搜档网
当前位置:搜档网 › Boost电路参数的设计(电感-电容)Word版

Boost电路参数的设计(电感-电容)Word版

Boost电路参数的设计(电感-电容)Word版
Boost电路参数的设计(电感-电容)Word版

2 系统设计

2. 1 Boost 升压电感的设计

要想设计出性能优良的PFC 电路,除了IC外围电路各元件值选择合理外,还需特别认真选择Boost 升压储能电感器。它的磁性材料不同,对PFC 电路的性能影响很大,甚至该电感器的接法不同,且会明显地影响电流波形;另外,驱动电路的激励脉冲波形上升沿与下降沿的滞后或振荡,都会影响主功率开关管的最佳工作状态。当增大输出功率到某个阶段时,还会出现输入电流波形发生畸变甚至出现死区等现象。因此,在PFC 电路的设计中,合理选择Boost PFC 升压电感器的磁心与绕制电感量是非常重要的。电感值的计算以低输入电压Uin(peak) 和对应的最大占空比Dmax时保证电感电流连续为依据,计算公式为:

式中Uin(peak)———低输入交流电压对应的正弦峰值电压,V

Dmax———Uin(peak) 对应的最大占空比

ΔI———纹波电流值,A; 计算时,假定为纹波电流的30%

fs———开关频率,Hz

占空比的计算公式为:

若输入交流电压为220 V( 最低输入电压为85 V),输出直流电压为390 V,开关频率为fs =50 kHz,输出功率Po =350 W,则可计算得到Dmax =0. 78,纹波电流为1. 75 A,从而求得电感值L3 =713 μH,实际电感值取为1 mH。

由于升压电感工作于电流连续模式,需要能通过较大的直流电流而不饱和,并要有一定的电感量,即所选磁性材料应具有一定的直流安匝数。

设计中,升压电感器采用4 块EE55 铁氧体磁心复合而成,其中心柱截面气隙为1. 5 mm,Boost 储能电感器的绕组导线并不用常规的多股 0. 47 mm漆包线卷绕,而是采用厚度为0. 2mm、宽度为33 mm 的薄红铜带叠合,压紧在可插4 块EE55 磁心的塑料骨架上,再接焊锡导线引出,用多层耐高压绝缘胶带扎紧包裹。去消用薄铜带工艺绕制的Boost 储能电感,对减小高频集肤效应、改善Boost 变换器的开关调制波形、降低磁件温升均起重要作用。

2. 2 输出电容设计

直流侧输出电容具有2 个功能:

(1) 滤除由于器件高频开关动作造成的直流电压的纹波;(2) 当负载发生变化时,在整流器的惯性环节延迟时间内,将直流电压的波动维持在限定范围内。

开关动作造成的纹波频率比较高,只需要较小的电容就可以满足第1 项要求。第2 项要求与负载功率变化的大小、输出直流电压、输出纹波电压和保持时间Δt 等因素有关,其中Δt 一般取为15 ~ 50 ms。用Δt 表达的输出电容值为:

式中Δt———保持时间,电网断电后要求电容在时间Δt 内电压不低于一定值

Uo———直流输出电压

Uomin———要求电网断电后,在保持时间内电容电压的最小值

按照降额使用的原则,该方案采用- 20% 的安全范围,在最小保持时间条件下计算可得Co =357 μF,实际选用的标准电容值为Co = 470 μF。

2. 3 电流环与过流保护

电流环包括电流平均放大、脉宽调制(PWM)、外部升压电感和外部电流传感电阻等环节。

从电流传感电阻检测到的负极性信号送入ISENSE 引脚进行缓冲、反相放大后,得到的正极性信号通过电流放大器( gmi) 进行平均,其输出即为ICOMP 引脚,ICOMP 引脚上的电压与平均电感电流成比例,该引脚对地(GND) 外接一电容,提供电流环路补偿并可对纹波电流进行滤波。平均电流放大器的增益由VCOMP 引脚内部的电压决定,该增益设置为非线性,故可适应全球范围内的交流输入电压。无论芯片处于故障模式还是待机模式,ICOMP 引脚均在内部接至4 V 电平。

脉宽调制(PWM)电路将ICOMP 引脚电压信号与周期性的斜坡信号比较,产生上升沿调制的输出信号,若斜坡电压信号大于ICOMP 引脚电压,则PWM 输出为高电平,斜坡的斜率是内部VCOMP 引脚电压的非线性函数。

由内部时钟触发的PWM 输出信号在周期开始时为低电平,该电平会持续一小段时间,称之为最小关断时间( tOFF(min) );然后,斜坡电压信号线性上升与ICOMP 电压交叉,斜坡电压与ICOMP电压的交叉点决定了关断时间(tOFF),也即DOFF,由于DOFF满足Boost 拓扑结构的方程:DOFF = UIN /UOUT,且输入UIN 是正弦电压,ICOMP 与电感电流成比例,控制环路会迫使电感电流跟随输入电压呈现正弦波形以进行Boost 调制,因此平均输入电流也呈现正弦波形。

PWM 比较器的输出送入栅极(GATE) 驱动电路,虽然芯片的驱动电路具有多种保护功能,且栅极输出的占空比最高可达99%,但始终要存在一最小关断时间(tOFF(min) )。正常占空比工作时,输出过压保护(OVP)、峰值电流限制(PCL)等,在每一周期均可直接关断芯片的栅极输出,欠压锁定(UVLO)、输入掉电保护(IBOP)和开环保护/待机(OLP /Standby)等同样也可以关断栅极输出脉冲,直至软起动开始工作才恢复其输出脉冲。

电感电流通过电流检测电阻检测,该检测电阻位于输入整流器的返回通路上,检测电阻的另一端和“系统地”相连。检测电阻和整流器相连的一端为所检测的电压,该电压始终为负值。芯片UCC28019 共有2 种过流保护:

(1) 峰值电流限制( PCL),可以有效防止电感饱和;(2) 软过流保护( SOC),可以有效防止输出过载;PCL 每个基本周期均起作用。当ISENSE 引脚上的电流检测电压达到- 1. 08 V时,PCL 动作并终止当前开关周期;ISENSE 引脚上的电压可以通过- 1. 0 V的固定增益进行放大,使上升沿为空,从而提高噪声免疫力,减少误触发。

SOC 主要限制输入电流。当ISENSE 引脚上的电流检测电压达到- 0. 73 V 时,SOC 动作,从而引起内部VCOMP 引脚上电平的变化,进而控制环路会及时地调整,以减小PWM 占空比。

2. 4 电压环与过压保护

PFC 预调节器双环控制的外环为电压环,主要包括PFC 输出电压检测、电压误差放大和非线性增益等环节。

PFC 预调节器的输出电压对地(GND) 接一分压电阻网络,构成电压环路的检测模块。分压电阻的比率由所设计的输出电压和内部的5 V 标准参考电压来确定;与VINS 引脚的输入一样,VSENSE 引脚上非常低的偏置电流容许选择很高的实用电阻值,以降低功率损耗和待机电流;VSENSE 引脚对地(GND) 接一小电容,可以有效滤除信号高频噪声。需要注意的是,滤波时间常数应尽可能小于100 μs。

跨导误差放大器(gvm)产生的输出电流正比于VSENSE 引脚上的反馈电压和内部5 V 参考电压的差值。该输出电流对接于VCOMP 引脚上构成阻容补偿网络的电容进行充、放电,进而建立合适的VCOMP 引脚电压,满足系统的工作状态。

补偿网络元件的选择直接影响PFC 预调节器的稳定性,选择合适的电阻、电容值,可以使PFC 预调节器在所有交流输入电压范围内和0 ~ 100%负载情况下稳定工作,阻容网络总的电容值也决定了软起动时

VCOMP 引脚电压的上升率。一旦芯片发生任何故障或者处于待机模式,则将放大器的输出端(VCOMP 引脚) 接地(GND),对补偿电容进行放电至零初始状态。UCC28019 集成了多个并行放电回路,即使没有辅助工作电源VCC,也可以对补偿网络进行深放电。如果输出电压的波动反映在VSENSE 输入引脚上超过± 5%,放大器将不再处于线性放大工作状态。如果是处于过压状态,输出过压保护(OVP) 将会动作,直接关断栅极输出,直至VSENSE 引脚处于± 5% 的调制范围。如果处于欠压状态,欠压检测(UVD) 将触发EDR,立即将内部VCOMP 引脚上的电压提高2 V,并且将内部VCOMP 引脚上的充电电流提升至100 ~170 μA,较高的充电电流加快了对补偿电容的充电,可以使其工作于新的工作状态,提高了瞬态反应时间。

VCOMP 引脚上的电压可以用于设定电流放大器的增益和PWM 斜坡的斜率,经过缓冲后电压要通过增强动态响应(EDR) 和SOC 的调制。

当然,VCOMP 引脚上的电压发生变化时,电流放大器的增益和PWM 斜坡的斜率还要依据不同系统的工作状态(交流输入电压和输出负载水平)进行适当的调节,以提供低谐波畸变、高功率因数的输入电流跟踪输入电压而呈现正弦波形。

设UOUT(OVP) 为超过5%额定电压的输出电压,该值将会导致VSENSE 引脚上的电压超过5. 25 V(5 V 参考电压的+ 5%)的门限阈值(UOVP),从而导致输出过压保护(OVP) 动作并关闭GATE( 引脚8)输出;只有当VSENSE 引脚上的电压低于5. 25 V 时,栅极驱动GATE( 引脚8) 才有信号输出,例如系统的UOUT(OVP) 为420 V,则额定输出电压为400 V。

如果输出电压反馈元件失效而未和VSENSEN输入的信号正常连接,那么电压误差放大器将会加大栅极输出,以达到最大占空比。为防止此类现象,芯片内部的下拉作用迫使VSENSE 引脚电压降低,如果输出电压降至其额定电压的16%,则会导致VSENSE 引脚电压低于0. 8 V,芯片将处于待机模式。该状态下PWM 开关处于暂停状态,但芯片仍处于工作状态,只不过待机电流低于3 mA。设计者也可以利用这种关断特性,通过外部开关,实现VSENSE 引脚电平的拉低。

2. 5 EMI 滤波器与噪声抑制

高频开关电源产生的电磁干扰(EMI)主要以传导干扰和近场干扰为主,电磁干扰又有共模干扰和差模干扰2 种状态。EMI 滤波器是目前使用最广泛、也是最有效的开关电源传导干扰抑制方法之一,其不但要抑制共模干扰,也必须抑制差模干扰。图4 给出了所设计的EMI 滤波器。它接于电源输入端与整流器之间,内含共模扼流圈L2和滤波电容C1 ~ C4。共模扼流圈也称共模电感,主要用来滤除共模干扰。它由绕在同一高磁导率上的2 个同向线圈组成,可抵消差分电流,其特点是对电网侧的工频电流呈现较低阻抗,但对高频共模干扰等效阻抗却很高。C2和C3为Y 电容,跨接在输入端,并将电容器的中点接地,能有效地抑制共模干扰,其容量约为0. 002 2 ~0. 100 0 μF;C1和C4为X 电容,用于滤除差模干扰,其典型值在0. 01 ~0. 47 μF 之间。

图4 EMI 滤波器。

UCC 28019 的驱动能力很强,可以提供最大1. 5 A 的门极快速驱动。但是,高速驱动脉冲也带来了比较大的EMI 问题,适当地在门极添加驱动电阻,减缓驱动脉冲的di /dt,可以降低变换器产生的开关噪声,从而对前级的EMI 滤波器的要求也相应降低。

PFC 升压二极管的反向恢复特性是导致系统传导和辐射干扰的主要因素,在一定程度上加剧了系统EMI 滤波器的负担。不仅如此,功率开关管在其导通期间必须吸收所有的反向恢复电流,也必须将由此导致的额外功率消耗掉,这不仅提升了噪声干扰,而且也会影响系统的效率。传统型单相功率因数校正主电路中的二极管是快恢复硅二极管,其材料是硅,而硅的反向耐压能力低。

与硅材料相比,碳化硅( SiC) 材料在性能上更适合制造电力电子器件,因为其具有反向耐压高、导通电阻小、导热性好,以及承受反向高压时泄漏电流小等优点。目前,以SiC 为材料的SiC 肖特基二极管在电压容量上已经取得突破,电压容量已做到600 V,满足单相功率因数校正的主电路对二极管400 V 的耐压要求,且SiC 肖特基二极管的反向恢复特性与快恢复二极管相比,更快、更软。因此,选择SiC 肖特基二极管作为该系统的升压二极管,以减小二极管反向恢复所引起的传导和辐射干扰;同时,在升压二极管上并联RC 网络,也能取得较好效果。

3 试验

根据上述理论,设计了一台350 W 的单相功率因数整流器,其各项保护措施如软起动,VCC欠压锁定、输入掉电保护、输出过压保护、开环保护/待机模式、输出欠压检测、过流保护、软过流、峰值电流限制等都非常齐全,主要实验参数为:输入电压为AC 220 V/50 Hz 的工频电源,输出电压为390 V,开关频率为50 kHz,高频输入滤波电容C5 = 0. 47 μF,Boost 升压电感值L3 = 1 mH,输出滤波电容Co = 470 μF,电流检测电阻RS选取阻值为0. 067 Ω,由3 个阻值为0. 2 Ω、功率为1 W的无感精密电阻并联而成,电流检测信号滤波电容C7 = 1 000 pF,滤波电阻R5 = 221 Ω。

单相功率因数整流器的栅极驱动Ug的试验波形如图5 所示。输入电压Uin和输入电流Iin的试验波形如图6 所示。由图6 可见,输入电流能很好的跟踪输入电压。对输入电压和输入电流的前50 次谐波分析可知,在输入电压的总谐波畸变率(THD)为4. 61%时,输入电流总谐波畸变率仅为4. 53%,功率因数可以达到0. 993,因此,可认为该功率因数器实现了单位功率因数的校正和低电流畸变。与传统功率因数校正电路(UC 3854控制的PFC 电路) 相比,该功率因数整流器的设计步骤简化了许多,减少了元器件的数量,也缩小了印刷电路板的尺寸。

图5 栅极驱动Ug的试验波形。

图6 输入电压Uin与输入电流Iin的试验波形图。

4 结语

基于CCM PFC 芯片UCC 28019 设计了一种新型单相功率因数整流器,所需的外围元器件少,大大减小了PFC 控制板的面积。对单相功率因数整流器的主要模块进行了详细分析与设计,并采用了一种新型薄铜带工艺绕制的Boost 储能电感,有效地减小高频集肤效应,改善Boost 变换器的开关调制波形,降低磁件温升等。通过理论分析与试验验证,该功率因数整流器拓扑结构简单、实用,且性能可靠,实现了单位功率因数校正和低电流畸变,具有较高的应用价值。

(注:可编辑下载,若有不当之处,请指正,谢谢!)

BOOST电路方案设计

项目名称基于PWM控制BOOST变换器设计 一、目的 1 ?熟悉BOOST变换电路工作原理,探究PID闭环调压系统设计方法。 2 ?熟悉专用PWM控制芯片工作原理, 3?探究由运放构成的PID闭环控制电路调节规律,并分析系统稳定性。 二、内容 设计基于PWM控制的BOOST变换器,指标参数如下: 输入电压:9V?15V; 输出电压:24V,纹波<1%; 输出功率:30W 开关频率:40kHz 具有过流、短路保护和过压保护功能,并设计报警电路。 具有软启动功能。 进行Boost变换电路的设计、仿真(选择项)与电路调试 三、实验仪器设备 1 ?示波器 2 .稳压电源 3 ?电烙铁 4. 计算机 5. 万用表 四、研究内容 (一)方案设计 本设计方案主要分为4个部分:1)Boost变换器主电路设计;2)PWM控 制电路设计;3)驱动电路设计;4)保护电路设计。系统总体方案设计框图如图 1.1所示。

1 ?主电路参数设计[1,2] 电路设计要求:输入直流电压9~15V ,输出直流电压24V ,输出功率30W , 输 出纹波电压小于输出电压的1%,开关频率40kHz , Boost 电路工作在电流连续 工作 模式(CCM )。 Boost 变换器主电路如图1.2所示,由主开关管Q 、电感L 、滤波电容C 、功率 二极管VD 和负载R 组成。 1)电感计算 忽略电路损耗,工作在CCM 状态,根据Boost 电路输出电压表达式可得PWM 占空比: 艮卩,0.375 乞 D 乞 0.625 。 D max 八十十齐0.625 图1.1系统总体方案设计框图 图1.2 Boost 变换器主电路

boost电路设计介绍

BOOST电路设计介绍 0 引言 在实际应用中经常会涉及到升压电路的设计,对于较大的功率输出,如70W以上的DC/DC升压电路,由于专用升压芯片内部开关管的限制,难于做到大功率升压变换,而且芯片的价格昂贵,在实际应用时受到很大限制。考虑到Boost升压结构外接开关管选择余地很大,选择合适的控制芯片,便可设计出大功率输出的DC/DC 升压电路。 UC3S42是一种电流型脉宽调制电源芯片,价格低廉,广泛应用于电子信息设备的电源电路设计,常用作隔离回扫式开关电源的控制电路,根据UC3842的功能特点,结合Boost拓扑结构,完全可设计成电流型控制的升压DC/DC电路,且外接元器件少,控制灵活,成本低,输出功率容易做到100W以上,具有其他专用芯片难以实现的功能。 1 UC3842芯片的特点 UC3842工作电压为16~30V,工作电流约15mA。芯片内有一个频率可设置的振荡器;一个能够源出和吸入大电流的图腾式输出结构,特别适用于MoSFET的驱动;一个固定温度补偿的基准电压和高增益误差放大器、电流传感器;具有锁存功能的逻辑电路和能提供逐个脉冲限流控制的PWM比较器,最大占空比可达100%。另外,具有内部保护功能,如滞后式欠压锁定、可控制的输出死区时间等。 由UC3842设计的DC/DC升压电路属于电流型控制,电路中直接用误差信号控制电感峰值电流,然后间接地控制PWM脉冲宽度。这种电流型控制电路的主要特点是: 1)输入电压的变化引起电感电流斜坡的变化,电感电流自动调整而不需要误差放大器输出变化,改善了瞬态电压调整率; 2)电流型控制检测电感电流和开关电流,并在逐个脉冲的基础上同误差放大器的输出比较,控制PWM脉宽,由于电感电流随误差信号的变化而变化,从而更容易设置控制环路,改善了线性调整率; 3)简化了限流电路,在保证电源工作可靠性的同时,电流限制使电感和开关管更有效地工作; 4)电流型控制电路中需要对电感电流的斜坡进行补偿,因为,平均电感电流大小是决定输出大小的因素,在占空比不同的情况下,峰值电感电流的变化不能与平均电感电流变化相对应,特别是占空比,50%的不稳定性,存在难以校正的峰值电流与平均电流的误差,即使占空比<50%,也可能发生高频次谐波振荡,因而需要斜坡补偿,使峰值电感电流与平均电感电流变化相一致,但是,同步不失真的斜坡补偿技术实现上有一定的难度。 2 Boost电路结构及特性分析 2.1 由UC3842作为控制的Boost电路结构 由UC3842控制的Boost拓扑结构及电路分别如图1和图2所示。

正激变换器及其控制电路的设计及仿真

正激变换器及其控制电路的设计及仿真 电气工程 张朋 13S053081

设计要求: 1、输入电压:100V(±20%); 2、输出电压:12V; 3、输出电流:1A; 4、电压纹波:<70mV(峰峰值); 5、效率:η>78%; 6、负载调整率:1%; 7、满载到半载,十分之一载到半载纹波<200mV。 第一章绪论 1.课题研究意义: 对于大部分DC/DC变换器电路结构,其共同特点是输入和输出之间存在直接电连接,然而许多应用场合要求输入、输出之间实现电隔离,这时就可以在基本DC/DC变换电路中加入变压器,从而得到输入输出之间电隔离的DC/DC变换器。而正激变化器就实现了这种功能。 2.课题研究内容: 1、本文首先介绍了正激变换器电路中变比、最大占空比和最小占空比、电容、电感参数的计算方法,并进行了计算。 2、正激变换器的控制方式主要通过闭环实现。其中闭环方式又分为PID控制和fuzzy控制。本文分别针对开环、PID控制,fuzzy控制建立正激变换器的Matlab仿真模型,并进行仿真分析了,最后对得出的结果进行比较。 第二章:正激电路的参数计算 本章首先给出正激变换器的等值电路图,然后列出了正激变换器的四个主要参数的计算方法,并进行了计算。 1、正激变换器的等值电路图 图1 正激变换器等值电路图 2、参数计算 (1)变比n 根据设计要求,取占空比D=0.4,根据输入电压和输出电压之间的关系得到变比:

n= D U U out in ?=4.012 100 ?=3.3 (2) 最大、最小占空比 最大占空比D max 定义为 D max = ()n U U U in d out 1 min ? +, 式中U in(min) =100-20=80V ,U out =12V ,n=3.3,,U d 为整流二极管压降, 所以D max =0.495。 最小占空比D min 定义为 D min = ()n U U U in d out 1 max ? +, 式中U in(max) =120V , 所以D min =0.333。 (3) 电容 电容的容量大小影响输出纹波电压和超调量的大小。取开关频率f=200KHZ ,则T=5×10-6 s , 根据公式: C=ripple ripple V f I ??81 , 式中取I ripple =0.2A ,V ripple =0.07mV , 所以C=1.79μF 。为稳定纹波电压,放大电容至50μF 。 (4) 电感 可使用下列方程组计算电感值: U out =L ×dt di , dt= f D m in 1-, 式中U out =12V ,di 取为0.2A ,D min =0.333, 所以L=0.334mH 。 第三章 正激变换器开环的Matlab 仿真 本章首先建立了正激变换器开环下的Matlab 仿真模型,然后对其进行了仿真分析。

电阻、电容、电感的高频等效电路

电阻是PCB中最广泛使用的元件,常用的电阻有碳质、绕线和薄膜片状电阻等几种,绕线电阻由于引线电感过大不适于高速的高频电路应用,在高速的高频电路中多用薄膜片状电阻,但它同样存在隐藏的射频特性。如图所示为标称值为R 的电阻的高频等效电路。 在如图所示中,L为两个金属引脚的电感;电容Ca为电阻内部的寄生电容;Cb 为两个金属引脚间的寄生电容(可忽略)。电阻最容易忽视的两个方面就是封装尺寸和内部寄生电容,封装不同,其寄生参数也不同。一般说来,较小的“SMD”封装的寄生参数较小,比如0603的封装比1206的封装更适合于高速的高频电路。 由介质隔开的两导体构成电容。一个理想电容器的容抗为1/(j ω C), 电容器的容抗与频率的关系如图(b)虚线所示, 其中f 为工作频率,ω =2πf 。 一个实际电容 C 的高频等效电路如图(a) 所示, 其中Rc 为损耗电阻,Lc 为引线电感。容抗与频率的关系如图(b)实线所示, 其中f为工作频率,ω =2πf 。 图电容器的高频等效电路 (a) 电容器的等效电路; (b )电容器的阻抗特性 具有电感性质的元件称为电感器,简称电感,用L表示。电感在电路中也是一个储能元件,电感量的单位是享利(H)。常用单位有毫享(mH)和微享(μH)。 实际电感器由于线圈存在直流电阻,使电感器消耗一定的能量,这种能量损耗称为电感器的电阻损耗,此时电感器的等效电路如下图所示。其中R的下标P表示并联;S表示

串联;L表示电感的等效电阻。 实际电感器还存在分布电容,当电感器工作在低频时,分布电容可忽略。但工作在高频时就必须考虑其影响,高频时电感器的等效电路如下图所示。

正激变压器设计要点

首先:正激变压器由于储能装置在后面的BUCK电感上,所以没有Flyback变压器那么复杂,其作用主要是电压、电流变换,电气隔离,能量传递等 所以,我们计算正激变压器的时候,一般都是首先以变压次级后端的BUCK电感为研究对象的,BUCK电感的输入电压就是正激变压器次级输出电压减去整流二极管的正向压降,所以我们又称正激电源是BUCK的隔离版本。 首先说说初次级匝数的选择: 以第三绕组复位正激变压器为例,一旦匝比确定之后,接下来就是计算初次级的匝数,论坛里有个帖子里的工程师认为,正激变压器在满足满负载不饱和的情况下,匝数越小越好。其实这是个误区,匝数的多少决定了初级的电感量(在不开气隙,或开同样的气隙情况下),而电感量的大小就决定了初级的励磁电流大小,这个励磁电流虽不参与能量的传递,但也是需要消耗能量的,所以这个励磁电流越小电源的效率越高;再说了,过少的匝数会导致del tB变大,不加气隙来平衡的话,变压器容易饱和。 无论是单管正激还是双管正激,都存在磁复位的问题。且,都可以看成是被动方式的复位。复位的电流很重要,太小了,复位效果会被变压器自身分布参数(主要是不可控的电容,漏感)的影响。 复位电流是因为电感电流不能突变,初级MOSFET关断之后,初级绕组的反激作用,又复位绕组跟初级绕组的相位相反,所以在复位绕组中有复位电流产生 复位电流关系到磁芯能否可靠的退磁复位,其重要性不言自喻;当变压器不加气隙时,其初级电感量较大,复位电流自然就小。 但在大功率的单管正激和双管正激的实际应用中,往往需要增加一点小小的气隙,否则设计极不可靠, 大功率的电源,一次侧电流很大,漏感引起的磁感应强度变化,B=I*Llik/nAe,就大,加气隙是为了减小漏感Llik. 正激的占空比主要是取决于次级续流电感的输入与输出,次级则就是一个BUCK电路,而CCM的BUCK线路Vo=Vin*D,跟次级的电流无关 Vo=Vin*D Vo:输出电压,Vin:BUCK的输入电压,即正激变压器的输出电压减去整流管的正向压降,D:占空比在此,输出电压是已知的我们只要确定一个合适的占空比,就可以计算出BUCK 电感的Vin,也就是说变压器的输出电压基本就定下来了 在这特别要提醒大家,占空比D的取值跟复位方式有很大的关系,建议D的取值不要超过0.5 正激变压器加少量气隙能将电-磁转换中的剩磁清空,磁芯的实际利用率增加,同时增加的一点空载电流在大功率电流中所占比例较小,效率不会受到太大影响,这样可以让变压器不容 易饱和,电源的可靠性增加,同时可以减少初级匝数,变压器内阻降低,能小体积出大功率.加 气隙也相当于增大了变压器磁芯,但实际好处(特别是抗饱和能力)是胜于加大磁芯的. 加气隙后,减小的电感量会被增加的磁芯利用率补回来,而且有余,是合算的不用担心. 复位绕组的位置问题,是跟初级绕组近好呢,还是夹在初次级之间好? 如果并绕,当然跟初级的耦合是最好的,但对漆包线的耐压是个考验!当然这不至于直接击穿。 无论从EMC角度还是工艺角度来说,复位绕组放在最内层比较好 实际量产中这是这样绕的占多数 单管正激,如果是市电或有PFC输出电压作为输入的话,MOSFET 的最低耐压是2倍直

电阻、电感和电容的等效电路

2. 电阻、电感和电容的等效电路   实际的电阻、电感和电容元件,不可能是理想的,存在着寄生电容、寄生电感和损耗。下图是考虑了各种因素后,实际电阻R、电感L、电容C元件的等效电路   图2-17 电阻R、电感L、电容C元件的等效电路 (1) 电阻   同一个电阻元件在通以直流和交流电时测得的电阻值是不相同的。在高频交流下,须考虑电阻元件的引线电感L0和分布电容C0的影响,其等效电路如图2-17(a)所示,图中R为理想电阻。由图可知此元件在频率f 下的等效阻抗为 (2-53) 上式中ω=2πf, Re和Xe分别为等效电阻分量和电抗分量,且 (2-54) 从上式可知Re除与f有关外,还与L0、C0有关。这表明当L0、C0不可忽略时,在交流下测此电阻元件的电阻值,得到的将是Re而非R值。(2) 电感   电感元件除电感L外,也总是有损耗电阻RL和分布电容CL。一般情况下RL和CL的影响很小。电感元件接于直流并达到稳态时,可视为电阻;若接于低频交流电路则可视为理想电感L和损耗电阻RL的串联;在高频时其等效电路如图2-17(b)所示。比较图2-17(a)和图2-17(b)可知二者实际上是相同的,电感元件的高频等效阻抗可参照式(2-53)来确定,

(2-55) 式中 Re和Le分别为电感元件的等效电阻和等效电感。 从上式知当CL甚小时或RL、CL和ω都不大时,Le才会等于L或接近等于L。   (3) 电容   在交流下电容元件总有一定介质损耗,此外其引线也有一定电阻Rn和分布电感Ln,因此电容元件等效电路如图2-17(c)所示。图中C是元件的固有电容,Rc是介质损耗的等效电阻。等效阻抗为 (2-56) 式中Re和Ce分别为电容元件的等效电阻和等效电容,由于一般介质损耗甚小可忽略(即Rc→∞),Ce可表示为 (2-57) 。 从上述讨论中可以看出,在交流下测量R、L、C,实际所测的都是等效值Re、Le、Ce;由于电阻、电容和电感的实际阻抗随环境以及工作频率的变化而变,因此,在阻抗测量中应尽量按实际工作条件(尤其是工作频率)进行,否则,测得的结果将会有很大的误差,甚至是错误的结果。

boost电路设计张凯强

课程设计说明书 课程名称:电力电子课程设计 设计题目:Boost电路的建模与仿真专业:自动化 班级:自091 学号: 0902100202 姓名:张凯强 指导教师:陆益民 广西大学电气工程学院 二○一一年十二月

1.题目 一个Boost变换器的设计 2.任务 设计一个Boost变换器,已知V1=48V±10%,V2=72V,I0=0~1A。要求如下: 1)选取电路中的各元件参数,包括Q1、D1、L1和C1,写出参数选取原则和计算公式; 2)编写仿真文件,给出仿真结果:(1)电路各节点电压、支路流图仿真结果;(2)V2与IO的相图(即V2为X坐标;IO为Y坐标);(3)对V2与IO进行纹波分析;(4)改变R1,观察V2与IO的相图变化。 3)课程设计说明书用A4纸打印,同时上交电子版(含仿真文件);4)课程设计需独立完成,报告内容及仿真参数不得相同。

一、原理分析 分充电和放电两个部分来说明(假设MOS 管断开很久,所有元件都处在理想状态): 充电过程 在充电过程中,开关闭合(MOS 管导通),等效电路如图二,开关(MOS 管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。 放电过程如图,这是当开关断开(MOS 管截止)时的等效电路。当开关断开(MOS 管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 U ()o t +- + - U ()o t +-+ -

正激电路设计总结

正激电路设计总结 发布时间: 2013-04-10 16:37:55 来源: EDA中国 正激电路设计的一些总结 在DC-DC通信领域里,目前正激有源钳位占了大半江山,特别是国内的模块电源厂家,其中使用控制芯片比较的多的是国半的LM5025NCP1562,目前这两个芯片我都有成熟的设计案例,NCP1562按推荐的电路调试是很难达到模块的电源的设计要求,主要是电压环路的设计上有不少问题。第一次在电源网发博,今天就想说说对在正激设计中,变压器一些不定参数的选择,如变压的△B和Bmax的选择、占空比的选择、因为已有太多的初学者问过同样的问题了,希望能初学电源的革命同志有点帮助。首先我们要正确理解正激变压的特点,正激变压的工作模式是,变压器一边导通一边传递能量,可以把它理解成隔离的BUCK,其实正激才是真正的变压器,它不存储能量,只是把能量向副边传递,所以正激变压器不需要开气隙,而反激变压相当于一个隔离电感,先存储能量在传递能量,磁芯的特性是低磁阻的,无法存储能量,所以反激变压器需要开气隙来存储能量,好不要扯远了,这里这是描述一下正激变压器工作的特点。任何的磁性器件工作都需要激磁和去磁,正激变压器集成产生的能量不能传递到副边,反激可以,所以正激电路必须要加去磁电路,按照去磁的方式,我们将正激分成了三绕组去磁正激、谐振正激、和有源钳位正激,三绕组正激的工作在第一象限、而谐振正激和有源去磁正激工作在第一和第三象限,这些都老生常谈的话题了,在各种开关电源书籍中都有非常多的描述,推荐初学者读一下张兴柱博士的《开关电源功率变换器拓扑与设计》归纳性很强的。由于正激变压器中B值的变化不会随着输出电流的改变而改变,也不会随着输入电压的改变而改变,设计成多少,它就是多少,所以磁饱和的问题是很容易控制住的。在一些教材和沦文里提到了一个0.1和0.3的取值问题。很多人问我到底取0.1好,还是0.3好呢?首先我们看看为什么可以取到0.3,我们来看看磁芯材质的特性,DC-DC的模块电源用过的材质有金川的RM2.3K、越峰的P47、天通的TPW33A、TDK的PC95、主要是高频特性好。因为不能贴图,希望有兴趣的可以找资料看看。这几种差不多都是都是在100℃B值在0.4左右就完全饱和了,我们设计的时候可不能让它到磁饱和,太危险了。得把余量考虑进去,这个余量怎么把控呢?磁滞回线的变化是从线性区到非线性区,再到饱和。其实我们最好不让它跑到线性区,因为这样虽然不会一定损坏,但是比较危险了,而且在非线性区的励磁电感量急剧变小,MOS管理的峰值电流也是急剧变化的容易失控。所以我们的B值的最大取点应该是线性工作区和非线性工作区

纯电阻电感电容电路

课题4-2纯电阻电路 课型 新课 授课班级授课时数 1 教学目标 1.掌握纯电阻电路中电流与电压的数量关系及相位关系; 2.理解纯电阻电路的功率; 3.会分析纯电阻电路的电流与电压的关系; 4.会分析计算纯电阻电路的相关物理量。 教学重点1.纯电阻电路的电压、电流的大小和相位关系。2.纯电阻电路瞬时功率、有功功率、无功功率的计算。 教学难点 纯电阻电路瞬时功率、有功功率、无功功率的计算。 教学后记 1.提出问题,引导学生思考电方面知识,引起兴趣。 2.结合前面学过的知识,让学生自主探究,让他们由“机械接受”向“主动探究”发展,从而落实了新课程理念:突出以学生为主体,让学生在活动中发展。 3.总结结论,引导学生自己得出结论,养成良好的自主学习能力。

引入 新课 【复习提问】 1、正弦交流电的三要素是什么? 2、正弦交流电有哪些方法表示? 【课题引入】: 我们在是日常生活中用到的白炽灯、电炉、电烙铁等都属于电阻性负载,它们与交流电源联接组成纯电阻电路,那么它们在交流电路中工作时,电压和电流间的 关系是否也符合欧姆定律呢?纯电阻电路的定义只有交流电源和纯电阻元件组成 的电路叫做纯电阻电路。 第一节纯电阻电路 一、电路 1.纯电阻电路:交流电路中若只有电阻,这种电路叫纯电阻电路。 如含有白炽灯、电炉、电烙铁等的电路。 2.电阻元件对交流电的阻碍作用,单位Ω 二、电流与电压间的关系 1.大小关系 电阻与电压、电流的瞬时值之间的关系服从欧姆定律。设在纯电阻电路中,加在电阻R上的交流电压u = U m sin ω t,则通过电阻R的电流的瞬时值为: i = R u = R t Uω sin m = I m sin ω t I m = R U m I = 2 m I = R U 2 m= R U I = R U :纯电阻电路中欧姆定律的表达式,式中:U、I为交流电路中电压、电流的有效值。 这说明,正弦交流电压和电流的最大值、有效值之间也满足欧姆定律。 2.相位关系 (1)在纯电阻电路中,电压、电流同相。 (2)表示:电阻的两端电压u 与通过它的电流i 同相,其波形图和相量图如图1所示。

开关直流升压电源(BOOST)设计

电气与电子信息工程学院 《电力电子装置设计与制作》 课程设计报告 名称:开关直流升压电源(BOOST)设计专业名称:电气工程及其自动化 班级: 13级电气工程及其自动化(专升本)班学号: 姓名: 指导教师:南光群张智泉 设计时间:2014年11月24日——12月5日 设计地点:K2-306及K2-414实验室

开关电源装置设计与制作报告成绩评定表 指导教师签字:

《电力电子装置设计与制作》课程设计任务书 2014~2015学年第一学期 学生姓名:专业班级:13级电气工程及其自动化(专升本)班指导教师:张智泉南光群工作部门:电气与电子信息工程学院 一、课程设计题目:电力电子装置设计与制作 二、课程设计内容 根据题目选择合适的输入输出电压进行电路设计,在Protel或OrCAD软件上进行原理图绘制;满足设计要求后,再进行硬件制作和调试。如实验结果不满足要求,则修改设计,直到满足要求为止。 设计题目选: 题目二:开关直流升压电源(BOOST)设计 主要技术指标: 1)输入交流电压220V(可省略此环节)。 2)输入直流电压在8-18V之间。 3)输出直流电压10-25V,输出电压相对变化量小于2%。 4)输出电流1A。 5)采用脉宽调制PWM电路控制。

三、进度安排 四、基本要求 1、独立设计原理图各部分电路的设计; 2、制作硬件实物,演示设计与调试的结果。 3、写出课程设计报告。内容包括电路图、工作原理、实际测量波形、调试分析、测量精度、结论和体会。 4、写出设计报告:不少于3000字,统一复印封面并用A4纸写出报告。 ○1封面、课程设计任务书 ○2摘要,关键词(中英文) ○3方案选择,方案论证 ○4系统功能及原理。(系统组成框图、电路原理图) ○5各模块的功能,原理,器件选择 ○6实验结果以及分析 ○7设计小结 ○8附录---参考文献

60w-boost电路的设计大学论文

电力电子技术课程设计课题:60W boost电路的设计 班级电气学号 姓名 专业电气工程及其自动化 系别电子与电气工程学院 指导教师陈万 2015年6月

目录 一、总体设计思路 (3) 1.1设计的目的 (3) 1.2实现方案 (3) 二、直流稳压电源设计 (4) 2.1电源设计基本原理 (4) 2.2稳压电源总电路设计 (6) 三、boost主电路设计 (8) 3.1boost电路工作原原理 (8) 四、控制电路设计......................................................................................... 错误!未定义书签。 4.1PWM控制芯片SG3525 ............................................................. 错误!未定义书签。 4.2控制电路原理............................................................................. 错误!未定义书签。 五、驱动电路设计......................................................................................... 错误!未定义书签。 5.1IGBT对驱动电路的影响 (14) 5.2驱动电路基本原理 (14) 六、结论 (16) 七、心得体会 (16) 八、附录

一、 总体设计思路 1.1 设计目的 升压斩波电路是最基本的斩波电路之一,利用升压斩波电路可以实现对直流的升压变化。所以,升压斩波电路也可以认为是直流升压变压器,升压斩波电路的应用主要是以Boost 变换器实现的。升压斩波电路的典型应用有:一、直流电动机传动,二、单相功率因数校正(Power Factor Correction PFC )电路,三、交直流电源。直流升压斩波电路的应用非常广泛,原理相对比较简单,易于实现,但是,设计一个性能较好变压范围大的Boost 变换器并非易事,本设计的目的也就在于寻求一种性能较高的斩波变换方式和驱动与保护装置。 1.2 实现方案 本设计主要分为五个部分:一、直流稳压电源(整流电路)设计,二、Boost 变换器主电路设计,三、控制电路设计,四、驱动电路设计,五、保护电路设计。 直流稳压电源的设计相对比较简单,应用基本的整流知识,该部分并非本设计的重点,本设计的重点在于主电路的设计,主电路一般由电感、电容、电力二极管、和全控型器件IGBT 组成,主电路的负载通常为直流电动机,控制电路主要是实现对IGBT 的控制,从而实现直流变压。主电路是通过PWM 方式来控制IGBT 的通断,使用脉冲调制器SG3525来产生PWM 的控制信号。设计主电路的输出电压为75V ,本设计采用闭环负反馈控制系统,将输出电压反馈给控制端,由输出电压与载波信号比较产生PWM 信号,达到负反馈稳定控制的目的。 L D C R V L i i u o u + - +- O t g u O t L i max L i min L i T on t 图1-1 原理框图 二、直流稳压电源设计 2.1电源设计基本原理 在电子电路及设备中一般都需要稳定的直流电源供电。这次设计的直流电源

正激电路设计

正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。 1-6-1.正激式变压器开关电源工作原理 所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流脉冲电压激励时,变压器的次级线圈正好有功率输出。 图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R是负载电阻。 在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。 我们从(1-76)和(1-77)两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua ,而输出电压的幅值Up不变。因此,正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。 图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。关于电压平均值输出滤波电路的详细工作原理,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。 正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3。 反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行

(完整版)电阻电感电容串联电路

河北经济管理学校教案 序号:1 编号:JL/JW/7.5.1.03 河北经济管理学校教案

一、课堂导入与提问(10min) 出示电阻、电感、电容串联电路图,思 考问题:在如图所示电路中电压与电流、 总电压与分电压之间有什么关系 二、讲授新课(25min) 1.什么是电阻、电感、电容串联电路 电阻、电感、电容首尾相连串联在一起的电路叫做电阻电感电容串联电路,简称为RLC串联电路。 2.总电压与分电压的关系 总电压瞬时值等于各分电压瞬时值的代数和,总电压相量等于各分电压相量的矢量和,但 是总电压有效值一般不等于各分电压有效值的代数和,即U≠U R +U L +Uc。 电感电压和电容电压之和称为电抗电压,用uX表示,即u X =u L +u C 3.掌握总电压与电流的关系(重点) 若X﹥0(即X L ﹥X C )时,Ψ﹥0,电压超前于电流,电路呈感性,其负载称为感性负载。 若X﹤0(即X L ﹤X C )时,Ψ﹤0,电压滞后于电流,电路呈容性,其负载称为容性负载。 若X﹤0(即X L =X C )时,Ψ=0,电压与电流同相,电路呈纯阻性,其负载称为阻性负载。此 时的电路称为串联谐振电路。 4.电路的功率(重点) 交流电路中,总电压有效值与总电流有效值的乘积称为视在功率,用S表示,即S=UI 上式中 I——总电流有效值,单位为安(A); U——总电压有效值,单位为伏(V); S——视在功率,单位为伏安(VA)。 有功功率、无功功率和视在功率三者组成功率三角形,电压三角形、阻抗三角形和功率三角形都是相似三角形。 有功功率与视在功率之比称为功率因数,即cos=P/S 三、计算举例(30min) 已知:R=15Ω, L=0.3mH, C=0.2μF, 求i , u R , u L , u C、 Hz 10 3 ,V) 60 sin( 2 54 ? = ? + =f t uω

基于UC3854的BOOST电路PFC变换器的设计说明

基于UC3854的BOOST 电路PFC 变换器的设计 1. 设计指标 输入电压:200VAC ~250VAC 输入频率:50Hz 输出直流电压:400V 输出功率:500W 功率因数:>98% 输入电流THD :<5% 2. 开关频率 综合考虑效率和变换器体积,选取开关频率为100KHz 。 原理图 3. 电感 电感值大小决定了输入端高频纹波电流总量,可以根据计算出的电流纹波总量ΔI 来选择电感值。 电感值的确定从输入正弦电流的峰值开始,而最大的峰值电流出现在最小电网电压的峰值处: ()(min) 2line pk in P I V = 由上式可知,此时的最大峰值电流为3.54A 。 通常选择电感中的峰-峰值纹波电流为最大峰值电流的20%左右,故有ΔI=707mA 。

电感值根据最低输入电压时半个正弦波顶部的峰点的电流来选择,此 时 200282.8,100in S V V f KHz === 根据此处电压和开关频率的占空比来选择: o in o V V D V -= in s V D L f I ?=?? 由上式可得L =1.17mH ,取L =1.2mH 。 4. 输出电容 涉及输出电容的选择因数有开关频率纹波电流、2次纹波电流、直流输出电压、输出纹波电压和维持时间等。在本例中,电容的选择主要考虑维持时间。维持时间是在电源关闭以后,输出电压任然能保持在规定围的时间长度,去典型值为15~50ms 。可根据以下公式确定(能量守恒): 22 0(min) 2o o P t C V V ???= - 式中,取Δt=64ms ,V o (min )=300V 。,可得C o =914uF ,可以选取915uF 的电解电容。 5. 电感电流检测 采用在变换器到地之间使用一检测电阻。一般选择压降为1V 左右的检测电阻,此处选择0.25Ω的电阻作为R S ,在最坏的情况下(峰值电流达到原值1.25倍),4.4A 的峰值电流将会产生最大1.1V 的压降。 6. 峰值电流限制 UC3854的峰值限制功能,在电感电流的瞬时值电流超过最大值,即2管脚低于低电平时被激活,将开关断开。电流限制值有基准电压初一电流检测电阻的分压来设置: 1 2RS PK PK REF V R R V = 式中,R PK1和R PK2是分压电阻;V REF 值为7.5V ;V RS 是检测电阻R S 上的电压值。通过R PK2的电流大约为1mA ,由上可知峰值电流限制在4.4A ,R PK1取10k Ω,R PK2取1.5k Ω。 7. 前馈电压信号 V FF 是输入到平方器电路的电压,UC3854平方器电路通常在1.4V~4.5V 的围工作。UC3854 有一个钳位电路,即使输入超过该值,都将前馈电压的有效值限制在4.5 前馈输入电压分压器有3个电阻R FF1、R FF2、R FF3,及两个电容C FF1、C FF2。因此它能进行两级滤波并提供分压输出。分压器和电容形成一个二阶低通滤波器,所以其直流输出是和正弦半波的平均值成正比。 前馈电压V FF 分压器有两个直流条件需要满足。在高输入电网电压下,前馈电压应不高于4.5V ,当达到或超过此值时,前馈电压被钳制而失去前馈功能。在低输入电网电压时,应设置分压器使前馈电压等于1.414V ,如果不到1.414V 部限流器将使乘法器输出保持恒定。 选取分压电阻R FF1为900k Ω,R FF2为92.14k Ω,R FF3为7.86k Ω。当输入电压为AC250V 的时候,直流电压平均值为225V ,此时V FF 为1.77V ;当输入电压为AC200V 的时候,直流电压平均值为160V ,此时V FF 为1.41V 。 8. 乘法器的设置 乘法器、除法器是功率因素校正器的核心。乘法器的输出调节电流环用以控制输入电流功率因素提高。因此此乘法器的输出是个表达输入电流的信号。

单端正激电路的分析和设计

单端正激电路的分析和设计 一、工作原理 如图: Q1导通时,副边二极管D1导通,D2截止,电网通过变压器T1向负载R L输送能量,此时输出滤波电感L0储存能量。 当Q1截止时,电感的储能通过续流二极管D2向负载释放,D1截止。 N3与二极管D3串联起到去磁复位的作用。 注意:复位绕组对变压器工艺的要求,要求耦合好又要绝缘好。 还有其它形式复位电路如RCD复位电路LCD复位电路 输出电压V0= N S ×T ON ×E N P T N S/N P为副边原边匝比 T ON/T为导通时间与周期的比,即导通占空比 E为原边绕组电压 二、正激电路的设计 设计前我们要给定电路设计的一些指标参数,总结为: 1、开关频率 2、输入电压范围:Vin min—Vin max 3、输出负载范围:Io min—Io max 4、输出电压范围:Vo min—Vo max 5、滤波电感电流的纹波: △I L f 6、输出电压纹波:△Vo 第一步:工作频率的确定 工作频率对电源体积以及特性影响很大,必须很好地选择。 工作频率高时,输出滤波器和输出变压器可小型化,过渡响应速度快。但主开关元件、输出二极管、输出电容以及输出变压器的磁芯,还有电路设计等都受到限制。另外,还要注意输出变压器绕组匝数。

第二步:最大导通时间(Ton max)的确定。 Ton max=T×Dmax 对于正向激励D选为0.4~0.45较适宜。Dmax是设计电路时的一个重要参数,它对主开关元件,输出二极管的耐压与输出保持时间,输出变压器以及输出滤波器的大小,变换效率等都有很大影响。 第三步:变压器次级输出电压的计算 Vs min= (Vo max+V L+V F)×T Ton max Vs min:变压器次级最低电压 Vo max:最大输出电压 V L:电感线圈压降 V F:输出侧二极管的正向压降 第四步:变压器匝比N的计算 N= Vin min Vs min Vin min: 变压器初级最低电压 Vs min:变压器次级最低电压 第五步:变压器初级绕组匝数的计算 因为作用电压是一个方波,一个导通期间的伏秒值与初级绕组匝数关系N P= Vin min ×Ton max×108 (Bm-Br)×S N P:初级绕组匝数 Vin min:变压器初级最低电压 Ton max:最大导通时间 Bm-Br:磁感应强度 S:磁芯有效截面积 第六步:次级绕组匝数的计算 Ns=Np/N N为匝比 第七步:输出滤波电感的计算 L=Vs min-(V F+Vo max)×Ton max △I L △I L为I O的15%—20% 另外,功率开关器件电流电压耐量的确定, 变压器原副边绕组线径的确定。

纯电阻、电感、电容电路

纯电阻、纯电感、纯电容电路 一、知识要求: 理解正弦交流电的瞬时功率、有功功率、无功功率的含义、数学式、单位及计算。掌握各种电路的特点,会画矢量图。 二、主要知识点:

三、例题: 1.已知电阻R=10Ω,其两端电压V t t u R )30314sin(100)(?+=,求电流i R(t ).、电路消耗的功率。 解:由于电压与电流同相位,所以 i R(t )= 10) (=R t u R )30314sin(?+t A 电路消耗的功率P=U R I= W X Um 5002 10 1002Im 2== ? 2、已知电感L=,其两端电压V t t u L )301000sin(100)(?+=,求电流i L(t ). 解:L X L ω===500Ω 由于纯电感电路中,电流滞后电压90°,所以: A t t X t i L L )601000sin(2.0)90301000sin(100 )(?-=?-?+= 3.已知电容C=10μF ,其两端电压V t t u c )301000sin(100)(?+=,求电流i c (t ).. 解: Ω=== -10010101000116 X X C X c ω 由于电流超前电压90°,所以: A t t Xc t i c )1201000sin()90301000sin(100 )(?+=?+?+= 四、练习题: (一)、填空题 1、平均功率是指( ),平均功率又称为( )。 2、纯电阻正弦交流电路中,电压有效值与电流有效值之间的关系为( ),电压与电流

在相位上的关系为( )。纯电感正弦交流电路中,电压有效值与电流有效值之间的关系为( ),电压与电流在相位上的关系为( )。纯电容正弦交流电路中,电压有效值与电流有效值之间的关系为( ),电压与电流在相位上的关系为( )。 3、在纯电阻电路中,已知端电压V t u )30314sin(311?+=,其中R=1000Ω,那么电流i=( ),电压与电流的相位差=( ),电阻上消耗的功率P=( )。 4、感抗是表示( )的物理量,感抗与频率成( )比,其值XL=( ),单位是( ),若线圈的电感为,把线圈接在频率为50HZ 的交流电路中,XL=( )。 5、容抗是表示( )的物理量,容抗与频率成( )比,其值Xc =( ),单位是( ),100PF 的电容器对频率是106 HZ 的高频电流和50HZ 的工频电流的容抗分别是( )和( )。 6、在纯电容正弦交流电路中,有功功率P=( )W ,无功功率Q C =( )=( )=( )。 7、在正弦交流电路中,已知流过电容元件的电流I=10A ,电压V t u )1000sin(220=,则电流i=( ),容抗Xc=( ),电容C=( ),无功功率Q C =( ) 8、电感在交流电路中有( )和( )的作用,它是一种( )元件。 (二)、选择题 1、正弦电流通过电阻元件时,下列关系式正确的是( )。 A 、Im=U/R B 、I=U/R C 、i=U/R D 、I=Um/R 2、已知一个电阻上的电压V t u )2 314sin(210π -=,测得电阻上消耗的功率为20W ,则这 个电阻为( )Ω。 A 、5 B 、10 C 、40 3、在纯电感电路中,已知电流的初相角为-60°,则电压的初相角为( )。 A 、30° B 、60° C 、90° D 、120° 4、在纯电感正弦交流电路中,当电流A t I i )314sin(2= 时,则电压( )V 。

电气工程boost斩波电路升压斩波电路电力电子技术课程设计

目录 摘要 ................................................................................................................ 错误!未定义书签。 1 BOOST斩波电路工作原理.................................................................................................. - 1 - 1.1 主电路工作原理...................................................................................................... - 1 - 1.2 控制电路选择.......................................................................................................... - 1 - 2 硬件调试 ................................................................................................................................. - 3 - 2.1 电源电路设计.......................................................................................................... - 3 - 2.2 升压(boost)斩波电路主电路设计 ..................................................................... - 4 - 2.3 控制电路设计.......................................................................................................... - 5 - 2.4 驱动电路设计.......................................................................................................... - 8 - 2.5 保护电路设计.......................................................................................................... - 9 - 2.5.1 过压保护电路.............................................................................................. - 9 - 2.5.2 过流保护电路............................................................................................ - 10 - 2.6 直流升压斩波电路总电路.................................................................................... - 11 - 3总结 ........................................................................................................................................ - 12 - 4参考文献 ................................................................................................................................ - 12 - 直流斩波电路的功能是将直流电变为另一种固定的或可调的直流电,也称为直流-直流变换器(DC/DC Converter),直流斩波电路一般是指直接将直流变成直流的情况,不包括直流-交流-直流的情况;直流斩波电路的种类很多:降压斩波电路,升压斩波电路,这两种是最基本电路。另外还有升降压斩波电路,Cuk斩波电路,Sepic斩波电路,Zeta斩波电路。斩波器的工作方式有:脉宽调制方式(Ts 不变,改变ton)和频率调制方式(ton不变,改变Ts)。本设计是基于SG3525芯片为核心控制的脉宽调制方式的升压斩波电路和降压斩波电路,设计分为Multisim仿真和Protel两大部分构成。Multisim主要是仿真分析,借助其强大的仿真功能可以很直观的看到PWM控制输出电压的曲线图,通过设置参数分析输出与电路参数和控制量的关系,利用软件自带的电表和示波器能直观的分析各种输出结果。第二部分是硬件电路设计,它通过软件设计完成。 关键字:直流斩波;PWM;SG3525

相关主题