搜档网
当前位置:搜档网 › 向量算子(梯度、散度、旋度)与拉普拉斯算符的公式与定义整理

向量算子(梯度、散度、旋度)与拉普拉斯算符的公式与定义整理

向量的点乘和叉乘以及几何意义

所谓点乘(也常称作内积),数学定义如下: 点乘只是表达这个结果的一种方式,符号不重要,叫法也不重要,我可以叫点乘,内积,也可以叫"相乘",定义"#"字符代替“·” 符号都可以,只是人们约束习惯这么这么写,那我们就也都这么写。而且,也不要纠结为什么是这么定义,没有为什么,人们就是这么“龟腚”这个公式的,我们要研究的是这个规定到底能干嘛?有啥具体意义? a.点乘的具体几何意义: 根据公式,我们可以得出a·b=|a| |b|cosθ我试着证明为什么会是这样(为了能让大家看的方便,我将向量标为蓝色,具体长度标为红色): 定义向量c=a - b这样就形成了一个封闭的三角形,c向量为他的第三边 由于余弦定理我们可以知道c2 =a2 +b2 - 2ab cos(θ) (这里的a,b,c全部都是每一边的具体长度)根据定义我们可以推导出c·c=c2(有兴趣的朋友可以去试着推导一下) 所以:c·c=a·a+b·b- 2ab cos(θ) 因为向量的点乘满足分配率:a·(b+c)=a·b+a·c c=a - b c·c=(a -b)·(a - b) c·c=(a·a-2a·b+b·b) (a·a - 2a·b + b·b)=a2+b2- 2ab cos(q) 约掉a·a=a2,b·b=b2; -2a·b= -2ab cos(θ) a·b=ab cos(θ) 因为a=|a| 所以a·b=|a| |b|cosθ 跟据这个公式,我们能拿到两个向量之间的夹角,这对于判断两个向量是否同一方向,是否正交(也就是垂直),很有用处。具体判断如下: a·b>0 方向基本相同,夹角在0°到90°之间 a·b=0 正交 a·b<0 方向基本相反,夹角在90°到180°之间 所以,点乘的几何意义和用处就是计算两个向量之间的夹角,以及在某一方向上的投影。至于为什么要判断两个向量是否方向一致,这在3D中很有用处。比如:3D技术中的光栅化(光栅化的任务是为了绘制每个三角形单元,如何计算构成三角形单元的每个像素的颜色值)过程中,我们可以根据两个面的法向量的点乘判断两个面是否处于同一面,如果不是,那么只要光栅化其中需要显示出来的一面,而另一面我们就不用光栅化它(因为我们根本看不到被遮住的面),这样就节省了很多很多计算,能加快效率。

平面向量的基本概念

平面向量得实际背景及基本概念 1、向量得概念:我们把既有大小又有方向得量叫向量。 2、数量得概念:只有大小没有方向得量叫做数量。 数量与向量得区别: 数量只有大小,就就是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小、 3.有向线段:带有方向得线段叫做有向线段。 4.有向线段得三要素:起点,大小,方向 5、有向线段与向量得区别; (1)相同点:都有大小与方向 (2)不同点:①有向线段有起点,方向与长度,只要起点不同就就就是不同得有向线段 比如:上面两个有向线段就就是不同得有向线段。 ②向量只有大小与方向,并且就就是可以平移得,比如:在①中得两个有向线 段表示相同(等)得向量。 ③向量就就是用有向线段来表示得,可以认为向量就就是由多个有向线段连接而成 6、向量得表示方法: ①用有向线段表示; ②用字母a 、b (黑体,印刷用)等表示; ③用有向线段得起点与终点字母:; 7、向量得模:向量得大小(长度)称为向量得模,记作||、 8、零向量、单位向量概念: 长度为零得向量称为零向量,记为:0。长度为1得向量称为单位向量。 9、平行向量定义: ①方向相同或相反得非零向量叫平行向量;②我们规定0与任一向量平行、即:0 ∥a 。 说明:(1)综合①、②才就就是平行向量得完整定义; (2)向量a、b、c 平行,记作a∥b ∥c 、 10、相等向量 长度相等且方向相同得向量叫相等向量、 说明:(1)向量a与b相等,记作a =b ;(2)零向量与零向量相等; (3)任意两个相等得非零向量,都可用同一条有向线段来表示,并且与有.. A(起点) B (终点) a

空间向量知识点归纳总结归纳

空间向量知识点归纳总结 知识要点。 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2.空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 3.共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫 做共线向量或平行向量,a ρ平行于b ρ,记作b a ρ ?//。 当我们说向量a ρ、b ρ共线(或a ρ//b ρ)时,表示a ρ、b ρ 的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ 存在实数λ,使a ρ =λb ρ。 4.共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在 实数,x y 使p xa yb =+r r r 。 5.空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r ,存在 一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序 实数,,x y z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r 。 6.空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k r r r 表示。 (3)空间向量的直角坐标运算律: ①若123(,,)a a a a =r ,123(,,)b b b b =r ,则112233(,,)a b a b a b a b +=+++r r ,

向量点乘(内积)和叉乘(外积、向量积)概念及几何意思解读

概念 向量是由n个实数组成的一个n行1列(n*1)或一个1行n列(1*n)的有序数组; 向量的点乘,也叫向量的内积、数量积,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。 点乘公式 对于向量a和向量b: a和b的点积公式为: 要求一维向量a和向量b的行列数相同。 点乘几何意义 点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及在b向量在a 向量方向上的投影,有公式: 推导过程如下,首先看一下向量组成:

定义向量: 根据三角形余弦定理有: 根据关系c=a-b(a、b、c均为向量)有: 即: 向量a,b的长度都是可以计算的已知量,从而有a和b间的夹角θ: 根据这个公式就可以计算向量a和向量b之间的夹角。从而就可以进一步判断这两个向量是否是同一方向,是否正交(也就是垂直)等方向关系,具体对应关系为: a·b>0 方向基本相同,夹角在0°到90°之间 a·b=0 正交,相互垂直 a·b<0 方向基本相反,夹角在90°到180°之间 叉乘公式

两个向量的叉乘,又叫向量积、外积、叉积,叉乘的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量组成的坐标平面垂直。 对于向量a和向量b: a和b的叉乘公式为: 其中: 根据i、j、k间关系,有: 叉乘几何意义 在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。 在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。如下图所示:

平面向量的基本概念及线性运算知识点

平面向量 一、向量的相关概念 1、向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB u u u r 按向量a r =(-1,3)平移后得到的向量是_____(3,0) 2、向量的表示方法:用有向线段来表示向量. 起点在前,终点在后。有向线段的长度表示向量的大小,用_____箭头所指的方向____表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示 (1) 模:向量的长度叫向量的模,记作|a |或|AB |. (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r 共线的单位向量是|| AB AB ±u u u r u u u r ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性。 (5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r );④三点A B C 、、共线? AB AC u u u r u u u r 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。零向量的相反向量时零向量。 二、向量的线性运算 1.向量的加法: (1)定义:求两个向量和的运算,叫做向量的加法. 如图,已知向量a ,b ,在平面内任取一点A ,作AB =u u u r a ,BC =u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC =+=u u u r u u u r u u u r 。AB BC CD DE AE +++=u u u r u u u r u u u r u u u r u u u r 特殊情况:a b a b a+b b a a+ b (1)平行四边形法则三角形法则 C B D C B A 对于零向量与任一向量a ,有 a 00+=+ a = a (2)法则:____三角形法则_______,_____平行四边形法则______ (3)运算律:____ a +b =b +a ;_______,____(a +b )+c =a +(b +c )._______ 当a 、b 不共线时,

(完整版)梯度、散度、旋度的关系

梯度 散度 散度(divergence)的概念: 在矢量场F中的任一点M处作一个包围该点的任意闭合曲面S,当S 所限定的体积ΔV以任何方式趋近于0时,则比值∮F·d S/ΔV的极限称为矢量场F在点M处的散度,并记作div F 由散度的定义可知,div F表示在点M处的单位体积内散发出来的矢量F的通量,所以div F描述了通量源的密度。

div F =▽·F 气象学: 散度指流体运动时单位体积的改 变率。简单地说,流体在运动中集中的 区域为辐合,运动中发散的区域为辐散。 用以表示的量称为散度,值为负时为辐 合,此时有利于天气系统的的发展和增 强,为正时表示辐散,有利于天气系统 的消散。表示辐合、辐散的物理量为散 度。 微积分学→多元微积分→多元函数积分: 设某量场由 A (x,y,z) = P(x,y,z)i + Q(x.y,z)j + R(x,y,z)k 给出,其中 P 、Q 、R 具有一阶连续偏导数,Σ 是场内一有向曲面,n 是 Σ 在点 (x,y,z) 处的单位法向量,则 ∫∫A ·n dS 叫做向量场 A 通过曲面 Σ 向着指定侧的通量,而 δP/δx + δQ/δy + δR/δz 叫做向量场 A 的散度,记作 div A ,即 div A = δP/δx + δQ/δy + δR/δz 。 上述式子中的 δ 为偏微分(partial derivative )符号。 散度(divergence )的运算法则: div (α A + β B ) = α div A+ β div B (α,β为常数) div (u A ) =u div A+ A grad u (u 为数性函数) 旋度 设有向量场 A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k 在坐标轴上的投影分别为 δR/δy - δQ/δz , δP/δz - δR/δx ,δQ/δx - δP/δy 的向量叫做向量场A 的旋度,记作 rot A 或curl A ,即 rot A=(δR/δy - δQ/δz )i+(δP/δz - δR/δx )j+(δQ/δx - δP/δy)k 式中的 δ 为偏微分(partial derivative )符号。 行列式记号 旋度rot A 的表达式可以用行列式记号形式表示: 若 A=Ax·i+Ay·j , 则rotA=(dAy/dx)i-(dAx/dy)j 若A=Ax·i+Ay·j+Az·k 则rotA=(dAz/dy-dAy/dz)i+(dAx/dz-dAz/dx)j+(dAy/dx-dAx/dy)k

麦克斯韦方程中的梯度、散度、旋度

MAXWELL方程组 向量场数量场 有源场无源场保守场(无旋场)有旋场(非保守场) 保守场=有势场=无旋场------环流等于零! 有源场-------闭合曲面的通量不等于零!------这些是指场的宏观特性! 3.含时磁场可以感生出电场 4.含时电场可以感生处磁场 上面四个方程可逐一说明如下:在电磁场中任一点处 (1)电位移的散度 == 该点处自由电荷的体密度; (2)磁感应强度的散度 --- 处处等于零。 (3)电场强度的旋度 == 该点处磁感强度变化率的负值; (4)磁场强度的旋度 == 该点处传导电流密度与位移电流密度的矢量和\ 把不明白的字母列举一下: E 是电场强度矢量 D 是电位移矢量(也叫电感应强度)应该还有一个电传导向量 E=D+? B 是磁感应强度矢量 H 是磁场强度矢量 H=B+? 其中内在的联系是: D=εE B=μH

注意上面这些大写字母都是矢量 物理都是循序渐进的,你看看懂麦克斯韦方程组,必须学过微积分和数学物理方程。∮是环路积分,求是对闭合的回路求积分 ▽是哈密顿算符,就是对XYZ三个方向求全导数(偏导数就是如果有几个变量,其他的不变,只求一个的导数,全导数就是把不同变量的偏导数全求出来,再加起来) ·是点乘,×是叉乘,不一样的,这是微积分里的 第一个说的是,电场的源是电荷。<你看它的微分形式,是不是:电场三个方向都求散度后的结果是电荷的密度,(散度通俗理解就是对三个空间方向求微分)这样就说明了电场不能凭空产生,它是有一个源头的,源头就是电荷。这与我们通常的理解也是一样的,到目前为止我们也没有发现,单独的正电荷或负电荷,电场线都是从正电荷出发负电荷截止。 第二个方程,知道第一个方程的含义第二个就很好理解了,他就是说磁场是无源的,也就是说磁场是没有源头的,即磁场线是一条连续的曲线。它不像电场线一样,必须从一个东西发出到一个东西结束。 第三个公式,也是看微分形式。这里对电场取了旋度,<旋度就相当于在电场线的垂直方向上求导>我们看到最后它等于磁场对时间的求导。负号是方向。这是什么意思呢?它是说变化的磁场(含时磁场)能产生电场。这一个在日常生活中用的最多,发电厂就是用的这个发电的。 第四个公式,和上一个方程类似不过又有不同,这里除了变化的电场(含时电场)能产生磁外,还说恒定的电流也能产生磁场。<j是电流的意思>这一个也好理解,你想我们高中学的右手螺旋定则,其实就是用了这个。右手螺旋定则是由电流方向判断磁场方向,那么也就是说有电流就有磁场了。这个是帮助理解,其实是先有,麦克斯维再有右手螺旋定则的。 、 倒三角什么意思啊?我们一般把空间看成 X,Y,Z,的三维空间,这里的倒三角是对这,三个维度分别求导再相加的意思 梯度 1.坡度。 2.单位时间或单位距离内某种现象(如温度、气压、密度、速度等)变化的程度。 3.依照一定次序分层次地:我国经济发展由东向西~推进。 4.依照一定次序分出的层次:考试命题要讲究题型有变化,难易有~。 向量场A,数量场u ▽称为汉密尔顿算子,▽·▽=▽2=△,

梯度、散度和旋度

梯度、散度和旋度是矢量分析里的重要概念。之所以是“分析”,因为三者是三种偏导数计算形式。这里假设读者已经了解了三者的定义。它们的符号分别记作如下: 从符号中可以获得这样的信息: ①求梯度是针对一个标量函数,求梯度的结果是得到一个矢量函数。这里φ称为势函数; ②求散度则是针对一个矢量函数,得到的结果是一个标量函数,跟求梯度是反一下 的; ③求旋度是针对一个矢量函数,得到的还是一个矢量函数。 这三种关系可以从定义式很直观地看出,因此可以求“梯度的散度”、“散度的梯度”、“梯度的旋度”、“旋度的散度”和“旋度的旋度”,只有旋度可以连续作用两次,而一维波动方程具有如下的形式 (1) 其中a为一实数,于是可以设想,对于一个矢量函数来说,要求得它的波动方程,只有求它的“旋度的旋度”才能得到。下面先给出梯度、散度和旋度的计算式: (2) ( 3) (4) 旋度公式略显复杂。这里结合麦克斯韦电磁场理论,来讨论前面几个“X度的X度”。 I.梯度的散度: 根据麦克斯韦方程有:

而 (5) 则电势的梯度的散度为 这是一个三维空间上的标量函数,常记作 (6) 称为泊松方程,而算符▽2称为拉普拉斯算符。事实上因为定义 所以有 当然,这只是一种记忆方式。 当空间内无电荷分布时,即ρ=0,则称为拉普拉斯方程 当我们仅需要考虑一维情况时,比如电荷均匀分布的无限大平行板电容器之间(不包含极板)的电场,我们知道该电场只有一个指向,场强处处相等,于是该电场满足一维拉普拉斯方程,即 这就是说如果那边平行板电容器的负极板接地,则板间一点处的电压与该点距负极板的距离呈线性关系。 II.散度的梯度:

最新向量空间的定义教案(50分钟)

向量空间的定义教案 (50分钟)

“向量空间的定义”教案(50分钟) I 教学目的 1、使学生初步掌握向量空间的概念。 2、使学生初步了解公理化方法的含义。 3、使学生初步尝试现代数学研究问题的特点。 II 教学重点 向量空间的概念。 Ⅲ 教学方式 既教知识,又教思想方法。 Ⅳ 教学过程 第六章 向量空间 §6.1 定义和例子 一、向量空间概念产生的背景 1)αββα+=+ 数 a+b, ab; 2))()(γβαγβα++=++ 几何向量 αβα a ,+; 3)αα=+0 多项式 f(x)+g(x),af(x); 4)0='+αα 函数 f(x)+g(x),af(x); 5)βαβαa a a +=+)( 矩阵 A+B ,aA; 6)αααb a b a +=+)( …… 7))()(ααb a ab = 8)αα=1 二、向量空间的定义 定义1 令F 是一个数域,F 中的元素用小写拉丁字母a,b,c,…来表示。令V 是一个非空集合,V 中元素用小写希腊字母 ,,,γβα来表示。把V 中的元素叫做向量,而把F 中的元素叫做数(标)量,如果下列条件被满足,就称V 是F 上的向量空间: 1 在V 中定义了一个加法,对于V 中任意两个向量βα,,有唯一确定的向量与它们对应,这个向量叫做βα与的和,并且记作βα+。

即若,,V V ∈∈βα则V ∈+→βαβα),(。 2 有一个数量与向量的乘法,对于F 中每一个数a 和v 中每一个向量α有v 中唯一确定的向量与它们对应,这个向量叫做a 与α的积,并且记作αa 。 即V a a V F a ∈→∈∈ααα),(,,。 3 向量的加法和数与向量的乘法满足下列算律: 1)αββα+=+; 2))(γβαγβα++=++; 3)在V 中存在一个零向量,记作0,它具有以下性质:对于V 中每一个向量 α,都有αα=+0; 4)对于V 中每一向量α,在V 中存在一个向量α',使得0=+'αα,这样的α'叫做α的负向量。 5)βαβαa a a +=+)(; 6)ba a b a +=+αα)(; 7))()(ααb a ab =; 8)αα=1。 注1:定义1称为公理化定义,以公理化定义为基础进行研究的方法称为公理化方法。 公理化方法???形式以理化方法 实质公理化方法 注2:数域F 称为基础域。 三、向量空间的例子 例1 解析几何里,V 2或V 3对于向量的加法和实数与向量的乘法来说作成实数域上的向量空间。 例2 M mn (F )对于矩阵的加法和数乘来说作成F 上的向量空间。 特别,},,2,1,|),,,{(21n i F a a a a F i n n =∈=关于矩阵加法和数乘构成的F 上的向量空间称为F 上的n 元列空间。

空间向量知识点总结.doc

空间向量与立体几何知识点总结 一、基本概念 : 1、空间向量: 2、相反向量: 3 、相等向量: 4、共线向量: 5 、共面向量: 6、方向向量 : 7 、法向量 8、空间向量基本定理: 二、空间向量的坐标运算: 1.向量的直角坐标运算 r r 设 a =(a1,a2 , a3 ) , b = (b1 , b2 , b3 ) 则 (1) r r b1, a2 b2, a3 b3 ) ;(2) r r a +b=(a1 a -b=( a1 (3) r a2 , a3 ) (λ∈R);(4) r r λ a =( a1, a · b = a1b1 2.设 A( x1, y1, z1), B( x2, y2, z2),则b1 , a2 b2 , a3b3 ) ;a2b2a3b3; uuur uuur uuur AB OB OA = (x2x1 , y2y1 , z2z1 ) . r r 3、设a ( x1 , y1, z1 ) , b ( x2, y2 , z2 ) ,则 r r r r r r r r r r a P b a b(b 0) ; a b a b 0 x1 x2 y1 y2 z1z2 0 . 4. 夹角公式 r r r r a1b1 a2 b2 a3b3 . 设 a =(a1,a2, a3),b=(b1, b2, b3),则 cos a,b a12 a22 a32 b12 b22 b32 5.异面直线所成角 r r r r | a b | | x1x2 y1 y2 z1 z2 | cos | cos a,b . |= r r x12 y12 z12 x22 y22 z22 | a | | b | 6.平面外一点p 到平面的距离 n r 已知 AB 为平面的一条斜线, n 为平面的一个法 α

梯度旋度散度Word版

梯度、散度和旋度 梯度、散度和旋度是矢量分析里的重要概念。之所以是“分析”,因为三者是三种偏导数计算形式。这里假设读者已经了解了三者的定义。它们的符号分别记作如下: 从符号中可以获得这样的信息: ①求梯度是针对一个标量函数,求梯度的结果是得到一个矢量函数。这里φ称为势函数; ②求散度则是针对一个矢量函数,得到的结果是一个标量函数,跟求梯度是反一 下的; ③求旋度是针对一个矢量函数,得到的还是一个矢量函数。 这三种关系可以从定义式很直观地看出,因此可以求“梯度的散度”、“散度的梯度”、“梯度的旋度”、“旋度的散度”和“旋度的旋度”,只有旋度可以连续作用两次,而一维波动方程具有如下的形式 (1) 其中a为一实数,于是可以设想,对于一个矢量函数来说,要求得它的波动方程,只有求它的“旋度的旋度”才能得到。下面先给出梯度、散度和旋度的计算式: (2) ( 3) (4) 旋度公式略显复杂。这里结合麦克斯韦电磁场理论,来讨论前面几个“X度的X 度”。 I.梯度的散度:

根据麦克斯韦方程有: 而

(5) 则电势的梯度的散度为 这是一个三维空间上的标量函数,常记作 (6) 称为泊松方程,而算符▽2称为拉普拉斯算符。事实上因为定义 所以有 当然,这只是一种记忆方式。 当空间内无电荷分布时,即ρ=0,则称为拉普拉斯方程 当我们仅需要考虑一维情况时,比如电荷均匀分布的无限大平行板电容器之间(不包含极板)的电场,我们知道该电场只有一个指向,场强处处相等,于是该电场满足一维拉普拉斯方程,即 这就是说如果那边平行板电容器的负极板接地,则板间一点处的电压与该点距负极板的距离呈线性关系。 II.散度的梯度: 散度的梯度,从上面的公式中可以看到结果会比较复杂,但是它的物理意义却是很明确的,因为从麦克斯韦方程可以看出空间某点处电场的散度是该点处的电荷密度,那么再求梯度就是空间中电荷密度的梯度。这就好比说清水中滴入一滴红墨水,起初水面红色浓度最高,杯底浓度最低,这样水面与杯底形成一个浓度梯度,红墨水由水面向杯底扩散,最后均匀。在半导体中,载流子分布的不均匀会导致扩散电流。

平面向量的基本概念

平面向量的实际背景及基本概念 1.向量的概念:我们把既有大小又有方向的量叫向量。 2.数量的概念:只有大小没有方向的量叫做数量。 数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 3.有向线段:带有方向的线段叫做有向线段。 4.有向线段的三要素:起点,大小,方向 5.有向线段与向量的区别; (1)相同点:都有大小和方向 (2)不同点:①有向线段有起点,方向和长度,只要起点不同就是不同的有向线段 比如:上面两个有向线段是不同的有向线段。 ②向量只有大小和方向,并且是可以平移的,比如:在①中的两个有向线 段表示相同(等)的向量。 ③向量是用有向线段来表示的,可以认为向量是由多个有向线段连接而成 6.向量的表示方法: ①用有向线段表示; ②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母: AB ; 7.向量的模:向量AB 的大小(长度)称为向量的模,记作|AB |. 8.零向量、单位向量概念: 长度为零的向量称为零向量,记为:0。长度为1的向量称为单位向量。 9.平行向量定义: ①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.即:0 ∥a。 说明:(1)综合①、②才是平行向量的完整定义; (2)向量a、b、c平行,记作a∥b∥c. 10.相等向量 A(起点) B (终点) a

长度相等且方向相同的向量叫相等向量. 说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等; (3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有.. 向线段的起点无关......... 11.共线向量与平行向量关系: 平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关) 说明:(1)平行向量是可以在同一直线上的。 (2)共线向量是可以相互平行的。 例1.判断下列说法是否正确,为什么? (1)平行向量是否一定方向相同? (2)不相等的向量是否一定不平行? (3)与零向量相等的向量必定是什么向量? (4)与任意向量都平行的向量是什么向量? (5)若两个向量在同一直线上,则这两个向量一定是什么向量? (6)两个非零向量相等当且仅当什么? (7)共线向量一定在同一直线上吗? 解析:(1)不是,方向可以相反,可有定义得出。 (2)不是,当两个向量方向相同的时候,只要长度不相等就不是相等向量,但是是平行的。 (3)零向量 (4)零向量 (5)共线向量(平行向量 (6)长度相等且方向相同 (7)不一定,可以平行。 例2.下列命题正确的是( ) A.a与b共线,b与c共线,则a与c 也共线 B.任意两个相等的非零向量的始点与终点是平行四边形的四顶点 C.向量a与b不共线,则a与b都是非零向量 D.有相同起点的两个非零向量不平行 解:由于零向量与任一向量都共线,所以A 不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B 不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C ,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C. B A O D E F

空间向量的基本运算

第六节 空间向量 1. 空间向量的概念:在空间,我们把具有 和 的量叫做向量。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线 或 ,那么这些向量也叫做共 线向量或平行向量,a 平行于b ,记作b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ, 使a = 。 4. 共面向量 (1)定义:一般地,能平移到同一 内的向量叫做共面向量。 说明:空间任意的两向量都是 的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y ,使 。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使 。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个 的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使zk yi xi OA ++=,有序实数组 (,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作

空间向量

学校:年级:教学课题:空间向量 学员姓名:辅导科目:数学学科教师: 教学目标掌握空间向量的基本概念及应用 教学内容 空间向量及其运算 一、学习目标 1. 理解空间向量的概念,掌握其表示方法; 2. 会用图形说明空间向量加法、减法、数乘向量及它们的运算律; 3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 复习1:平面向量基本概念: 具有和的量叫向量,叫向量的模(或长度);叫零向量,记着;叫单位向量. 叫相反向量,a的相反向量记着. 叫相等向量. 向量的表示方法有,, 和共三种方法. 复习2:平面向量有加减以及数乘向量运算: 1. 向量的加法和减法的运算法则有法则和法则. 2. 实数与向量的积: 实数λ与向量a的积是一个量,记作,其长度和方向规定如下: (1)|λa|= . (2)当λ>0时,λa与A. ; 当λ<0时,λa与A. ; 当λ=0时,λa=. 3. 向量加法和数乘向量,以下运算律成立吗? 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb

二、知识点讲解 探究任务一:空间向量的相关概念 问题: 什么叫空间向量?空间向量中有零向量,单位向量,相等向量吗?空间向量如何表示? 新知:空间向量的加法和减法运算: 空间任意两个向量都可以平移到同一平面内,变为两个平面向量的加法和减法运算,例如右图中, OB = , AB = , 试试:1. 分别用平行四边形法则和三角形法则求 ,. a b a b +-a . b 2. 点C 在线段AB 上,且 5 2 AC CB =,则 AC = AB , BC = AB . 反思:空间向量加法与数乘向量有如下运算律吗? ⑴加法交换律:A. + B. = B. + a ; ⑵加法结合律:(A. + b ) + C. =A. + (B. + c ); ⑶数乘分配律:λ(A. + b ) =λA. +λb . 典型例题 例1 已知平行六面体''''ABCD A B C D -(如图),化简下列向量表达式,并标出化简结果的向量: AB BC +⑴; 'AB AD AA ++⑵;1 '2 AB AD CC ++⑶ 1 (')2 AB AD AA ++⑷. 变式:在上图中,用',,AB AD AA 表示' ',AC BD 和'DB .

向量的概念及表示

课题:向量的概念及表示 教学目的: 1.理解向量的概念,掌握向量的几何表示; 2.了解零向量、单位向量、平行向量、相等向量等概念,并会辨认图形中的相等向量或出与某一已知向量相等的向量; 3.了解平行向量的概念. 教学重点:向量概念、相等向量概念、向量几何表示 教学难点:向量概念的理解 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 向量这一概念是由物理学和工程技术抽象出来的,反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题 向量不同于数量,它是一种新的量,关于数量的代数运算在向量范围内不都适用因此,本章在介绍向量概念时,重点说明了向量与数量的区别,然后又重新给出了向量代数的部分运算法则,包括加法、减法、实数与向量的积、向量的数量积的运算法则等之后,又将向量与坐标联系起来,把关于向量的代数运算与数量(向量的坐标)的代数运算联系起来,这就为研究和解决有关几何问题又提供了两种方法——向量法和坐标法 本章共分两大节。第一大节是“向量及其运算”,内容包括向量的概念、向量的加法与减法、实数与向量的积、平面向量的坐标运算;平面向量的数量积及运算律、平面向量数量积的坐标表示等 本节从台湾与大陆直航问题中的距离和方向两个要素出发,以及金钱豹与小狗的追逐问题。抽象出向量的概念,并重点说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念 在“向量及其表示”中,主要介绍有向线段,向量的定义,向量的长度,向量的表示,相等向量,相反向量,自由向量,零向量 教学过程: 一、复习引入: 在现实生活中,我们会遇到很多量,其中一些量在取定单位后用一个实数就可以表示出来,如长度、质量等.还有一些量,如我们在物理中所学习的位移,是一个既有大小又有方向的量,这种量就是我们本章所要研究的向量. 例如:从台湾与大陆直航问题中的距离和方向,以及金钱豹与小狗的追逐问题,方向不同效果不同。抽象出向量的概念,向量是数学中的重要概念之一,向量和数一样也能进行运算,而且用向量的有关知识还能有效地解决数学、物理等学科中的很多问题,在这一章,我们将学习向量的概念、运算及其简单应用.这一节课,我们将学习向量的有关概念. 二、讲解新课: 1.向量的概念:我们把既有大小又有方向的量叫向量 注意:1?数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小 2?从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质 2.向量的表示方法: ①用有向线段表示;

向量 - 向量叉乘 向量点乘

向量- 向量叉乘向量点乘 2010年07月28日星期三14:33 向量(Vector) 在几乎所有的几何问题中,向量(有时也称矢量)是一个基本点。向量的定义包含方向和一个数(长度)。在二维空间中,一个向量可以用一对x和y来表示。例如由点(1,3)到(5,1的向量可以用(4,-2)来表示。这里大家要特别注意,我这样说并不代表向量定义了起点和终点。向量仅仅定义方向和长度。 向量加法 向量也支持各种数学运算。最简单的就是加法。我们可以对两个向量相加,得到的仍然是一个向量。我们有: V1(x1, y1)+V2(x2, y2)=V3(x1+x2, y1+y2) 下图表示了四个向量相加。注意就像普通的加法一样,相加的次序对结果没有影响(满足交换律),减法也是一样的。 点乘(Dot Product) 如果说加法是凭直觉就可以知道的,另外还有一些运算就不是那么明显的,比如点乘和叉乘。点乘比较简单,是相应元素的乘积的和: V1( x1, y1) V2(x2, y2) = x1*x2 + y1*y2 注意结果不是一个向量,而是一个标量(Scalar)。点乘有什么用呢,我们有: A B = |A||B|Cos(θ) θ是向量A和向量B见的夹角。这里|A|我们称为向量A的模(norm),也就是A的长度,在二维空间中就是|A| = sqrt(x2+y2)。这样我们就和容易计算两条线的夹角:Cos(θ) = A B /(|A||B|) 当然你知道要用一下反余弦函数acos()啦。(回忆一下cos(90)=0 和cos(0) = 1还是有好处的,希望你没有忘记。)这可以告诉我们如果点乘的结果,简称点积,为0的话就表示这两个向量垂直。当两向量平行时,点积有最大值 另外,点乘运算不仅限于2维空间,他可以推广到任意维空间。(译注:不少人对量子力学中的高维空间无法理解,其实如果你不要试图在视觉上想象高维空间,而仅仅把它看成三维空间在数学上的推广,那么就好理解了)

向量的基本概念公式

向量的基本概念公式: 1. 向量的概念 (1)向量的基本要素:大小和方向. (2)向量的表示:几何表示法 ;字 母表示:a ; 坐标表示法 a =xi+yj =(x,y). (3)向量的长度:即向量的大小,记作|a |. (4)特殊的向量:零向量a =O ?|a |=O . 单位向量:a O 为单位向量?|a O |= 1. (5)相等的向量:大小相等,方向相同 (x1,y1)=(x2,y2)???==?2 12 1y y x x (6) 相反向量:a =-b ?b =-a ?a +b =0 (7)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a ∥b .平行向量也称为共线向量. ()(a b c a b ++=++AC BC AB =+ AB BA =-,OA OB =-||||a a λλ=>0时, a a λ与同向; a a 与异向; 0a =. ()()a a λμλμ= )a a a μλμ=+ )a b λλ=+ //b a b λ?= 3已知两个非零向量与b ,作OA =a , =b ,则∠AOB=θ (001800≤≤θ)叫做向量与b 的夹角。 4.两个向量的数量积: 已知两个非零向量与b ,它们的夹角为θ,则·b =︱︱·︱b ︱cos θ. 其中︱b ︱cos θ称为向量b 在a 方向上的投影.

5.向量的数量积的性质: 若a =(11,y x ),b =(22,y x )则e ·a =a ·e =︱a ︱cos θ (e 为单位向量); a ⊥ b ?a ·b =0?12120x x y y +=(a ,b 为非零向量);︱a ︱ ; cos θ= a b a b ?? . 6 .向量的数量积的运算律: ·b =b ·;(λ)·b =λ(·b )=·(λb );(+b )·c =·c +b ·c . 7.重要定理、公式 (1) 平面向量基本定理 e 1,e 2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1, λ2,使a =λ1e 1+λ2e 2. (2) 两个向量平行的充要条件 a ∥ b ?a =λb (b ≠0)?x 1y 2-x 2y 1=O. (3) 两个向量垂直的充要条件 a ⊥b ?a ·b =O ?x 1x 2+y 1y 2=O. (4) 线段的定比分点公式 设点P 分有向线段21P P 所成的比为λ,即P P 1=λ2PP ,则 ??? ????++=++=.1,12 12 1λ λλ λy y y x x x (线段定比分点的坐标公式) 当λ=1 时,得中点公式: OP =21(1+2OP )或??? ????+=+=.2,2 2121y y y x x x

52向量空间的定义和基本性质

5.2向量空间的定义和基本性质 授课题目:5.2线性空间的定义和基本性质 教学目标:理解并掌握线性空间的定义及基本性质 授课时数:3学时 教学重点:线性空间的定义及基本性质 教学难点:性质及有关结论的证明 教学过程: 一、线性空间的定义 1. 引例―――定义产生的背景 例子. 设F b a F n ∈∈,,,,γβα则向量的加法和数与向量的乘法满足下述运算律. (1)αββα+=+ (2))()(γβαγβα++=++ (3)ααα=+??有零向量 (4) 0=-+-?)(使,有对αααα (5)βαβαa a a +=+)( (6)αααb a b a +=+)( (7))()(ααb a ab = (8)αα=?1 这里F b a F n ∈∈,,,,γβα 2. 向量空间的定义-抽象出的数学本质 Def: 设V 是一个非空集合,其中的元素称为向量。记作 ,,,γβα;F 是一个数域F c b a ∈ ,,,如果在集合V 中定义了一个叫做加法的代数运算,且定义了F ?V 到V 的一个叫做纯量乘法的代数运算.(F 中元素a 与V 中α的乘积记作V a a ∈αα,)。如果加法和纯量乘法满足: 1)αββα+=+ 2))()(γβαγβα++=++ 3)ααα=+∈?∈?0,0,有对V V (找出0元) 4)?∈?,V ααˊV ∈使得αα+ˊ=称αˊ为α的负向量(找出负元) 5)βαβαa a a +=+)( 6)αααb a b a +=+)( 7))()(ααb a ab =

8)αα=?1 V 是F 上的一个线性空间,并称F 为基数域. 3. 进一步的例子――加深定义的理解 例1:复数域C 对复数的加法和实数与复数的乘法作成实数域R 上的线性空间. 例2:任意数域F 可看作它自身的线性空间. 例3 {}V α=其加法定义为ααα+=, 数乘定义为a αα=, 则V 是数域F 上的线性空间. 注: V={0}对普通加法和乘法是数域F 上的线性空间, 称为零空间. 例4:设F 是有理数域,V 是正实数集合,规定),,(,F a V a a ∈∈=?=⊕βααααββα 练习 集合V 对规定的,⊕ 是否作成数域F 上的线性空间? 1212112212,(,,,)(,,,) (,,,), (,,,)(0,0,,0) n n n n n n V F a a a b b b a b a b a b a a a a =⊕=+++= 解 显然V 对,⊕ 满足条件1)—7),但对任意的 12(,,,)n n a a a F ∈ 有12121(,,,)(0,0,,0)(,,,),n n a a a a a a =≠ 故集合V 对规定的不作成数域F 上的线性空间. 由此例可以看出, 线性空间定义中的条件8)是独立的, 它不能由其他条件推出. 二、线性空间的简单性质 1、线性空间V 的加法和纯量乘法有以下基本性质. Th5.2.1 1) V 的零向量唯一,V 中每个向量的负向量是唯一的. 2) αα=--)( 证明:1)设120,0是V 的两个零向量,则11220000=+=. 设12,αα是α的负向量, 则有 120,0,αααα+=+= 于是 111212220()()0αααααααααα=+=++=++=+= *由于负向量的唯一性, 以后我们把的α唯一负向量记作α-. 2) 因()0,αα+-= 所以().αα--= 3) *我们规定: (),αβαβ-=+- 且有.αβγαγβ+=?=-

相关主题