搜档网
当前位置:搜档网 › 实验一 重力加速度的测定 完整实验报告 20151004

实验一 重力加速度的测定 完整实验报告 20151004

实验一  重力加速度的测定 完整实验报告 20151004
实验一  重力加速度的测定 完整实验报告 20151004

重力加速度的测定(用单摆法)

[实验目的]

1.掌握用单摆测量重力加速度的方法;

2.从摆动N 次的时间和周期的数据关系,体会积累放大法测量周期的优点;3.学会用不确定度的计算方法,结果的正确表达;4.学会实验报告的正确书写。

[实验仪器]

单摆,秒表,钢卷尺,游标卡尺(用法教材37P )。

[实验原理]

一根刚性细线,下端悬挂一个小球。当细线质量比小球的质量小很多,而且小球的直径又比细线的长度小很多时,此种装置称为单摆,如图1所示。如果把小球稍微拉开一定距离,小球在重力作用下可在铅直平面内做往复运动,一个完整的往复运动所用的时间称为一个周期。当摆动的角度小于5

时,可以证明单摆的周期T 满足下面公式

2L

T g

π

=………………(1)2

24L

g T

π= (2)

式中L 为单摆长度(摆长等于悬线长度和摆球半径之和

2

d L l =+

)。单摆长度是指上端悬挂点到球心之间的距离;g 为重力加速度。

[实验步骤]

1.用游标卡尺测量摆动小球直径d ,测一次;2.测量单摆悬线长度l ,测六次;

3.摆动周期的测量。用积累放大法测出摆长在L 时,摆动10个周期所需的时间,测量六个数据,计算其周期。(注意:选择摆动小球通过平衡位置时开始计时。)

[数据处理]

1

23456摆线长度l m 0.76930.76900.76920.76940.76930.76910.7692l m

=10个周期T s

17.71

17.72

17.69

17.72

17.73

17.68

1.771T s

=摆球的直径为:()22.06d mm mm

=摆球直径的不确定度为:0.02d B U U mm ==?=仪摆线长度的平均值为:

mg cos θ

mg sin θ

L

θ

θmg 图1

6110.7693+0.7690+0.7692+0.7694+0.7693+0.76910.769266i i l l m ====∑摆线长度的A 类不确定度为:

6

21

222

22222221

1

1()61[(0.76930.7692)(0.76900.7692)(0.76920.7692)5

(0.76930.7692)(0.76920.7692)(0.76910.7692)] =

[0.0001(0.0002)0.0001(0.0001)]=0.00012m

5

l i i S l l ==---+-+-=+-+-+-+-++-∑摆线长度的的合成不确定度为:2222

=0.000120.00050.000514l l l

U S m =+?+=仪单摆摆长度:0.02206

0.76920.780222

d L l m =+

=+=单摆摆长度的合成不确定度为(教材12P -公式13):

22222222

2210.00002()()(1)()0.000514()0.00051422

L l d l d L L U U U U U m

l d ??=+=+=+=??单摆周期的平均值为:

6

1

11061017.7117.7217.6917.7217.7317.68 1.771610

i

i T T s

==?+++++==?∑单摆周期的A 类不确定度为:

6

21

2222221()6117.7117.7217.69

[( 1.771)( 1.771)( 1.771)5101010 17.7217.7317.68( 1.771)( 1.771)( 1.771)]

101010

0.002T i i S T T s

==---+-+-=

+-+-+-=∑1

单摆周期的合成不确定度为:2222

=0.0020.010.01T T T U S s

=+?+=仪根据经典的单摆周期公式,那么有:

2222

2

2

440.7802

9.82049.8201.771

L g m s m s T

ππ??=

===对重力加速度的体积公式两边同时取自然对数后,再求偏微分(教材12P -公式14):

2ln ln(4)ln 2ln g L T π=+-ln 110.7802g L L ?==?,ln 22

1.771g T T

?=-=-

?重力加速度的总的不确定度为:

22

22

2222

212()()12 9.820(

)0.000514()0.010.7802 1.771

9.8200.01130.11g L T U g U U T L

m s =?+-=?+-=?=只进不舍,教材 (P12)重力加速度的测量结果为:2

0.11g g g U m s =±=±9.82(g 的最后一位与g U 最后一

位对齐)

[实验小结]

(自己写)

用凯特摆测量重力加速度实验报告

用凯特摆测量重力加速度 实验目的:学习凯特摆的实验设计思想和技巧,掌握一种比较精确的测量重力加速度的方法。 实验原理:1、当摆幅很小时,刚体绕O轴摆动的周期: 刚体质量m,重心G到转轴O的距离h,绕O轴的转动惯量I,复 摆绕通过重心G的转轴的转动惯量为I G 。 当G轴与O轴平行时,有I=I G+mh2 ∴ ∴复摆的等效摆长l=( I G+mh2 )/mh 2、利用复摆的共轭性:在复摆重心G旁,存在两点O和O′,可使 该摆以O为悬点的摆动周期T?与以O′为悬点的摆动周期T?相同, 可证得|OO′|=l,可精确求得l。 3、对于凯特摆,两刀口间距就是l,可通过调节A、B、C、D四摆 锤得位置使正、倒悬挂时得摆动周期T?≈T?。 ∴4π2/g=(T?2+T?2)/2l + (T?2-T?2)/2(2h?-l) = a + b 实验仪器:凯特摆、光电探头、米尺、数字测试仪。 实验内容:1、仪器调节 选定两刀口间得距离即该摆得等效摆长l,使两刀口相对摆杆基本 对称,并相互平行,用米尺测出l的值,粗略估算T值。 将摆杆悬挂到支架上水平的V形刀承上,调节底座上的螺丝,借 助于铅垂线,使摆杆能在铅垂面内自由摆动,倒挂也如此。 将光电探头放在摆杆下方,让摆针在摆动时经过光电探测器。

让摆杆作小角度摆动,待稳定后,按下reset钮,则测试仪开始自 动记录一个周期的时间。 2、测量摆动周期T?和T? 调整四个摆锤的位置,使T?和T?逐渐靠近,差值小于,测量正、 倒摆动10个周期的时间10T?和10T?各测5次取平均值。 3、计算重力加速度g及其标准误差σg 。 将摆杆从刀承上取下,平放在刀口上,使其平衡,平衡点即重心G。 测出|GO|即h?,代入公式计算g。 推导误差传递公式计算σg 。 实验数据处理:1、l的值 l=?(l?+l?+l?)= σ=,u A =σ/=, ∴ΔA =t P ?u A =*= u B=ΔB /C=3= ∴u L == T e == 2、T?和T?的值 T?= σ=*10ˉ?s,u A =σ/=*10ˉ?s ∴ΔA =t P ?u A =*=*10ˉ?s u B=ΔB /C=3=*10ˉ?s ∴u T1 ==*10ˉ?s T?= σ=*10ˉ?s,u A =σ/=*10ˉ?s ∴ΔA =t P ?u A =*=*10ˉ?s u B=ΔB /C=3=*10ˉ?s

测液体折射率实验报告

实验题目:表面等离激元共振法测液体折射率实验 预习报告与原始数据见纸质报告。 实验步骤: 1.调整分光计,实验部件安装和线路连接已经完成; 2.传感器中心调整 粗调:将微调座放到载物台上,固定好调节架后,在调节架中心放上准星,调节载物台锁紧螺钉使激光光斑至粗调对准处,不断调节平行光管光轴水平调节螺钉与微调座的两颗微调螺钉,使当游标盘转动一圈时,激光光斑一直照在该处; 细调:调节平行光管光轴高低调节螺钉,使激光光斑射在细调对准处,不断调节平行光管与微调座使当转动游标盘一圈时,激光光斑一直射在该处; 中心调节:继续调节平行光管光轴高低调节螺钉,使激光光斑射在准星顶尖处,再次调节使转动游标盘一圈时,激光光斑一直射在顶尖处。 3.测量前准备调节 中心调节完毕后,移去准星,放入敏感元件,将游标盘和刻度盘调节到合适位置;调整敏感元件使光垂直入射至半圆柱棱镜中的镀金属膜上,拧紧游标盘止动螺钉;转动刻度盘使刻度盘0o对准游标盘0o;拧紧转座与刻度盘止动螺钉,松开游标盘止动螺钉,从此刻开始刻度盘始终保持不动,将游标盘转回至刻度盘所示65o位置处锁定,测量前准备调节完毕。

4.测量读数 保持刻度盘和游标盘不动,转动望远镜支臂,观察功率计读数,记录其中的最大读数;保持刻度盘不动,移动游标盘从66o到88o,入射角没增加1o,记录功率计最大读数。 5.数据表格与数据处理 (1)数据表格自拟; (2)画出相对光强与入射角的关系曲线图; (3)比较不同溶液的共振角有何差异。 实验样本: 本实验采用样本为:纯净水;无水乙醇;水:乙醇=1:1的乙醇溶液。 实验数据: 1.纯净水 角度(°)666768697071 角度(°)72737475767778相对光强243273376480554581641653角度(°)7980818283848586相对光强700705713733741741758765角度(°)8788

物化实验报告燃烧热的测定

华南师范大学实验报告 一、实验目的 1、明确燃烧热的定义,了解定压燃烧热与定容燃烧热的差别。 2、掌握量热技术的基本原理;学会测定萘的燃烧热 3、了解氧弹量热计的主要组成及作用,掌握氧弹量热计的操作技术。 4、学会雷诺图解法校正温度改变值。 二、 实验原理 通常测定物质的燃烧热,是用氧弹量热计,测量的基本原理是能量守恒定律。一定量被测物质样品在氧弹中完全燃烧时,所释放的热量使氧弹本身及其周围的介质和量热计有关附件的温度升高,测量介质在燃烧前后温度的变化值T ?,就能计算出该样品的燃烧热。 ()p V Q Q RT n g =+? (1) ()V W W Q Q C W C M +=+样品21总铁丝铁丝水水(T -T ) (2) 用已知燃烧热的物质(本实验用苯甲酸)放在量热计中燃烧,测其始末温度,求出T ?。 便可据上式求出K ,再用求得的K 值作为已知数求出待测物(萘)的燃烧热。 三、仪器和试剂 1.仪器 SHR-15氧弹量热计1台;贝克曼温度计;压片机 2台;充氧器1台;氧气钢瓶1个;1/10℃温度计;万能电表一个;天平 2.试剂 铁丝;苯甲酸(AR);萘(AR );氧气 四、实验步骤 1、测定氧氮卡计和水的总热容量 (1)样品压片:压片前先检查压片用钢模,若发现钢模有铁锈油污或尘土等,必须擦净后,才能进行压片,用天平称取约0.8g 苯甲酸,再用分析天平准确称取一根铁丝质量,从模具的上面倒入己称好的苯甲酸样品,徐徐旋紧 压片机的螺杆,直到将样品压成片状为止。抽出模底的托板,再继续向下压,使模底和样品一起脱落,然后在分析天平上准确称重。 分别准确称量记录好数据,即可供燃烧热测定用。 (2)装置氧弹、充氧气:拧开氧弹盖,将氧弹内壁擦净,特别是电极下端的不锈钢接线柱更应擦十净,将点火丝的两端分别绑紧在氧弹中的两根电极上,选紧氧弹盖,用万用表欧姆档检查两电极是否通路,使用高压钢瓶时必须严格遵守操作规则。将氧弹放在充氧仪台架上,拉动板乎充入氧气。 (3)燃烧温度的测定:将充好氧气后,再用万用表检查两电极间是否通路,若通路将氧弹放入量热计内简。用量筒称3L 自来水,倒入水桶内,装好搅拌轴,盖好盖子,将贝克曼温度计探头插入水中,此时用普通温度计读出水外筒水温和水桶内的水温。接好电极,盖上盖了,打开搅拌开关。待温度温度稳定上升后,每个半分钟读取贝克曼温度计一次,连续记

大学物理重力加速度的测定实验报告范文.doc

大学物理重力加速度的测定实验报告范 文 一、实验任务 精确测定银川地区的重力加速度 二、实验要求 测量结果的相对不确定度不超过5% 三、物理模型的建立及比较 初步确定有以下六种模型方案: 方法一、用打点计时器测量 所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等. 利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g. 方法二、用滴水法测重力加速度 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n 取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃

杯的形状为旋转抛物面 重力加速度的计算公式推导如下: 取液面上任一液元a,它距转轴为x,质量为m,受重力mg、弹力n.由动力学知: ncosα-mg=0 (1) nsinα=mω2x (2) 两式相比得tgα=ω2x/g,又tgα=dy/dx,∴dy=ω2xdx/g, ∴y/x=ω2x/2g. ∴ g=ω2x2/2y. .将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g. 方法四、光电控制计时法 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n 取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法五、用圆锥摆测量 所用仪器为:米尺、秒表、单摆. 使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t 摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得: g=4π2n2h/t2. 将所测的n、t、h代入即可求得g值.

熔点的测定、折光率的测定

广东工业大学 学院专业班组、学号 姓名协作者教师评定 熔点的测定、折光率的测定 (一)熔点的测定 一、实验目的 1.了解熔点测定的意义。 2.掌握测定熔点的方法。 二、实验原理 固体物质在大气压下加热熔化时的温度,称为熔点(melting point,简记为m.p.)。严格来说,熔点就是固体物质在大气压下达到固液两态平衡时的温度。 纯净的固体有机物一般都有固定的熔点,固液两相之间的变化非常敏锐,从初熔到全熔的温度范围称熔矩或熔程,一般不超过0.5~1℃。当混有杂质后,熔点就会有显著的变化,熔点降低,熔矩变宽。因此通过测定熔点,可以鉴别未知的固态有机化合物和判断有机化合物的纯度。 如果两种固体有机物具有相同或相近熔点,可以采用混合熔点来鉴别它们是否为同一化合物。若是两种不同化合物,通常会使熔点下降(也有例外),如果是相同化合物则熔点不变。 三、实验仪器与药品 申光牌WRS-1A数字熔点仪,上海精密科学仪器有限公司物理光学仪器厂 桂皮酸:又称肉桂酸;β-苯丙烯酸;3-苯基-2-丙烯酸。不溶于冷水,溶于热水、乙醇、乙醚、丙酮和冰醋酸。 五、实验装置图

六、实验步骤 1、样品的装填将熔点管开口向下插入粉末中,装取少量药品。然后将熔点管竖立起来,在桌面上礅几下,使样品落入管底,重复几次。最后取一支长约30~40cm的玻璃管,垂直于一干净的表面皿上,将熔点管(开口端向上)从玻璃上端自由落下3~5次,使管内装入高约3mm紧密结实的样品。 2、开启电源开关,稳定20分钟。 3、通过拨盘设定起始温度(拨盘只能向下拨动),再按下起始温度按钮,输入此温度,预制灯亮,稍等,到达所需温度时,预制灯熄灭。 4、选择升温速率(一般3℃/min),把波段开关旋至所需温度。 5、插入装有样品的毛细管(直立、慢慢插入。切不可勉强插入,否则要换毛细管!),此时初熔灯熄灭。 6、调零。使电表完全指零。 7、按下升温钮,升温指标灯亮。 8、数分钟后,初熔灯先闪亮,然后出现终熔读数显示,欲知初熔读数按初熔钮即得。 注:测桂皮酸的起始温度设定为125℃,混合物的起始温度设定为90℃。 八、本实验应掌握的实验技能 九、思考题 1 可通过鉴别新化合物为已知的化合物。 2 熔点测定是对有机物的测定。 十、实验结果分析与讨论

测量重力加速度实验Acceleration due to gravity

Acceleration due to gravity 1. Aim: To measure ‘g’, the acceleration due to gravity using a simple pendulum. 2. Theory: A simple pendulum consists of a particle of mass m, attached to a frictionless pivot P by a cable of length L and negligible mass. When the particle is pulled away from its equilibrium position by an angle θand released, it swings back and forth as Figure 1 shows. By attaching a pen to the bottom of the swinging particle and moving a strip of paper beneath it at a steady rate, we can record the position of the particle as time passes. The graphical record reveals a pattern that is similar (but not identical) to the sinusoidal pattern for simple harmonic motion. Figure 1 A simple pendulum swinging back and forth about the pivot P. If the angle θis small, the swinging is approximately simple harmonic motion. Gravity causes the back-and-forth rotation about the axis at P. The rotation speeds up as the particle approaches the lowest point and slows down on the upward part of the swing. Eventually the angular speed is reduced to zero, and the particle swings back. If the angle of oscillation is large, the pendulum does not exhibit simple harmonic motion. The motion of a simple pendulum is nearly simple harmonic. The periodic time T is related to the length L of the pendulum and the local acceleration due to gravity g. 2 T=or 2 2 4 T L g π ?? = ? ?? If we measure the periodic time T for different lengths L, and plot T2 versus L,

燃烧热的测定实验报告

浙江万里学院生物与环境学院化学工程实验技术实验报告 实验名称:燃烧热的测定

一、 实验预习(30分) 1. 实验装置预习(10分)_____年____月____日 指导教师______(签字)成绩 2. 实验仿真预习(10分)_____年____月____日 指导教师______(签字)成绩 3. 预习报告(10分) 指导教师______(签字)成绩 (1) 实验目的 1.用氧弹量热计测定蔗糖的燃烧热。 2.掌握恒压燃烧热与恒容燃烧热的概念及两者关系。 3.了解氧弹量热计的主要结构功能与作用;掌握氧弹量热计的实验操作技术。 4.学会用雷诺图解法校正温度变化。 (2) 实验原理 标准燃烧热的定义是:在温度T 、参加反应各物质均处标准态下,一摩尔β相的物质B 在纯氧中完全燃烧时所放出的热量。所谓完全燃烧,即组成反应物的各元素,在经过燃烧反应后,必须呈显本元素的最高化合价。如C 经燃烧反应后,变成CO 不能认为是完全燃烧。只有在变成CO 2时,方可认为是完全燃烧。同时还必须指出,反应物和生成物在指定的温度下都属于标准态。如苯甲酸在298.15K 时的燃烧反应过程为: (液)(气)(气)(固)O H CO O COOH H C 22 256372 15 +?+ 由热力学第一定律,恒容过程的热效应Q v ,即ΔU 。恒压过程的热效应Q p ,即ΔH 。它们之间的相互关系如下: nRT Q Q V P ?+= (1) 或nRT U H ?+?=? (2) 其中Δn 为反前后气态物质的物质的量之差。R 为气体常数。T 为反应的绝对温度。本实验通过测定蔗糖完全燃烧时的恒容燃烧热,然后再计算出蔗糖的恒压燃烧ΔH 。在计算蔗糖的恒压

(完整版)重力加速度的测定实验报告

重力加速度的测定 一,实验目的 1,学习秒表、米尺的正确使用 2,理解单摆法和落球法测量重力加速度的原理。 3,研究单摆振动的周期与摆长、摆角的关系。 4,学习系统误差的修正及在实验中减小不确定度的方法。 二,实验器材 单摆装置,停表(精度为0.01s),钢卷尺(精度为1mm),游标卡尺(精度为0.02mm) 三,实验原理 单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。在摆长远大于球的直径,摆球质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆球即在平衡位置左右作周期性的往返摆动,如图2-1所示。 f =F sinθf θ T=F cosθ F= mg L 单摆原理图

摆球所受的力f 是重力和绳子张力的合力,f 指向平衡位置。当摆角很小时(θ<5°),圆弧可近似地看成直线,f 也可近似地看作沿着这一直线。设摆长为L ,小球位移为x ,质量为m ,则 L x = θsin f=θsin F =-L x mg - =-m L g x 由f=ma ,可知a=- L g x 式中负号表示f 与位移x 方向相反。 单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式:a = m f =-ω2 x 可得ω=l g ,即02 22=+x dt x d ω,解得)cos(0?ω+=t A x ,0A 为振幅,?为初相。 应有[])2cos())((cos )cos(000?πω?ω?ω++=++=+=t A T t A t A x 于是得单摆运动周期为:T =ωπ 2=2πg L 即 T 2=g 2 4πL 或 g=4π22 T L 又由于细线不是完全没有质量,他在外力作用下也不可能完成伸长,所以,单摆的重力加速度公式修正为 22 21 4T d L g +=π 四,实验步骤 1,数据采集 (1)测量摆长L 用米尺测量摆球支点和摆球顶点或最低点的间距l ,用游标卡尺测量小球的直径d,则摆长 d l L 2 1+= (2)测量摆动周期 用手把摆球拉至偏离平衡位置约? 5放开,让其在一个铅直面内自由摆动,当小球通过平衡位置的瞬间,开始计时,连续默数100次全振动时间为t ,再除以100,得到周期T 。 (3)将所测数据列于下表中,并计算出摆长、周期及重力加速度。

气垫导轨测重力加速度 大学物理实验

气垫导轨测重力加速度 【试验目的】: 1.研究测重力加速度的方法; 2.测量本地区的重力加速度。 【实验原理】: 当气轨水平放置时,自由漂浮的滑块所受的合外力为零,因此,滑块在气轨上可以静止,或以一定的速度作匀速直线运动。在滑块上装一与滑块运动方向严格平行、宽度为的挡光板,当滑块经过设在某位置上的光电门时,挡光板将遮住照在光敏管上的光束,因为挡光板宽度一定,遮光时间的长短与滑块通过光电门的速度成反比,测出挡光板的宽度L和遮光时间t,则滑块通过光电门的平均速度为: V=L/t (1-1) 若挡板很小,则在挡光范围内滑块的速度变化也很小,故可以把平均速度看成是滑块经过光电门的瞬时速度。挡板越小,则平均速度越准确地反映该位置上滑块的瞬时速度,显然,如果滑块作匀速直线运动,则滑块通过设在气轨任何位置的光电门时瞬时速度都相等,毫秒计上显示的时间相同,在此情形下,滑块速度的测量值与挡板的大小无关。 若滑块在水平方向受一恒力作用,滑块将作匀加速直线运动,分别测出滑块通过相距S的2个光电门的始末速度和V1和V2则滑块的加速度: 2as=v12–v22 (1-2) 将式(1-1)代入(1-2)中 得: 2as=L2(1/t22-1/t12) (1-3) 其原理如图1. 气垫导轨与水平面的夹角为α 则 a=g*ginα. (1-4) 【待测物理量】: V〈物体运动速度〉、a〈物体运动加速度〉、g〈本地区的加速度〉、α〈气垫导轨与水平面的夹角〉、Δt〈物体在两光电门之间的运动时间〉. 【实验仪器及其使用介绍】: 气垫导轨、数字毫秒计、滑块、游标卡尺、垫块。 一、气垫导轨 气垫导轨是一种现代化的力学实验仪器。实物如下图所示:

掠入射法测量棱镜的折射率实验报告

一、实验名称:掠入射法测量棱镜的折射率 二、实验目的: 掠入射法测定棱镜的折射率。 三、实验器材: 分关计、钠光灯(波长0=589.3nm λ)、棱镜、毛玻璃。 四、实验原理: 如图所示为掠入射法。用单色扩展光源照射到棱镜AB 面上,使扩展光源以约90角掠入射到棱镜上。当扩展光源从各个方向射向AB 面时,以90入射的光线的内折射角最 大,为2max i ,其余入射角小于90的,折射角必小于2max i ,出射角必大于1min i ',而大于90的入射光不能进入棱镜。这样,在AC 侧面观察时,将出现半明半暗的视场。明暗视场的交线就是入射角190i =的光线的出射方向。可以证明: n =掠入射法 五、实验步骤: 1、由于扩展光源辐射进棱镜的入射角度具有一定的范围,因此在AC 出射面观察出射光时,可看到入射角满足1min 190i i <<的入射光线产生的各种方向的出射光形成一个亮区,存在两条明暗交界线。合理摆放钠光灯光源与棱镜入射面的位置,在望远镜中找出这个亮区。 2、旋转载物台,使入射到棱镜入射面的光线越来越少,当光源只有入射角约90的入射光线射入棱镜,望远镜中观察到的视场将由亮区慢慢收窄成为一条清晰的细亮线,此时的亮线就是入射角190i =的光线的出射方向。记录此时亮线的角度1min i 。 3、测量棱镜的顶角α,计算棱镜折射率。 六、实验数据记录:

棱镜顶角的测量数据 最小出射角测量数据 七、 数 据 处 理: 1、由棱镜顶角的测量数据可得: 平均值59.51559.537601659.502= =59.5384 α'''' +++' 2、测量不确定度 所以59.53804'ααα'=±?=± 3、由最小出射角测量数据可得: 平均值1min 39.518'3902'3906'39.508' 3928'4 i +++'== 所以1min 1min 1min 3928'04'i i i '''=±?=± 4、由 n =可得: 所以 1.590.07n n n =±?=±

燃烧热的测定实验报告

实验二 燃烧热的测定 一、目的要求 1.用氧弹量热计测定萘的燃烧热。 2.了解氧弹量热计的原理、构造及使用方法。 二、实验原理 1摩尔物质完全氧化时的反应热称为燃烧热。所谓完全氧化是指C 变为CO 2(气),H 变为H 2O(液),S 变为SO 2(气),N 变为N 2(气),如银等金属都变成为游离状态。 例如:在25℃、1.01325×105Pa 下苯甲酸的燃烧热为-3226.9kJ/mol ,反应方程式为: 1.01325105165222225C H COOH()+7O ()7CO H O Pa s g g l ??????→℃ ()+3() 3226.9kJ/mol c m H O ?=- 对于有机化合物,通常利用燃烧热的基本数据求算反应热。燃烧热可在恒容或恒压条件下测定,由热力学第一定律可知:在不做非膨胀功的情况下,恒容燃烧热V Q U =?,恒压燃烧热p Q H =?。在体积恒定的氧弹式量热计中测得的燃烧热为Q V ,而通常从手册上查得的数据为Q p ,这两者可按下列公式进行换算 ()p V Q Q RT n g =+? (2-1) 式中,Δn(g)——反应前后生成物和反应物中气体的物质的量之差; R ——气体常数; T ——反应温度,用绝对温度表示。 通常测定物质的燃烧热,是用氧弹量热计,测量的基本原理是能量守恒定律。一定量被测物质样品在氧弹中完全燃烧时,所释放的热

量使氧弹本身及其周围的介质和量热计有关附件的温度升高,测量介质在燃烧前后温度的变化值T ?,就能计算出该样品的燃烧热。 ()V W W Q Q C W C M + =+样品 21总铁丝铁丝水水(T -T ) (2-2) 式中,W 样品,M ——分别为样品的质量和摩尔质量; Q V ——为样品的恒容燃烧热; W 铁丝,铁丝Q ——引燃用的铁丝的质量和单位质量的燃烧热 (-16.69kJ g Q =?铁丝); C W 水水,——分别为水的比热容和水的质量; C 总——是量热计的总热容(氧弹、水桶每升高1K ,所需的总 热量); 21T T -——即T ?,为样品燃烧前后水温的变化值。 若每次实验时水量相等,对同一台仪器C 总不变,则(C W C +总水水)可视为定值K ,称为量热计的水当量。 水当量K 的求法是:用已知燃烧热的物质(本实验用苯甲酸)放在量热计中燃烧,测其始末温度,求出T ?,便可据式2-2求出K 。 三、仪器和药品 1.仪器 SHR-15氧弹量热计1台;SWC-ⅡD 精密温度温差仪1台;压片机 1台;充氧器1台;氧气钢瓶1个。部分实验仪器如图2.1和图2.2所示。

实验2 重力加速度的测量

实验3 重力加速度的测量(单摆法) 单摆实验有着悠久历史,当年伽利略在观察比萨教堂中的吊灯摆动时发现,摆长一定的摆,其摆动周期不因摆角而变化,因此可用它来计时,后来惠更斯利用了伽利略的这个观察结果,发明了摆钟。 本实验是用经典的单摆公式测量重力加速度g ,对影响测量精度的因素进行分析,学习如何改进测量方法,以进一步提高测量精度。 【目的要求】 1、用单摆测定动力加速度; 2、学习使用计时仪器(停表、光电计时器); 3、学习在直角坐标纸上正确作图及处理数据; 4、学习用最小二乘法作直线拟合。 【仪器用具】 单摆装置,带卡口的米尺,游标卡尺,电子停表,光电计时器。 【实验原理】 把一个金属小球拴在一根细长的线上,如图1所示。如果细线的质量比小球的质量小很多,而球的直径又比细线的长度小很多,则此装置可看做是一根不计质量的细线系住一个质点,这就是单摆。略去空气的阻力和浮力以及线的伸长不计,在摆角很小时,可以认为单摆 作简谐振动,其振动周期T 为 g l T π 2= ,224T l g π= (1) 式中l 是单摆的摆长,就是从悬点O 到小球 球心的距离,g 是重力加速度。因而,单摆周期 T 只与摆长l 和重力加速度g 有关。如果我们测量 出单摆的l 和T ,就可以计算出重力加速度g 。 【实验内容】 1、固定摆长,测定g 。 (1)测定摆长(摆长l 取100cm 左右)。 图1 ①先用带刀口的米尺测量悬点O 到小球最低点A 的距离1l (见图1),如下所列: 再估计1l 的极限不确定l e 1,计算出标准不确定度31 1l l e =σ。 ②先用游标卡尺多次测量小球沿摆长方向的直径d (见图4-1),如下所列:

单摆测重力加速度实验报告

一、实验目的 1.学会秒表、米尺的正确使用。 2.理解单摆法测定重力加速的原理。 3.研究单摆振动的周期与摆长、摆角的关系。 4.学习系统误差的修正及在实验中减小不确定度的方法。 二、实验仪器 单摆装置,停表(精度为0.01s ),钢卷尺(精度为0.05cm ),游标卡尺(精度为0.02mm )。 三、实验原理 单摆的振动周期决定于重力加速度g 和摆长L ,只需要量出摆长L 并测定摆动周期,就能够得到g 。 如图:当θ<5?时,圆弧可近似的看成直线,f 也可 近似的看成沿着这条直线,则有sin θ=x L ,f=Fsin θ= -mg x L =-m g L x 由牛顿第二定律得:a=f m 则有 a=-g L x 令ω=g L x 最终得单摆的运动方程为 X=A cos(ωt +2π+φ) 其中T=2π ω =2π√ g =4π2 L T 考虑到摆 球是有大小的,故g =4π2 L+ d 2T 摆长L 用米尺测量,摆球直径d 用游 标卡尺测量,周期T 用停表测量。 四、实验步骤 1.测量摆长L 。用米尺测量摆线支点与摆球顶点的距离l 。用游标卡尺测量小球的直径d ,则摆长L=l+d 2 。 2.测量摆动周期T 。用手把摆球拉直偏离平衡位置5度左右,让其在

一个垂直面内自由摆动,小球越过平衡位置瞬间开始计时,连续默数 。 100次全振动时间t,T=t 100 3.为了减小误差,重复测量5次将数据记录于下表中。 五、数据记录与处理

六、结果与讨论 兰州的重力加速度g=9.973±0.005m/s2,结果有偏差,原因有以下几点; 1、测量单摆周期时的反应时间。 2、在测量摆线长度时对最后一位数字的估读。 3、环境方面,温度、湿度、空气阻力的变化都会影响实验结果。 4、悬线质量的影响。 5、摆角角度的影响。 七、试验问题 1、直接测量单摆往返一次的时间会受到人的反应时间的影响,通过多次测量求平均值的方法可以减小误差。 2、1 11.4 3、受空气阻力影响摆幅越来越小,但其周期不变;用木球代替铜球时,因木球密度较小,受空气阻力的影响会变大。

迈克尔逊干涉仪测量空气折射率实验报告

测量空气折射率实验报告 一、 实验目的: 1.进一步了解光的干涉现象及其形成条件,掌握迈克耳孙干涉光路的原理和调节方法。 2.利用迈克耳孙干涉光路测量常温下空气的折射率。 二、 实验仪器: 迈克耳孙干涉仪、气室组件、激光器、光阑。 三、 实验原理: 迈克尔逊干涉仪光路示意图如图1所示。其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。 M1、M2为互相垂直的平面反射镜,M1、M2镜面与分束镜G 均成450角; M1可以移动,M2固定。2 M '表示M2对G 金属膜的虚像。 从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。光束1从G 反射出后投向M1镜,反射回来再穿过G ;光束2投向M2镜,经M2镜反射回来再通过G 膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M1、M2镜时,两束光的光程差δ为 )(22211L n L n -=δ (1) 式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。 M 2M 图1 迈克尔逊干涉仪光路示意图

设单色光在真空中的波长为λ,当 ,3 ,2 ,1 ,0 ,==K K λδ (2) 时干涉相长,相应地在接收屏中心的总光强为极大。由式(1)知,两束相 干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。 当1L 支路上介质折射率改变1n ?时,因光程的相应改变而引起的干涉条纹的 变化数为N 。由(1)式和(2)式可知 1 12L N n λ = ? (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得 0003.0=?n 。可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路 中折射率的微小变化。 正常状态(Pa P C t 501001325.1,15?==)下,空气对在真空中波长为 nm 0.633的光的折射率00027652.1=n ,它与真空折射率之差为 410765.2)1(-?=-n 。用一般方法不易测出这个折射率差,而用干涉法能很方便地测量,且准确度高。 四、 实验装置: 实验装置如图2所示。用He-Ne 激光作光源(He-Ne 激光的真空波长为 nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。扩束镜T 可以使激光束扩束。小孔光栏H 是为调节光束使之垂直入射在M1、M2镜上时用的。另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。气压表用来测量气室内气压。在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。 图2 测量空气折射率实验装置示意图 气压表

燃烧热的测定 实验报告

燃烧热的测定 一、实验目的 ●使用氧弹式量热计测定固体有机物质(萘)的恒容燃烧热,并 由此求算其摩尔燃烧热。 ●了解氧弹式量热计的结构及各部分作用,掌握氧弹式量热计的 使用方法,熟悉贝克曼温度计的调节和使用方法 ●掌握恒容燃烧热和恒压燃烧热的差异和相互换算 二、实验原理 摩尔燃烧焓?c H m 恒容燃烧热Q V ?r H m = Q p ?r U m = Q V 对于单位燃烧反应,气相视为理想气体 ?c H m = Q V +∑νB RT=Q V +△n(g)RT 氧弹中 放热(样品、点火丝)=吸热(水、氧弹、量热计、温度计) 待测物质 QV-摩尔恒容燃烧热Mx-摩尔质量 ε-点火丝热值bx-所耗点火丝质量q-助燃棉线热值cx-所耗棉线质量 K-氧弹量热计常数?Tx-体系温度改变值

三、仪器及设备 标准物质:苯甲酸待测物质:萘 氧弹式量热计 1-恒热夹套2-氧弹3-量热容器4-绝热垫片5-隔热盖盖板6-马达7,10-搅拌器8-伯克曼温度计9-读数放大镜11-振动器12-温度计

四、实验步骤 1.量热计常数K的测定 (1) 苯甲酸约1.0g,压片,中部系一已知质量棉线,称取洁净坩埚放置样片前后质量W1和W2 (2)把盛有苯甲酸片的坩埚放于氧弹内的坩埚架上,连接好点火丝和助燃棉线 (3) 盖好氧弹,与减压阀相连,充气到弹内压力为1.2MPa为止 (4)把氧弹放入量热容器中,加入3000ml水 (5) 调节贝克曼温度计,水银球应在氧弹高度约1/2处 (6) 接好电路,计时开关指向“1分”,点火开关到向“振动”,开启电源。约10min后,若温度变化均匀,开始读取温度。读数前5s振动器自动振动,两次振动间隔1min,每次振动结束读数。 (7)在第10min读数后按下“点火”开关,同时将计时开关倒向“半分”,点火指示灯亮。加大点火电流使点火指示灯熄灭,样品燃烧。灯灭时读取温度。 (8)温度变化率降为0.05°C·min-1后,改为1min计时,在记录温度读数至少10min,关闭电源。先取出贝克曼温度计,再取氧弹,旋松放气口排除废气。 (9)称量剩余点火丝质量。清洗氧弹内部及坩埚。 实验步骤 2. 萘的恒容燃烧热的测定 取萘0.6g压片,重复上述步骤进行实验,记录燃烧过程中温度

大学物理实验报告单摆测重力加速度

——利用单摆测重力加速度 班级: 姓名: 学号: 西安交通大学模拟仿真实验实验报告 实验日期:2014年6月1日 老师签字:_____ 同组者:无 审批日期:_____ 实验名称:利用单摆测量重力加速度仿真实验 一、实验简介 单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。 二、实验原理 用一根绝对挠性且长度不变、质量可忽略不计的线悬挂一个质点,在重力作用下在铅垂平面内作周期运动,就成为单摆。单摆在摆角小于5°(现在一般认为是小于10°)的条件下振动时,可近似认为是简谐运动。而在实际情况下,一根不可伸长的细线,下端悬挂一个小球。当细线质量比小球的质量小很多,而且小球的直径又比细线的长度小很多时,此种装置近似为单摆。单摆带动是满足下列公式: 进而可以推出: 式中L 为单摆长度(单摆长度是指上端悬挂点到球重心之间的距离);g 为重力加速度。如果测量得出周期T 、单摆长度L ,利用上面式子可计算出当地的重力加速度g 。 西安交通大学物理仿真实验报告

三、实验内容 1. 用误差均分原理设计单摆装置,测量重力加速度g. 设计要求: (1)根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法. (2)写出详细的推导过程,试验步骤. (3)用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%. 可提供的器材及参数: 游标卡尺,米尺,千分尺,电子秒表,支架,细线(尼龙线),钢球,摆幅测量标尺(提供硬白纸板自制),天平(公用). 假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△ 米≈0.05cm;卡尺精度△ 卡 ≈0.002cm;千分尺精度△ 千 ≈0.001cm; 秒表精度△ 秒 ≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s 左右,所以实验人员开,停秒表总的反应时间近似为△ 人 ≈0.2s. 2. 对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否 达到设计要求. 3. 研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素的关 系,试分析各项误差的大小. 四、实验仪器 单摆仪,摆幅测量标尺,钢球,游标卡尺(图1-图4)

实验报告测量玻璃折射率

实验报告:测量玻璃折射率 高二( )班 姓名: 座号: 【实验目的】 1、明确测定玻璃砖的折射原理 2、知道测定玻璃砖的折射率的操作步骤 3、会进行实验数据的处理和误差分析 【实验原理】 如图所示,要确定通过玻璃砖的折射光线,通过插针法找出跟入射光线AO 对应的出射光线O 1B ,就能求出折射光线OO 1和折射角θ2, 再根据折射定律就可算出玻璃的折射率n=2 1 sin sin θθ。 【实验器材】 平木板、 白纸、 玻璃砖1块、 大头针4枚、 图钉4个、 量角器(或三角板或直尺)、 铅笔 【实验步骤】 1、把白纸用图钉钉在木板上。 2、在白纸上画一条直线ad 作为玻璃砖的上界面,画一条线段AO 作为入射光线,并过O 点 画出界面ad 的法线NN 1。 3、把长方形的玻璃砖放在白纸上,使他的一个长边ad 跟严格对齐,并画出玻璃砖的另一个 长边bc.。 4、在AO 线段上竖直插上两枚大头针P 1P 2. 5、在玻璃砖的ad 一侧再插上大头针P 3,调整眼睛观察的视线,要使P 3 恰好能挡住P 1P 2在 玻璃中的虚像。 6、用同样的方法在玻璃砖的bc 一侧再插上大头针P 4,使P 4能同时挡住P 3本身和P 1P 2的虚 像。 7、记下P 3、P 4的位置,移去玻璃砖和大头针。过P 3、P 4引直线O 1B 与bc 交于O 1点,连接 OO 1,OO 1就是入射光线AO 在玻璃砖内的折射光线的方向。入射角θ1=∠AON ,折射角θ2=∠O 1ON 1 8、用量角器量出入射角θ1和折射角θ2。查出入射角和折射角的正弦值,记录在表格里。

9、改变入射角θ1,重复上述步骤。记录5组数据,求出几次实验中测得的 2 1 sin sin θθ的平均值,就是玻璃的折射率。 【注意事项】 1、用手拿玻璃砖时,手只能接触玻璃砖的毛面或棱,不能触摸光洁的光学面,严禁把玻璃砖 当尺子画玻璃砖的另一边bc 。 2、实验过程中,玻璃砖在纸上的位置不可移动. 3、玻璃砖要选用宽度较大的,宜在5厘米以上,若宽度过小,则测量折射角度值的相对误差 增大;用手拿玻璃砖时,只能接触玻璃毛面或棱,严禁用玻璃砖当尺子画界面; 4、入射角i 应在15°~75°范围内取值,若入射角α过大。则由大头针P 1、P 2射入玻璃中的光 线量减少,即反射光增强,折射光减弱,且色散较严重,由玻璃砖对面看大头针的虚像将暗淡,模糊并且变粗,不利于瞄准插大头针P 3、P 4。若入射角α过小,折射角将更小,测量误差更大,因此画入射光线AO 时要使入射角α适中。 5、上面所说大头针挡住大头针的像是指“沉浸”在玻璃砖里的那一截,不是看超过玻璃砖上方 的大头针针头部分,即顺P 3、P 4的方向看眼前的直线P 3、P 4和玻璃砖后的直线P 1、P 2的虚像是否成一直线,若看不出歪斜或侧移光路即可确定。 6、大头针P 2、P 3的位置应靠近玻璃砖,而P 1和P 2、P 3和P 4应尽可能远些,针要垂直纸面, 这样可以使确定的光路准确,减小入射角和折射角的测量误差。 【实验数据】 实验数据处理的其他方法:

实验一 自由落体重力加速度的测定

实验一自由落体重力加速度的测定 一、实验目的 1. 通过测定重力加速度,加深对匀加速运动规律的理解: 2. 学习用光电法计时; 3. 学习用落体法测定重力加速度. 二、仪器组成 YJ-LG-3自由落体重力加速度测定仪、YJ-LG-3自由落体重力加速度测定仪专用毫秒计、钢球、卷尺等 三、仪器结构 1. YJ-LG-3自由落体重力加速度测定仪专用毫秒 计面板如图l所示 2. 自由落体测定仪如图2所示 四、实验原理 在重力作用下,物体的下落运动是匀加速直线运 动.可用下列方程来描述: 式中s是在时间t内物体下落的距离.g是重力加速度.如果物体下落的初速度为0,即Vo=0时, 可见若能测得物体在最初t秒内通过的距离S,就可以 估算出g的值,在实验中要严格保证初速度为零有一定 的困难.,故常采用下列方法:实验时,让物体从静止开 始自由下落.如图3所示,设它到达A点的速度为V0. 从A点开始,经过时间t1到达B点,令A、B两点的距 离为S1., 则 若保持上述的初始条件不变,则从A点起,经过时

间t2后.物体到达C点.令A、C两点的距离为S2.则 由式3和式4得: 以上两式相减,得: 那么就有 这里不再出现初速度值,式中的各值均可用自由落体测定仪测量得到. 五、实验步骤 1.调节自由落体仪垂直.将重锤装置安装好,调整底座上的调节螺旋,使重锤悬线与落体仪两立柱平行. 2.将第一光电门放在立柱A处.如离顶端20cm处,调第二光电门于B处.如两光电门相距90cm处,将实验装置上的激光器、接收器与YJ-LG-3自由落体重力加速度测定仪专用毫秒计连接,打开电源,可看见激光器发出红光. 3.调节上、下两个激光器。使激光束平行地对准重锤线后,取下重锤装置. 4.保持上、下两个激光器位置不变,调节上、下两个接收器分别与对应的激光器对准(使激光束垂直射入接收器入射孔),直至用手指通过上、下两光电门时,专用毫秒计能正常计时. 5.按动YJ-LG-3自由落体重力加速度测定仪专用毫秒计功能键(使用方法见附录),选择计时精度为0.0001s,(测完一组数据后,按动复位键归零). 6.用手指托住钢球至落球定位孔,迅速松开手指,记录钢球自由下落通过上、下两光电门的时间t1。 7.用卷尺置于两光电门之间,测出两激光束之间的距离S1。 8. 重复以上步骤,测量八组数据,求平均值. 9.重复以上步骤,改变两光电门距离,用卷尺置于两光电门之间,测出两激光束之间的距离S2,测量八组t2数据,求平均值. 10.将实验数据填入下表.并按式(8)计算重力加速度g.求其误差.

重力加速度测量设计性试验

重力加速度测量(设计性实验) 【实验目的】 (1)推导单摆测量重力加速度的公式。 (2)掌握单摆测量重力加速度实验的实验设计方法及验证方法。 (3)掌握间接测量量不确定度的计算方法。 (4)了解单摆测量重力加速度实验的主要误差来源。 (5)估算实验仪器的选取参数并设计实验数据记录表格。 【设计实验】 设计性实验的设计过程主要有以下几步: (1)根据待测的物理量确定出实验方法(理论依据),推导出测量的数学公式;判定方法误差给测量结果带来的影响。 (2)根据实验方法及误差设计要求,分析误差来源,确定所需要采用的测量仪器(包括量程、精度等)以及测量环境应达到的要求(如空气、电磁、振动、温度、海拔高度等)。 (3)确定实验步骤、需要测量的物理量、测量的重复次数等。 (4)设计实验数据表格及要计算的物理量。 (5)实验验证。要用测得的实验数据,采用误差理论来验证实验结果。若不符合测量要求,则需对上述步骤中的有关参数做出适当调整并重做实验,据测得的实验数据进行实验验证,以此类推直到符合要求为止。 设计实验的原则应在满足设计要求的前提下,尽可能选用简单、精度低的仪器,并能降低对测量环境的要求,尽量减少实验测量次数。 【设计要求】 (1)测定本地区的重力加速度,要求重力加速度的相对不确度小于0.5%,即 g 0.5u g ≤%。确 定所需仪器的量程和精度,以及测量参数(摆长和摆动次数)。 (2)本实验是测量重力加速度的设计性实验,但考虑到设计难度、仪器资源的限制等因素,规定其实验方法采用单摆法。 (3)可用仪器有:钢卷尺(1 mm/2 m ,表示最小分度值为1 mm ,量程为2 m ,下同)、钢直尺(1 mm/1 m )、游标卡尺(0.02 mm/20 cm )、普通直尺(1 mm/20 cm )、电子秒表(0.01 s )、单摆实验仪(含摆线、摆球等)。 【实验内容】 (1)原理分析。写出单摆法测量公式完整的推导过程及近似要求,并画出原理图(查阅相关书籍及网站)。 (2)误差分析。分析实验过程中的主要误差来源并估算。 (3)不确定度的推导与计算。 (4)估算实验参数(摆长和摆动次数)。 (5)设计实验步骤与数据表格。 (6)实验与验证。 【设计提示】

相关主题