 G1 =

263.9908 2. 设)1()(1--=x e x x g x ,1)(22+=x x g 1)利用"ezplot "命令画图估计函数)(1x g 与)(2x g 图象交点的x 值; 2) 利用"solve "命令求出函数)(1x g 与)(2x g 图象交点处x 的精确值. 3. 说明下面程序中每个命令的作用: syms x h f = exp(sin(x)) m = (subs(f, x+h)-f)/h f1 = limit(m, h, 0) subs(f1, pi) X = -10:.05:10; F = subs(f, X); F1 = subs(f1, X); plot(X, F, ’b’, X, F1, ’r’) 解释程序运行的结果. 4. 设)3cos ()(+-=x e x x f x 1) 利用定积分的定义(无限求和)计算?3 0)(dx x f 的近似值(有限求和),改变求和的项数对结果的变化进行比较; 2) 利用符号积分的命令"int "计算?3 0)(dx x f 的值,并与1)所得结果进行比较。

相关主题