搜档网
当前位置:搜档网 › 汤普森四面体

汤普森四面体

汤普森四面体
汤普森四面体

三棱锥的几个重要性质

直角三棱锥的几个性质 有一类特殊的三棱锥,它的经过同一顶点的三条棱两两垂直,我们不妨把这种三棱锥称作直角三棱锥,从结构上看,它是平面的直角三角形在空间的扩展。循着直角三角形的一些重要性质对直角三棱锥进行探究,我们能得到直角三棱锥的有趣的相应性质。 我们已经学习过的直角三角形的性质有: 性质1:Rt Δ的垂心就是直角顶点。 性质2:Rt Δ的两个锐角互余。 性质3:Rt Δ两直角边的平方和等于斜边的平方。 性质4:Rt Δ中,斜边上的高是两条直角边在斜边上的射影比例中项;每条直角边是它在斜边上的射影和斜边的比例中项;由此,Rt Δ两条直角边的平方比等于它们在斜边上的射影比。 性质5:Rt Δ两直角边的乘积,等于斜边与斜边上高的乘积。 性质6:Rt Δ斜边上的中线等于斜边的一半。 (所以Rt Δ的外接圆半径R =21c =2122b a +)。 性质7:Rt Δ的内切圆半径r =22b a b a ab +++=2 1(a +b -c)。 现在我们来探究一下直角三棱锥的性质。如图所示,在三棱锥P-ABC 中,三条侧棱PA 、PB 、PC 两两垂直,设PA =a ,PB =b ,PC =c 。 ∵PA 、PB 、PC 两两垂直, ∴PA ⊥面PBC ,PB ⊥ 面PCA ,PC ⊥面PAB , ∴面PAB 、面PBC 、面PCA 两 两垂直。作PH ⊥面ABC 于H ,连CH 并延长并交AB 于 D ,连PD ,则PH ⊥AB ,PH ⊥CD ,面PCD ⊥面ABC ;而 PC ⊥面PAB ?PC ⊥AB ,所以AB ⊥面PCD ,∴AB ⊥PD , AB ⊥CH 。同理,AH ⊥BC ,BH ⊥CA 。 由AB ⊥面PCD 知CD ⊥AB ,而PD ⊥AB 且∠APB = 90°,∴∠ABC 、∠CAB 为锐角。同理,∠BCA 也是锐 角,从而有: 性质1:直角三棱锥的底面是锐角三角形。 由AB ⊥CH ,AH ⊥BC ,BH ⊥CA 易知,H 是ΔABC 的垂心,由此可得: 性质2:①直角三棱锥顶点在底面的射影是底面三角形的垂心。 在Rt ΔPAB 中,PD ·AB =PA ·PB ?PD =22b a ab +;在Rt ΔPCD 中,CD 2=PD 2+PC 2 =(22b a a b +)2+ c 2 =222 22222b a a c c b b a +++;在Rt ΔPCD 中,PH ⊥CD ,∴PD ·PC =CD ·PH ?PH 2=222CD PC PD ?=2 2222222222)(b a a c c b b a c b a ab +++?+=222222222a c c b b a c b a ++,∴21PH =222222222c b a a c c b b a ++=21a +21b +2 1c 。因此有: 性质2:②直角三棱锥顶点到底面的距离为h 满足关系式21h =21a +21b +21c 。

三棱锥的几个重要性质,!

直角三棱锥的几个性质 有一类特殊的三棱锥,它的经过同一顶点的三条棱两两垂直,我们不妨把这种三棱锥称作直角三棱锥,从结构上看,它是平面的直角三角形在空间的扩展。循着直角三角形的一些重要性质对直角三棱锥进行探究,我们能得到直角三棱锥的有趣的相应性质。 我们已经学习过的直角三角形的性质有: 性质1:Rt Δ的垂心就是直角顶点。 性质2:Rt Δ的两个锐角互余。 性质3:Rt Δ两直角边的平方和等于斜边的平方。 性质4:Rt Δ中,斜边上的高是两条直角边在斜边上的射影比例中项;每条直角边是它在斜边上的射影和斜边的比例中项;由此,Rt Δ两条直角边的平方比等于它们在斜边上的射影比。 性质5:Rt Δ两直角边的乘积,等于斜边与斜边上高的乘积。 性质6:Rt Δ斜边上的中线等于斜边的一半。 (所以Rt Δ的外接圆半径R = 21c =2122b a +)。 性质7:Rt Δ的内切圆半径r = 2 2b a b a ab +++= 2 1 (a +b -c)。 现在我们来探究一下直角三棱锥的性质。如图所示,在三棱锥P-ABC 中,三条侧棱PA 、PB 、PC 两两垂直,设PA =a ,PB =b ,PC =c 。 ∵PA 、PB 、PC 两两垂直, ∴PA ⊥面PBC ,PB ⊥面PCA ,PC ⊥面PAB , ∴面PAB 、面PBC 、面PCA 两两垂直。作PH ⊥面ABC 于H ,连CH 并延长并交AB 于D ,连PD ,则PH ⊥AB ,PH ⊥CD ,面PCD ⊥面ABC ;而PC ⊥面PAB ?PC ⊥AB ,所以AB ⊥面PCD ,∴AB ⊥PD ,AB ⊥CH 。同理,AH ⊥BC ,BH ⊥CA 。 由AB ⊥面PCD 知CD ⊥AB ,而PD ⊥AB 且∠APB = 90°,∴∠ABC 、∠CAB 为锐角。同理,∠BCA 也是锐角,从而有: 性质1:直角三棱锥的底面是锐角三角形。 由AB ⊥CH ,AH ⊥BC ,BH ⊥CA 易知,H 是ΔABC 的垂心,由此可得: 性质2:①直角三棱锥顶点在底面的射影是底面三角形的垂心。 在Rt ΔPAB 中,PD ·AB =PA ·PB ?PD = 2 2b a ab +;在Rt ΔPCD 中,CD 2=PD 2+PC 2 =(22b a ab +)2+c 2 =222 22222b a a c c b b a +++;在Rt ΔPCD 中,PH ⊥CD ,∴PD ·PC =CD ·PH ?PH 2 =222CD PC PD ?=2 22222222 22)(b a a c c b b a c b a ab +++?+=2 22222222a c c b b a c b a ++,∴21PH = 2 222 22222c b a a c c b b a ++=21a +21b +21c 。因此有:

正四面体

正四面体 常用性质: 1、正四面体是由四个全等正三角形围成的空间封闭图形,所有棱长都相等。 它有4个面,6条棱,4个顶点。正四面体是最简单的正多面体。 2、正四面体属于正三棱锥,但是正三棱锥只需要底面为正三角形,其他三个面是全等的等腰三角形就可以,不需要四个面全等且都是等边三角形。因此,正四面体是特殊的正三棱锥。 3、基本性质:正四面体是一种柏拉图多面体,正四面体与自身对偶。 正四面体的重心、四条高的交点、外接球、内切球球心共点,此点称为中心。 正四面体的对边相互垂直。正四面体的对棱相等。 正四面体内任意一点到四个面的距离之和为定值 3 。 4、相关数据当正四面体的棱长为a时,一些数据如下: (中心把高分为1:3两部分} 2体积: 3 12 对棱中点的连线段的长: 2,两邻面夹角满足 1 cos 3 α=。 若将正四面体放进一个正方体内,则该正方体棱长为 2,其实,正四面体的棱切球 即为次正方体的内切球。 5、建系方法1.设有一正四面体D-ABC棱长为a 以AB边为y轴A为顶点ABC所属平面为xOy面建系四个顶点的坐标依次为 其他性质: 正四面体有一个在其内部的内切球和七个与四个面都相切的旁切球,其中有三个旁切球球心在无穷远处。 正四面体有四条三重旋转对称轴,六个对称面。 正四面体可与正八面体填满空间,在一顶点周围有八个正四面体和六个正八面体。 正四面体体积占外接球体积的2*3^0.5/9*π,约12.2517532%。 内切球体积占正四面体体积的π*3^0.5/18,约30.2299894%。 两条高夹角:2ArcSin(√6/3)=ArcCos(-1/3)=≈1.91063 32362 49(弧度)或109°28′16″39428 41664 889。这一数值与三维空间中求最小面有关,也是蜂巢底菱形的钝角的角度. 侧棱与底面的夹角:ArcCos(√3/3) 正四面体的对棱相等。具有该性质的四面体符合以下条件: 1.四面体为对棱相等的四面体当且仅当四面体每对对棱的中点的连线垂直于这两条棱。 2.四面体为对棱相等的四面体当且仅当四面体每对对棱中点的三条连线相互垂直。 3.四面体为对棱相等的四面体当且仅当四条中线相等。 化学中CH4,CCl4,SiH4等物质也是正四面体结构。正四面体键角是109度28分,约为109.47°。

正四面体的性质

正四面体的性质:设正四面体的棱长为a,则这个正四面体的 (1)全面积S全 = 2a; (2)体积 V=3 12 a; (3)对棱中点连线段的长 d= a;(此线段为对棱的距离,若一个 球与正四面体的6条棱都相切,则此线段就是该球的直径。) (4)相邻两面所成的二面角α= 1 arccos 3 (5)对棱互相垂直。 (6)侧棱与底面所成的角为β= 1 arccos 3 (7)外接球半径 R= 4 a; (8)切球半径 r= 12 a. (9)正四面体任意一点到四个面的距离之和为定值(等于正四面体的高). 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体. 如图,在直角四面体AOCB中,∠AOB=∠BOC=∠COA=90°,OA=a,OB=b,OC=c.则 ①不含直角的底面ABC是锐角三角形; ②直角顶点O在底面上的射影H是△ABC的垂心; ③体积V= 1 6 a b c; ④底面面积S△ABC ⑤S2△BOC=S△BHC·S△ABC; A B C D O H

⑥S 2 △BOC +S 2△AOB +S 2△AOC =S 2△ABC ⑦ 22 221111 OH a b c =++; ⑧外接球半径 R= ⑨切球半径 r=AOB BOC AOC ABC S S S S a b c ????++-++ 正四面体的性质:设正四面体的棱长为a ,则这个正四面体的 (1)全面积 S 全= 2a ; (2)体积 3 ; (3)对棱中点连线段的长 d= a ;(此线段为对棱的距离,若一个球与正四面体的6条棱都相切,则此线段就是该球的直径。) (4)相邻两面所成的二面角 α=1 arccos 3 (5)对棱互相垂直。 (6)侧棱与底面所成的角为β=1 arccos 3 (7)外接球半径 R= 4 a ; (8)切球半径 r= a . (9)正四面体任意一点到四个面的距离之和为定值(等于正四面体的高). 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体. 如图,在直角四面体AOCB 中,∠AOB=∠BOC=∠COA=90°,OA=a ,OB=b ,OC=c .则 ①不含直角的底面ABC 是锐角三角形; A O H

正四面体的结构与稳定性

正四面体的结构与稳定性 江苏省如皋市丁堰中学冒春建 226521 物质的组成、结构决定物质的性质。如果某物质具有稳定的空间构型,就有稳定的性质。那么怎么样的空间构型才是稳定的呢?按照价键理论,只要化学键的键角方向与其成键原子的价电子云在空间的伸展方向一致,则成键原子间的作用力最强烈,而成键电子与成键电子之间的排斥力最小(即通常所说的“键角张力”),非成键原子或原子团之间的空间距离最大,达到最大程度的舒展,使非成键原子或原子团间的空间位阻最小,具有这样的结构其内能最小,结构稳定。 正四面体结构是中学生所遇化学物质中最常见的空间构型之。例如,原子晶体中的金刚石、晶体硅、水晶等,它们的熔沸点高、硬度大,通常情况下很难跟一般的化学试剂反应,表现出较强的稳定性;分子晶体中的甲烷、四氯化碳等,它们在通常情况下与大多数化学试剂如强酸、强碱、强氧化剂、强还原剂等都不起反应,也表现出较强的稳定性。这是什么原因呢?因为在这些物质中,碳原子、硅原子都是以四个sp3杂化轨道与其相邻的四个原子形成典型的共价键基团“CC4”、“SiSi4”、“SiO4”或小分子“CH4”、“CCl4”,它们的键角方向与其中心原子的四个sp3杂化轨道的空间伸展方向一致,均为109°28′,不存在“键角张力”。并且它们的成键原子的电子云之间达到最大程度的重叠,键能大,内能低,结构稳定,所以它们的性质也稳定。 我们知道,浓硫酸中+6价的硫具有强氧化性,而稀硫酸中同样为+6价的硫却没有氧化性,这是为什么呢?在浓硫酸中,+6价的硫绝大多数是以H2SO4分子形式存在,而H2SO4分子的空间构型是不规则的四面体,在H2SO4分子中O—S—O键的键角与硫原子的四个sp3杂化轨道的空间伸展方向(夹角为109°28′)不一致,化学键之间存在较强的“键角张力”,内能较大。并且四个S—O键的键长不等,使位于中间的+6价硫原子的周围空间相对来说有一定的空隙,易受到具有还原性微粒的攻击,夺得电子,从而表现出氧化性。 在稀硫酸中,+6价的硫原子是以自由移动的SO42-离子形式存在,而SO42-离子的空间构型是正四面体,所有的S—O键都是沿着硫原子的四个sp3杂化轨道在空间的伸展方向成键,不存在化学键之间的“键角张力”,四个S—O键的键长、键能完全相同,四个氧原子均匀地、等距离地分布在硫原子周围,使位于正四面体中心的+6价硫原子难以被其它原子或原子团攻击,也就没有得电子的可能性,故稀硫酸中+6价的硫没有氧化性。 又如,氨气和硝酸中的氮元素分别处于最低价态-3价和最高价态+5价,按理说,前者具有较强的还原性,后者具有很强的氧化性,两者相遇应发生强烈的氧化还有反应,而事实上,它们之间发生的是非氧化还原反应(简单的化合反应),这又是什么原因呢?这是由于N H3分子中的氮原子在成键时的四个sp3杂化轨道有一个被自身的孤对电子占领,当它遇到H+后很快形成N→H配位键,变成N H4+离子。而N H4+离子的空间构型又是正四面体,四个N—H键的键长、键能均完全一样,键角均为109°28′,与N原子的四个sp3杂化轨道的夹角完全吻合,不存在“键角张力”;四个氢原子也均匀地分布在氮原子周围,使位于中心的-3价氮原子难以被其它原子或原子团进攻。故氨气在遇到硝酸、浓硫酸等酸性强氧化剂时,表现不出还原性。但是,当N H3在一定条件下,遇到CuO、Cl2等氧化剂时又表现出一定的氧化性。这是因为N H3分子中,N原子的四个sp3杂化轨道中有一个被孤对电子占用,根据价电子对互斥原理,N—H键间的夹角受孤对电子的排斥挤压,键角不再是109°28′,而是107°,故N H3分子中氮原子的周围空间不是被氢原子均匀包围,氮原子的价电子云有了一定程度的“裸露”,较易受到其它氧化性微粒的进攻,从而表现出一定的还原性。

四面体的性质

四面体的性质 不在一直线上的三点可以连成一个三角形,不共面的四点可以连成四个三角形,这四个三角形围成的几何体叫做四面体(如图1).它有四个顶点,六条棱,四个面. 研究四面体的有关性质可以加深对四面体,空间四边形的知识的理解,有利于提高熟练运用知识的能力. 性质1:四面体中相对的棱所在的直线是异面直线.如图1中AB 和CD ,BC 和AD ,AC 和BD 都是异面直线. 性质2:四面体中,若一个顶点在对面内射影是这个三角形的垂心,则四面体的三组对棱分别互相垂直. 证明:如图2的四面体中,设顶点A 在面BCD 内的射影H 是BCD △的垂心.AH BCD ⊥平面.连结BH ,CH ,DH ,则BH CD ⊥,CH BD ⊥,DH BC ⊥.根据三垂线定理得AB CD ⊥,AC BD ⊥,AD BC ⊥. 性质3:四面体中,若有两组对棱互相垂直,则第三组对棱也互相垂直. 证明:设四面体ABCD 中,AB CD ⊥,AC BD ⊥,过A 作AH BCD ⊥平面,H 为垂足(如图2).连结BH ,CH ,则BH 为AB 在平面BCD 内的射影,根据三垂线定理的逆定理,BH CD ⊥;同理CH BD ⊥,所以H 是BCD △的垂心.由性质2知AD BC ⊥. 根据性质2,3立即可以得到: 性质4:四面体中,若一个顶点在它对面内的射影是这个面的中心,则其余各顶点在其对面内的射影也分别是这些面的中心. 利用全等三角形的判定和性质,可以证明下面两条性质: 性质5:四面体中,若交于同一顶点的三条棱相等,则这个顶点在对面内的射影是这个三角形的外心,且这三条棱和顶点所对面所成的角相等.反之也真. 特别地,若这个顶点所对的面是一个直角三角形,则这顶点的射影是直角三角形斜边的中点. 性质6:四面体中,若一个顶点在对面内的射影是这个三角形的内心,则顶点到对面三角形三条边的距离相等,且以这三角形三角形三条边为棱的三个二面角相等. 性质7:四面体中,若交于同一点的三条棱两两互相垂直,则这个顶点所对面是一个锐角三角形. 证明:如图3,设90APB BPC CPA ∠=∠=∠=o ,PA a =,PB b =,PC c =,不妨设a b c ≤≤,则222AB a b =+,222BC b c =+,222CA c a =+.显然BC 是ABC △的最大边,BAC ∠是ABC △中最大内角.根据余弦定理,有

正四面体

正四面体是一种柏拉图多面体,正四面体与自身对偶。 正四面体的重心、四条高的交点、外接球、内切球球心共点,此点称为中心。 正四面体有一个在其内部的内切球和七个与四个面都相切的旁切球,其中有三个旁切球球心在无穷远处。 正四面体有四条三重旋转对称轴,六个对称面。 正四面体可与正八面体填满空间,在一顶点周围有八个正四面体和六个正八面体。 化学中CH4,CCl4等分子也呈正四面体状。 相关数据 当正四面体的棱长为a时,一些数据如下: 高:√6a/3。中心把高分为1:3两部分。 表面积:√3a^2 体积:√2a^3/12 对棱中点的连线段的长:√2a/2 外接球半径:√6a/4,正四面体体积占外接球体积的2*3^0.5/9*π,约12.2517532%。 内切球半径:√6a/12,内切球体积占正四面体体积的π*3^0.5/18,约30.2299894%。 棱切球半径:√2a/4. 两条高夹角:2ArcSin(√6/3)=ArcCos(-1/3)=≈1.91063 32362 49(弧度)或109°28′16″39428 41664 889。这一数值与三维空间中求最小面有关,也是蜂巢底菱形的钝角的角度. 两邻面夹角:2ArcSin(√3/3)=ArcCos(1/3)≈1.23095 94173 4077(弧度)或70°31′43″60571 58335 111,与两条高夹角在数值上互补。 侧棱与底面的夹角:ArcCos(√3/3) 正四面体的对棱相等。具有该性质的四面体符合以下条件: 1.四面体为对棱相等的四面体当且仅当四面体每对对棱的中点的连线垂直于这两条棱。 2.四面体为对棱相等的四面体当且仅当四面体每对对棱中点的三条连线相互垂直。 3.四面体为对棱相等的四面体当且仅当四条中线相等。

典型的晶体结构

典型的晶体结构 1.铁 铁原子可形成两种体心立方晶胞晶体:910℃以下为α-Fe,高于1400℃时为δ-Fe。在这两种温度之间可形成γ-面心立方晶。这三种晶体相中,只有γ-Fe能溶解少许C。问:1.体心立方晶胞中的面的中心上的空隙是什么对称?如果外来粒子占用这个空隙,则外来粒子与宿主离子最大可能的半径比是多少? 2.在体心立方晶胞中,如果某空隙的坐标为(0,a/2,a/4),它的对称性如何?占据该空隙的外来粒子与宿主离子的最大半径比为多少? 3.假设在转化温度之下,这α-Fe和γ-F两种晶型的最相邻原子的距离是相等的,求γ铁与α铁在转化温度下的密度比。 4.为什么只有γ-Fe才能溶解少许的C? 在体心立方晶胞中,处于中心的原子与处于角上的原子是相接触的,角上的原子相互之间不接触。a=(4/3)r。 ①②③ 1.两个立方晶胞中心相距为a,也等于2r+2r h[如图①],这里r h是空隙“X”的半径,a =2r+2r h=(4/3)r r h/r=0.115(2分) 面对角线(2a)比体心之间的距离要长,因此该空隙形状是一个缩短的八面体,称扭曲八面体。(1分) 2.已知体心上的两个原子(A和B)以及连接两个晶体底面的两个角上原子[图②中C和D]。连接顶部原子的线的中心到连接底部原子的线的中心的距离为a/2;在顶部原子下面的底部原子构成晶胞的一半。空隙“h”位于连线的一半处,这也是由对称性所要求的。所以我们要考虑的直角三角形一个边长为a/2,另一边长为a/4[图③],所以斜边为16 /5a。(1分)r+r h=16 /5a=3/5r r h/r=0.291(2分) 3.密度比=42︰33=1.09(2分) 4.C原子体积较大,不能填充在体心立方的任何空隙中,但可能填充在面心立方结构的八面体空隙中(r h/r=0.414)。(2分) 2.四氧化三铁 科学研究表明,Fe3O4是由Fe2+、Fe3+、O2-通过离子键而组成的复杂离子晶体。O2-的重复排列方式如图b所示,该排列方式中存在着两种类型的由O2-围成的空隙,如1、3、6、7的O2-围成的空隙和3、6、7、8、9、12的O2-围成的空隙,前者为正四面体空隙,后者为正八面体空隙,Fe3O4中有一半的Fe3+填充在正四面体空隙中,另一半Fe3+和Fe2+填充在正八面体空隙中,则Fe3O4晶体中正四面体空隙数与O2-数之比为2:1,其中有12.5%正四面体空隙填有Fe3+,有50%正八面体空隙没有被填充。 Fe3O4中三价铁离子:亚铁离子:O原子=2:1:4 晶胞拥有8个正四面体空隙,4个O2-离子;所以2:1 一半三价铁离子放入正四面体空隙,即一个三价铁离子,所以为1/8=12.5%晶胞实际拥有4个正八面体空隙,其中已经有一个放Fe3+,另外一个Fe2+占据一个正八面体空隙,所以50%的正八面体空隙没有被填充。

正四面体性质及其应用

正四面体的性质及其应用 正四面体是四个面都是等边三角形的凸多面体,它是一个很规则的几何体,因此具有一些特有的性质,设正四面体的棱长为a ,则 (1) 全面积S 全= 3 a 2; (2) 高h = 6 3 a ; (3) 体积V = 2 12 a 3 ; (4) 对棱中点的连线是对棱的公垂线,其长为d = 2 2 a ; (5) 相邻两面所成的二面角α=arccos 1 3; (6) 棱与其相交的面所成的角 β=a rctan 2 ; (7) 正四面体的内切球和外接球的球心重合,内切球半径 r = 6 12a ,外接球半径R = 6 4 a ,r ︰R =1︰3; (8) 正四面体内任一点到四个面的距离之和为定值(等于正四面体的高)。 将正四面体置于正方体中,结合正方体的性质以上诸性质容易得到证明。考查正四面体的性质多出选择或填空题,熟记以上八条性质对快速求解相关问题有很大帮助,例如: 例1:已知半径为1的球面上有A 、B 、C 三个点,且它们之间的球面距离都为π 3 ,则球 心O 到平面ABC 的距离为( ) A 3 2 B 6 3 C 12 D 21 7 解析:如右图所示,OA=OB=OC =1 又3 π = ==⌒ ⌒ ⌒ CA BC AB ,球的半径r =1 ∴∠AOB=∠BOC=∠COA =π 3 ,则AB=BC=CA =1 所以O -ABC 为棱长为1的正四面体,则由正四面体的性质得球心O 到平面ABC 的 距离即其高为 6 3 ,答案B 。 例2:(05年湖南省十所示范校联考)已知棱长为a 的正四面体ABCD 有内切球O ,经过该棱锥A -BCD 的中截面为M ,则O 到平面M 的距离为( ) A a 4 B 6 6a C 6 12a D 2 8 a 解析:直接运用正四面体的性质,内切球的半径r = 6 12 a ,中截面到底面的距离为高的一半 6 6a ,则O 到平面M 的距离为 6 6a - 6 12a = 6 12 a ,因此选 例3:(06年陕西卷)将半径为R 心到桌面的距离为 。 解析

六方最密堆积中正八面体空隙和正四面体空隙中心的分数坐标

密堆积中正八面体空隙和正四面体空隙 晶体结构的密堆积原理密堆积结构是指在由无方向性的金属键,离子键和范德华力结合的晶体中,原子、分子或离子等微粒总是趋向于相互配位数高,能充分利用空间的堆积密度大的那些结构。密堆积方式由于充分利用了空间,从而可使体系的势能尽可能降低。结构稳定。最常见的密堆积型式有:面心立方最密堆积(A1),六方最密堆积(A3)和体心立方密堆积(A2)。 我们主要介绍面心立方密堆积和六方密堆积。 等径圆球紧密排列形成密置层, 如图所示。 在密置层内,每个圆球周围有六 个球与它相切。相切的每三个球又围 出一个三角形空隙。仔细观察这些三 角形空隙,一排尖向上,接着下面一 排尖向下,交替排列。而每个圆球与 它周围的六个球围出的六个三角形空 隙中,有三个尖向上,另外三个尖向下。如图所示,我们在这里将尖向上的三角形空隙记为 B,尖向下的三角形空隙记为C。 第二密置层的球放在B之上,第三 密置层的球投影在C中,三层完 成一个周期。这样的最密堆积方式 叫做立方最密堆积(ccp,记为 A1型),形成面心立方晶胞。

若第三密置层的球投影 与第一密置层的球重合,两 层完成一个周期。这样的最 密堆积方式叫做六方最密堆 积(hcp,记为A3型),形 成六方晶胞,如图所示。 在这两种堆积方式中, 任何四个相切的球围成一个 正四面体空隙;另外,相切 的三个球如果与另一密置层 相切的三个球空隙对应,它们六个球将围成一个正八面体空隙。也就是说,围成正八面体空隙的这六个球可以分为相邻的两层,每层的正三角 形中心的连线垂直于正三角形所在的密置层,参 看下图,黑色代表的不是球而是正八面体的中 心。 在这两种最密堆积方式中,每个球与同一密置层 的六个球相切,同时与上一层的三个球和下一层 的三个球相切,即每个球与周围十二个球相切 (配位数为12)。中心这个球与周围的球围出八个正四面体空隙,平均分摊到每个正四面体空隙的是八分之一个球。这样,每个正四面体空隙分摊到的球数是四个八分之一,即半个。中心这个球周围还围出六个八面体空隙,它平均分摊到每个正八面体空隙的是六分之一个球。这样,每个正八面体空隙分摊到的球数是六个六分之一,即一个。总之,这两种最密堆积中,球数: 正八面体空隙数: 正四面体空隙数= 1:1:2 。等径球的两种最密堆积具有相同的堆积密度,都为%.

四面体性质探索

[文件] sxglija0031.doc [科目] 数学 [年级] 高中 [章节] [关键词] 四面体 [标题] 四面体性质探索 [内容] [主讲教师] 北京四中李建华 [教学课题] 四面体性质探索 [教学目标] 1.通过教学使学生了解和掌握四面体﹑有一个顶点处三条棱相互垂直的四面体和对棱相等的四面体的基本性质,理解长方体、有一个顶点处三条棱相互垂直的四面体和对棱相等四面体的本质联系,并能够对四面体在多面体中的重要地位有所领会; 2.通过教学使学生初步体会到类比﹑转化与整合在认识事物过程中的重要作用,并能够初步理解和掌握转化与整合的思想方法; 3.通过教学培养学生的空间想象能力,提出问题﹑分析问题和解决问题的能力,特别是几何图形的分解与组合能力; 4.通过教学渗透科学理性精神,爱国主义情怀,激发学生学习数学 的兴趣,并逐步提高数学审美能力。 [教学重点] 类比、转化与整合思想方法的展示。 [教学难点] 几何图形之间各种联系的发掘和应用。 [课时安排] 1课时(45分钟)。 [教学模式] 启发式为主,辅以讲授。 [教学工具] 计算机以及常规教学工具。 [教学过程] 一、课题引入 师:从小学到高中,大家最熟悉的多面体大概就是长方体了。 (演示) 然而,从数学角度来看,长方体并不是最简单的多面体。比如,大家知道,如果从面的数目上来说,四面体是最简单的多面体,就象从边的数目上来说,三角形是最简单的多边形一样。 那么,有没有可能将长方体分解为若干个四面体呢? 我们先来回顾在平面几何当中,我们是怎样将任意多边形分解为三角形的。 (演示) 我们再来看看如何将长方体进行分解,请看演示:

正方体和正四面体

第 1 页 共 4 页 高中化学竞赛辅导专题讲座——三维化学 近年来,无论是高考,还是全国竞赛,涉及空间结构的试题日趋增多,成为目前的热点之一。本文将从最简单的五种空间正多面体开始,与大家一同探讨中学化学竞赛中与空间结构有关的内容。 第一节 正方体与正四面体 在小学里,我们就已经系统地学习了正方体,正方体(立方体或正六面体)有六个完全相同的正方形面,八个顶点和十二条棱,每八个完全相同的正方体可构成一个大正方体。正四面体是我们在高中立体几何中学习的,它有四个完全相同的正三角形面,四个顶点和六条棱。那么正方体和正四面体间是否有内在的联系呢?请先让我们看下面一个例题吧: 【例题1】常见有机分子甲烷的结构是正四面体型的,请计算分子中碳氢键的键角(用反三角函数表示) 【分析】在化学中不少分子是正四面体型的,如CH 4、CCl 4、NH 4+、 SO 42-……它们的键角都是109o28’,那么这个值是否能计算出来呢? 如果从数学的角度来看,这是一个并不太难的立体几何题,首先我们把它抽象成一个立体几何图形(如图1-1所示),取 CD 中点E ,截取面ABE (如图1-2所示),过A 、 B 做AF ⊥BE ,BG ⊥AE ,AF 交BG 于O ,那么 ∠AOB 就是所求的键角。我们只要找出AO (=BO )与AB 的关系,再用余弦定理,就能圆满地解决例题1。当然找出AO 和AB 的关系还是有一定难度 的。先把该题放下,来看一题初中化学竞赛题: 【例题2 】CH 4分子在空间呈四面体形状,1个C 原 子与4个H 原子各共用一对电子对形成4条共价键,如 图1-3所示为一个正方体,已画出1个C 原子(在正方体 中心)、1个H 原子(在正方体顶点)和1条共价键(实线表 示),请画出另3个H 原子的合适位置和3条共价键,任 意两条共价键夹角的余弦值为 ① 【分析】由于碳原子在正方体中心,一个氢原子在顶点,因为碳氢键是等长的,那么另三个氢原子也应在正方 体的顶点上,正方体余下的七个顶点可分成三类,三个为 棱的对侧,三个为面对角线的对侧,一个为体对角线的对 侧。显然三个在面对角线对侧上的顶点为另三个氢原子的 位置。 【解答】答案如图1-4所示。 【小结】从例题2中我们发现:在正四面体中八个顶点中不相邻的四个顶点(不共棱)可构成一个正四面体, 图1-1 图1-2 图1-3 图1-4

【恒心】高考数学必背经典结论-正四面体性质【冲刺必备版】

必背经典结论---提高数学做题速度! 立体几何(必背经典结论)之 正四面体性质(李炳璋提供) 【***】由于时间仓促,难免有误,若有错误,请及时指正!谢谢!!! 设正四面体的棱长为a ,则这个正四面体的 对于棱长为a 正四面体的问题可将它补成一个边长为 (1)对棱间的距离为a 2 2(正方体的边长)/ 对棱中点连线段 的长 d= 2 a ;(此线段为对棱的距离,若一个球与正四面体的6条 棱都相切,则此线段就是该球的直径。) (2) 正四面体的高 a 36(正方体体对角线 l 3 2= ) (3) 正四面体的体积为 3 12 2a (正方体 小三棱锥 正方体V V V 314=-) (4) 正四面体的全面积 S 全= 2a ; (5) 正四面体的中心到底面与顶点的距离之比为3:1 (正方体体对角线正方体体对角线:l l 2 1 61 = )

(6)外接球的半径为 a 46 (是正方体的外接球,则半径正方体体对角线 l 2 1=) (7)内切球的半径为 a 12 6 (是正四面体中心到四个面的距离,则半径正方体体对角线 l 6 1= ) (8)相邻两面所成的二面角 α=1arccos 3 (9)侧棱与底面所成的角为β=1 arccos 3 (10)对棱互相垂直。 (11)正四面体内任意一点到四个面的距离之和为定值(等于正四面体的高)。 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体。 如图,在直角四面体AOCB 中,∠AOB=∠BOC=∠COA=90°, OA=a ,OB=b ,OC=c .则 A B C D O H

(1)不含直角的底面ABC 是锐角三角形; (2)直角顶点O 在底面上的射影H 是△ABC 的垂心; (3)体积 V= 1 6 a b c ; (4)底面面积S △ABC ; (5)S 2△BOC =S △BHC ·S △ABC ; (6)S 2△BOC +S 2△AOB +S 2△AOC =S 2 △ABC (7) 2 2 2 2 1 111O H a b c = + + ; (8)外接球半径 (9)内切球半径 r=AO B BO C AO C ABC S S S S a b c ????++-++

正四面体性质及其应用审批稿

正四面体性质及其应用 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

正四面体的性质及其应用 正四面体是四个面都是等边三角形的凸多面体,它是一个很规则的几何体,因此具有一些特有的性质,设正四面体的棱长为a ,则 (1) 全面积S 全= 3 a 2; (2) 高h = 6 3a ; (3) 体积V = 2 12 a 3; (4) 对棱中点的连线是对棱的公垂线,其长为d = 2 2a (5) 相邻两面所成的二面角α=arccos 1 3; (6) 棱与其相交的面所成的角 β=arctan 2 ; (7) 正四面体的内切球和外接球的球心重合,内切球半径 r = 6 12a ,外接球半径R = 6 4a ,r ︰R =1︰3; (8) 正四面体内任一点到四个面的距离之和为定值(等于正四面体的高)。 将正四面体置于正方体中,结合正方体的性质以上诸性质容易得到证明。考查正四面体的性质多出选择或填空题,熟记以上八条性质对快速求解相关问题有很大帮助,例如: 例1:已知半径为1的球面上有A 、B 、C 三个点,且它们之间的球面距离都为π 3,则球心O 到平面ABC 的距离为( ) A 3 2 B 6 3 C 12 D 21 7 解析:如右图所示,OA=OB=OC =1 又3 π = ==⌒ ⌒ ⌒ CA BC AB ,球的半径r =1 ∴∠AOB=∠BOC=∠COA =π 3,则AB=BC=CA =1

所以O -ABC 为棱长为1的正四面体,则由正四面体的性质得球心O 到平面ABC 的 距离即其高为 6 3,答案B 。 例2:(05年湖南省十所示范校联考)已知棱长为a 的正四面体ABCD 有内切球O ,经过该棱锥A -BCD 的中截面为M ,则O 到平面M 的距离为( ) A a 4 B 6 6a C 6 12a D 2 8a 解析:直接运用正四面体的性质,内切球的半径r = 6 12a ,中截面到底面的距离为高 的一半 6 6a ,则O 到平面M 的距离为 6 6a - 6 12a = 6 12a ,因此选C 。 例3:(06年陕西卷)将半径为R 的球心到桌面的距离为 。 解析A 、B 、C 、D ,因为四个球两两相切,则ABCD 2R 的正四面体,A 到面BCD 的距离为 2 6 3R ,则上面一个球的球心A 到桌面的距 离为R +2 6 3R =(1+2 6 3)R 。 例4:(06年山东卷)如图1,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60○,E 为AC 的中点,将△ADE 与△BEC 分别沿ED P ,则三棱锥P -DCE 的外接球的体积为( ) A 4 3 27π B 6 2π C 6 8π D 解析:三棱锥P -DC E 实质上是棱长为1的正四面体, 则其外接球的体积为 V = 43πR 3= 43π( 6 4)3= 6 8π。 例5:(06年湖南卷)棱长为2球心的一个截面如图1

典型的晶体结构

典型得晶体结构 1、铁 铁原子可形成两种体心立方晶胞晶体:910℃以下为α-Fe,高于1400℃时为δ-Fe。在这两种温度之间可形成γ-面心立方晶。这三种晶体相中,只有γ-Fe能溶解少许C。问: 1.体心立方晶胞中得面得中心上得空隙就是什么对称?如果外来粒子占用这个空隙,则外来粒子与宿主离子最大可能得半径比就是多少? 2.在体心立方晶胞中,如果某空隙得坐标为(0,a/2,a/4),它得对称性如何?占据该空隙得外来粒子与宿主离子得最大半径比为多少? 3.假设在转化温度之下,这α-Fe与γ-F两种晶型得最相邻原子得距离就是相等得,求γ铁与α铁在转化温度下得密度比。 4.为什么只有γ-Fe才能溶解少许得C? 在体心立方晶胞中,处于中心得原子与处于角上得原子就是相接触得,角上得原子相互之间不接触。a=(4/3)r。 ①②③ 1.两个立方晶胞中心相距为a,也等于2r+2r h[如图①],这里r h就是空隙“X”得半径,a =2r+2r h=(4/3)r r h/r=0、115(2分) 面对角线(2a)比体心之间得距离要长,因此该空隙形状就是一个缩短得八面体,称扭曲八面体。(1分) 2.已知体心上得两个原子(A与B)以及连接两个晶体底面得两个角上原子[图②中C与D]。连接顶部原子得线得中心到连接底部原子得线得中心得距离为a/2;在顶部原子下面得底部原子构成晶胞得一半。空隙“h”位于连线得一半处,这也就是由对称性所要求得。所以我们要考虑得直角三角形一个边长为a/2,另一边长为a/4[图③],所以斜边为16 /5a。(1分) r+r h=16 /5a=3/5r r h/r=0、291(2分) 3.密度比=42︰33=1、09(2分) 4.C原子体积较大,不能填充在体心立方得任何空隙中,但可能填充在面心立方结构得八面体空隙中(r h/r=0、414)。(2分) 2、四氧化三铁 科学研究表明,Fe3O4就是由Fe2+、Fe3+、O2-通过离子键而组成得复杂离子晶体。O2-得重复排列方式如图b所示,该排列方式中存在着两种类型得由O2-围成得空隙,如1、3、6、7得O2-围成得空隙与3、6、7、8、9、12得O2-围成得空隙,前者为正四面体空隙,后者为正八面体空隙,Fe3 O4中有一半得Fe3+填充在正四面体空隙中,另一半Fe3+与Fe2+填充在正八面体空隙中,则Fe3O4晶体中正四面体空隙数与O2-数之比为 2:1,其中有12、5%正四面体空隙填有Fe3+,有 50%正八面体空隙没有被填充。ClMXxzK。zNa2qb4。 Fe3O4中三价铁离子:亚铁离子:O原子=2:1:4 晶胞拥有8个正四面体空隙,4个O2-离子;所以2:1 一半三价铁离子放入正四面体空隙,即一个三价铁离子,所以为1/8=12、5% 晶胞实际拥有4个正八面体空隙,其中已经有一个放Fe3+,另外一个Fe2+占据一个正八面体空隙,所以50%得正八面体空隙没有被填充。USLphY1。N1iF2Vt。

正四面体的性质

正四面体的性质:设正四面体的棱长为a ,则这个正四面体的 (1)全面积 S 全 2a ; (2)体积 3; (3)对棱中点连线段的长 d= 2a ;(此线段为对棱的距离,若一个球与正四面体的6条棱都相切,则此线段就是该球的直径。) (4)相邻两面所成的二面角 α=1arccos 3 (5)对棱互相垂直。 (6)侧棱与底面所成的角为β=1arccos 3 (7)外接球半径 R= 4 a ; (8)内切球半径 a . (9)正四面体内任意一点到四个面的距离之和为定值(等于正四面体的高). 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体. 如图,在直角四面体AOCB 中,∠AOB=∠BOC=∠COA=90°,OA=a ,OB=b ,OC=c .则 ①不含直角的底面ABC 是锐角三角形; ②直角顶点O 在底面上的射影H 是△ABC 的垂心; ③体积 V= 16 a b c ; ④底面面积S △ABC ; ⑤S 2△BOC =S △BHC ·S △ABC ; ⑥S 2△BOC +S 2△AOB +S 2△AOC =S 2△ABC ⑦ 2222 1111OH a b c =++; ⑧外接球半径 ⑨内切球半径 r=AOB BOC AOC ABC S S S S a b c ????++-++ A B C D O H

正三棱锥:底面为等边三角形,三条侧棱相等,顶点在底面的射影是三角形的中心【即内心[到三条边的距离相等],外心[到底面的三个顶点距离相等],中心是外心、内心还是垂心】;各侧面和各侧棱与底面的二面角和夹角相等;外切球与内切球的球心在同一点,球心到顶点的距离等于到面距离的两倍长,即外切球球心是内切球球心的半径的两倍长。

第十讲 特殊四面体及其性质2

[接上] 第十讲:特殊四面体及其性质 [直角四面体的应用] 例1. 求证判定 (3) 中O —ABC 是直角四面体。 证法一:设正四面体ABCD 的棱长为a ,则其高 DH= 3 ,而AH=3a ,DO=OH =6 a ,在Rt AHO ?中?2 1 2 OA = a 2 ,同理 OB=OC=OA= 2 a,由勾股定理易证∠AOB=∠BOC=∠COA=90,故得证。 证法二:如图三,将正四面体ABCD 镶嵌在棱长为a 的正方体中, 则正四面体ABCD 中O 、H 是正方体对角线DE 的两个三等分点 [3] ,由定比分点公式得: O( 2,,333a a a )、H(22,,333a a a )?AO OB ?=(22,,333a a a -)?(22,,333a a a )=0,即OA ⊥OB ,同理OB ⊥OC ,OC ⊥OA,得证。 例2. (2003年湖南省高中数学竞赛题) S —ABC 是三条棱两两互相垂直的三棱锥,O为底面ABC内一点,若∠OSA=α,∠OSB=,β∠OSC=γ,则tan α?tan β?tan γ∈ ( ) A . [)+∞ B.(0, C. [1,] D.(1, 简析:由2.2 (1) I 有cos 2 a+cos 2 β+cos 2 γ=l ?sin 2 α=1–cos 2 α =cos 2 β+cos 2 γ≥2cos β?cos γ,同理有 sin 2β≥2cosacos γ,sin 2γ≥2cos αcos β 三式相乘 有tan 2αtan 2βtan 2γ≥8 ∴选(A) 或以SO 为对角线补成长、宽、高分别设为a 、b 、c 的长方体 ? tan α?tan β?tan γ≥ abc =例3.三棱锥的三条侧棱两两互相垂直,三侧面与底面所成的二面角分别为30°、45°、60°,底 面积为1,则三棱锥的侧面积为 ( ) (A). 2123++ (B). 213+ (C). 212+ (D). 2 6 解:每一个侧面都是底面在这个侧面所在平面上的射影,由面积射影公式cos θ =S S ' ? S 侧 = S 底·(cos30°+cos45°+cos60°)= 2 1 23++ ∴选 ( A )

六方最密堆积中正八面体空隙和正四面体空隙中心的分数坐标

六方最密堆积中正八面体空隙 和正四面体空隙中心的分数坐标 等径圆球紧密排列形成 密置层,如图所示。 在密置层内,每个圆球 周围有六个球与它相切。相 切的每三个球又围出一个三 角形空隙。仔细观察这些三 角形空隙,一排尖向上,接 着下面一排尖向下,交替排 列。而每个圆球与它周围的六个球围出的六个三角形空隙中,有三个 尖向上,另外三个 尖向下。如图所 示,我们在这里将 尖向上的三角形空 隙记为B,尖向下 的三角形空隙记为 C。第二密置层的 球放在B之上,第 三密置层的球投影 在C中,三层完成 一个周期。这样的

最密堆积方式叫做立方最密堆积(ccp ,记为 A1型),形成面心立方晶胞。 若第三密置层的球投影与第一密置层的球重合,两层完成一个周期。这样的最密堆积方式叫做六方最密堆积(hcp ,记为A3型),形成六方晶胞,如图所示。 在这两种堆积方式中,任何四个相切的球围成一个正四面体空隙;另外,相切的三个球如果与另一密置层相切的三个球空隙对应,它们六个球将围成一个正八面体空隙。也就是说,围成正八面体空隙的这六个球可以分为相邻的两层,每层的正三角形中心的连线垂直于正三角形所在的密置层,参看下图,黑色代表的不是球而是正八面体的中心。 在这两种最密堆积方式中,每个球与同一密置层的六个球相切,同时与上一层的三个球和下一层的三个球相切,即每个球与周围十二个球相切(配位数为12 )。中心这个球与周围

的球围出八个正四面体空隙,平均分摊到每个正四面体空隙的是八分之一个球。这样,每个正四面体空隙分摊到的球数是四个八分之一,即半个。中心这个球周围还围出六个八面体空隙,它平均分摊到每个正八面体空隙的是六分之一个球。这样,每个正八面体空隙分摊到的球数是六个六分之一,即一个。总之,这两种最密堆积中,球数: 正八面体空隙数: 正四面体空隙数= 1:1:2 。 立方最密堆积(ccp,A1型)中正八面体空隙和正四面体空隙的问题比较简单、直观。下面我们集中讨论六方最密堆积(hcp,A3型)中正八面体空隙和正四面体空隙中心的分数坐标。 在六方最密堆积中画出一个六方晶胞,如下面两幅图所示。 平均每个六方晶胞中有两个正八面体空隙,如下面两幅图所示。空隙中心的分数坐标分别为:(2/3,1/3,1/4),(2/3,1/3,3/4)。

相关主题