搜档网
当前位置:搜档网 › Origin of the Visible Photocatalytic Activity of N Doped In2O3 A Quantum Mechanical Study

Origin of the Visible Photocatalytic Activity of N Doped In2O3 A Quantum Mechanical Study

Origin of the Visible Photocatalytic Activity of N Doped In2O3  A Quantum Mechanical Study
Origin of the Visible Photocatalytic Activity of N Doped In2O3  A Quantum Mechanical Study

Origin of the Visible Photocatalytic Activity of N-Doped In 2O 3:A Quantum Mechanical Study

Honggang Sun,?Weiliu Fan,*,?Yanlu Li,?Xiufeng Cheng,?Pan Li,?and Xian Zhao*,?

State Key Laboratory of Crystal Materials,Shandong Uni V ersity,Jinan 250100,China,and Department of Chemistry and Chemical Engineering,Shandong Uni V ersity,Jinan,250100,China Recei V ed:October 06,2009;Re V ised Manuscript Recei V ed:January 11,2010

DFT calculations are used to investigate the origin of the experimentally observed changes in the visible photoactivity of cubic and rhombic In 2O 3induced by N doping.Two possible mechanisms for the red shift in N-doped In 2O 3are tentatively put forward,according to the doping types.For substitutional N-doping models,our results show that,in both polymorphs,partial N 2p states mix with O 2p states and localized lie above the top of the valence band,acting as the frontier orbital level.Electronic transitions from these localized states induce a red shift to the visible region of the optical absorption edge.For interstitial N-doping models,NO π-antibonding states localized in the gap contribute to the impurity levels.The electronic transition from these states may well explain the mechanism of the red shift in interstitial N-doped In 2O 3.The calculated optical properties for all N-doped In 2O 3show a signi?cant visible light absorption at about 400-600nm,which corresponds to the experimental result.This present work shows that N-doped In 2O 3will be a promising photocatalyst with favorable photocatalytic activity in the visible region.

1.Introduction

Increasing energy demands and limited supply have excited interest in the development of advanced materials and technolo-gies for renewable energy from sources,such as biofuels,wind,hydrogen fuels,solar,geothermal,and tidal energy.Since Fujishima and Honda demonstrated that crystalline TiO 2could split water,producing H 2and O 2after photoexcitation,1the application of photocatalytic technology has led to a worldwide awareness in solving environmental and energy-related issues.Discovering various more ef?cient photocatalysts has been a very hard challenge for the worldwide researchers.

In the pioneering work,TiO 2has been widely studied in the ?eld of solar hydrogen conversion and shows some better catalytic property in the UV region.However,the overall ef?ciency of TiO 2is still too low for commercial use due to its poor match to the solar spectrum;especially,the band gap of about 3.2eV is too large for the application in the visible light region.To reduce the large band gap and allow it to absorb visible light,various impurities have been employed to dope TiO 2,which is well-known for energy band engineering.Initially,people have introduced transition metals into the TiO 2(TM -TiO 2).2-8TM -TiO 2materials have some disadvantages for ef?cient water-splitting reactions,such as poor photocurrent density due to rapid electron -hole recombination and thermal instability.To solve these questions,nonmetal doping brings a world of interests and shows some promising merits.9-29Hereinto,the N-doped TiO 2,which displays favorable visible photocatalytic activity,is the most widely investigated by experiments and theory calculations.18-29

Recently,to develop new photocatalysts and based on the consideration that d 0(Ti 4+)and d 10(In 3+,Ga 3+,Ge 4+,and Sn 4+)metal oxides have similar electronic and band structures,

materials having d 10electronic con?gurations have been inves-tigated.30Thereinto,a novel photocatalyst,N-doped In 2O 3,has been synthesized and studied by Reyes-Gil et al.31In the experiments,UV -visible absorption analysis shows that N-doping for In 2O 3narrows the band gap from 3.5eV to about 2.0eV and extends the light absorption of In 2O 3to the visible region (λ<~650nm).Especially,the photocurrent densities of N-doped In 2O 3are at least double those of undoped In 2O 3and approximately 50times better than N-doped TiO 2in the visible region.The experiments show N-doped In 2O 3has a signi?cantly better photoef?ciency for catalyzing water splitting.Although nonmetal doping appears to be very promising for improving the photocatalyst activity of wide band-gap semi-conductors under visible light irradiation,to date,the detailed mechanistic explanations for impurity doping are still highly controversial.The types of doping elements and lattice location of the species are two important issues responsible for the photoactivity under visible light.The most characterized nonmetal-doped oxide to date is N-doped TiO 2,about which studies have achieved different conclusions.Asahi et al.claim that the light absorption shift of N-doped TiO 2is due to the narrowing of the band gap by mixing the N 2p and O 2p states.19Irie et al.suggest that an isolated and narrow energy band formed above the valence band is responsible for the visible-light response rather than a narrowing of the band gap.20Other authors think that only NO x impurities or NH x ,which may locate in an interstitial site,are bene?cial for doping.24,25

In the present paper,to obtain microscopic insight into the effect of N-doping on the photocatalytic activity of cubic and rhombic In 2O 3,we have fabricated appropriate N substitutional and interstitial doped In 2O 3models and carried out an accurate comparative analysis of geometric and electronic structures for pure and doping models using DFT calculations.The results provide a solid basis for the rationalization of the experimentally observed red shift in photoactivity and an improvement of photocurrent densities as a consequence of N doping.

*To whom correspondence should be addressed.Tel:86-531-88366330.Fax:86-531-88364864.E-mail:zhaoxian@https://www.sodocs.net/doc/6614914213.html,(X.Z.),fwl@https://www.sodocs.net/doc/6614914213.html, (W.F.).?

State Key Laboratory of Crystal Materials.?

Department of Chemistry and Chemical Engineering.

J.Phys.Chem.C 2010,114,3028–3036

302810.1021/jp909578r 2010American Chemical Society

Published on Web 02/02/2010

2.Structural Aspects and Computational Details

2.1.Crystal Structures.There are two crystal structures in Figure 1for In 2O 3used as input for the original model,according to the experiments,32,33and in both the two polymorphs,the coordination is 6-fold for In atoms and 4-fold for O atoms.The body-centered cubic (bcc)bixbyite structure (Figure 1a)with

space group Ia 3

j is the stable phase.It consists of two types of In atom surrounded by oxygen in the octahedral and trigonal prismatic coordinations alternatively and one type of O atom located at Wyckoff positions 8b ,24d ,and 48e .The rhombic

(rh)structure (Figure 1b)with space group R 3

j is the high-pressure phase.It consists of one type of In surrounded by oxygen in trigonal biprism coordination and one type of O atom occupying 12c and 18e Wyckoff positions.

To study N-doped structures,we employ the bcc-In 2O 31×1×1(80-atom)supercell and the rh-In 2O 32×1×1(60-atom)supercell.Two ways are used to introduce N atoms into the cubic and rhombic lattices of In 2O 3.One way is that an oxygen atom is replaced with a nitrogen atom labeled N s ,and another way is that a nitrogen atom is set at an interstitial site noted as N i .

https://www.sodocs.net/doc/6614914213.html,putational Details.All the spin-polarized DFT calculations are performed using the program package DMol 3,34in which wave functions are expanded in terms of accurate numerical basis sets.The double-numeric quality basis set with polarization functions (DNP)34is used.A ?ne real-space cutoff of 5.0?is used.With all-electron pseudopotentials,we have performed a comparative study on the LDA (PWC)35and GGA (PBE)36for the lattice constants of the pure structure.Our results show that the lattice constants obtained by LDA (listed in Table.1)are in better agreement with experiments 32,33(error less than 1.1%)and are better than GGA results that are over

3.7%larger than the experimental values.LDA with the PWC scheme is used to deal with the exchange-correlation potential in this work.To achieve the accurate density of the electronic states,the

k -space integrations are done with the Monkhorst -Pack grid 37with a 2×2×2k -point for the cubic phase supercell structure and a 3×5×2k -point for the rhombic phase supercell structure in the Brillouin zone.Before the single-point energy calculation,geometry optimization is done,and the self-consistent convergence accuracy is set at 1×10-5Ha/atom,the convergence criterion for the force between atoms is 2×10-3Ha/?,and the maximum displacement is 5×10-3?.All the electronic structures are calculated on the corresponding optimized crystal geometries.Considering the single electron from the N impurity atom,the spin polarization effect has been accounted for into our calculations for the electronic structures of doping systems.

The absorption spectra can be obtained from the real and imaginary part of the dielectric constant from DFT calculations.The imaginary part of the dielectric constant ε2is described as

ε2(ω))

2π2e 2

?ε0∑i ∈c.f ∈v

∑k

|?Ψk c |μ∧

·r |Ψk v ?|2

δ[E k c -E k v -p ω]

where ?is the volume of the elementary cell,k represents the

k -point,ωis the frequency of the incident light,and c and v represent the conduction and valence bands,respectively.Ψk

c an

d Ψk v

are the eigenstates,r is the momentum operator,and μ?is the external ?eld vector.

The real part of the dielectric constant ε1could be achieved from ε2using the Kramers -Kronig relations

ε1(ω))1+

(2

π)∫

d ω′

ω 2ε2(ω′)ω 2-ω2

The absorption coef?cient R (ω)can be derived from the following

formula

Figure 1.Crystal structures of In 2O 3(a)cubic phase and (b)rhombic phase.

TABLE 1:Structural Parameters of Cubic and Rhombic In 2O 3

compound experiment (?)GGA (?)

LDA (?)

Bcc-In 2O 3a )b )c )10.117a

a )

b )

c )10.498(3.7%)

a )

b )

c )10.179(0.6%)

Rh-In 2O 3

a )

b )5.490,

c )14.520b

a )

b )5.676(4.9%),

c )15.189(4.6%)

a )

b )5.549(1.1%),

c )14.682(1.1%)

a

See ref 32.b See ref 33.

Visible Photocatalytic Activity of N-Doped In 2O 3J.Phys.Chem.C,Vol.114,No.7,20103029

R (ω))√2ω[

√ε12(ω)+ε22

(ω)-ε1(ω)

]

1/

2

3.Result and Discussion

3.1.Model Structures.The partial geometries taken from the optimized N s and N i bcc-In 2O 3models are shown in Figure

2a,b,respectively.For the N s structure,the optimized In -N bond lengths (Figure 2a)are 2.137,2.183,2.183,and 2.246?(the original In -O bond lengths of undoped bcc-In 2O 3are 2.141,2.186, 2.210,and 2.231?).It indicates that the N atom substituted O atom does not lead to signi?cant structure modi?cations with respect to the pure phase.For the N i

structure,

Figure 2.Partial geometric structures of the (a)substitutional N-to O-doped cubic supercell,(b)interstitial N-doped cubic supercell,(c)substitutional N-to O-doped rhombic supercell,and (d)interstitial N-doped rhombic

supercell.

Figure 3.Total electron density maps (left)and spin density maps of the unpaired electron (right)for the (a,a ′)substitutional N-to O-doped cubic supercell and (b,b ′)interstitial N-doped cubic supercell.The plot is in the plane of In -N and N -O bonds and their nearest-neighboring atoms.

TABLE 2:Mulliken Population on the N atom,Four Adjacent In Atoms Bonded to the N Atom in the N s Model,the O Atom Bonded to the N Atom in the N i Model,and Bond Lengths of N -In and N -O

species

atom population

bond lengths (?)

N

In

O N -In bond N -O bond

cubic pure 1.50,1.53

-1.01N s -1.29 1.76,1.75(2),1.71 2.137,2.183(2),2.246

N i -0.80-0.56 1.345

rhombic

pure 1.51

-1.01N s -1.30 1.79(2),1.76(2)

2.256(2),2.135(2)

N i

-0.72

-0.66

1.3603030J.Phys.Chem.C,Vol.114,No.7,2010Sun et al.

after the structural relaxation,the interstitial N atom is bonded to one O atom and the distance between them is 1.345?,and as can be seen in Figure 2b,the adjacent structure has a relatively large local distortion after the optimized process.

Figure 2c,d gives the partial optimized geometries of N-doped rh-In 2O 3.In the N s structure (Figure 2c),two of the In -N bond lengths,2.135?,and two other bond lengths,2.256?,are slightly shorter than the original In -O bond lengths,2.150and 2.271?,of undoped rh-In 2O 3.In the N i structure (Figure 2d),as in the case of the cubic structure,the interstitial N atom with the bonded O atom forms the N -O double bond (1.360?)and also induces a large local lattice

distortion.

Figure 4.Total electron density maps (left)and spin density maps of the unpaired electron (right)for the (a,a ′)substitutional N-to O-doped rhombic supercell and (b,b ′)interstitial N-doped rhombic supercell.The plot is in the plane of In -N and N -O bonds and their nearest-neighboring

atoms.

Figure 5.Band structures and projected density of states (PDOS)for In 2O 3polymorph (a)cubic phase and (b)rhombic

phase.

Figure 6.Band structures of the (a)substitutional N-to O-doped cubic supercell and (b)interstitial N-doped cubic supercell In 2O 3.

Visible Photocatalytic Activity of N-Doped In 2O 3J.Phys.Chem.C,Vol.114,No.7,20103031

To study the variation of chemical bonding induced by the N impurity for bcc-In 2O 3,we calculate the total charge density for the N s and N i models and show them in Figure 3.In the substitutional N-to O-doped model (see Figure 3a),the N atom and adjacent In atoms form In -N coordinate bonds through charge transfer after electron redistribution.Although dominant ionic bonding,?nite covalent-like bonding interaction is present between In and N (also In and O).Furthermore,according to the Mulliken population analysis in Table 2,this N atom is in a negative oxidation state and its charge is reduced to about -1.29e by capturing electrons from adjacent In atoms.Confessedly,the absolute magnitudes of the atomic charge yield by the population analysis have little physical meaning,but we can ?nd some useful information from the relative values of the Mulliken population.When the N atom is set at interstitial sit,after structural optimization and electron redistribution,our calculated results show that NO species are formed by the N atom and one O atom interacts with the lattice In atoms.The total charge of NO species is about -1.36e,and the localization on N is reduced to -0.80e.This calculation indicates that NO -as one of the paramagnetic species may exist in the lattice,which is also observed in the calculation for interstitial N-doped TiO 2.18The paramagnetism and doublet ground state originate from an unpaired electron due to the introducing of one N atom to the lattice.We calculate the spin charge distribution to study the unpaired electron distributing and show the spin density maps in Figure 3c,d.For the N s model,the unpaired electron is largely localized on the substitutional N atom and has a strong N 2p character,while for the N i model,the unpaired electron is shared between the N and O atoms.Here,the spin density is localized on the shoulder-to-shoulder πsystem of NO species,and the result again con?rms the presence of NO -as a paramagnetic species.

For the N-doped rh-structures,we also analyzed the total charge densities and show them in Figure 4a,b.In the N s model,similar to the case of the cubic model,the N -In bonds are formed by charge transfer and a negative charge of about -1.30e on the N atom is obtained from the adjacent In atoms.In the N i model,the N atom is bounded to one lattice oxygen to form NO species and the calculated charge on NO species is -1.38e.The spin density maps of rhombic models are given in Figure 4c,d,showing the distribution of the unpaired electron.In the substitutional N-doped model,the unpaired electron also has a strong N 2p character and is largely localized on the N atom,with small tails extending on the adjacent O atoms and In atoms.In the case of the interstitial N atom,the unpaired electron is shared between the N atom and O atom of the NO

species

Figure 7.Total density of states (DOS)and projected density of states (PDOS)for the (a,a ′)pure cubic In 2O 3,(b,b ′)substitutional N-to O-doped cubic supercell,and (c,c ′)interstitial N-doped cubic supercell In 2O 3.The dotted lines represent the Fermi

level.

Figure 8.Highest occupied molecular orbital analysis for the (a)substitutional N-to O-doped cubic supercell and (b)interstitial N-doped cubic supercell In 2O 3.

3032J.Phys.Chem.C,Vol.114,No.7,2010Sun et al.

showing notable π-bonding character,and the spin density distribution on N is -0.72e.

3.2.Electronic Structures.3.2.1.Pure In 2O 3Structures.The calculated band structures and PDOS of cubic and rhombic In 2O 3are shown in Figure 5,and the band gaps are about 1.99and 2.00eV for cubic and rhombic crystalline,respectively.Experimentally,the pure In 2O 3has a large band gap of about 3.0-3.5eV.38The band-gap underestimation of DFT always exists due to the well-known limitation of predicting accurate conduction-band properties.39However,it is still a widely accepted method to discuss the valence band in the electronic structure calculations,and this gives reasonable explanation for the experimental results because only the relative positions of the occupied states and empty states need be taken into account.Despite the large difference in crystal structures,bcc-In 2O 3and rh-In 2O 3have some similar band features.The uppermost valence bands (VB)of the two phases are ?at and are predominantly of O 2p character with small In 4d states.The origin for the CB minimum of both bcc-In 2O 3and rh-In 2O 3is almost the same,and it basically originates from the In 5s with small other states that can be seen from the PDOS in Figure 5.That is to say,the electronic transition from O 2p states to In 5s states is responsible for the optical absorption onset.Particularly,the bottommost conduction bands (CB)of bcc-In 2O 3and rh-In 2O 3are located at the Γpoint and are well-dispersed,and this feature prohibits the recombination of electrons and holes through this band,which is the reason that In 2O 3has a higher electronic conductivity in the experiments.

3.2.2.N-Doped Cubic In 2O 3.To investigate the N-doping effects on the optical absorption of bcc-In 2O 3,we have calculated the band structures and the total density of states (DOS)for the N s and N i models using DFT,which are plotted in Figures 6and 7,respectively.For comparison,the DOS and PDOS of the pure phase are also plotted in Figure 7.

As shown in Figure 6,the band structures have been divided into spin-up and spin-down bands due to spin polarization of the unpaired electron derived from the nitrogen atom.For the N s model in Figure 6a,the band gaps slightly change about 1.98and 1.99eV for spin-up and spin-down bands,and some isolated energy levels are localized above the VB maximum (VBM).For the spin-up band,three occupied isolated impurity levels are lying below the Fermi level and the electronic excitation from the occupied energy levels to the CB minimum (CBM)is 1.98,1.92,and 1.79eV.For the spin-down band,two occupied isolated levels and one unoccupied levels lie in the gap,and the electronic excitation energy from the occupied impurity levels to the CBM is 1.75and 1.61eV and that from the VBM to the unoccupied energy level is 0.83eV.These calculated results clearly indicate a decrease of excited energy for electronic transition and a red shift of the optical absorption in the N s doping system.Correspondingly,the calculated DOS of the N s model in Figure 7b shows that the VB has no obvious change compared with the pure phase.In addition,the further PDOS calculations indicate that the impurity levels in the band mainly originate from the N 2p states mixing with small O 2p states located at the topmost valence band,and there are a bit of spin-down N 2p states acting as the gap states above the Fermi level.Furthermore,the highest occupied molecular orbital (HOMO)analysis (see Figure 8a)also con?rms that the frontier orbital levels are mainly attributed to the N 2p orbital.Hence,we think the electronic excitations from the N 2p impurity states in the topmost VB may induce a red shift of the absorption edge.

While in the interstitial N-doped model,as shown in Figure 6b,compared to the pure phase,the band gaps have slight increase to 2.02and 2.06eV for spin-up and spin-down bands,respectively.For the spin-up band,two isolated levels lie in the gap,and the electronic transition energy from the two gap levels to empty band is 1.01and 0.86eV.For the spin-down band,one occupied impurity level lies below the Fermi level and another unoccupied level lies close to CBM,and the electronic excitations from the VBM to the unoccupied impurity level is 1.99eV.From the DOS of the N i model in Figure 7c,we can see some impurity states as midgap levels are lying in the gap,and the Fermi level is pinned in them.The PDOS calculations show that the top of the O 2p bands has a large shift of about 1.36eV,and meanwhile,the In 5s states in the bottommost CB also have a signi?cant decline of about 1.33eV.The net effect is the gap has a slight broadening of about 0.03eV.The gap impurity states only originate in N 2p electrons,denoting a notable paramagnetic character that corresponds to the Mulliken population https://www.sodocs.net/doc/6614914213.html,bined with the further HOMO analysis (see Figure 8b),in which the frontier orbital level shows a remarkable NO π-antibonding character,we think the N 2p electrons occupy the NO π*orbitals acting as the gap states.Thus,we conclude that the occupied NO π*states may act as midgap levels for electronic excitations between the VB and CB and are responsible for the red shift of the absorption edge in the experimental measurements.In addition,it should be noted that the unoccupied NO π*level in the spin-down band is pinned close to the bottommost CB and hybridizes with the In 5s states.This appearance

indicates

Figure 9.Band structures of the (a)substitutional N-to O-doped rhombic supercell and (b)interstitial N-doped rhombic supercell In 2O 3.

Visible Photocatalytic Activity of N-Doped In 2O 3J.Phys.Chem.C,Vol.114,No.7,20103033

that the level may be a trap for the activated electrons and thus restrains the recombination of electrons and holes and expresses a higher photocurrent density in the experiments,which is very bene?t to photocatalytic reactions.

3.2.3.N-Doped Rhombic In 2O 3.As in the case of doped cubic models,the electronic structures of two possible N-doped rhombic models are also calculated and shown in Figures 9and 10.The band structures in Figure 9a for the N s model show the band gaps increase to about 2.23eV.In the spin-up band,there are three the impurity levels,and the transition energy from these impurity levels is 2.23,2.05,and 1.92eV.In the spin-down band,there are also three impurity levels,and one level is the unoccupied level pinned above the Fermi level.The transition energy from the occupied levels to empty levels is 1.89,1.73,and 1.00eV.This result indicates that,although the band gaps have been broadened,the energy of electronic excitation to empty levels still decreases due to the impurity levels in the gap.The further calculated DOS and PDOS of the N s model in Figure 9b show that the O 2p state bandwidth has a small contraction to about 5.8eV compared with that of pure phase of about 6.0eV.We conclude that the increase of the band gap may be due to a reduction of the Coulomb repulsion and a contraction of the band,which result from the removal of one electron when one N atom replaces one O atom in the cell.However,in the cubic phase,this effect is found to be less pronounced because the electronic density of the cubic phase is lower than that of the rhombic phase and the repulsion of the electron is already signi?cantly reduced.The PDOS for the N atom in Figure 10b and the HOMO in Figure 11a all indicate that the frontier orbital mainly originates from the N 2p states,which are responsible for the impurity levels in the band.Therefore,the electronic excitation from the N 2p impurity levels to the CBM,rather than a narrowing gap mechanism,may induce a red shift of the absorption edge,which is consistent with the experimental results.

For the N i model shown in Figure 9b,the band gaps are 2.21and 2.80eV for spin-up and spin-down,respectively.The larger gaps can be owing to Burstein -Moss shift 40caused by a relatively high n-type doping,and this phenomenon is also observed in boron interstitial doping TiO 2.24In the spin-up band,two occupied impurity levels localize below the Fermi level,and the transition energy from these levels to the CBM is

0.81

Figure 10.Total density of states (DOS)and projected density of states (PDOS)for the (a,a ′)pure rhombic In 2O 3,(b,b ′)substitutional N-to O-doped rhombic supercell,and (c,c ′)interstitial N-doped rhombic supercell In 2O 3.The dotted lines represent the Fermi

level.

Figure 11.Highest occupied molecular orbital analysis for the (a)substitutional N-to O-doped rhombic supercell and (b)interstitial N-doped rhombic supercell In 2O 3.

3034J.Phys.Chem.C,Vol.114,No.7,2010Sun et al.

and 0.61eV,which indicates an enhanced absorption of visible light.In the spin-down band,the electronic transition energy from the VBM to the empty impurity level is 2.20eV.From the DOS and PDOS in Figure 10c,we can see that some N 2p states localize in the gap and a little spin-down N 2p state hybridizes with In 5s states in the CBM.The HOMO in Figure 11b shows that the N 2p states in the gap mostly consist of NO π*orbitals that contributed to the double bond.Therefore,similar to the case of the cubic phase,these NO π*impurity levels may induce the optical absorption red shift and enhance the absorption in the visible region.

3.3.Absorption Spectra.Correspondingly,we have calcu-lated and illustrated the variation of the optical absorption spectra for bcc-and rh-In 2O 3with nitrogen doping,as shown in Figure 12.For a comparison with the experimentally observed absorp-tion edge of pure In 2O 3polymorphs,which is at about 350-390nm,a scissor of 1.50eV has been used in our analysis.

As we can see,the knee at about 350nm for both pure bcc-and pure rh-In 2O 3corresponds to the band -band electron transition of In 2O 3polymorphs,according to its band-gap energy of about 3.5eV.In both polymorphs,all the anionic N-doped models exhibit a noticeably visible absorption in the range of about 400-600nm,compared to the pure phases.For the N s models,the absorption at about 400-600nm in the visible region can be attributed to the electronic transition from N 2p impurity levels above the VB to the In 5s in the bottommost CB,which we note as p -s excitation for the N -In bond.For the N i models,combined with the discussion of band and DOS,the absorption peak should be ascribed to the NO π*orbitals

excited to In 5s,which we note as π*-s excitation for the In -N -O bond.Especially in the N i rh-In 2O 3model,a more expanding absorption about 400-800nm is observed,which may show a better photocatalytic activity in the visible region.3.4.Effect of Oxygen Vacancy.One open question is the role of oxygen vacancies (V O )in the visible light sensitivity and in the photocatalytic activity of doped and undoped In 2O 3.Experimentally,it has been reported that the electrical conduc-tivity of In 2O 3has been dependent on the oxygen partial pressure,which reveals the existence of oxygen vacancies.41,42Therefore,we analyze the effect of oxygen vacancies on the electronic structures and optical absorption.

When one oxygen atom is removed from the lattice,an electron carrier will be produced in In 2O 3,and this process can

be described as O O

x

f V O ??+2e ′+(1/2)O 2.The calculated electronic structures (Supportin

g Information,Figure S1)indi-cate that some defect states are forming below the CBM about 0.4eV and the Fermi level is pinned close to these states.Electrons trapped in these high-energy states can be easily excited into the conduction band,thus accounting for the electrical conductivity of reduced In 2O 3crystals.The calculated optical absorption spectra (Supporting Information,Figure S2)show a slight red shift,thoug

h the absorption edge is still in the UV region,which indicates the red shift observed in N-doped In 2O 3may be predominately from the N impurity rather than the oxygen vacancy.Also,Reyes-Gil et al.31has demonstrated that the oxygen vacancies are in existence in the N-doped In 2O 3through the electron paramagnetic resonance (EPR)spectroscopy measurements,and the charge transfer may exist between the V O and N impurity to affect the photocatalytic activity.The effect of the simultaneous presence of N impurities and oxygen vacancies on the photocatalytic activity should be also consid-ered.Our work to clarify this synergistic effect is in progress.4.Conclusions

On the basis of the calculated results,two possible electronic transition mechanisms are proposed for the visible light pho-toactivity on the N substitutional and interstitial doped In 2O 3to explain the experimental observations.When N substitutes O in the lattice,our results indicate that some N 2p states mixed with the O 2p valence band and act as the impurity level and are responsible for the visible light absorption.When N is located at interstitial positions,our calculations note that the NO π*states lie in the gap and may be a midgap level between the VB and CB and thus cause a red shift of the absorption edge and an increase of visible light absorption.No band-gap narrowing is predicted in our calculations.We also note that the impurity states may act as a trap,scavenging carriers to prohibit the recombination of electrons and holes.This is very good for improving the photocurrent density and enhancing the catalytic ef?ciency in the photocatalytic reactions.

Acknowledgment.This work is supported by the National Natural Science Foundation of China under Grant Nos.50802056and 50721002,the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070422060,the 973Program of China under Grant No.2009CB930103,and the Natural Science Foundation of Shan-dong Province of China under Grant No.Y2007B08.Supporting Information Available:The project density of states and absorption spectra of cubic In 2O 3with oxygen vacancy are plotted.This material is available free of charge via the Internet at

https://www.sodocs.net/doc/6614914213.html,.

Figure 12.Calculated absorption spectra for (a)cubic models and (b)rhombic models.

Visible Photocatalytic Activity of N-Doped In 2O 3J.Phys.Chem.C,Vol.114,No.7,20103035

References and Notes

(1)Fujshima,A.;Honda,K.Nature1972,238,37.

(2)Klosek,S.;Raftery,D.J.Phys.Chem.B2001,105,2815.

(3)Di Paola,A.;Marci,G.;Palmisano,L.;Schiavello,M.;Uosaki, K.;Ikeda,S.;Ohtani,B.J.Phys.Chem.B2002,106,637.

(4)Sene,J.J.;Zeltner,W.A.;Anderson,M.A.J.Phys.Chem.B 2003,107,1597.

(5)Reddy,E.P.;Sun,B.;Smirniotis,P.G.J.Phys.Chem.B2004, 108,17198.

(6)Ghosh,A.K.;Maruska,H.P.J.Electrochem.Soc.1977,124,1516.

(7)Borgarello,E.;Kiwi,J.;Graetzel,M.;Pelizzetti,E.;Visca,M.J.Am. Chem.Soc.1982,104,2996.

(8)Shao,G.J.Phys.Chem.C2008,112,18677.

(9)Khan,S.U.M.;Al-Shahry,M.;Ingler,W.B.,Jr.Science2002, 297,2243.

(10)Sakthivel,S.;Kisch,H.Angew.Chem.,Int.Ed.2003,42,4908.

(11)Noworyta,K.;Augustynski,J.Elelectrochem.Solid-State Lett.2004, 7,E31.

(12)Luo,H.;Takata,T.;Lee,Y.;Zhao,J.;Domen,K.;Zhao,J.;Yan, Y.Chem.Mater.2004,16,846.

(13)Neumann,B.;Bogdanoff,P.;Tributsch,H.;Sakthivel,S.;Kisch,

H.J.Phys.Chem.B2005,109,16579.

(14)Park,J.H.;Kim,S.;Bard,A.J.Nano Lett.2006,6,24.

(15)Barnes,P.R.F.;Randeniya,L.K.;Murphy,A.B.;Gwan,P.B.; Plumb,I.C.;Glasscock,J.A.;Grey,I.E.;Li,C.De V.Chem.Eng.Miner. Process.2006,14,51.

(16)Hong,X.H.;Wang,Z.P.;Cai,W.M.;Lu,F.;Zhang,J.;Yang, Y.Z.;Ma,N.;Liu,Y.J.Chem.Mater.2005,17,1548.

(17)Su,W.Y.;Zhang,Y.F.;Li,Z.H.;Wu,L.;Wang,X.X.;Li,J.Q.; Fu,https://www.sodocs.net/doc/6614914213.html,ngmuir2008,24,3422.

(18)(a)Di Valentin,C.;Pacchioni,G.;Sellonoi,A.Phys.Re V.B2004, 70,085116.(b)Di Valentin,C.;Pacchioni,G.;Sellonoi,A.;Livraghi,S.; Giamello,E.J.Phys.Chem.B2005,109,11414.(c)Di Valentin,C.; Pacchioni,G.;Sellonoi,A.Chem.Mater.2005,17,6656.(d)Livraghi,S.; Paganini,M.C.;Giamello,E.;Selloni,A.;Di Valentin,C.;Pacchioni,G. J.Am.Chem.Soc.2006,128,15666.

(19)Asahi,R.;Morikawa,T.;Ohwaki,T.;Aoki,K.;Taga,Y.Science. 2001,293,269.

(20)Irie,H.;Watanabe,Y.;Hashimoto,K.J.Phys.Chem.B2003,107, 5483.

(21)Burda,C.;Lou,Y.;Chen,X.;Samia,A.C.S.;Stout,J.;Gole, J.L.Nano Lett.2003,3,1049.

(22)Yin,S.;Yamaki,H.;Komatsu,M.;Zhang,Q.;Wang,J.;Tang, Q.;Saito,F.;Sato,T.J.Mater.Chem.2003,13,2996.

(23)(a)Diwald,O.;Thompson,T.L.;Goralski,E.G.;Walck,S.D.; Yates,J.T.,Jr.J.Phys.Chem.B2004,108,52.(b)Diwald,O.;Thompson, T.L.;Zubkov,T.;Goralski,E.G.;Walck,S.D.;Yates Jr,J.T.J.Phys. Chem.B2004,108,6004.

(24)(a)Yang,K.S.;Dai,Y.;Huang,B.B.;Han,S.H.J.Phys.Chem. B2006,110,24011.(b)Yang,K.S.;Dai,Y.;Huang,B.B.Phys.Re V.B 2007,76,195201.(c)Yang,K.S.;Dai,Y.;Huang,B.B.J.Phys.Chem. C2007,111,12086.(d)Yang,K.S.;Dai,Y.;Huang,B.B.J.Phys.Chem. C2007,111,18985.

(25)Sato,S.Chem.Phys.Lett.1986,123,126.

(26)Chen,X.;Burda,C.J.Phys.Chem.B2004,108,15446.

(27)Miyauchi,M.;Ikezawa,A.;Tobimatsu,H.;Irie,H.;Hashimoto, K.Phys.Chem.Chem.Phys.2004,6,865.

(28)Sano,T.;Negishi,N.;Koike,K.;Takeuchi,K.;Matsuzawa,S.J. Mater.Chem.2004,14,380.

(29)Aita,Y.;Komatsu,M.;Yin,S.;Sato,T.J.Solid State Chem.2004, 177,3235.

(30)Inoue,Y.Chem.Ind.2006,108,623.

(31)(a)Reyes-Gil,K.R.;Reyes-Garc?′a,E.A.;Raftery,D.J.Phys. Chem.C2007,111,14579.(b)Reyes-Gil,K.R.;Sun,Y.P.;Reyes-Garc?′a,

E.A.;Raftery,D.J.Phys.Chem.C2009,113,12558.

(32)Bartos,A.;Lieb,K.P.;Uhrmacher,M.;Wiarda,D.Acta Crystal-logr.B1993,49,165.

(33)Christensen,A.N.;Broch,N.C.;von Heidenstamm,O.;Nilsson,

A.Acta Chem.Scand.1967,21,1046.

(34)(a)Delley,B.J.Chem.Phys.1990,92,508.(b)Delley,B.J.Chem. Phys.2000,113,7756.

(35)Perdew,J.P.;Wang,Y.Phys.Re V.B1992,45,13244.

(36)Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Re V.Lett.1996,77, 3865.

(37)Monkhorst,H.;Pack,J.Phys.Re V.B1976,13,5188.

(38)(a)Hamberg,I.;Granquist,C.G.;Berggren,K.F.;Senelius,B.E.; Engstrom,L.Phys.Re V.B1984,30,3240.(b)King,P.D.C.;Veal,T.D.; Fuchs,F.;Wang,Ch.Y.;Payne,D.J.;Bourlange,A.;Zhang,H.;Bell, G.R.;Cimalla,V.;Ambacher,O.;Egdell,R.G.;Bechstedt,F.;MaConville, C.F.Phys.Re V.B2009,79,205211.(c)Weiher,R.L.;Ley,R.P.J.Appl. Phys.1966,37,299.(d)Matino,F.;Persano,L.;Arima,V.;Pisignano,D.; Blyth,R.I.R.;Cingolani,R.;Rinaldi,R.Phys.Re V.B2005,72,085437.

(39)Martin,R.M.Electronic Structure:Basic Theory and Practical Methods;Cambridge University Press:Cambridge,England,2004.

(40)Burstein,E.Phys.Re V.1954,93,632.

(41)Rupprecht,G.Z.Phys.1954,139,504.

(42)de Wit,J.H.W.J.Solid State Chem.1977,20,143.

JP909578R

3036J.Phys.Chem.C,Vol.114,No.7,2010Sun et al.

数据处理软件Origin在物理化学实验中的应用

一、自评报告 孙老师: 您好! 通过上课学习和课下花时间学习一些数据处理软件,感觉自身的数据处理的理论和实践水平提高了很多。在上这门课之前,自己的数据处理仅仅局限于将实验数据进行画图,比如用excel画出各种实验结果图。 本学期这门课程的成绩我想得优,虽然一开始在心里面,仅仅把这门课程当作是一门修学分的选修课,但自从上了您的第一节课后,我觉得自己对您的课程产生了兴趣,更是对您所讲述的一些数据处理方法及作图方法产生了强烈的兴趣。很多人对这门课不了解,所以他们从第一节就开始逃课,但是我基本上保证了每节课都到,并且能够认真地听大部分课程内容,课后我也基本上独立完成了您留下的练习题。在一次课堂提问中,我被您点中了,在没有您的指导下我迅速地完成了练习,这说明我课后的练习还是有一定效果的。我觉得,要想学好这么课程,首先必须得认真听您所讲述的一些软件的安装及运用方法,这一点很重要,课后再及时的去您的网站下载习题及操作说明进行练习,开始时看说明讲解进行练习,练习几遍后再自己独立完成,直至熟练掌握。每个软件的学习如果都能做到这样,那么一定会学的很好,在此基础上自己再加以创新延伸,会有意想不到的收获! 我对教好这门课的具体建议如下:首先,您要对我们严格要求,这样才不会有太多的人逃课,影响学风;其次,每节课,您最好都留足够的时间进行课堂提问,以检查我们课后练习的情况。 最后,祝孙老师工作顺利,合家欢乐,心想事成!,

熊文龙化学工程与工艺二班20080300417 Email:380050597@https://www.sodocs.net/doc/6614914213.html, 二、课程论文 数据处理软件Origin在物理化学实验中的应用 【摘要】本文简要介绍了Origin软件的基本功能和基本使用方法,并以物理化学实验为例介绍如何使用Origin软件处理实验数据、曲线的计算机拟合等。运用该软件处理实验数据解决了物理化学实验中的数据多、处理麻烦、手工作图误差大等问题。不仅简化了数据处理的过程,而且还提高了分析结果的准确度,进一步拓展了学生计算机软件应用能力。 【关键词】Origin软件; 数据处理; 物理化学实验 1 前言 《物理化学实验》是高等院校化学及相关专业学生的一门独立基础实验课程。与其它化学实验课不同,它得到的是一系列实验数据。学生需对数据进行大量计算,在直角坐标纸上作图。大部分是画直线,求出截距和斜率,进而求得实验结果的数学表达式;少部分是画曲线,有的需要在曲线上作切线,有的需要对曲线求积分,进而求得实验结果的数学表达式。学生只根据散点图做直线或曲线,就不可避免地引起主观误差,同一组实验数据不同学生处理,结果相差很大。个别学生还修改某些偏离较大的实验数据以期得到好的实验结果。由于实验数据计算过程复杂、作图费事,导致实验报告中经常出现各种错误。教师批改实验报告时不得不花费大量时间核查其计算结果。 物理化学实验中常见的数据处理的方法有: 运用基本公式计算;用实验数据作图;线性拟合,求截距或斜率;非线性曲线拟合。目前学生多用坐标纸手工作图;手工拟合直线,求斜率或截距。这种手工作图的方法不仅费时费力,而且误差较大。 物理化学实验数据处理过程一般为:对实验数据作图或对数据经过计算后作图→作数据点的拟合线→求拟合直线的斜率或曲线上某点的切线→根据斜率求物理量。这一过程可以用计算机处理完成,并能克服手工绘图费时费力、偶然性较大、误差大的缺点。

Origin软件使用说明

Origin软件使用说明 2010-09-30 05:33:30| 分类:默认分类|举报|字号订阅 1.序 Origin软件主要是用来做数据绘图用的。本文将主要介绍origin的初级使用方法,为许多刚开始使用origin写实验报告的同学提供入门帮助。与某些软件使用说明书系统介绍不同的是,本说明侧重于实际问题的解决。 2.基本入门操作 现在介绍最最最基本的使用方法。 比如说你现在有一组数据想做图(其中a列代表一系列点的x坐标,b列代表该系列点的y坐标,c列代表另一系列点的y坐标(x坐标同第一系列点))。 a b c 1 1 3 2 2 6 3 3 9 4 4 12 5 5 15 6 6 18 7 7 21 打开origin,会看到data1数据窗口,在窗口里空白处点右键->add new column,会看到表格增加一列,上面的数据输入表格里。下面开始根据数据绘图。 选菜单兰中的plot->scatter(这里选scatter,line,line+symbol...都可以,只不过出来的样式不一样,大家自己选选体会一下就可以了)。这是跳出一个select columns for plotting的窗口,问你哪列数据做x轴,那列做y轴。我们点左面的A[x],然后点中间的<->X,示意A是X轴,再点B[Y],再点<->Y,示意B列做y轴。这时点Add按钮,告诉程序说第一组数据是以A为x轴,B为Y轴。这时,再单击C[Y],点<->Y按钮,单击Add按钮,示意第二组点时以A列为X轴,C列为Y轴。最后点OK。这时会看到跳出一个Graph窗口,里面有坐标轴何我们要的点。 我们这两组数据均是线性的,接下来我们拟和直线。先拟和第一组,选菜单蓝里的data看看g1 data1....是不是被勾上了(默认应该时被勾上的),如果勾上了说明现在对的是第一组数据进行操作。点菜单兰analysis->fit linear,这时会看到拟和出来直线了。拟和第二组,选菜单蓝里的data->g2 data2,把第二组选中,这时对应的操作是对第二组的。同上analysis->fit linear。可以看到第二组也被拟和成直线了。 如果数据不是线性的,那么就拟和成非线性的,analysis->fit sigmoidal(S型) 或 guassian(高斯拟和)或nonliner curve fit中的fitting wizard(选一个你觉得合适的形状进行拟和)。这样最最最基本的origin作图就做出来了。 最后存盘,file->save project as...就可以了。 如果想要copy到word里怎么办?这里有几种方法,我介绍两种。 a.在做好的图旁边点右键,选copypage(如果没有的话,说明你右键点错地方了,多换几个地方点点)。然后在word 里面粘贴就好了,这样比较方便,不过有时候图会变形。 b.在菜单兰里file->export page,可以输出各种格式的,对于图片格式来说,我试了几个感觉tif的要比bmp和jpg 的要好,那么我们就输出tif格式的,把下面的show export option勾上,点保存。如果是想插到word里面,的话,DPI 选72比较合适,如果是打印实验报告的话,color depth里直接选monochrome的就可以了(毕竟不要彩打),点ok,就输出一个tif文件,最后在word里面插入这个文件就ok了。 3.图的细节修饰与美化 一般做图都应该有要求的,要规范。以前我也不太清楚怎么算规范,后来听了王迅院士的一个报告,关于科技论文的写作,里面提到了怎么规范的画图,这样才知道原来图这么画看起来才好看。下面我介绍一下怎样按照王讯院士提到的几个标准来作图。

origin基本操作介绍

Origin操作方法报告 彭佳1120152242 一、画简单的二维图线 1.双击已下载好的软件,打开Origin 8.0,得到如下初始主界面。 2.给Book1的第一列A(X)添加一组数,如从小到大依次增大的自然数。 将鼠标移至上左击一下,选中第一列,再在上右击一下,弹出子菜单,选择,得到要求数据。

3.将Book1的第二列B(Y)设置为第一列A(X)中对应数据的平方。 同理右击后,选择,得到如左下图所示界面。 在第一个空白对话框中输入Col(A)^2,再点击,得到所需数据。 4.给Book1添加新的列。 方法一:单击Standard工具条上的【Add New Columns】按钮; 方法二:在Worksheet的空白处右击,从子菜单中选择【Add New Columns】;

方法三:选择【Column】:【Add New Columns】,弹出如下对话框,填写要添加的列数,单击【OK】即可。 5.将Book1的第二列B(Y)设置为第一列A(X)中对应数据的开方。 同上3打开【Set Column Values】界面后,选择开方函数,将函数的运算原数据填为第一列,单击OK即可。

6.用上述三列数据做简单的二维图。 单击Standard工具条上的【New Graph】按钮,建立一个新的Graph。 激活Graph 1,按如下操作绘图。 再单击Add按钮,得下图。即同一Graph中的2条曲线信息。 单击【Apply】可以预览图像,觉得图像无误后,单击【OK】即可得到初步的二维图。

再单击如下【New Legend 】按钮,更新曲线Legend 。 7.自定义曲线类型。 点击上图中的按钮可将曲线设置为不同类型,如下图。 8.屏蔽曲线中的数据 双击其中一条曲线,弹出菜单界面,点击【Drop Line 】,如下操作后,点击【Apply 】预览,【OK 】即可完成修改。 B A

origin8使用指南

Origin 8.0 基本功能来源:李航minus_L的日志 本人非技术宅,所以写的东西也就是大物实验要用到的,面向对象为数院大一同学们,所以内容肯定不多。外加已经快一年没用过了,写的肯定不全,请大神轻喷。有问题就留言,我能解决就解决,解决不了的还请看到这篇文章的大牛解决一下~ --------------------------------------------------- 1、安装 安装程序什么的我记得大物主页上貌似有,下载安装就好,应该不用教了。 2、界面 A是整个工程,一级实验应该是用不到的;B是窗口的列表,你所有的数据、图标窗口全都在这里;C就是窗口了。其他工具栏什么先不用去管他,用到再说。

3、数据录入 基本与excel类似,并且和excel兼容,从excel中复制过来的数据可以直接粘贴。 至于上面的“Long Name”(名称)、“Units”(单位)、“Comments”(注释),会在画图的时候用到。 如果有多组数据,比如光电效应那个实验,也可把数据放在一个表里。如图

右键图表空白区域,点击“Add New Column”,就会多出一栏。 数据都填好以后,就可以绘图了。

4、绘图 一级大物实验用到Origin的基本都是绘图,所以这里主要讲一下绘图。 最简单的,绘制散点图,也就是把原始数据画出来。 用拖选或按住ctrl的方法选中两列(注意:要选标题,就是A(x)那个位置),右键->Pl ot->Symbol->Scatter。

这样,就画出了散点图(右边那个东西点ok无视掉就好)。 但是一般来说大物作业不可能让你画完散点图就没事了,有分一下两种情况 a)曲线连接 曲线连接的话刚才就不能点Scatter了,应该点右键->Plot->Linel->Spline。

origin基本作图技巧

实战origin 复旦bbs,chemistry 序 Origin软件主要使用来做数据绘图用的。本系列文章将主要介绍origin的初级使用方法,为许多刚开始使用origin写试验报告的同学提供入门帮助。并不像某些软件使用说明书籍那样系统的讲解,而是着重面向解决实际问题。 前一段时间有人说origin要严打(我觉得只要自己小心处理,他根本无法抓住你用的是什么版),介绍了其他几款数据绘图软件,据说也都很好。不过我从来没用过,这5年多来一直使用的是origin,对其使用方法也略有所得,也只能介绍介绍这款软件。 这里使用的是origin7.0+Peak Fitting Module 7.0(这个东西虽然装了 ,不过从来没用过,安装方法参考他的readme文件)。安装时请参考他的intruction.txt,里面有serial no.的。 基本入门操作 现在介绍最最最基本的使用方法。 比如说你现在有一组数据想做图(其中a列代表一系列点的x坐标,b列代表该系列点的y坐标,c列代表另一系列点的y坐标(x坐标同第一系列点))。 a b c 1 1 3 2 2 6 3 3 9 4 4 12 5 5 15 6 6 18 7 7 21 打开origin,会看到data1数据窗口,在窗口里空白处点右键->add new column,会看到表格增加一列,上面的数据输入表格里。下面开始根据数据绘图。

选菜单兰中的plot->scatter(这里选scatter,line,line+symbol...都可以,只不过出来的样式不一样,大家自己选选体会一下就可以了)。这是跳出一个select columns for plotting的窗口,问你哪列数据做x轴,那列做y轴。我们点左面的A[x],然后点中间的<->X,示意A是X轴,再点B[Y],再点<->Y,示意B列做y轴。这时点Add按钮,告诉程序说第一组数据是以A为x轴,B为Y轴。这时,再单击C[Y],点<->Y按钮,单击Add按钮,示意第二组点时以A列为X轴,C列为Y轴。最后点OK。这时会看到跳出一个Graph 窗口,里面有坐标轴何我们要的点。 我们这两组数据均是线性的,接下来我们拟和直线。先拟和第一组,选菜单蓝里的data 看看g1 data1....是不是被勾上了(默认应该时被勾上的),如果勾上了说明现在对的是第一组数据进行操作。点菜单兰analysis->fit linear,这时会看到拟和出来直线了。拟和第二组,选菜单蓝里的data->g2 data2,把第二组选中,这时对应的操作是对第二组的。同上analysis->fit linear。可以看到第二组也被拟和成直线了。 如果数据不是线性的,那么就拟和成非线性的,analysis->fit sigmoidal(S型) 或 guassian(高斯拟和)或nonliner curve fit中的fitting wizard(选一个你觉得合适的形状进行拟和)。这样最最最基本的origin作图就做出来了。 最后存盘,file->save project as...就可以了。 如果想要copy到word里怎么办?这里有几种方法,我介绍两种。 1.在做好的图旁边点右键,选copypage(如果没有的话,说明你右键点错地方了,多换几个地方点点)。然后在word里面粘贴就好了,这样比较方便,不过有时候图会变形。还有一个致命缺点就是,我前面也提到了,容易被人家抓住你用的是盗版origin。 2.在菜单兰里file->export page,可以输出各种格式的,对于图片格式来说,我试了几个感觉tif的要比bmp和jpg的要好,那么我们就输出tif格式的,把下面的show export option勾上,点保存。如果是想插到word里面,的话,DPI选72比较合适,如果是打印实验报告的话,color depth里直接选monochrome的就可以了(毕竟不要彩打),点ok,就输出一个tif文件,最后在word里面插入这个文件就ok了。 图的细节修饰与美化(1) 一般做图都应该有要求的,要规范。以前我也不太清楚怎么算规范,后来听了王迅院士的一个报告,关于科技论文的写作,里面提到了怎么规范的画图,这样才知道原来图这么画看起来才好看。下面我介绍一下怎样按照王讯院士提到的几个标准来作图。

Origin 基础教程

Origin 9.0 基础教程 ————Origin 9.0 “快易行”(上) 前言 长话短说,学一款软件有两种方法,一种是拿着“从入门到精通”这类的书慢慢啃,啃完了就精通了,但除了高数我一点一点地啃完,其它的都没成功过。另一种是先入门,几分钟或者个把小时内学会主线,剩下地再慢慢来,没必要全都会,根据自己的需求再学。所以当时就想到了“快易行”这个概念:快速、容易、行得通。讲重点,好上手,实用,复杂点的部分自己再慢慢来,这是本文的宗旨,也希望能达到这样的效果。 其实网络上的资源很多,我做的只是一个筛选加工的工作,找了许多材料,把好的挑出来,呈现给大家那些看一遍就懂的教程,用自己的话整合这些资源。红色是重点,大家阅读的时候留意一下。 下面提到的文本、书籍及视频均来源于网络,仅用于学习与交流,严禁用于其它用途,大家可以自行搜索,如果没找到,请联系我,新浪微博:4麦儿。 一、基本介绍 Origin是Origin Lab公司出品的较流行的专业函数绘图软件,是公认的简单易学、操作灵活、功能强大的软件,既可以满足一般用户的制图需要,也可以满足高级用户数据分析、函数拟合的需要。自1991年问世以来,Origin以其操作简便,功能开放,很快成为国际流行的分析软件之一,获得了广泛的认可与应用。 目前市面上较流行的版本有7.5、8.0、8.5、9.0,其中7.5由于出来的时间比较早,配套的讲解教程和视频比较多,同时软件功能简单实用,很容易上手。7.5版本另一个特点是它有汉化版,所以推荐初

学Origin软件时,同时安装7.5和另一个高级版,方便熟悉界面,听懂教程讲解。Origin上手很容易,用不了多久就可以卸载7.5了,权当作一个Origin的有道翻译版。 图1.1 四六级没过,第一次打开软件,不开心 图1.2 还是汉化版看起来亲切,但以后一定要用英文版,毕竟很多重要的软件是没有汉化的,

Origin数据处理

Origin数据处理 Origin是由OriginLab公司开发的一款科学绘图和数据分析软件,支持在Windows操作系统下运行,这里简介Origin数据处理的基本方法。 一、曲线绘制 如果实验数据只有一组,在Worksheet中分别输入横、纵坐标值,再使用“线+符号”的方式,即可绘制出所需曲线。 如果实验数据有多组,且需要绘制在一幅图里,使用将“多组数据的横坐标值放在一起”的方法,各组数据的纵坐标值会出现不连续,相应的绘制出的曲线会出现间断,这时将各组数据的横坐标值单独成列就好了。 如果需要绘制在一幅图里的两组数据,横坐标和(或)纵坐标相差很大,可以通过“多图层(Layer)”的方式进行曲线绘制。 增加新图层后,就有新的纵坐标轴可供设置,在纵坐标轴上右键,选择“title & format-axis”,再在“at position=”输入数值,就可以实现坐标轴的移动,即在图中出现多个纵坐标轴。 二、误差棒绘制 (1)计算平均值和标准差 Origin中在需要统计的数据列上右键,选择“statistics on column(s)/row(s)”,即可得到平均值(Mean)和标准差(Sd); (2)将平均值、标准差输入为新列,选中标准差所在列,“column-set as Y error”,再选中所有数据,“plot-special line/symbol-Y error”。

三、函数绘制 (1)Origin内置函数 abs:绝对值 acos:x的反余弦 angle(x,y):点(0,0)和点(x,y)的连线与x轴之间的夹角asin:x的反正弦 atan:x的反正切 J0:零次贝塞耳函数 J1:一次贝塞耳函数 Jn(x,n):n 次贝塞耳函数 beta(z,w):z > 0, w > 0 β函数 cos:x的余弦 cosh:双曲余弦 erf:正规误差积分 exp:指数 ftable(x,m,n):自由度为m,n的F分布 gammaln:γ函数的自然对数 incbeta(x,a,b):不完全的β函数 incf(x,m,n):m,n自由度上限为x的不完全F分布 incgamma(x,a):不完全γ函数 int:被截的整数 inverf:反误差函数

用Origin处理数据并作图教程

用Origin处理数据并作图 Origin是一个功能强大的数据处理及作图软件,作出的专业图形也比较规范。以下给出三个示例说明数据处理及作图步骤。 (1)用Origin处理饱和蒸气压测定实验数据及作图,步骤如下: ①启动Origin程序,将大气压、实验所得沸点温度及对应的真空度(压力差)数据填入表格的A、B、C列中,然后输入公式计算D列(蒸气压/mmHg)的值,操作为左键点击选定D列,右键点击选择“Set Column Values”,在弹出 -压力差”,本例为“767.65-col(C)”,如图1-3-7的对话框中输入计算公式“p 大气 所示,点击“OK”完成D列值的设置。按此方法依次输入公式“1000/(col(B)+273.15)”和“log(col(D))”设置E列和F列的值,所得结果如图1-3-8所示。 图1-3-7 用Origin处理数据公式的设定

图1-3-8 用Origin处理数据结果 ②对上述所得数据进行作图:点击菜单栏中的“Plot”,然后选择“Scatter”,弹出如图1-3-9所示对话框,在列表中选择所需列为X或Y,本例中以E列作为X,即选中E[Y]列,点击<->X键,如图1-3-9中箭头所示,F列作为Y,即选中F[Y]列,点击<->Y键,然后点击“OK”即给出散点图,如图1-3-10所示。若要作多组散点图,可以在图1-3-9所示对话框中选定一组X,Y后点击Add,然后继续添加相应列为X和Y即可。作散点图的方法也可以是先直接将E列设置为X,方法是选中E列,点击菜单栏中的“Column”→“Set as X”,即设为“E[X2]”,同时F列也变为“F[Y2]”,然后同时选中E[X2]列和F[Y2]列,点击菜单栏中的“Plot”,然后选择“Scatter”亦可得到图1-3-10所示结果。 图1-3-9 用Origin作图方法

最好的origin使用教程

第一章 Origin基础知识 Origin是美国Microcal公司出的数据分析和绘图软件,编写此介绍时的最高版本为7.0 https://www.sodocs.net/doc/6614914213.html,/ 特点:使用简单,采用直观的、图形化的、面向对象的窗口菜单和工具栏操作,全面支持鼠标右键、支持拖方式绘图等。 两大类功能:数据分析和绘图。数据分析包括数据的排序、调整、计算、统计、频谱变换、曲线拟合等各种完善的数学分析功能。准备好数据后,进行数据分析时,只需选择所要分析的数据,然后再选择响应的菜单命令就可。Origin的绘图是基于模板的,Origin本身提供了几十种二维和三维绘图模板而且允许用户自己定制模板。绘图时,只要选择所需要的模板就行。用户可以自定义数学函数、图形样式和绘图模板;可以和各种数据库软件、办公软件、图像处理软件等方便的连接;可以用C等高级语言编写数据分析程序,还可以用内置的Lab Talk语言编程等。 一、工作环境

1.1 工作环境综述 类似Office的多文 档界面,主要包括 以下几个部分: 1、菜单栏顶 部一般可以实 现大部分功能 2、工具栏菜单栏 下面一般最常 用的功能都可以通 过此实现 3、绘图区中 部所有工作 表、绘图子窗口等 都在此 4、项目管理器下 部类似资源管 理器,可以方便切 换各个窗口等

5、状态栏底 部标出当前的 工作内容以及鼠标 指到某些菜单按钮 时的说明 工作表矩 阵绘图 1.2 菜单栏 菜单栏的结构取决于当前的活动窗口 工作表菜单

绘图菜单 矩阵窗口 菜单简要说明: File 文件功能操作打开文件、输入输出数据图形等 Edit 编辑功能操作包括数据和图像的编辑等,比如复制粘贴清除等,特别注意undo功能 View 视图功能操作控制屏幕显示, Plot 绘图功能操作主要提供5类功能: 1、几种样式的二维绘图功能,包括直线、描点、直线加符号、特殊线/符号、条形图、柱形图、特殊条形图/柱形图和饼图 2、三维绘图 3、气泡/彩色映射图、统计图和图形版面布局 4、特种绘图,包括面积图、极坐标图和向量 5、模板:把选中的工作表数据到如绘图模板 Column 列功能操作比如设置列的属性,增加删除列等

数据处理软件Origin常用问题集

数据处理软件Origin常用问题集 1.请教怎样反读出 origin 曲线上全部数据点? ORIGIN 中,在分析菜单(或统计菜单)中有插值命令,打开设置对话框,输入数据的起点和终点以及插值点的个数,OK!生成新的插值曲线和对应的数据表格。 2.如何用origin 做出附件中的图?其中标注的三角形、方块是怎么整上去的? 选中左侧竖工具条中的 draw tool(显示是几个点,第七个工具),移动到你要标注的位置双击,就产生了一个点,依次标注完方块。再

标注三角的第一个点,标注完后改成三角,以后标注的就都是三角了。改动点的类型的方法和正常画曲线方式一样。 3.如何用origin 做出附件图中的坐标轴(带刻度)? 你把刻度改成那样不就行了。 8.0 的具体方法是双击坐标轴,title & format --> 选左边那个 bottom,然后在右边把 axis 改为at position=。同理,然后选左边的 left,把 axis也改为 at position=。 4. origin能否读取导入曲线的坐标? 一张 bmp 格式的图片,图片内容是坐标系和拟合曲线,但是不知道用什么软件绘制的。请问能否将该图片导入 origin,读出曲线上任意一点的数据?

Answer: (1). 1.ORIGIN 有一个图形数字化插件可完成该任务。 2.有许多专门的图形数字化软件也可完成此任务。个人感觉专门的比插件也用、便捷。推荐 WINDIG25 (2). origin下的数字化插件是digitizer,下载地址: https://www.sodocs.net/doc/6614914213.html,/fileexchange/details.aspx?fid=8拖入origin即可,但使用不是很方便。比较方便的是un-scan-it。 5. 如何在origin7.5 中标峰值? 用origin7.5 作的XRD图,怎样直接在峰上标数据? Answer: Tools/Pick peaks 设置一下点击 Find Peaks 就 OK了。Positive 和Negative 是标正负峰值的意思,其他数值改变一下就知道干吗用的了。 6.关于origin 拟合曲线延长的问题? 我想把拟合之后的直线向前或向后延长一段距离与坐标轴相交。但是不知道该怎么弄。是不是要改那个范围的最大值和最小值啊?可是怎么改? Answer: (1).有那个选项,你可以选择延长布满坐标轴,大概这么翻译吧,我也翻译不好。在 analysis里呢,找找,我的卸载了。。。。

origin使用指南

本人非技术宅,所以写的东西也就是大物实验要用到的,面向对象为数院大一同学们,所以内容肯定不多。外加已经快一年没用过了,写的肯定不全,请大神轻喷。有问题就留言,我能解决就解决,解决不了的还请看到这篇文章的大牛解决一下~ ---------------------------------------------------? 1、安装 安装程序什么的我记得大物主页上貌似有,下载安装就好,应该不用教了。 2、界面 A是整个工程,一级实验应该是用不到的;B是窗口的列表,你所有的数据、图标窗口全都在这里;C就是窗口了。其他工具栏什么先不用去管他,用到再说。3、数据录入 基本与excel类似,并且和excel兼容,从excel中复制过来的数据可以直接粘贴。至于上面的“Long Name”(名称)、“Units”(单位)、“Comments”(注释),会在画图的时候用到。 如果有多组数据,比如光电效应那个实验,也可把数据放在一个表里。如图 右键图表空白区域,点击“Add New Column”,就会多出一栏。 数据都填好以后,就可以绘图了。

4、绘图 一级大物实验用到Origin的基本都是绘图,所以这里主要讲一下绘图。 最简单的,绘制散点图,也就是把原始数据画出来。 用拖选或按住ctrl的方法选中两列(注意:要选标题,就是A(x)那个位置),右键->Plot->Symbol->Scatter。 这样,就画出了散点图(右边那个东西点ok无视掉就好)。 但是一般来说大物作业不可能让你画完散点图就没事了,有分一下两种情况 a)曲线连接 曲线连接的话刚才就不能点Scatter了,应该点右键->Plot->Linel->Spline。 可以很清楚的画出曲线的走势。 默认使用Spline来画,还可以用B-spline,Bezier曲线等。如果要改变,双击图像,把右边折叠的全展开,点最后一个,在Line选项卡Connect选项中选择。 效果自己尝试。(注意:有的曲线画出来以后可能不光滑,这样必须要换一个,老师要求用光滑曲线连接) b)拟合 拟合的话,需要先画散点(看前面),再如图:Analysis->Fitting->FitLiner->Ope n Dialog 有兴趣的同学可以研究一下里面的选项,如果赶时间的话直接ok。

origin基本操作介绍

Origin操作方法报告 彭佳 1120152242 一、画简单的二维图线 1.双击已下载好的软件,打开Origin 8.0,得到如下初始主界面。 2.给Book1的第一列A(X)添加一组数,如从小到大依次增大的自然数。

将鼠标移至上左击一下,选中第一列,再在上右击一下,弹出子菜单,选择,得到要求数据。 3.将Book1的第二列B(Y)设置为第一列A(X)中对应数据的平方。 同理右击后,选择,得到如左下图所示界面。 在第一个空白对话框中输入Col(A)^2,再点击,得到所需数据。 4.给Book1添加新的列。

方法一:单击Standard工具条上的【Add New Columns】按钮; 方法二:在Worksheet的空白处右击,从子菜单中选择【Add New Columns】; 方法三:选择【Column】:【Add New Columns】,弹出如下对话框,填写要添加的列数,单击【OK】即可。

5.将Book1的第二列B(Y)设置为第一列A(X)中对应数据的开方。 同上3打开【Set Column Values】界面后,选择开方函数,将函数的运算原数据填为第一列,单击OK即可。 6.用上述三列数据做简单的二维图。 单击Standard工具条上的【New Graph】按钮,建立一个新的Graph。 激活Graph 1,按如下操作绘图。

再单击Add 按钮,得下图。即同一Graph 中的2条曲线信息。 单击【Apply 】可以预览图像,觉得图像无误后,单击【OK 】即可得到初步的二维图。 再单击如下【New Legend 】按钮,更新曲线Legend 。 7.自定义曲线类型。 B A

Origin处理实验数据教学文案

实验 用Origin 软件处理实验数据 实验目的: 了解Origin 软件及其在数据处理中的应用。 实验仪器: 装有Origin 软件的 机一台。 Origin 数据处理软件简介: 数据处理工作是繁琐、枯燥的,值得庆幸的是现在这些工作可以交给计算机来完成。Microcal 软件公司的Origin 软件就是一个短小精悍的数据处理软件。它在Windows 平台下工作,可以完成物理实验常用的数据处理、误差计算、绘图和曲线拟合等工作。这里不对该软件的使用做系统的介绍,只是结合几个例子说明Origin5.0软件在物理实验中经常用到的几项功能。 一、误差计算 前面我们介绍了用千分尺测量钢柱直径的例子,现在用Origin 来处理测量数据。 Origin 中把要完成的一个数据处理任务称做一个“工程”(project )。当我们启动Origin 或在Origin 窗口下新建一个工程时,软件将自动打开一个空的数据表,供输入数据。默认形式的数据表中一共有两列,分别为“A(X)”和“B(Y)”。将下表的8次测 量值输入到数据表的A 列(或B 列)。用鼠标点“A(X)”,选中该列。点“Analysis ”菜单,在下拉菜单项中选“Statistics on Columns ”,瞬间就完成了直径平均值(Mean )、单次测量值的实验标准差)(x S (软件记做sd)、平均值的实验标准差)(x S (软件记做se )的统计计算,其结果如下: 二、绘图

设一小球由静止下落,在不同位置处测量球下落经过的时间,得到数据如下表: 用Origin 软件作图,分析s 与t 之间的关系: 将距离s 的数据输入到A 列,将时间t 的数据输入到B 列,如图二,在“Plot ”下拉菜单中选“Scatter ”,弹出一个对话框。鼠标点“A(X)”,再在右边选“<->X ”,则将“A(X)”设为x 变量。同样,鼠标点“B(Y)”,再在右边选“<->Y”,则将“B(Y)”设为选“Column ”菜单下的“Add New Column ”y 变量。点“OK ” ,出现实验数据的图表,如图三(a)所示。 Origin 默认将图的原点设在第一个数据点的左下方,但是你可以改变这一设置。在“Format ”下拉菜单中点“Axis →X Axis ”,可以修改x 坐标的起止点和坐标示值增量。同样,点“Axis →X Axis ”可以修改y 轴的设置。此外,点“X Axis Titles ” 和“Y Axis Titles ”项可以修改两坐标轴的说明,修改后的一例见图三(b)。 图的右上角有一个文本框,鼠标双击文本框的空白处可以修改框内内容,单击下边工具条上的“T ”按钮,再在图中任意位置点一下,还可以建立一个新的文本框,文本框中可以输入必要的说明。 三、函数图形的绘制 图二 数据表 图三 自由落体的 t -s 图

Origin使用手册

【附录】 Origin在大学物理实验中的应用 认识Origin 由于高级图表绘制和数据分析能力是科学家和工程师必需掌握的,而Origin是当今世界上最著名的科技绘图和数据处理软件之一,与其它科技绘图及数据处理软件相比,Origin 在科技绘图及数据处理方面能满足大部分科技工作者的需要,并且容易掌握,兼容性好,因此成为科技工作者的首选科技绘图及数据处理软件. 目前,在全球有数以万计的公司、大学和研究机构使用OriginLab公司的软件产品进行科技绘图和数据处理. 打开Origin,在菜单View > Toolbars中可以看到许多选项,勾中后可以看到在菜单区出现很多图标,这显示了Origin丰富的操作功能.当然,如果浏览一下各个菜单,可以发现更多的功能. 图1 工具栏显示 1. 输入数据 我们以光敏电阻实验中的《光敏电阻在一定照度下的伏安特性》为例,说明Origin的作图方法,需要说明的是Origin的作图功能十分强大,我们在这里介绍的只是最基本的部分.我们采用的版本是Origin7.5.Origin6.0的操作在有些方面与7.5相差较大,所以我们建议使用7.5的版本. 打开Origin后,在下方出现几个窗口,类似资源管理器的作用.双击“Data1”打开数据表,然后可以输入您作图用的数据.如果先要对直接测量值进行计算,我们强烈建议使用Excel进行数据计算,因为Excel的计算功能比Origin强大,更因为Excel是一个世界通用 58

59 的表格计算软件,了解和使用它非常必要.但在科学作图时用Origin 要方便得多,所以应该把两者结合起来.实际上Origin 本身就有与Excel 链接的功能,但在中文操作系统中有时会出现问题,所以还是分别打开为好. 我们可用copy/paste 命令在Excel/Origin 之间传递数据.可在Excel 中选中要粘贴的数据,直接粘贴到Origin 的数据表中,粘贴的方法与在Excel 中的操作一致. 从实验中得到的数据如表1,粘贴好的画面如图2所示.如数据列不够多,可单击增加列的图标,见图2.为了方便同学们练习,我们把这张数据表放在了网上,是Excel 形式的.这样同学们就不必费神敲击键盘了.网址:pec .sjtu .edu .cn >实验预习系统>基本物理实验>Origin 使用教程.数据表名称是【Origin 作图-光敏电阻的伏安特性】. 表1 光敏电阻在一定照度下的伏安特性 U (V ) I ph (mA ) α = 0° I ph (mA ) α = 30° I ph (mA ) α = 60° I ph (mA ) α = 90° 2 1.496 1.269 0.699 0.022 4 3.00 3 2.540 1.400 0.045 6 4.528 3.835 2.11 4 0.069 8 6.072 5.146 2.827 0.093 10 7.644 6.467 3.555 0.117 12 9.130 7.809 4.290 0.143 14 10.846 9.274 5.027 0.168 16 12.528 10.680 5.782 0.193 18 14.214 12.179 6.550 0.218 20 15.730 13.280 7.178 0.273

Origin处理实验数据

实验 用Origin 软件处理实验数据 实验目的: 了解Origin 软件及其在数据处理中的应用。 实验仪器: 装有Origin 软件的 机一台。 Origin 数据处理软件简介: 数据处理工作是繁琐、枯燥的,值得庆幸的是现在这些工作可以交给计算机来完成。Microcal 软件公司的Origin 软件就是一个短小精悍的数据处理软件。它在Windows 平台下工作,可以完成物理实验常用的数据处理、误差计算、绘图和曲线拟合等工作。这里不对该软件的使用做系统的介绍,只是结合几个例子说明Origin5.0软件在物理实验中经常用到的几项功能。 一、误差计算 前面我们介绍了用千分尺测量钢柱直径的例子,现在用Origin 来处理测量数据。 Origin 中把要完成的一个数据处理任务称做一个“工程”(project )。当我们启动Origin 或在Origin 窗口下新建一个工程时,软件将自动打开一个空的数据表,供输入数据。默认形式的数据表中一共有两列,分别为“A(X)”和“B(Y)”。将下表的8次测 量值输入到数据表的A 列(或B 列)。用鼠标点“A(X)”,选中该列。点“Analysis ”菜单,在下拉菜单项中选“Statistics on Columns ”,瞬间就完成了直径平均值(Mean )、单次测量值的实验标准差)(x S (软件记做sd)、平均值的实验标准差)(x S (软件记做se )的统计计算,其结果如下: 二、绘图 设一小球由静止下落,在不同位置处测量球下落经过的时间,得到数据如下表:

用Origin 软件作图,分析s 与t 之间的关系: 将距离s 的数据输入到A 列,将时间t 的数据输入到B 列,如图二,在“Plot ”下拉菜单中选“Scatter ”,弹出一个对话框。鼠标点“A(X)”,再在右边选“<->X ”,则将“A(X)”设为x 变量。同样,鼠标点“B(Y)”,再在右边选“<->Y”,则将“B(Y)”设为选“Column ”菜单下的“Add New Column ”y 变量。点“OK ” ,出现实验数据的图表,如图三(a)所示。 Origin 默认将图的原点设在第一个数据点的左下方,但是你可以改变这一设置。在“Format ”下拉菜单中点“Axis →X Axis ”,可以修改x 坐标的起止点和坐标示值增量。同样,点“Axis →X Axis ”可以修改y 轴的设置。此外,点“X Axis Titles ” 和“Y Axis Titles ”项可以修改两坐标轴的说明,修改后的一例见图三(b)。 图的右上角有一个文本框,鼠标双击文本框的空白处可以修改框内内容,单击下边工具条上的“T ”按钮,再在图中任意位置点一下,还可以建立一个新的文本框,文本框中可以输入必要的说明。 三、函数图形的绘制 图三中所绘的不是一条直线。理论分析证明,s 与 t 2之间才是线性关系。我们仍然可以用图1的数据表来画t 2-s 曲线。在数据表窗口,用鼠标选“Column ”菜单下的“Add New Column ”就会在数据表中增添“C(Y)”列,再用鼠标选“Column ”菜单下的“Set Column Values ”,弹出一个对话框,供设定C 列数值使用,C 列的默认值是col(B)-col(A),即B 列值与A 列值之差。在这里将它改成col(B)^2,即B 列数值的平方。重复绘图的步骤,只不过此时将“C(Y)”设为y 变量,就绘出了 t 2-s 曲线如图四所示(图中的直线是拟合线)。根据这一方法,也可以画出三角函数、指数、对数等其他函数曲线。 图二 数据表 图三 自由落体的 t -s 图

一些使用origin编辑的技巧看

一些使用origin作图的小小技巧

重叠峰的分离 几个单独的峰由于靠得很近,会导致形成一个重叠峰的形成。如果想计算几个峰之间的面积比的话,就需要先把这个重叠峰分离成几个单独的峰。举个例子,比如在做聚合物多晶x射线衍射的时候,不同晶型的衍射峰与无定形部分的衍射峰彼此重叠,这些峰对应的面积比与它们之间的含量比成线性关系。通过计算晶体衍射峰的面积与无定形衍射峰的面积,就可以大致的到聚合物的结晶度。 将数据作图后(注意,这里的数据一般间隔的非常近,所以作出的图点与点之间也比较连续),检查菜单 栏data中看需要分峰的数据是否被勾上了。没勾的话就选中。※注意,如果数据的x范围很大,而需要分峰的部分很小,比如,整个数据的x轴的范围是0-100,而需要分的重叠峰的位置在40-60,其他部分均为平的基线或其他无关的峰,那么我们就需要在worksheet表格里把0-40,以及60-100的数据都删掉,只留40-60这段范围的数据。这步是一定要做的,否则分出来的峰非常不准。※ 删除不需要的数据后,在graph窗口中可以看到只留下了重叠峰的数据图,这时点菜单栏中的analysis->fit multi peaks->guassian or lorentzian(这两个什么区别我也不是很清楚,感觉作出来的图是一样的),选中一个拟和方法后,会跳出一个对话框number of peak,问你要分成几个峰,输入个数确定后,又跳出一个对话框问你估计的半峰宽。这里用它的默认的就好了。 然后在图上观察你认为的几个单独峰的位置,双击你认为的位置后,会出现一条垂直的虚线,直至将几个峰的

origin 使用技巧

1.请教怎样反读出origin曲线上全部数据点? 如,我用10个数据点画出了一条origin曲线,并存为project的.OPJ格式。但,现在我想利用OPJ文件从这条曲线上均匀的取出100个数据点的数值,该如何做? 注:要一切都使用origin软件完成,不用其他曲线识别软件。 https://www.sodocs.net/doc/6614914213.html,/bbs/viewthread.php?tid=1390313 Answer: ORIGIN中,在分析菜单(或统计菜单)中有插值命令,打开设置对话框,输入数据的起点和终点以及插值点的个数,OK!生成新的插值曲线和对应的数据表格。 2. origin中非线性拟合中logistic模型的疑问? origin 中非线性拟合中的logistic模型为 y = A2 + (A1-A2)/(1 + (x/x0)^p) 其初始参数设置为 sort(x_y_curve); //smooth(x_y_curve, 2); x0 = xaty50( x_y_curve ); p = 3.0; if( yatxmin( x_y_curve ) > yatxmax( x_y_curve ) ) { A1 = max( y_data ); A2 = min( y_data ); } else { A1 = min( y_data ); A2 = max( y_data ); } 而据我看到的logistic的模型都是(自己origin中自定义的) y =A1/(1+(A1/A2-1)*exp(-k*x))

也就是说origin 中的logistic有4个数值需要确定,而自定义的有3个数值 从结果来看,没有太大区别,但为什么函数不一样呢? 不是学数学,高人能否详细说明下。 https://www.sodocs.net/doc/6614914213.html,/bbs/viewthread.php?tid=1391522 Answer: 你可以看一下这个文档,里面有数种不同形式的logistic 模型: https://www.sodocs.net/doc/6614914213.html,/web/packages/drc/drc.pdf 当然,这是一个R (https://www.sodocs.net/doc/6614914213.html,) 包的文档,但不妨碍你看其中的公式。 R 是开源的啊,以GPL 发布,可以从https://www.sodocs.net/doc/6614914213.html,上了解更多。3.如何用origin做出附件中的图:其中标注的三角形、方块是怎么整上去的?https://www.sodocs.net/doc/6614914213.html,/bbs/viewthread.php?tid=1393739 Answer: 选中左侧竖工具条中的 draw tool(显示是几个点,第七个工具),移动到你要标注的位置双击,就产生了一个点,依次标注完方块。再标注三角的第一个点,标注完后改成三角,以后标注的就都是三角了。改动点的类型的方法和正常画曲线方式一样。 4.如何用origin做出附件图中的坐标轴(带刻度)? https://www.sodocs.net/doc/6614914213.html,/bbs/viewthread.php?tid=1397419 Answer: 你把刻度改成那样不就行了。8.0的具体方法是双击坐标轴,title & format --> 选左边那个bottom,然后在右边把axis改为at position=。同理,然后选左边的left,把axis也改为at position=。 5. origin能否读取导入曲线的坐标? 一张bmp格式的图片,图片内容是坐标系和拟合曲线,但是不知道用什么软件绘制的。请问能否将该图片导入origin,读出曲线上任意一点的数据? https://www.sodocs.net/doc/6614914213.html,/bbs/viewthread.php?tid=1398227 Answer: (1). 1.ORIGIN有一个图形数字化插件可完成该任务。2.有许多专门的图形数字化软件也可完成此任务。个人感觉专门的比插件也用、便捷。推荐WINDIG25

相关主题