搜档网
当前位置:搜档网 › 信号与系统实验指导书概论

信号与系统实验指导书概论

信号与系统实验指导书概论
信号与系统实验指导书概论

信号与系统软件实验

指导书

《信号与系统》课程组

华中科技大学电子与信息工程系

二零零九年五月

“信号与系统软件实验”系统简介《信号与系统》是电子与通信类专业的主要技术基础课之一,该课程的任务在于研究信号与系统理论的基本概念和基本分析方法,使学生初步认识如何建立信号与系统的数学模型,如何经适当的数学分析求解,并对所得结果给以物理解释,赋予物理意义。由于本学科内容的迅速更新与发展,它所涉及的概念和方法十分广泛,而且还在不断扩充,通过本课程的学习,希望激发起学生对信号与系统学科方面的学习兴趣和热情,使他们的信心和能力逐步适应这一领域日新月异发展的需要。

近二十年来,随着电子计算机和大规模集成电路的迅速发展,用数字方法处理信号的范围不断扩大,而且这种趋势还在继续发展。实际上,信号处理已经与计算机难舍难分。为了配合《信号与系统》课程的教学、加强学生对信号与线性系统理论的感性认识,提高学生计算机应用能力,《信号与系统》课程组于2002年设计并开发了“基于MATLAB的信号与线性系统实验系统”。该实验系统是用MATLAB5.3编写的,包含十个实验内容,分别是:信号的Fourier 分析、卷积计算、连续时间系统和离散时间系统的时域分析、变换域分析、状态变量分析、稳定性分析等,基本上覆盖了信号与线性系统理论的主要内容。通过这几年为学生们开设实验,学生们普遍反映该实验能够帮助他们将信号与系统中抽象的理论知识具体化,形象化。而且对于进一步搞清数学公式与物理概念的内在联系都很有帮助。

但是近两年我们进行了教学改革,更换了教材,原有的软件系统在内容的设计上就显现出一些不足;而且随着MATLAB版本的升级,该软件系统也陆续出现了一些问题,导致个别实验无法进行。在这样的背景下,我们设计并开发了一个新的基于MATLAB7.0的软件实验系统,利用MATLAB提供的GUI,使得系统界面更加美观;根据新教材的内容,设计并完善了实验内容;保留原有一些实验内容,但完善了功能,例如动态显示卷积过程,在任意范围显示图形等。

本系统包括七个实验,分别是:信号的时域基本运算、连续信号的卷积与连续时间系统的时域分析、离散信号的卷积与离散时间系统的时域分析、信号的频域分析、连续信号的采样与恢复、系统的频域分析、信号的幅度调制与解调。为了加强学生的计算机编程能力和应用能力,所有实验均提供设计性实验内容,让学生参与编程。

本系统既可作为教师教学的实验演示,又可作为学生动手实验的实验系统。

1. 安装本实验系统

本实验系统只能在MATLAB 环境下运行,所以要求必须先安装MATLAB7.0 以上版本的MATLAB 软件,推荐安装MATLAB的所有组件。安装好MATLAB7.0之后,将本实验系统包含的文件夹Signals&Systems 复制到MATLAB 的work文件夹下即可。

2. 运行本实验系统

在MATLAB 命令窗口下,键入启动命令start,即可运行本实验系统,进入主实验界面。注意:如果MATLAB软件没有安装符号(Symbolic)、控制(Control)、信号(Signal)工具箱,运行过程中会有些命令无法识别。

start ↙%启动命令

实验的运行过程中,需要实验者输入相应的参数、向量和矩阵,请参照本书中的格式输入。在输入向量时,数字之间用空格或逗号分隔,如输入离散序列x(n),输

入数字之间用“,”或“ ”分隔。“1 2 3 6 4 7 12 4 –1”或“1,2,3,6,4,7,12,4,-1”两种格式均可。在输入矩阵时,用分号“;”分隔不同的行,如输入状态矩阵A ,一行内数字用“,”或“ ”分隔,两行之间用“;”分隔。“1 2 –1 3;5 1.5 –2 0.3”或“1,2,-1,3;5,1.5,-2,0.3”均

输入一个2×4的矩阵??

????--3.025.153121。 在MATLAB 中对多项式的表示方法是将该多项式的系数按照降幂的顺序排列,

用一个行向量来表示。如()25

.02++=s s s s H ,需要用分子系数向量[1 0]和分母系数向量[1 1 0.25]表示,凡是在实验系统中要求输入分子系数和分母系数时,均指分式的分子多项式和分母多项式的系数按照降幂顺序排列得到的行向量。

另外,MATLAB 还规定了一些数学函数表示方法。如:“exp ”代表指数函数,“exp(–0.1*n )”代表“n e 1.0-”;“sin ”代表正弦函数,“sin(2*pi*n)”代表“()n π2sin ”,其它三角函数同理。本实验系统中表单选项里面的“Delta(at+b)”指单位冲激函数“δ(at +b )”,“u (a t+b )” 指单位阶跃函数。

3. 本实验系统的操作

本实验系统的主界面画了一个方框图,用以显示本系统包括的所有实验,如图 1 所示。点击相应的方框,就会进入相应的实验单元。

建议在具体进行实验之前,要详细阅读本实验指导书,了解界面上每个待输入窗口需输入的参数的性质和输出窗口的输出内容,以及实验目的、实验步骤和实验要求。

4. 关闭本实验系统

点击界面上的“关闭”按钮,就可关闭本实验系统。

图1 本实验系统的主界面

实验一 信号的时域基本运算

一、 实验目的

1.掌握时域内信号的四则运算基本方法;

2.掌握时域内信号的平移、反转、倒相、尺度变换等基本变换;

3.注意连续信号与离散信号在尺度变换运算上区别。

二、 实验原理

信号的时域基本运算包括信号的相加(减)和相乘(除)。信号的时域基本变换包括信号的平移(移位)、反转、倒相以及尺度变换。

(1) 相加(减): ()()()t x t x t x 21±= [][][]n x n x n x 21±=

(2) 相乘: ()()()t x t x t x 21?= [][][]n x n x n x 21?=

(3) 平移(移位): ()()0t t x t x -→ 00>t 时右移,00

[][]N n x n x -→ 0>N 时右移,0

(4) 反转:()()t x t x -→ [][]n x n x -→

(5) 倒相:()()t x t x -→ [][]n x n x -→

(6) 尺度变换: ()()at x t x →

1>a 时尺度压缩,1

[][]mn x n x → m 取整数

1>m 时只保留m 整数倍位置处的样值,1

三、 实验内容与步骤

1.连续时间信号的时域基本运算

实验步骤:

(1) 在主界面下单击“连续时间信号的时域基本运算”按钮,进入该子实验

界面,如图1-1所示;

(2) 在界面上文本框“设置 t 范围”的提示之下,在文本右边方框中输入t 的

起始、步长、终止值,从而设置函数波形的显示范围。如果不输入,则

使用缺省值,即起始值=–10,终止值=10,步长=0.001;

(3) 通过下拉条选择函数()t x 1;(本实验提供了五种函数:正弦函数()bt a sin 、

余弦函数()bt a cos 、指数函数bt

ae 、直线b at +和单位阶跃函数()t u ) (4) 输入参数a 、b 的值,若选择的是单位阶跃函数()t u ,则不用输入;

(5) 单击“函数x 1图形”按钮,()t x 1的波形就会显示出来;

(6) 通过下拉条选择函数()t x 2并输入参数的值;(若选择的是单位阶跃函数

()t u ,则不用输入)

(7) 单击“函数x 2图形”按钮,()t x 2的波形就会显示出来;

(8) 通过下拉条选择运算方式;(本实验提供两种基本运算:加法和乘法)

(9) 单击“运算后的函数波形”按钮,两函数相加或相乘之后的图形便会显

示出来;

(10) 通过下拉条选择函数x ,然后输入参数a 和b 的值;

(11) 单击“函数x 波形”按钮,该函数的波形会显示出来;

(12) 若进行平移运算,则先输入平移量t 0,再选择平移方式(左移或右移),

最后单击“平移后图形”按钮,在右下角的图形显示框中就会出现平移

后的波形;若进行尺度变换运算,则先输入变换因子m 的值,再选择尺度

变换方式(拉伸或压缩),最后单击“变换后图形”按钮,在右下角的

图形显示框中就会出现尺度变换后的波形;若进行反转运算,则直接单

击“函数反转”按钮,在右下角的图形显示框中就会出现反转后的波形。

(13) 重复(2)至(13)步,可进行另一次实验;

(14) 单击“返回”按钮,关闭连续时间信号的时域基本运算实验,返回主界

面。

图 1-1 连续时间信号时域基本运算实验界面

2.离散时间信号的时域基本运算

实验步骤:

(1) 在主界面下单击“离散时间信号的时域基本运算”按钮,进入该子实验界面,

如图1-2所示;

(2) 在界面上文本框“设置 n 范围”的提示之下,在文本右边方框中输入 n 的

起始和终止值(注意对于离散信号而言,由于其值只定义在整数位置处,因而步长始终为1),从而设置序列图形的显示范围;

(3) 通过下拉条选择序列[]n x 1;(本实验提供了四种函数:实指数序列n b Aa

、复指数序列()n jb a Ae +、单位函数[]b an A -δ和单位阶跃序列[]b an Au -)

(4) 分别输入参数A 、参数a 和参数b 的值;

(5) 单击“序列1x 图形”按钮,[]n x 1的图形就会显示出来;

(6) 通过下拉条选择函数[]n x 2并分别输入几个参数的值;

(7) 单击“序列2x 图形”按钮,[]n x 2的波形就会显示出来;

(8) 通过下拉条选择运算方式;(本实验提供两种基本运算:加法和乘法}

(9) 单击“运算后序列图形”按钮,两序列相加或相乘之后的图形便会显示出来;

(10) 通过下拉条选择原序列并依次输入几个参数的值;

(11) 单击“原序列图形”按钮,该序列的图形会显示出来;

(12) 若进行移位运算,则先输入移位位数N ,再选择移位方式(左移或右移),

最后单击“移位后图形”按钮,在右下角的图形显示框中就会出现移位后的图形;若进行尺度变换运算,则先输入变换因子m 的值,再选择尺度变换方

式(拉伸或压缩),最后单击“变换后图形”按钮,在右下角的图形显示框中就会出现尺度变换后的图形;若进行倒相运算,则直接单击“序列倒相”按钮,在右下角的图形显示框中就会出现倒相后的图形;若进行反转运算,则直接单击“序列反转”按钮,在右下角的图形显示框中就会出现反转后的图形。

(13) 重复(2)至(13)步,可进行另一次实验;

(14) 单击“返回”按钮,关闭离散时间信号的时域基本运算实验,返回主界面。

图 1-2 离散时间信号时域基本运算实验界面

3。程序设计实验

(1)已知信号()()()()[]221--+-=t u t u t t x ,()()t t x π2cos 2=,用MATLAB 绘制下列信号的时域波形:

(a) ()()()t x t x t x a 11+-= (b) ()()()t x t x t x a b 2?= (c) ()()2-=t x t x b c

(2)已知序列[][][]761--+=n u n u n x ,[]??

?

??=n n x 65sin 2π,用MATLAB 绘制下列信号的时域波形:

(a)[][][]n x n x n x a -?-=216 (b)[][]n x n x b 31= (c)[][][][]n u n x n x n x c ?+-=21 四.实验报告要求

1.简述实验目的和实验原理。

2。按照实验步骤进行实验,记录实验结果,并与理论计算结果进行比较,验证实验结果。

3.对于设计性实验,可自行选做。

4.总结实验中的主要结论,收获和体会。

实验二 连续信号卷积与系统的时域分析

一、 实验目的

1.掌握卷积积分的计算方法及其性质。

2.掌握连续时间LTI 系统在典型激励信号下的响应及其特征。

3.重点掌握用卷积法计算连续时间LTI 系统的零状态响应。

4.运用学到的理论知识,从RC 、RL 一阶电路的响应中正确区分零输入响应、零状态响应、冲激响应和阶跃响应。

二、 实验原理

描述线性非时变连续时间系统的数学模型是线性常系数微分方程。为了确定一个线性非时变系统在给定初始条件下的完全响应y (t ),就要对该系统列写微分方程表示式,并求出满足初始条件的解。

完全响应y (t )可分为零输入响应与零状态响应。零输入响应是激励为零时仅由系统初始状态y (0–)所产生的响应,用y zi (t )表示;零状态响应是系统初始状态为零时仅由激励e (t )所引起的响应,用y zs (t )表示。于是,可以把激励信号与初始状态两种不同因素引起的响应区分开来分别进行计算,然后再叠加,即y (t ) = y zi (t ) + y zs (t ) 。

值得注意的是,我们通常把系统微分方程的解(包括完全响应解、零输入响应解与零状态响应解)限定于0+< t <∞的时间范围,因此不能把初始状态(包括y (0–)、y zi (0–)、y zs (0–))直接作为微分方程的初始条件,而应当将y (0+)、y zi (0+)、y zs (0+)作为初始条件代入微分方程。由y (0–)、y zi (0–)、y zs (0–)求y (0+)、y zi (0+)、y zs (0+)可采用微分方程两边冲激函数平衡的方法。该方法可参考由高等教育出版社出版,郑君里主编的教材《信号与系统》(第二版)上册第二章的2.3小节。

本实验以一阶RC 电路和一阶RL 为例,讨论微分方程的建立和求解问题。 一阶RC 电路如图 2-1所示,电压源e (t )作为激励,

若电容两端的电压u c (t )作为响应,则描述系统的

微分方程为:

)()()(t e t u dt t du RC c c =+ 只要给定e (t )和初始状态u c (0–)的值,就可以

求出零输入响应u czi (t )、零状态响应u czs (t )和完全

响应u c (t )。

具体地,当选择电容两端电压u c (t )作为响应,则该电路的 图 2-1 一阶RC 电路 单位冲激响应:

()()t u e t h t RC RC 11-= 单位阶跃响应:

()()()t u e t s t RC 11--= 零输入响应: ()()()t u e u t u t c czi RC 10--=

e (t )

零状态响应: ()()()t h t e t u czs *=

若(),20),()(,2,13V u t u e t e R F C c t ==Ω==--可分析出()()200==-+c c u u ,且可求出零输入响应()t u e t u t zi c 5.02)(-=,零状态响应()()t u e e t u t t czs 35.02.0)(---= ,完全响应 ()()t u e e t u t t c 35.02.02.2)(---=。

本实验中激励电压源有下列五种形式:u (t )、)()sin(t u t 、)5()(--t u t u 、)(3t u e t -、)(t δ。本实验允许在以下三个物理量中选择一个作为输出量:电容两端电压u c (t ),电阻两端电压u R (t ),回路电流i (t )。

一阶RL 电路如图2-2所示,电流源e (t )作为激励,若选择电感电流i L (t )作为响应,则描述系统的微分方程为:

)()()(t e t i dt

t di R L L L =+ 只要给定e (t )和初始状态i L (0–)的值,就可以 求出零输入响应i Lzi (t )、零状态响应i Lzs (t )和 完全响应i L (t )。

实际上,由于此时电路的数学模型与RC

电路当选择u c (t )作为响应时的数学模型是一样

的,所以响应的求解也相同,这里就不再赘述。 图 2-2 一阶RL 电路 本实验中激励电流源也是下列五种函数形式:u (t )、)()sin(t u t 、)5()(--t u t u 、)(3t u e t -、)(t δ。而且本实验允许在以下三个物理量中选择一个作为输出量:电感电流i L (t ),电阻电流i R (t ),电感两端电压u L (t )。

在线性系统的时域分析方法中,卷积是个极其重要的概念,占有重要地位。 卷积积分的定义为:

ττττττd t f f d t f f t f t f t f )()()()()()()(122121-=-=*=??+∞

∞-+∞

∞-

卷积积分的计算过程从几何上可以分为反转、平移、相乘与积分四个步骤。 卷积积分是LTI 系统时域分析的基本手段,主要用于求零状态响应。只要知道了系统在单位冲激信号δ(t )作用下的零状态响应即系统的单位冲激响应h (t ),就可以利用卷积积分求出系统在任何激励x (t )作用下的零状态响应:

ττττττd t x h d t h x t h t x t y zs )()()()()()()(-=-=*=??+∞

-+∞∞- 也可简记为 )()()(t h t x t y zs *= e (t ) i L (t ) L R ↑

↓ ↓ i R (t )

三。实验内容及步骤

1。连续时间信号的卷积

实验步骤:

(1)在主界面下单击“连续信号的卷积”按钮,进入该子实验界面,如图2-3所示;(2)通过下拉条选择函数x并输入参数a、b的值;(本实验提供四种函数:门函数、三角脉冲函数、单位阶跃函数和单位冲激函数)

(3)通过下拉条选择函数y并输入参数a、b的值;(本实验提供四种函数:门函数、三角脉冲函数、单位阶跃函数和单位冲激函数)

(4)单击“函数x图形”按钮,函数x的图形显示出来;

(5)单击“函数y图形”按钮,函数y的图形显示出来;

(6)单击“开始计算”按钮,函数x和函数y卷积的动态过程以及最后卷积的结果逐步显示出来;

(7)重复(2)至(6)步,可进行另一次实验;

(8)单击“返回”按钮,关闭连续信号卷积实验,返回主界面。

图2-3 连续信号的卷积实验界面

2。连续时间系统的时域分析分为RC电路时域分析和RL电路时域分析,下面以RC 电路为例简述实验步骤:

(1)在主界面下单击“RC电路时域分析”按钮,进入该子实验界面,如图2-4所示;

(2)通过下拉条选择输出响应信号的类型;

可以选择电容电压、电阻电压或回路电流作为输出响应函数。

(3)依次输入电阻R、电容C、电容初始电压u(0–)的值;

(4)单击“单位冲激响应”按钮,显示冲激响应波形。

(5)单击“零输入响应”按钮,显示零输入响应波形。

(6) 单击“零状态响应”按钮,显示零状态响应波形。

(7) 单击“全响应”按钮,显示全响应波形。

(8) 重复(2)至(7)步,可进行另一次实验;

(9) 单击“返回”按钮,关闭连续系统时域分析实验,返回主界面。

图2-4 RC 电路时域分析实验界面

3。程序设计实验

(1)设()(),1t t x δ=,()()t u t x =2,()()()23--=t u t u t x ,证明卷积满足如下性质: (a )[])()()()()()()(3121321t x t x t x t x t x t x t x *+*=+*

(b ))()()(331t x t x t x =*

(2)已知某连续LTI 系统的微分方程为 ()()()()t x dt t dx t y dt

t y d 5.0422-=+ 系统的初始状态()()10,20='=--y y ,求系统的冲激响应和全响应。

四.实验报告要求

1.简述实验目的和实验原理。

2.按照实验步骤进行实验,记录实验结果,并与理论计算结果进行比较,验证实验结果。

3.对于设计性实验,可自行选做。

4.总结实验中的主要结论,收获和体会。

实验三 离散信号卷积与系统的时域分析

一、 实验目的

1. 掌握离散卷积和的计算方法。

2. 掌握差分方程的迭代解法。

3. 了解全响应、零输入响应、零状态响应和初始状态、初始条件的物理意义和具体求法。

二、 实验原理

描述线性移不变离散时间系统的数学模型是常系数差分方程,它与系统的结构流图之间可以互相推导。用x [n ]、y [n ]分别表示系统的激励和响应,差分方程通式为:

[][][][][][]M n x b n x b n x b N n y a n y a n y a M N -++-+=-++-+ 111010

已知激励序列和系统的初始状态y [–1],y [–2],…,y [–N ],可以采用迭代法或直接求解差分方程的经典法得到系统的输出响应,但课程中这两种方法不作为重点。课程重点研究零输入响应和零状态响应。对于零输入响应y zi [n ],激励序列为零,描述系统的差分方程为齐次方程,利用初始条件y zi [0],y zi [1],…,y zi [N-1]求解该齐次方程即可得到零输入响应。零状态响应y zs [n ]的求解是以激励信号的时域分解和系统的移不变特性为前提展开的。在已知单位函数响应h [n ]的情况下,利用卷积和即可求出系统在任意激励序列x [n ]作用下的零状态响应。

值得说明的是,求解差分方程实际上最常用的方法是迭代解法,这也是实现数字滤波器的一种基本方法。

离散卷积的定义如下:

[][][][][][]m n x m x m n x m x n x n x m m -=-=

*∑∑+∞

-∞=+∞-∞=122121 对于离散LTI 系统,其零状态响应 [][][][][]m n h m x n h n x n y m zs -=

*=∑+∞

-∞=。 在离散卷积中,多讨论有限长序列。若x [n ]和h [n ]长度分别为 M 和 N ,则卷积结果即响应序列y zs [n ]也是有限长序列,长度为 L =M +N -1。上式形象地描述了离散卷积中两个有限长序列反转、移位、相乘、累加的过程。

本实验差分方程求解中只限于激励是单位阶跃序列u [n ],即x [n ]= u [n ]的情况,通过给定系统阶数 N 和系数向量和以及初始状态的值可以求出系统在单位阶跃序列激励下的响应,包括单位函数响应h [n ]以及激励下的全响应和零输入响应、零状态响应。至于其它激励下的零状态响应,可以用它的单位函数响应与输入序列的离散卷积求出。

三。实验内容及步骤

信号与线性系统实验二

实验二、信号与系统时域分析的MATLAB 实现 一、实验目的 掌握利用Matlab 求解LTI 系统的冲激响应、阶跃响应和零状态响应,理解卷积概念。 二、实验内容 1、 卷积运算的MA TLAB 实现: (1) 计算连续信号卷积用MATLAB 中的函数conv ,可编写连续时间信号卷积通用函 数sconv , function [f,n]=sconv(f1,f2,n1,n2,p) f=conv(f1,f2);f=f*p; n3=n1(1)+n2(1); n4=n1(end)+n2(end); n=n3:p:n4; 例2.1 )()()(21t f t f t f *= p=0.01; n1=-1:p:1; f1=ones(1,length(n1)); n2=0:p:1; f2=2*n2; [f,n]=sconv(f1,f2,n1,n2,p); subplot(3,1,1),plot(n1,f1), axis([-1.5,1.5,0,2]),grid on subplot(3,1,2),plot(n2,f2), axis([-0.1,1.2,0,3]),grid on subplot(3,1,3),plot(n,f),axis([-1.5,5,0,2]),grid on 利用此例验证两个相同的门函数相卷积其结果为一个等腰三角形,两个不同的门函数相卷积

其结果为一个等腰梯形: <1>相同: p=0.01; n1=-1:p:1; f1=ones(1,length(n1)); n2=-1:p:1; f2=ones(1,length(n2)); [f,n]=sconv(f1,f2,n1,n2,p); subplot(3,1,1),plot(n1,f1), axis([-1.5,1.5,0,2]),grid on subplot(3,1,2),plot(n2,f2), axis([-0.1,1.2,0,3]),grid on subplot(3,1,3),plot(n,f),axis([-5,5,0,2]),grid on <2>、不同: p=0.01; n1=-1:p:1; f1=ones(1,length(n1)); n2=-3:p:1; f2=ones(1,length(n2)); [f,n]=sconv(f1,f2,n1,n2,p); subplot(3,1,1),plot(n1,f1), axis([-1.5,1.5,0,2]),grid on subplot(3,1,2),plot(n2,f2), axis([-4,1.2,0,3]),grid on subplot(3,1,3),plot(n,f),axis([-5,5,0,5]),grid on

语音信号处理实验指导书

语音信号处理实验指导书 实验一 语音信号采集与简单处理 一、 实验目的、要求 (1)掌握语音信号采集的方法 (2)掌握一种语音信号基音周期提取方法 (3)掌握短时过零率计算方法 (4)了解Matlab 的编程方法 二、 实验原理 基本概念: (a )短时过零率: 短时内,信号跨越横轴的情况,对于连续信号,观察语音时域波形通过横轴的情况;对于离散信号,相邻的采样值具有不同的代数符号,也就是样点改变符号的次数。 对于语音信号,是宽带非平稳信号,应考察其短时平均过零率。 其中sgn[.]为符号函数 ?? ?? ?<=>=0 x(n)-1sgn(x(n))0 x(n)1sgn(x(n)) 短时平均过零的作用 1.区分清/浊音: 浊音平均过零率低,集中在低频端; 清音平均过零率高,集中在高频端。 2.从背景噪声中找出是否有语音,以及语音的起点。 (b )基音周期 基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。 ∑--= -=1 )]1(sgn[)](sgn[21N m n n n m x m x Z

由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的头、尾部并不具有声带振动那样的周期性,有些清音和浊音的过渡帧是很难准确地判断是周期性还是非周期性的。②声道共振峰有时会严重影响激励信号的谐波结构,所以,从语音信号中直接取出仅和声带振动有关的激励信号的信息并不容 易。③语音信号本身是准周期性的(即音调是有变化的),而且其波形的峰值点或过零点受共振峰的结构、噪声等的影响。④基音周期变化范围大,从老年男性的50Hz 到儿童和女性的450Hz ,接近三个倍频程,给基音检测带来了一定的困难。由于这些困难,所以迄今为止尚未找到一个完善的方法可以对于各类人群(包括男、女、儿童及不向语种)、各类应用领域和各种环境条件情况下都能获得满意的检测结果。 尽管基音检测有许多困难,但因为它的重要性,基音的检测提取一直是一个研究的课题,为此提出了各种各样的基音检测算法,如自相关函数(ACF)法、峰值提取算法(PPA)、平均幅度差函数(AMDF)法、并行处理技术、倒谱法、SIFT 、谱图法、小波法等等。 三、使用仪器、材料 微机(带声卡)、耳机,话筒。 四、 实验步骤 (1)语音信号的采集 利用Windows 语音采集工具采集语音信号,将数据保存wav 格式。 采集一组浊音信号和一组清音信号,信号的长度大于3s 。 (2)采用短时相关函数计算语音信号浊音基音周期,考虑窗长度对基音周期计算的影响。采用倒谱法求语音信号基音周期。 (3)计算短时过零率,清音和浊音的短时过零率有何区别。 五、实验过程原始记录(数据,图表,计算) 短时过零率 短时相关函数 P j j n s n s j R N j n n n n ,,1) ()()(1 =-=∑-= ∑--=-=10 )]1(sgn[)](sgn[21N m n n n m x m x Z

实验 涡流探伤实验指导书

实验涡流探伤实验(烟台大学王海波) 一、实验目的 1.了解涡流探伤的基本原理; 2.掌握涡流探伤的一般方法和检测步骤; 3.熟悉涡流探伤的特点。 二、实验原理 1. EEC-35/RFT涡流检测仪简介 EEC-35/RFT智能全数字式多频远场涡流检测仪是新一代涡流无损检测设备,它采用了最先进的数字电子技术、远场涡流技术及微处理机技术,能实时有效地检测铁磁性和非铁磁性金属管道的内、外壁缺陷。EEC-35/ RFT 既是一套完整的远场涡流检测系统,也可与常规的多频、多通道的普通涡流检测系统融为一体成为高性能、多用途、智能化的涡流检测新型设备。 EEC-35/RFT由于具备了四个相对独立的测试通道,可同时获得二个绝对、二个差动的涡流信号。仪器可通过软开关切换成两台二频二通道的涡流检测仪,同时连接两只探头进检测。具有5Hz 至5MHz 的可变频率范围,因此 EEC-35/RFT 特别适用于核能、电力、石化、航天、航空等部门在役铜、钛、铝、锆等各种管道、金属零部件的探伤和壁厚测量以及各种铁磁性管道的探伤、分析和评价。例如:锅炉管、热交换器管束、地下管线和铸铁管道等的役前和在役检测。EEC-35/RFT 具有可选的多个检测程序,同屏多窗口显示模式,同屏显示多个涡流信号的相位、幅度变化及其波形的情况。多个相对独立的检测通道,有多达三个混频单元,能抑制在役检测中由支撑板、凹痕、沉积物及管子冷加工产生的干扰信号,去伪存真,提高对涡流检测信号的评价精度。且由于采用了全数字化设计,能够在仪器内建立标准检测程序,方便用户现场检测时调用。 此外,仪器还具有组态分析功能,能够用于金属表面硬度、硬化深度层深等的检测及材料分选。 2.涡流检测原理 涡流检测是以电磁感应为基础的,它的基本原理可以描述为:当载有交变电

信号与系统实验指导书

实验一 常用信号分类与观察 一、实验目的 1、了解单片机产生低频信号源; 2、观察常用信号的波形特点及产生方法; 3、学会使用示波器对常用波形参数的测量。 二、实验内容 1、信号的种类相当的多,这里列出了几种典型的信号,便于观察。 2、这些信号可以应用到后面的“基本运算单元”和“无失真传输系统分析”中。 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、抽样信号、钟形信号、脉冲信号等。 1、正弦信号:其表达式为)sin()(θω+=t K t f ,其信号的参数:振幅K 、角频率ω、与初始相位θ。其波形如下图所示: 图 1-5-1 正弦信号 2、指数信号:指数信号可表示为at Ke t f =)(。对于不同的a 取值,其波形表现为不同的形式,如下图所示:

图 1-5-2 指数信号 3、指数衰减正弦信号:其表达式为 ?? ? ??><=-)0()sin()0(0)(t t Ke t t f at ω 其波形如下图: 图 1-5-3 指数衰减正弦信号 4、抽样信号:其表达式为: sin ()t Sa t t = 。)(t Sa 是一个偶函数,t = ±π,±2π,…,±n π时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

信号与线性系统分析实验报告~~

信号与线性系统分析 实验报告 学院:xxxxxxxxxxxxxxx 班级: xxxxxxxxxxxxxx 学号: xxxxxxxxxxxx 姓名: xxxxxxxx 2011-12-13

实验一1. 产生-100); 调用阶跃函数代码:

f=heaviside(t); plot(t,f) axis([-1,3,-0.2,1.2]) 阶跃波形图: 3.画出f=exp(-2*t) .*heaviside(t). 代码: f=exp(-2*t) .*heaviside(t); plot(t,f) axis([-1,5,-0.1,0.4]) 波形图:

3. 正弦函数程序函数单数代码:t=-pi:pi/40:pi; f=sin(2*pi*50*t); plot(t,f) axis([-3,3,-1.5,1.5]) 波形图:

实验二 连续信号的时域描述与运算 一.信号的平移和反转 1.将函数u(t)=heaviside(t); 代码: function f=u(t); f=heaviside(t); 2.画出f(t)=t*[u(t)-u(t-1)] 代码: f=t.*[u(t)-u(t-1)]; plot(t,f) axis([-3,3,-0.1,1.2])

波形图: 定义initialsignal(t)= t*[u(t)-u(t-1)]; 代码: function f=initialsignal(t); f=t.*[u(t)-u(t-1)]; 波形的平移和反转过程: 代码: t=-2:0.01:2; f=initialsignal(t); subplot(231) plot(t,f) f1=initialsignal(t+1);

信号处理实验指导

目录 绪论 (1) 1离散时间信号和系统分析 1.1 离散时间信号产生与运算 (2) 1.2 离散时间系统的时域分析 (9) 1.3 离散时间系统的频域分析 (13) 1.4 离散时间系统频响的零极点确定 (14) 2快速傅立叶变换的应用 2.1 FFT的计算 (17) 2.2 利用FFT进行谱分析 (18) 2.3利用FFT实现快速卷积 (19) 3数字滤波器的设计 3.1数字滤波器的结构 (23) 3.2无限冲激响应(IIR)数字滤波器的设计 (25) 3.3有限冲激响应(FIR)数字滤波器的设计 (27) 4综合应用举例 4.1 语音信号处理 (32) 4.2 电话拨号音的合成与识别 (32)

绪论 数字信号处理主要研究如何对信号进行分析、变换、综合、估计与识别等加工处理的基本理论和方法。随着计算机技术和大规模集成电路技术的发展,数字信号处理以其方便、灵活等特点引起人们越来越多的重视。在40多年的发展过程中,这门学科基本形成了一套完整的理论体系,其中也包括各种快速、优良的算法,而且数字信号处理的理论和技术也在不断、快速地丰富和完善,新理论和新技术也层出不穷。学习这门课程的过程中,容易使人感到数字信号处理的概念抽象难懂,其中的分析方法与基本理论不容易很好地理解与掌握。因此,如何理解与掌握课程中的基本概念、基本原理、基本分析方法以及综合应用所学知识解决实际问题的能力,是本课程学习中所要解决的关键问题。 Matlab是一种面向科学和工程的高级语言,现已成为国际上公认的优秀的科技界应用软件,在世界范围内广为流行和使用。在欧美高等院校里,Matlab已成为大专院校学生、教师的必要基本技能,广泛应用于科学研究、工程计算、教学等。上世纪90年代末和本世纪初Matlab在我国也被越来越多地应用于科研和教学工作中。Matlab是一套功能强大的工程计算及数据处理软件,在工业,电子,医疗和建筑等众多领域均被广泛运用。它是一种面向对象的,交互式程序设计语言,其结构完整又具有优良的可移植性。它在矩阵运算,数字信号处理方面有强大的功能。另外,Matlab提供了方便的绘图功能,便于用户直观地输出处理结果。 本文通过Matlab系列仿真,旨在掌握基本的数字信号处理的理论和方法,提高综合运用所学知识,提高Matlab计算机编程的能力。进一步加强独立分析问题、解决问题的能力、综合设计及创新能力的培养,同时注意培养实事求是、严肃认真的科学作风和良好的实验习惯。

电子技术实验指导书

实验一常用电子仪器的使用方法 一、实验目的 了解示波器、音频信号发生器、交流数字毫伏表、直流稳压电源、数字万用电表的使用方法。二实验学时 2 学时 三、实验仪器及实验设备 1、GOS-620 系列示波器 2、YDS996A函数信号发生器 3、数字交流毫伏表 4、直流稳压电源 5、数字万用电表 四、实验仪器简介 1、示波器 阴极射线示波器(简称示波器)是利用阴极射线示波管将电信号转换成肉眼能直接观察的随时间变化的图像的电子仪器。示波器通常由垂直系统、水平系统和示波管电路等部分组成。垂直系统将被测信号放大后送到示波管的垂直偏转板,使光点在垂直方向上随被测信号的幅度变化而移动;水平系统用作产生时基信号的锯齿波,经水平放大器放大后送至示波管水平偏转板,使光点沿水平方向匀速移动。这样就能在示波管上显示被测信号的波形。 2、YDS996A函数信号发生器通常也叫信号发生器。它通常是指频率从0.6Hz至1MHz的正弦波、方波、三角波、脉冲波、锯齿波,具有直流电平调节、占空比调节,其频率可以数字直接显示。适用于音频、机械、化工、电工、电子、医学、土木建筑等各个领域的科研单位、工厂、学校、实验室等。 3、交流数字毫伏表 该表适用于测量正弦波电压的有效值。它的电路结构一般包括放大器、衰减器(分压器)、检波器、指示器(表头)及电源等几个部分。该表的优点是输入阻抗高、量程广、频率范围宽、过载能力强等。该表可用来对无线电接收机、放大器和其它电子设备的电路进行测量。 4、直流稳压电源: 它是一种通用电源设备。它为各种电子设备提供所需要的稳定的直流电压或电流当电网电压、负载、环境等在一定范围内变化时,稳压电源输出的电压或电流维持相对稳定。这样可以使电子设备或电路的性能稳定不变。直流电源通常由变压、整流、滤波、调整控制四部分组成。有些电源还具有过压、过流等保护电路,以防止工作失常时损坏器件。 6、计频器 GFC-8010H是一台高输入灵敏度20mVrms,测量范围0.1Hz至120MHz的综合计频器,具备简洁、高性能、高分辨率和高稳定性的特点。 5、仪器与实验电路的相互关系及主要用途:

信号(MATLAB)实验指导书

《信号与系统》实验指导书 张建奇骆崇编写 浙江工业大学之江学院信息工程分院 2012年2月

目录 实验一MATLAB的基本使用 (1) 一、实验目的 (1) 二、实验原理 (1) 三、实验内容与要求 (8) 四、实验报告 (9) 实验二时域波形的MATLAB实现 (10) 一、实验目的 (10) 二、预习要求 (10) 三、实验原理 (10) 四、实验内容与要求 (18) 五、实验报告 (19) 实验三用MATLAB对系统时域分析 (20) 一、实验目的 (20) 二、预习要求 (20) 三、实验原理 (20) 四、实验内容与要求 (29)

实验一MATLAB的基本使用 一、实验目的 1、了解和掌握MATLAB的基本操作 2、了解MATLAB的库函数 3、会用MATLAB进行简单的操作。 二、实验原理 1、界面操作 MATLAB是“MATrix LABoratory”的缩写(矩阵实验室),它是由美国Mathworks公司于1984年正式推出的一种科学计算软件,由于其强大的功能,在欧美的一些大学里MATLAB已经成为许多诸如数字信号处理、自动控制理论等高级教程的主要工具软件,同时也成为理工科学生,必须掌握的一项基本技能。 当需要运行程序时,只需选择桌面上(或开始)中的MATLAB6.5应用程序图标即可 通常情况下,MATLAB的工作环境主要由一下几个窗口组成: 命令窗口(Command Window)

工作区间浏览器(Workspace) 历史命令窗口(Command History) 图形窗口(Figure) 文本编辑窗口(Editor) 当前路径窗口(Current Directory) MATLAB的命令窗与命令操作 当用户使用命令窗口进行工作时,在命令窗口中可以直接输入相应的命令,系统将自动显示信息。 例如在命令输入提示符“>>”后输入指令: >>t=[1,2,3;4,5,6;7,8,9]; 按回车键(Enter)后,系统即可完成对变量t的赋值。 MATALB提供了非常方便的在线帮助命令(help),它可提供各个函数的用法指南,包括格式、参数说明、注意事项及相关函数等内容。 2、图形窗 MATLAB图形窗(Figure)主要用于显示用户所绘制的图形。 通常,只要执行了任意一种绘图命令,图形窗就会自动产生。

信号与系统实验报告1

学生实验报告 (理工类) 课程名称:信号与线性系统专业班级:M11通信工程 学生学号:1121413017 学生姓名:王金龙 所属院部:龙蟠学院指导教师:杨娟

20 11 ——20 12 学年第 1 学期 金陵科技学院教务处制 实验报告书写要求 实验报告原则上要求学生手写,要求书写工整。若因课程特点需打印的,要遵照以下字体、字号、间距等的具体要求。纸张一律采用A4的纸张。 实验报告书写说明 实验报告中一至四项内容为必填项,包括实验目的和要求;实验仪器和设备;实验内容与过程;实验结果与分析。各院部可根据学科特点和实验具体要求增加项目。 填写注意事项 (1)细致观察,及时、准确、如实记录。 (2)准确说明,层次清晰。 (3)尽量采用专用术语来说明事物。 (4)外文、符号、公式要准确,应使用统一规定的名词和符号。 (5)应独立完成实验报告的书写,严禁抄袭、复印,一经发现,以零分论处。 实验报告批改说明 实验报告的批改要及时、认真、仔细,一律用红色笔批改。实验报告的批改成绩采用百分制,具体评分标准由各院部自行制定。 实验报告装订要求

实验批改完毕后,任课老师将每门课程的每个实验项目的实验报告以自然班为单位、按学号升序排列,装订成册,并附上一份该门课程的实验大纲。

实验项目名称:常用连续信号的表示 实验学时: 2学时 同组学生姓名: 无 实验地点: A207 实验日期: 11.12.6 实验成绩: 批改教师: 杨娟 批改时间: 一、实验目的和要求 熟悉MATLAB 软件;利用MATLAB 软件,绘制出常用的连续时间信号。 二、实验仪器和设备 586以上计算机,装有MATLAB7.0软件 三、实验过程 1. 绘制正弦信号)t Asin t (f 0?ω+=(),其中A=1,πω2=,6/π?=; 2. 绘制指数信号at Ae t (f =),其中A=1,0.4a -=; 3. 绘制矩形脉冲信号,脉冲宽度为2; 4. 绘制三角波脉冲信号,脉冲宽度为4;斜度为0.5; 5. 对上题三角波脉冲信号进行尺度变换,分别得出)2t (f ,)2t 2(f -; 6. 绘制抽样函数Sa (t ),t 取值在-3π到+3π之间; 7. 绘制周期矩形脉冲信号,参数自定; 8. 绘制周期三角脉冲信号,参数自定。 四、实验结果与分析 1.制正弦信号)t Asin t (f 0?ω+=(),其中A=1,πω2=,6/π?= 实验代码: A=1;

数字信号处理实验五

实验五:FIR数字滤波器设计与软件实现 信息学院 10电本2班王楚炘 2010304224 10.5.1 实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验内容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图10.5.1所示; 图10.5.1 具有加性噪声的信号x(t)及其频谱如图(3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,

调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:MATLAB函数fir1和fftfilt的功能及其调用格式请查阅本书 第7章和第?章; 采样频率Fs=1000Hz,采样周期T=1/Fs; 根据图10.6.1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止频率,通带最大衰为0.1dB,阻带截至频率,阻带最小衰为60dB。]实验程序框图如图10.5.2所示,供读者参考。 Fs=1000,T=1/Fs xt=xtg 产生信号xt, 并显示xt及其频谱 用窗函数法或等波纹最佳逼近法 设计FIR滤波器hn 对信号xt滤波:yt=fftfilt(hn,xt) 1、计算并绘图显示滤波器损耗函数 2、绘图显示滤波器输出信号yt End 图10.5.2 实验程序框图 4.思考题 (1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤. 答:用窗函数法设计线性相位低通滤波器的设计步骤: a.根据对阻带衰减及过渡带的指标要求,选择窗函数的类型,并估计窗口的长度N; b.构造希望逼近的频率响应函数; c.计算h d(n); d.加窗得到设计结果h(n)=h d(n)w(n)。 (2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为和,阻带上、下截止频率为和,试求理想带通滤波器的截止频率。 答:希望逼近的理想带通滤波器的截止频率分别为:

测试技术试验指导书

《机械工程测试技术》实验指导书 编者:郑华文刘畅 昆明理工大学机电学院实验中心 2014年5月

说明和评分 1学生按照实验预约表进行实验;在实验前,需对理论教学中相关内容做做复习并对实验指导书进行预习,熟悉实验内容和要求后才能进入实验室进行实验。在实验中,不允许大声喧哗和进行与实验不相关的事情。 2进入实验室后,应遵守实验室守则,学生自己应发挥主动性和独立性,按小组进行实验,在操作时应对实验仪器和设备的使用方法有所了解,避免盲目操作引起设备损坏,在动手操作时,应注意观察和记录。 3根据内容和要求进行试验,应掌握开关及的顺序和步骤:1)不允许带负荷开机。输出设备不允许有短路,输入设备量程处于最大,输出设备衰减应处于较小。2)在实验系统上电以后,实验模块和实验箱,接入或拔出元件,不允许带电操作,在插拔前要确认不带电,插接完成后,才对实验模块和试验箱上电。3)试验箱上元件的插拔所用连线,在插拔式用手拿住插头插拔,不允许直接拉线插拔。4)实验中,按组进行试验,实验元件也需按组取用,不允许几组混用元件和设备。 4在实验过程中,在计算机上,按组建立相关实验文件,实验中的过程、数据、图表和实验结果,按组记录后,各位同学拷贝实验相关数据文件等,在实验报告中应有反应。对实验中的现象和数据进行观察和记录。 实验评分标准: 1)实验成绩评分按实验实作和实验报告综合评分:实验实作以学生在实验室中完成实验表现和实验结果记录文件评定,评定为合格和不合格;实验报告成绩:按照学生完成实验报告的要求,对实验现象的观察、思考和实验结果的分析等情况评定成绩。初评百分制评定。 2)综合实验成绩评定按百分制。

信号与系统实验指导书

信号与系统软件实验 指导书 《信号与系统》课程组 华中科技大学电子与信息工程系 二零零九年五月

“信号与系统软件实验”系统简介《信号与系统》是电子与通信类专业的主要技术基础课之一,该课程的任务在于研究信号与系统理论的基本概念和基本分析方法,使学生初步认识如何建立信号与系统的数学模型,如何经适当的数学分析求解,并对所得结果给以物理解释,赋予物理意义。由于本学科内容的迅速更新与发展,它所涉及的概念和方法十分广泛,而且还在不断扩充,通过本课程的学习,希望激发起学生对信号与系统学科方面的学习兴趣和热情,使他们的信心和能力逐步适应这一领域日新月异发展的需要。 近二十年来,随着电子计算机和大规模集成电路的迅速发展,用数字方法处理信号的范围不断扩大,而且这种趋势还在继续发展。实际上,信号处理已经与计算机难舍难分。为了配合《信号与系统》课程的教学、加强学生对信号与线性系统理论的感性认识,提高学生计算机应用能力,《信号与系统》课程组于2002年设计并开发了“基于MATLAB的信号与线性系统实验系统”。该实验系统是用MATLAB5.3编写的,包含十个实验内容,分别是:信号的 Fourier 分析、卷积计算、连续时间系统和离散时间系统的时域分析、变换域分析、状态变量分析、稳定性分析等,基本上覆盖了信号与线性系统理论的主要内容。通过这几年为学生们开设实验,学生们普遍反映该实验能够帮助他们将信号与系统中抽象的理论知识具体化,形象化。而且对于进一步搞清数学公式与物理概念的内在联系都很有帮助。 但是近两年我们进行了教学改革,更换了教材,原有的软件系统在内容的设计上就显现出一些不足;而且随着MATLAB版本的升级,该软件系统也陆续出现了一些问题,导致个别实验无法进行。在这样的背景下,我们设计并开发了一个新的基于MATLAB7.0的软件实验系统,利用MATLAB提供的GUI,使得系统界面更加美观;根据新教材的内容,设计并完善了实验内容;保留原有一些实验内容,但完善了功能,例如动态显示卷积过程,在任意范围显示图形等。 本系统包括七个实验,分别是:信号的时域基本运算、连续信号的卷积与连续时间系统的时域分析、离散信号的卷积与离散时间系统的时域分析、信号的频域分析、连续信号的采样与恢复、系统的频域分析、信号的幅度调制与解调。为了加强学生的计算机编程能力和应用能力,所有实验均提供设计性实验内容,让学生参与编程。 本系统既可作为教师教学的实验演示,又可作为学生动手实验的实验系统。 1. 安装本实验系统 本实验系统只能在 MATLAB 环境下运行,所以要求必须先安装 MATLAB7.0 以上版本的 MATLAB 软件,推荐安装MATLAB的所有组件。安装好MATLAB7.0之后,将本实验系统包含的文件夹 Signals&Systems 复制到MATLAB 的 work文件夹下即可。 2. 运行本实验系统 在 MATLAB 命令窗口下,键入启动命令 start,即可运行本实验系统,进入主实验界面。注意:如果MATLAB软件没有安装符号(Symbolic)、控制(Control)、信号(Signal)工具箱,运行过程中会有些命令无法识别。 start ↙ %启动命令 实验的运行过程中,需要实验者输入相应的参数、向量和矩阵,请参照本书中的格式输入。在输入向量时,数字之间用空格或逗号分隔,如输入离散序列

信号与线性系统课程设计报告分析

信号与线性系统课程设计 报告 课题五基于FIR滤波的语音信号处理系统设计 班级: 姓名: 学号: 组号及同组人: 成绩: 指导教师: 日期:

课题五基于FIR滤波的语音信号处理系统设计 摘要:MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。MATLAB 可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB特点:1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;2) 具有完备的图形处理功能,实现计算结果和编程的可视化;3)友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;4)功能丰富的应用工具箱,为用户提供了大量方便实用的处理工具。 关键词:GUI界面,信号采集,内插恢复,重采样,滤波器 一、课程设计目的及意义 本设计课题主要研究数字语音信号的初步分析方法、FIR数字滤波器的设计及应用。通过完成本课题的设计,拟主要达到以下几个目的: (1)熟悉Matlab软件的特点和使用方法。 (2)熟悉LabVIEW虚拟仪器的特点以及采用LabVIEW进行仿真的方法。 (3)掌握信号和系统时域、频域特性分析方法。 (4)掌握FIR数字滤波器的设计方法(窗函数设计法、频率采样设计法)及应用。 (5)了解语音信号的特性及分析方法。 (6)通过本课题的设计,培养学生运用所学知识分析和解决实际问题的能力。 二、课题任务 (一)简单数字语音信号处理系统的Matlab设计。 使用GUI进行系统的图形用户界面设计,在该界面中包括对语音信号的读取,对信号的时域,频域分析,添加噪声,设计FIR数字滤波器(利用窗函数设计法、频率采样设计法任选)实现噪声滤除。具体任务如下: (1)对语音信号进行采集(读取),对数字语音信号加入干扰噪声,画出原始信号及带噪信号的时域波形,利用FFT进行频域分析,画出相应波形,并对语音进行播放。 (3)根据对语音信号及噪声的实际情况分析,选择适当的FIR数字滤波器进行设计,并对噪声进行滤除。

数字信号处理实验指导手册

数字信号处理实验指导手册 西安文理学院 机械电子工程系

目录 实验一离散时间信号 (2) 实验二时域采样定理 (7) 实验三离散时间系统 (10) 实验四线性卷积与圆周卷积 (13) 实验五用FFT作谱分析 (16) 实验六用双线性变换法设计IIR数字滤波器 (18) 实验七 FIR滤波器设计 (20)

实验一 离散时间信号 【实验目的】 用MATLAB 实现离散时间信号的表示和运算,掌握MATLAB 的基本命令和编程方法,为后续实验打基础。 【实验原理】 在数字信号处理中,所有的信号都是离散时间信号,因此应首先解决在MATLAB 中如何表示离散信号。 设一模拟信号经A/D 变换后,得到序列信号 }),1(),0(),1(,{)}({)( x x x n x n x -== 由于MATLAB 对下标的约定为从1开始递增,因此要表示)(n x ,一般应采用两个矢量,如: ]5,4,3,2,1,0,1,2,3[---=n ]1,2,5,4,0,2,3,1,1[-=y 这表示了一个含9个采样点的矢量: )}5(,),1(),2(),3({)(x x x x n y ---= 【实验内容】 熟悉下面序列(信号)的产生方法及相关运算 1、 单位采样序列 2、 单位阶跃序列 3、 信号翻转 4、 信号相加 5、 信号折叠 6、 信号移位 【参考程序】 单位采样序列 1、impluse1.m (图1-1) n=10; x=zeros(1,n); x(1)=1;

plot(x,'*'); 2、 impluse2.m (图1-2) n=-5:5; x=[n==0]; stem(x,'*'); 3、impluse3.m (图1-3) n=1:10; n0=3; x=[(n-n0)==1]; plot(x,'*'); 单位阶跃序列 1、steps1.m (图1-4) n=10; x=ones(1,n); plot(x,'*'); 2、steps2.m (图1-5) n=10; x=ones(1,n); x(1)=0; x(2)=0; 图1-1 单位采样序列1 图1-2 单位采样序列2 图1-3 单位采样序列3

数字示波器使用实验操作指导

DS1000E-EDU 数字示波器实验操作指导 一、显示和测量正弦信号 观测电路中的一个未知信号,迅速显示和测量信号的频率和峰峰值。 1、欲迅速显示该信号,请按如下步骤操作: (1) 信号发生器输出一正弦信号,将通道1连接到信号发生器。 (2) 按下 示波器将自动设置使波形显示达到最佳状态。在此基础上,您可以进一步调节垂直、水平档位,直至波形的显示符合您的要求。 2. 进行自动测量 示波器可对大多数显示信号进行自动测量。欲测量信号频率和峰峰值,请按如下步骤操作 (1) 测量峰峰值 按下 Measure 按键以显示自动测量菜单。 按下1号菜单操作键以选择信源 CH1 。 按下2号菜单操作键选择测量类型: 电压测量 。 在电压测量弹出菜单中选择测量参数: 峰峰值 。 此时,您可以在屏幕左下角发现峰峰值的显示。 (2) 测量频率 按下3号菜单操作键选择测量类型: 时间测量 。 在时间测量弹出菜单中选择测量参数: 频率 。 此时,您可以在屏幕下方发现频率的显示。 3、用Cursor 光标测量功能进行手动测量 (1) 信号发生器输出一任意频率的正弦信号,将信号发生器输出端连接示波器通道1。 (2) 按下Cursor 光标测量键,选择手动测量,测量出信号的周期、频率,电压峰峰值,画出信号波形,标出周期、频率,电压峰峰值。 二、X -Y 功能的应用,观察李沙如图形 1. 将信号A 连接通道1,将信号B 连接通道2。 2. 若通道未被显示,则按下 CH1 和 CH2 菜单按钮。 3. 按下 AUTO (自动设置)按钮。 4. 调整垂直旋钮使两路信号显示的幅值大约相等。 5. 按下水平控制区域的 MENU 菜单按钮以调出水平控制菜单。 6. 按下时基菜单框按钮以选择 X -Y 。示波器将以李沙如(Lissajous )图形模式显示。 7. 调整垂直、垂直和水平旋钮使波形达到最佳效果。 8.调节信号发生器A 路信号频率为f X =50Hz ,根据频率比值关系和f X =50Hz ,算出相应的f Y 值。缓慢调节信号发生器B 路信号频率频率f Y ,分别调出 ==Y X X Y N N f f ::3:1;2:1;3:2;1:1的稳定李萨如图形,将所见稳定图形描绘在记录表格(参考下表)中并同时记录信号发生器相应的频率读数f Y 。并计算f Y 信和f Y 的相对偏差

信号与系统实验指导书——学生用资料

实验一 一阶电路的瞬态响应 一 实验目的 1 观察RC 电路的阶跃响应并测量其时间常数τ。 2 了解时间常数对响应波形的影响及积分、微分电路的特点。 二 原理说明 积分电路和微分电路 如图所示为一阶RC 串联电路图。 )(t Vs 是周期为T 的方波信号, 设0)0(=C V 则 dt t V RC dt R t V C dt t i C t V R R C ???===)(1)(1)(1)( 当时间常数RC =τ很大,即τ》T 时,在方波的激励下,C V 上冲得的电压远小于R V 上的电压,即)(t V R 》)(t V C 因此 )()(t V t Vs R ≈ 所以 dt t V RC t V S C ? ≈)(1)( 上式表明,若将)(t V C 作为输出电压,则)(t V C 近似与输出电压)(t Vs 对时间的积分成正比。我们称此时的RC 电路为积分电路,波形如下 V S V 图1-1 一阶RC 串联实验电路图 图1-2 积分电路波形

如果输出电压是电阻R 上的电压V R (t )则有 dt t dV RC t i R t V C R )()()(?=?= 当时间常数RC =τ很小 ,即τ《T 时,)(t V C 》)(t V R ,因此)()(t V t V C S ≈ 所以 dt t dV RC t V S R )()(≈ 上式表明,输出电压V R (t )近似与输出电压VS (t )对时间的微分成正比。我们称此时的RC 在实验中,我们可以选择不同的时间常数满足上述条件,以实现积分电路和微分电路。 三 预习练习 1 复习有关瞬态分析的理论,瞬态响应的测量,弄清一阶电路的瞬态响应及其观察方法。 2 定性画出本实验中不同时间常数的瞬态响应的波形,并从物理概念上加以说明。 四 实验内容和步骤 用观察并测量一阶电路的瞬态响应。 1. 启动计算机,在双击桌面“信号与系统”快捷方式, 运行软件。 2. 测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原 因使通信正常后才可以继续进行实验。 检测信息 3. 连接模拟电路(图1-1)。电路的输入U1接A/D 、D/A 卡的DA1输出,电路的 输出U2接A/D 、D/A 卡的AD1输入。检查无误后接通电源。 4. 在实验项目的下拉列表中选择实验二[二、一阶电路的瞬态响应],鼠标单击V 图1-3 微分电路波形

信号与线性系统实验指导书syzds

信号与线性系统实验指导书 《信号与线性系统》课程组 2006年9月修订

《信号与系统》实验箱简介 信号与系统实验箱有TKSS-A型、TKSS-B型和TKSS-C型三种。其中B型和C型实验箱除实验项目外,还带有与实验配套的仪器仪表。 TKSS-A型实验箱提供的实验模块有:用同时分析方法观测方波信号的频谱、方波的分解、各类无源和有源滤波器(包括LPF、HPF、BPF、BEF)、二阶网络状态轨迹的显示、抽样定理和二阶网络函数的模拟等。 TKSS-B型实验箱提供的实验模块与“TKSS-A型”基本一样,增加了函数信号发生器(可选择正弦波、方波、三角波输出,输出频率范围为20Hz~100KHz)、频率计(测频范围0~500KHz)、数字式交流电压表(测量范围10mV~20mV,10Hz~200KHz)等仪器。 TKSS-C型实验箱的实验功能和配备与“TKSS-B型”基本一样,增加了扫频电源(采用可编程逻辑器件ispLSI1032E和单片机AT89C51设计而成),它可在15Hz~50KHz的全程范围内进行扫频输出,亦可选定在某一频段(分9段)范围内的扫频输出,提供11档扫速,亦可选用手动点频输出,此外还有频标指示,亦可作频率计使用。 实验一无源和有源滤波器 一、实验目的 1、了解RC无源和有源滤波器的种类、基本结构及其特性。 2、对比研究无源和有源滤波器的滤波特性。 3、学会列写无源和有源滤波器网络函数的方法。 二、原理说明 1、滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某 些频率(通常是某个频带范围)的信号通过,而其他频率的信号受到 衰减或抑制,这些网络可以是由RLC元件或RC元件构成的无源滤 波器,也可以是由RC元件和有源器件构成的有源滤波器。 2、根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分 为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)和 带阻滤波器(BEF)四种。我们把能够通过的信号频率范围定义为通 带,把阻止通过或衰减的信号频率范围定义为阻带。而通带与阻带的 分界点的频率f c称为截止频率或称转折频率。图1-1中的A up为通 带的电压放大倍数,f0为中心频率,f cL和f cH分别为低端和高端截止 频率。

《通信电子线路》实验指导书XXXX版(简)

北方民族大学《通信电子线路》实验指导书 主编 校对 审核 北方民族大学电气信息工程学院 二○一三年九月

目录 实验一小信号谐振放大器的性能分析 (2) 实验二LC正弦波振荡器的综合分析 (8) 实验三振幅调制与解调电路研究与综合测试 (12) 实验四频率调制与解调电路研究与综合测试 (22) 实验五锁相环的工作过程及综合分析 (29)

实验一 小信号谐振放大器的性能分析 (综合性实验) 一、实验目的 1.掌握小信号谐振放大电路的组成和性能特点。 2.熟悉小信号谐振放大器的主要性能指标。 3.学会频响特性的测试。 二、实验仪器与器材 1. 高频电子技术实验箱中小信号谐振放大器实验模块电路(RK-050) 2. 示波器 3. 信号源 4. 扫频仪 三、小信号调谐放大器实验电路 图1-1为小信号调谐放大器实验电路(RK-050)。图中,201P 为信号输入铆孔,当做实验时,高频信号由此铆孔输入。201TP 为输入信号测试点。接收天线用于构成收发系统时接收发方发出的信号。变压器21T 和电容12C 、22C 组成输入选频回路,用来选出所需要的信号。晶体三极管21BG 用于放大信号,12R 、22R 和52R 为三极管21BG 的直流偏置电阻,用以保证晶体管工作于放大区域,且放大器工作于甲类状态。三极管21BG 集电极接有LC 调谐回路,用来谐振于某一工作频率上。本实验电路设计有单调谐与双调谐回路,由开关22K 控制。当22K 断开时,为电容耦合双调谐回路,12L 、22L 、42C 和52C 组成了初级回路,32L 、42L 和92C 组成了次级回路,两回路之间由电容62C 进行耦合,调整62C 可调整其耦合度。当开关22K 接通时,即电容62C 被短路,此时两个回路合并成单个回路,故该电路为单调谐回路。图中12D 、22D 为变容二极管,通过改变ADVIN 的直流电压,即可改变变容二极管的电容,达到对回路的调谐。三个二极管的并联,其目的是增大变容二极管的容量。图中开关21K 控制32R 是否接入集电极回路,21K 接通时(开关往下拨为接通),将电阻32R (2K )并入回路,使集电极负载电阻减小,回路Q 值降低,放大器增益减小。图中62R 、72R 、82R 和三极管22BG 组成放大器,用来对所选信号进一步放大。 202TP 为输出信号测试点,202P 为信号输出铆孔。

相关主题