搜档网
当前位置:搜档网 › 纳米电子技术的发展与展望

纳米电子技术的发展与展望

纳米电子技术的发展与展望
纳米电子技术的发展与展望

纳米电子技术的发展与展望

学院:物理与电子工程学院班级:2016级2班

学号:160302001 姓名:于江

随着对纳米电子技术的研发与应用,纳米电子技术在多项领域中都展现出了其强大潜力,随着对纳米电子技术的深入研发,纳米技术势必将广泛应用于各个领域,并成为人们日常生活中不可替代的必需品。

1.纳米电子技术的发展现状

随着纳米电子技术的发展,各种性能优越、功能独特的纳米电子产品已经逐渐应用于各个领域中,纳米电子技术的具体应用主要体现在三个方面:纳米电子材料、新型电子元器件、现代医学应用。

1.1新型电子元器件

对纳米电子技术的当前模式分析后,可以断定在未来十年内必然会经过飞速发展的历程。

特别是当前市场对于新型电子元器件的需求逐渐增多的背景下,还需要根据实际需求来对新型电子元器件进行扩展与完善。

对此,可以从单电子器件、共振隧穿电子器件、纳米场效应晶体管、纳米尺度MOS 器件、分子电子器件、自旋量子器件、单原子开关等新型信息器件的方向入手,在保证了纳米电子技术朝着良好的方向发展的同时,还可以延续摩尔定律(Moore's Law,ML)

以及CMOS的研究成果。

1.2纳米电子材料

纳米电子技术在材料运用上的成果主要包括:纳米半导体材料、纳米硅薄膜、纳米硅材料等。其中尤以纳米硅材料最具技术优势,想比起传统材料,纳米硅材料更符合未来发展需求,其所具有的优势有:

1.硅分子间距较短,在传递电子信号时速度更快,不仅提高了运行效率,而且降低了信号传递过程中的能耗。

2.能耗低、准确可靠、运行时间较短、不易受外界的环境影响。

3.得益于科技的保证和不断地开发研究应用,使得其成本价钱有所降低。

从上述的优势不难看出,纳米硅电子材料的问世是材料的一个新突破,它的领先技术使得其相较于同等材料具有绝对的优势。相信随着纳米材料的不断研究,纳米材

料在生活中的应用普及之后,会给人类带来意想不到的方便。

1.3光学光刻技术

光学光刻是通过光学系统以投影方法将掩模上的大规模集成电路器件结构图形“刻”在涂有光刻胶硅片上的技术。它是现在产业半导体加工的主流技术。在这种技术中,通常甲基丙烯酸酯聚合物被用作抗蚀涂层,甲基异丁酮和异丙醇合剂被用作显像剂。

目前国际微电子领域最引人关注的热点是新一代光刻技术。限制光刻所能获得的最小线宽与光刻系统的分辨率直接相关,而减小光源的波长是提高光刻分辨率的最有效途径。现在,商品化光刻机的光源波长已经从过去的汞灯光源紫外光波段进入到深紫外波段,除此之外,利用光的干涉特性以及电磁理论(Electromagnetic theory)结合光刻实际对曝光成像的深入分析,采用各种波前技术优化工艺参数也是提高光刻分辨率的重要手段。

1.4纳米电子技术应用于现代医学

随着纳米技术的不断研究和应用,更多的纳米电子技术被应用到医学领域之中。

纳米电子技术的发展有助于细微部位的研究,而这些细微之处通过普通显微镜是无法做到的,纳米电子技术的应用还能有助于纳米传感器的发明,通过纳米传感器可以观察到生化反应的各种不同的化学信息以及电化学信息。此外,还有很多类似伽马刀、螺旋CT以及MRI等高科技医学产品的问世,它们的出现为人类医学注入了新鲜血液。

纳米电子技术作为生物医学与电子学相交的新新技术,它将具有巨大的开发利用价值,它的研究潜力是无穷的。生物医学电子学作为生物医学和电子学两大学科的结合,在生物医学电子设备集成化和微型化方向的研究有着很大的发展空间,这种研究主要基于微电子器件的发展,当器件的尺寸发展到分子或原子的大小水平时,人们对于微小生物体的研究将进入前所未有的新阶段。

2.对未来纳米电子技术的展望

纳米技术的研究和应用已经得到世界上很多国家的认可,各国也加大了对纳米技术研究工作的投入力度。其中,美国提出了名为国家纳米技术(National Nanotechnology Initiativr,NNI)的计划项目,将重点研究纳米电子学。欧盟等多个国家将在支持纳米技术研究的工作上,重点投入到纳米电子材料以及纳米电子器件关于存储系统和信息处理的研究,成立相关委员会,并提出欧盟每年60亿欧元到纳

米电子研究工作中的投资报告,以推进和鼓动研究者参与到纳米电子技术研究的兴趣当中。而在亚洲,中国台湾地区和日韩两国也加入到纳米电子技术研究的计划和策略当中来,也采取了不少积极措施,比如建立纳米电子研究所,加大研究经费的投入等,旨在对纳米电子技术的研究工作中抢占先机,掌握主动。而我国则将纳米研究技术作为重要的科学研究规划,主要进行纳米电子学的研究,而纳米电子学也被中科院肯定为2020年左右最易实现,也对纳米科技研究有重大影响的研究。

2.1碳纳米管

1991年日本科学家第一次发现碳纳米管(carbon nanotubes,CN)。碳纳米管自身是拓扑结构,又有很好的机械强度和导电性等,可以说集光学和机械性能以及电子特性三者的优异性于一身,所以,碳纳米管也被世界上的科学家们作为研究的重点。

利用碳纳米管的电子性,使得它可以往单电子器件和晶体管材料方向展开研究。2010年2月,芬兰和日本的科学家研究出了新型碳纳米管,它是最优的介于半导体和金属性两者平衡点之间的材料,基于对新型碳纳米管的研究,科学家们发现它可以制作成集成电路,且该电路具有逻辑顺序,可为纳米计算机的研发带来一些启发和灵感。同年6月份,瑞典的歌德堡大学研发出了一种对纳米管形成的过程可控的方法,利用碳纳米管可以使晶体管的尺寸变得更小,运行速度也更快,制造出的半导体材料比硅晶体管高出70%的碳纳米管,从而使得电子流动性要高于现有普通半导体材料的25%,可以说半导体材料已经在往新型碳纳米管上转型,新型碳纳米管将会在今后得到更多的应用。

2.2纳米电子元件

纳米电子元件问世之前,电子元件经过了集成元件、超大规模集成元件两个发展历程,因此,纳米电子元件是在“两位前辈”的发展基础上开发出来的。

2010年,美国人发明了纳米处理器。同年,澳大利亚和美国联合研发出了原子晶体管。2011年,美国匹兹堡大学研发出了超小型单电子晶体管,实现了超大规模集成电路朝微型化、低能耗方向发展。在未来的几十年,纳米电子元件将得到不断发展,更多性能优越的电子元件将不断被研发出,这为人类探索更深层次领域提供了可能。

随着集成规模的不断扩大,电子元件的尺寸却要越做越小,要达到纳米尺寸的范围(0.1-100nm),例如刚刚面试的单电子晶体管,它的一个电子信号就代表了一位信息的数据,意思就是晶体管的尺寸要小到极致,从而颠覆了现代电子技术的高集成、高速度下,一定要高能耗的格局。

2.3石墨烯

石墨烯作为一种新型的纳米材料,具有坚硬但极薄的特点。在常温条件下,相对于其他导体,电子的传递速度要相对较快。因此,对于石墨烯的开发研究十分必要。众所周知,导体释放的能量是有电子和原子之间的相互碰撞产生的,但是这种释放方式往往会导致能量的浪费。但是如果石墨烯作为纳米材料进行使用,那么就能大大减少能量的损耗。同时,将石墨烯材料不断进行优化设计,用于集成电路,则会对电路进行改革性推进。

2.4纳米生物电子

2.4.1生物芯片

生物芯片主要包括2方面:(1)纳米复合材料在生物芯片制备方面的应用,增强核酸、蛋白质与片基间静态与动态粘附力,促进小型化、高分辨率与多功能化;(2)拓宽生物芯片应用范围,如植物药有效成分的高通量筛选,癌症等疾病的临床诊断,作为细胞内部信号传感器。

结合微电子磁技术,生物芯片已用于单细胞分离、单基因突变分析、基因扩增与免疫分析。在微小硅材料表明制出能对微量样品进行变性、分离、纯化、电泳、PCR扩增、加样和检测等的微小结构,将普通实验的各步骤微缩在一个芯片上。生物芯片不同于半导体电子芯片,它在很小几何尺度的表面积上装配一种或集成多种生物活性,仅用微量生理或生物采样,即可同时检测和研究不同的生物细胞、生物分子和DNA特性及它们之间的相互作用,从而获得生命微观活动的规律。生物芯片有集成、并行和快速检测的优点,成为21世纪生物医学工程的前沿科技。生物芯片分为细胞芯片、蛋白质芯片(生物分子芯片)和基因芯片(DNA芯片)。

2.4.2纳米探针

利用纳米技术制成纳米探针,可直接对生物分子在其生命环境中进行检测,以获得更真实更详尽的信息。

纳米探针可探测多种细胞化学物质,监控活细胞蛋白质和其他生物化学物质;还可用于筛选微量药物,最终实现评定单个细胞的健康状况。利用纳米探针制成纳米传感器,其纳米级探头可探测单个活细胞并插入活细胞中探知导致肿瘤的早期DNA损伤。

结论:

综上所述,纳米电子技术在电子材料、电子元件、生物医学等方面得到了应用,并取得了较好的成效。随着世界各国对纳米电子技术的重视,各国对纳米电子技术的资金投入以及科学研究者们的不断研发,纳米电子技术真正应用到人们的日常生活将指日可待。届时,高效、环保、科学的生物材料,医学设备和电子晶体管的问世,将会大大改善人们的生活现状,让人们切切实实地体验纳米时代。上文所介绍的仅为纳米科技应用的冰山一角,纳米科技的神通几乎是无限的。几十年来,人们对纳米科技

已进行了大量而深入的研究,目前,纳米科技的某些应用也已实现,但大量的实际应用还处于人们的规划蓝图中,纳米时代的真正到来还需要科学家的长期、不懈努力。希望在不久的将来,纳米科技能以其神奇的技能为人类的生活增添色彩。

参考文献:

[1]刘长利,沈雪石,张学骛,等.纳米电子技术的发展与展望[J].微纳电子技术,2011,48(10):617-622.

[2]朱利丹,张坤树.纳米技术引领下一代科技发展[J].科技中国,2011(7):103.

[3]陈文.纳米电子技术:电子工业的技术革命[J].航空维修与工程,2014(4):31-33.

[4]李乃畅,谭宗颖.世界纳米电子发展策略[J].新材料产业,2010(7):54-58.

电子技术发展与展望

电子技术的发展与展望 通信0908班王格林(09211202)孙玲瑶(09211200) 可以毫不夸张的说,人们现在生活在电子世界中。电子技术无处不在:近至计算机、手机、数码相机、音乐播放器、彩电、音响等生活常用品,远至工业、航天、军事等领域都可看到电子技术的身影。电子技术是十九世纪末,二十世纪初开始发展起来的新兴技术,它在二十世纪的迅速发展大大推动了航空技术、遥测传感技术、通讯技术、计算机技术以及网络技术的迅速发展,因此它成为近代科学技术发展的一个重要标志。 一、电子技术定义: 电子技术是根据电子学的原理,运用电子器件设计和制造某种特定功能的电路以解决实际问题的科学,包括信息电子技术和电力电子技术两大分支。信息电子技术包括 Analog (模拟) 电子技术和 Digital (数字) 电子技术。电子技术是对电子信号进行处理的技术,处理的方式主要有:信号的发生、放大、滤波、转换。 二、电子技术经历时代 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。从1950年起,电子技术经历了晶体管时代,集成电路时代,超大规模集成电路时代,直至现代经历了微电子技术时代,纳米技术,EDA技术,嵌入式技术等。 1、发展初期(电子管,晶体管时代) 起源于20世纪初,20世纪三十年代达到了鼎盛时期。第一代电子技术的核心是电子管。1904年,弗莱明制成了第一只电子二极管用于检测电波, 标志着电子时代的到来。过了不久,美国的德福雷斯特(Lee de Forest)在灯丝和极板之间加人了栅极,从而发明了三极管,并于1906年申请了专利。比起二极管,三极管有更高的敏感度,而且集检波、放大和振荡三种功能于一体。1925年,苏格兰的贝尔德公开展示了他制造的电视,成功地传送了人的面部活动,分辨率为30线,重复频率为每秒5帧。 然而,电子管体积大、笨重、能耗大、寿命短的缺点,使得人们迫切需要一种新的电子元件来替代电子管。飞速发展的半导体物理为新时代的到来铺平了道路。二十世纪二十年代,理论物理学家们建立了量子物理,1928年普朗克应用量子力学,提出了能带理论【能带理论(Energy band theory )是讨论晶体(包括金属、绝缘体和半导体的晶体)中电子的状态及其运动的一种重要的近似理论。它把晶体中每个电子的运动看成是独立的在一个等效势场中的运动,即是单电子近似的理论;对于晶体中的价电子而言,等效势场包括原子实的势场、其他价电子的平均势场和考虑电子波函数反对称而带来的交换作用,是一种晶体周期性的势场】的基本思想,1931年英国物理学家威尔逊在能带理论的基础上,提出半导体的物理模型,1939年肖特基、莫特和达维多夫,建立了扩散理论。这些理论上的突破,为半导体的问世提供了理论基础。 1947年l2月23日,贝尔实验室的巴丁和布拉顿制成了世界上第一个晶体管——点接触三极管,这是世界上第一只晶体三极管,它标志着电子技术从电子管时代进入到晶体管时代迈开第一步。此后不久,贝尔实验室的肖克利又于1948年11月提出一种更好的结型晶体管的设想。到了1954年,实用的晶体管开发成功,并由贝尔实验室率先应用在电子开关系统中。与以前的电子管相比,晶体管体积小、能耗低、寿命长、更可靠,因此,随着半导体

电子封装技术发展现状及趋势

电子封装技术发展现状及趋势 摘要 电子封装技术是系统封装技术的重要内容,是系统封装技术的重要技术基础。它要求在最小影响电子芯片电气性能的同时对这些芯片提供保护、供电、冷却、并提供外部世界的电气与机械联系等。本文将从发展现状和未来发展趋势两个方面对当前电子封装技术加以阐述,使大家对封装技术的重要性及其意义有大致的了解。 引言 集成电路芯片一旦设计出来就包含了设计者所设计的一切功能,而不合适的封装会使其性能下降,除此之外,经过良好封装的集成电路芯片有许多好处,比如可对集成电路芯片加以保护、容易进行性能测试、容易传输、容易检修等。因此对各类集成电路芯片来说封装是必不可少的。现今集成电路晶圆的特征线宽进入微纳电子时代,芯片特征尺寸不断缩小,必然会促使集成电路的功能向着更高更强的方向发展,这就使得电子封装的设计和制造技术不断向前发展。近年来,封装技术已成为半导体行业关注的焦点之一,各种封装方法层出不穷,实现了更高层次的封装集成。本文正是要从封装角度来介绍当前电子技术发展现状及趋势。

正文 近年来,我国的封装产业在不断地发展。一方面,境外半导体制造商以及封装代工业纷纷将其封装产能转移至中国,拉动了封装产业规模的迅速扩大;另一方面,国内芯片制造规模的不断扩大,也极大地推动封装产业的高速成长。但虽然如此,IC的产业规模与市场规模之比始终未超过20%,依旧是主要依靠进口来满足国内需求。因此,只有掌握先进的技术,不断扩大产业规模,将国内IC产业国际化、品牌化,才能使我国的IC产业逐渐走到世界前列。 新型封装材料与技术推动封装发展,其重点直接放在削减生产供应链的成本方面,创新性封装设计和制作技术的研发倍受关注,WLP 设计与TSV技术以及多芯片和芯片堆叠领域的新技术、关键技术产业化开发呈井喷式增长态势,推动高密度封测产业以前所未有的速度向着更长远的目标发展。 大体上说,电子封装表现出以下几种发展趋势:(1)电子封装将由有封装向少封装和无封装方向发展;(2)芯片直接贴装(DAC)技术,特别是其中的倒装焊(FCB)技术将成为电子封装的主流形式;(3)三维(3D)封装技术将成为实现电子整机系统功能的有效途径;(4)无源元件将逐步走向集成化;(5)系统级封装(SOP或SIP)将成为新世纪重点发展的微电子封装技术。一种典型的SOP——单级集成模块(SLIM)正被大力研发;(6)圆片级封装(WLP)技术将高速发展;(7)微电子机械系统(MEMS)和微光机电系统(MOEMS)正方兴未艾,它们都是微电子技术的拓展与延伸,是集成电子技术与精密

微电子技术的发展历史与前景展望

微电子技术的发展历史与前景展望 姓名:张海洋班级:12电本一学号:1250720044 摘要:微电子是影响一个国家发展的重要因素,在国家的经济发展中占有举 足轻重的地位,本文简要介绍微电子的发展史,并且从光刻技术、氧化和扩散技术、多层布线技术和电容器材料技术等技术对微电子技术做前景展望。 关键词:微电子晶体管集成电路半导体。 微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及系统的电子学分支,它主要研究电子或粒子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学,以实现电路的系统和集成为目的,实用性强。微电子产业是基础性产业,是信息产业的核心技术,它之所以发展得如此之快,除了技术本身对国民经济的巨大贡献之外,还与它极强的渗透性有关。 微电子学兴起在现代,在1883年,爱迪生把一根钢丝电极封入灯泡,靠近灯丝,发现碳丝加热后,铜丝上有微弱的电流通过,这就是所谓的“爱迪生效应”。电子的发现,证实“爱迪生效应”是热电子发射效应。 英国另一位科学家弗莱明首先看到了它的实用价值,1904年,他进一步发现,有热电极和冷电极两个电极的真空管,对于从空气中传来的交变无线电波具有“检波器”的作用,他把这种管子称为“热离子管”,并在英国取得了专利。这就是“二极真空电子管”。自此,晶体管就有了一个雏形。 在1947年,临近圣诞节的时候,在贝尔实验室内,一个半导体材料与一个弯支架被堆放在了一起,世界上第一个晶体管就诞生了,由于晶体管有着比电子管更好的性能,所以在此后的10年内,晶体管飞速发展。 1958年,德州仪器的工程师Jack Kilby将三种电子元件结合到一片小小的硅片上,制出了世界上第一个集成电路(IC)。到1959年,就有人尝试着使用硅来制造集成电路,这个时期,实用硅平面IC制造飞速发展.。 第二年,也是在贝尔实验室,D. Kahng和Martin Atalla发明了MOSFET,因为MOSFET制造成本低廉与使用面积较小、高整合度的特点,集成电路可以变得很小。至此,微电子学已经发展到了一定的高度。 然后就是在1965年,摩尔对集成电路做出了一个大胆的预测:集成电路的芯片集成度将以四年翻两番,而成本却成比例的递减。在当时,这种预测看起来是不可思议,但是现在事实证明,摩尔的预测诗完全正确的。 接下来,就是Intel制造出了一系列的CPU芯片,将我们完全的带入了信息时代。 由上面我们可以看出,微电子技术是当代发展最快的技术之一,是电子信息产业的基础和心脏。时至今日,微电子技术变得更加重要,无论是在航天航空技术、遥测传感技术、通讯技术、计算机技术、网络技术或家用电器产业,都离不开微电子技术的发展。甚至是在现代战争中,微电子技术也是随处可见。在我国,已经把电子信息产业列为国民经济的支拄性产业,微电子信息技术在我国也正受到越来越多的关注,其重要性也不言而喻,如今,微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志,微电子科学技术的发展水平和产业规模是一个国家经济实力的重要标志。

微电子导论论文--发展及历史

中国微电子技术发展现状及发展趋势 论文概要: 介绍了中国微电子技术的发展现状,并阐述对微电子技术发展趋势的展望。针对日前世界局势紧张,战争不断的状况,本文在最后浅析了微电子技术在未来轻兵器上的应用。 一.我国微电子技术发展状况 1956年7月,国务院科学专业化规划委员会正式成立,组织数百各科学家和技术专家编制了十二年(1965—1967年)科学技术远景规划,这个著名的《十二年规划》中,明确地把发展计算机技术、半导体技术、无线电电子学、自动化和遥感技术放到战略的重点上,我国半导体晶体管是1957年研制成功的,1960年开始形成生产;集成电路始于1962年,于1968年形成生产;大规模集成电路始于70年代初,80年代初形成生产。但是,同世界先进水平相比较,我们还存在较大的差距。在生产规模上,目前我国集成电路工业还没有实现高技术、低价格的工业化大生产,而国外的发展却很快,美国IBM 公司在日本的野洲工厂生产64K动态存贮器,1983年秋正式投产后,每日处理硅片几万片,月产量为上百万块电路,生产设备投资约8000万美元。日本三菱电机公司于1981年2月开始动土兴建工厂,1984年投产,计划生产64K动态存贮器,月产300万块,总投资约为1.2亿美元。 此外,在美国和日本,把半导体研究成果形成工业化生产的周期也比较短。在美国和日本,出现晶体观后,形成工业生产能力是3年;出现集成电路后形成工业生产能力是1—3年;出现大规模集成电路后形成工业生产能力是1—2年;出现超大规模集成电路后形成工业生产能力是4年。我国半导体集成电路工业长期以来也是停留在手工业和实验室的生产方式上。近几年引进了一些生产线,个别单位才开始有些改观,但与国外的差距还是相当大的。 从产品的产值和产量方面来看,目前,全世界半导体与微电子市场为美国和日本所垄断。这两国集成电路的产量约占体世界产量的百分之九十,早期是美国独占市场,而日本后起直追。1975年美国的半导体与集成电路的产值是66亿美元,分离器件产量为110多亿只,集成路为50多亿块;日本的半导体与集成电路的产值是30亿美元,分离器件产量为122亿只,集成电路为17亿块。1982年美国的半导体与集成电路的产值为75美元,分离器件产量为260多亿只,集成电路为90多亿块;日本的半导体与集成电路的产值为38亿美元,分离器件产量300多亿只,集成电路40多亿块。我国集成电路自1976年至1982年,产量一直在1200万块至3000万块之间波动,没有大幅度的提高,1982年我国半导体与集成电路的产值是0.75亿美元,产量为1313万块,相当于美国1965年和日本1968年的水平。(1965年美国的半导体与集成电路的产值是0.79亿美元,产量为950万块;1968年日本的半导体与集成电路的产值为0.47亿美元,产量为1988万块)。 在价格、成本、劳动生产率、成品率等方面,差距比几十倍还大得多,并且我国小规模集成电路的成品率比国外低1—3倍;中规模集成电路的成品率比国外低3—7倍。目前中、小规模集成电路成品率比日本1969年的水平还低。从经济效益和原材料消耗方面考虑,国外一般认为,进入工业生产的中、小规模集成电路成品率不应低于50%,大规模集成电路成品率不应低于30%。我国集成电路成品率的进一步提高,已迫在眉睫,这是使我国集成电路降低成本,进入工业化大生产、提高企业经济效益带有根本性的一环。从价格上来看,集成电路价格是当前我国集成电路工业中的重大问题,产品优质价廉,市场才有立足之地。我国半导体集成电路价格,长期以来,降价较缓慢,近两三年来,集成电路的平均价格为每块10元左右,这种价格水平均相当于美国和日本1965

现代电力电子技术的发展、现状与未来展望综述上课讲义

现代电力电子技术的发展、现状与未来展 望综述

课程报告 现代电力电子技术的发展、现状与 未来展望综述 学院:电气工程学院 姓名: ********* 学号: 14********* 专业: ***************** 指导教师: *******老师 0 引言

电力电子技术就是使用电力半导体器件对电能进行变换和控制的技术,它是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科。随着经济技术水平的不断提高,电能的应用已经普及到社会生产和生活的方方面面,现代电力电子技术无论对传统工业的改造还是对高新技术产业的发展都有着至关重要的作用,它涉及的应用领域包括国民经济的各个工业部门。毫无疑问,电力电子技术将成为21世纪的重要关键技术之一。 1 电力电子技术的发展[1] 电力电子技术包含电力电子器件制造技术和变流技术两个分支,电力电子器件的制造技术是电力电子技术的基础。电力电子器件的发展对电力电子技术的发展起着决定性的作用,电力电子技术的发展史是以电力电子器件的发展史为纲的。 1.1半控型器件(第一代电力电子器件) 上世纪50年代,美国通用电气公司发明了世界上第一只硅晶闸管(SCR),标志着电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生了各种晶闸管派生器件,如快速晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等。但是,晶闸管作为半控型器件,只能通过门极控制器开通,不能控制其关断,要关断器件必须通过强迫换相电路,从而使整个装置体积增加,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子存储效应,所以工作频率低,一般低于400 Hz。由于以上这些原因,使得晶闸管的应用受到很大限制。 1.2全控型器件(第二代电力电气器件) 随着半导体技术的不断突破及实际需求的发展,从上世纪70年代后期开始,以门极可关断晶闸管(GTO)、电力双极晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。此外,这些器件的开关速度普遍高于晶闸管,可用于开关频率较高的电路。这些优点使电力电子技术的面貌焕然一新,把电力电子技术推进到一个新的发展阶段。 1.3电力电子器件的新发展 为了解决MSOFET在高压下存在的导通电阻大的问题,RCA公司和GE公司于1982年开发出了绝缘栅双极晶体管(IGBT),并于1986年开始正式生产并逐渐系列化。IGBT是MOS?FET和BJT得复合,它把MOSFET驱动功率小、开关速度快的优点和BJT通态压降小、载流能力大的优点集于一身,性能十分优越,使之很快成为现代电力电子技术的主导器件。与IGBT 相对应,MOS 控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)都是MOSFET和GTO的复合,它们都综合

浅谈纳米材料应用及发展前景

Jiangsu University 浅谈纳米材料应用及发展前景

摘要 纳米材料展现了异常的力学、电学、磁学、光学特性、敏感特性和催化以及光活性,为新材料的发展开辟了一个崭新的研究和应用领域。纳米技术在精细陶瓷、微电子学、生物工程、化工、医学等领域的成功应用及其广阔的应用前景使得纳米材料及其技术成为目前科学研究的热点之一,被认为是世纪的又一次产业革命。纳米材料向国民经济和高新科技等各个领域的渗透以及对人类社会的进步的影响是难以估计的。 关键词:纳米材料;纳米应用;量子尺寸效应 1.前言 纳米材料和纳米结构无论在自然界还是在工程界都不是新生事物。在自然界存在大量的天然纳米结构,只不过在透射电镜的应用以前人们没有发现而已。 在工程方面,纳米材料80年代初发展起来的,纳米材料其粒径范围在1—100nm之间,故纳米材料又称超微晶材料。它包括晶态、非晶态、准晶态的金属、陶瓷和复合材料等。由于极细的晶粒和大量处于晶界和晶粒缺陷中心的原子,纳米材料的物化性能与微米多晶材料有着巨大的差异,具有奇特的力学、电学、瓷学、光学、热学及化学等多方面的性能,从而使其作为一种新型材料在电子、冶金、宇航、化工、生物和医学等领域展现出广阔的应用前景。目前已受到世界各

国科学家的高度重视。美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年内将投资250亿日元发展纳米材料和纳米科学技术;英国也将发展纳米材料科学技术作为重振英国工业的突破;我国的自然科学基金“863”计划、“793”计划以及国家重点实验室都将纳米材料列为优先资助项目[1]。美国科学技术委员会把“启动纳米技术的计划看作是下一次工业革命的核心”[2]。 2.纳米材料的制备 现行的纳米材料制备方法很多。但是真正能够高效低成本制备纳米材料的方法还是现在各个国家研究的重点。目前已报的工艺方法主要有以下几种:物理气相沉积法(PVD)和化学气相沉积法(CVD)、等离子体法、激光诱导法、真空成型法、惰性气体凝聚法、机械合金融合法、共沉淀法、水热法、水解法、微孔液法、溶胶—凝胶法等等。 3.纳米材料的主要应用 3.1纳米材料在工程方面的应用 纳米材料的小尺寸效应使得通常在高温下才能烧结的材料如SiC 等在纳米尺度下在较低的温度下即可烧结,另一方面,纳米材料作为烧结过程中的活性添加剂使用也可降低烧结温度,缩短烧结时间。纳米粉体可用于改善陶瓷的性能,其原因在于微小的纳米微粒不仅比表面积大,而且扩散速度快,因而进行烧结时致密化的速度就快,烧结

浅谈机械电子技术的未来发展趋势

浅谈机械电子技术的未来发展趋势 摘要:机械电子技术融合了机械、电子以及计算机等多方面的专业技术和知识,通过协调配合形成了机电一体化。在实际的工作中,利用计算机把集成控制、数 据检测分析以及数据处理等功能集中到轻便的机械配件中,这样一来解改善了传 统机械操作复杂笨重的缺点。另外应用电子技术还可以实现一部分自动化,使机 械能够在程序的控制下自动完成一些任务,这样可以高效率地完成批量生产,提 升生产配件的标准化,节省大量的人力与时间,促进了企业经济效益的提升,有 利于企业在市场中取得竞争优势。 关键词:机械电子技术;基本现状;发展趋势 1机械电子技术 机械电子技术也称之为机电一体化,是指在机械生产活动过程中运用的电机 技术,实现电子技术和机械生产的有效结合,对于提高生产效率和质量具有重要 意义。我国对于机械电子技术研究起步比较晚,只能够应用在狭小范围之内,但 是随着技术水平提升,机械电子技术获得了创新,覆盖范围在不断扩大,而且纳 入了多种学科,综合型的技术体系慢慢形成。在机械控制、操作以及动力系统等 方面获得大大提高,更加具体、全面分配电子技术功能,有利于促进机械设备结 构优化,提高资源利用率,创造出巨大经济效益。 2机械电子技术特征 相比较于传统机械,机械电子技术在设计产品的时候,会体现出灵活性的特点,而且操作起来非常快捷方便。同时要具有一定的创新性,可以满足多元化需求,不断拓展市场领域,获得更好的发展机遇。在自动化系统控制下,机械电子 技术只需要只需要按照规定就可以完成生产活动,过程中不会受到人为主观因素 影响,大大提高了产品质量。由此可见,机械电子技术功能是非常强大的,代表 着先进生产水平,可以适应发展的需求。 3机械电子技术的应用 3.1质量检测 科技发展有效提高了信息的流动性,并且也产生了大量高性能材料,此材料 逐渐代替传统工业材料,所以投入及重视程度在不断提高。设备机械化要满足现 代工业生产需求,传统根据人工检测技术已经无法满足科技高精度需求,所以目 前所发展的高精度设备就是机械电子技术的重要展现。 3.2农业方面 在信息化时代不断发展的过程中,农业发展进程要求有效实现现代化的进程,从而支撑国民经济的发展。农业现代化发展能够有效解决低效率、低品质及低产 量等问题,和其具有密切关系的农业机械具有重要的作用。利用现代化机械电子 信息技术融入,能够使农业机械效率得到提高,促进现代化农业的持续发展。 3.3电子产品 在机械生产过程中,为了使设备重量及体积得到降低,使部分零件通过电子 部件进行代替,以此使设备灵活性得到提高。电子产品制造中的机械微电子技术 相关全新的纳米技术能够精准掌握部件内部结构,并且还能够实现合理科学改造。 3.4工业制造 将微电子技术应用到产品制造中,使行业市场竞争力得到进一步的提高,从 而有效实现企业经济效益持续发展。比如,将微电子技术应用到汽车制造行业中,能够使防盗系统及监控系统性能得到进一步提高。在汽车电子引擎系统中使用微

未来20年汽车电子技术发展趋势

收稿日期:2009-08-02 作者简介:高成(1937-),男,陕西人,教授级高工,主要从事汽车电子发展方向的评估和规划. 未来20年汽车电子技术发展趋势 高 成1,邱 浩2 (1. 深圳市航盛电子股份有限公司,广东 深圳; 2. 深圳职业技术学院 汽车与交通学院,广东 深圳 518055) 摘 要:安全性、节能、减排和舒适娱乐性是汽车电子未来发展的主要方向,全球各大汽车电子研发团队争相加大对这4个方面的研发力度.本文介绍了全球最具影响力的来自欧洲、美洲和亚洲的6个专业汽车电子研发公司的最新研究进展,主要集中在汽车安全、动力性、环保、车载通讯、信息娱乐、半导体技术和微控制器的开发上.分析结果表明,未来20年内汽车电子工业发展的重点将转移到第三世界国家,汽车性能的提高更多地依赖于电子技术的提升,电动汽车将不可阻挡地占据重要地位. 关键词:汽车电子;安全;环保;半导体 中图分类号:TK9;TN3 文献标识码:A 文章编号:1672-0318(2010)01-0033-07 在过去10年里,汽车工业发生了2个显著变化,一是增长的基点正在从经欧美市场向以亚洲国家为主的发展中地区市场转移[1].数据显示,2007-2012年亚洲和欧洲将会主导全球汽车产量的89%;二是在市场成熟的欧美国家,汽车的性能的提高更多地依赖于电子技术.有研究表明,1989年至2010年,电子设备在整车制造成本所占比例,由16%增至40%以上.目前每部新车的IC 成本约在310美元左右,估计到2015年将增长到400美元左右.无论是市场重心向发展中国家转移,还是技术重心向电子技术倾斜,都将势必影响到汽车电子发展的方向[2].而且,其技术本身也将面临着来自性能、安全以及环保法规多方面的苛刻要求.今后10年,电子技术在汽车工业中扮演着多大的作用,它又应该如何承担起汽车电子化的重任?本文就全球一些专业的汽车主体厂商和零配件厂商进行专业分析,展望未来20年汽车电子方向的发展趋势. 1 德尔福:绿色、安全和通讯是 汽车电子的未来 德尔福通过对推动全世界新技术、产品和市 场发展的全球趋势全面的调查和研究,发现汽车电子行业的未来就是绿色性环保性、安全性和连通通讯. (1)环保型.全球汽车行业最主要的发展趋势就是倾向于发展高效燃料、低碳排放量的发动机[3].目前有许多选择方案,其一就是先进的柴油发动机和电子控制系统,在公路驾驶时,其燃料经济性比汽油发动机提高30%~40%;其二就是电动动力系统或混合动力汽车(HEV ).混合动力汽车技术应用有许多结构,但都涉及一个小型电池组、一个电子控制器及一个可以使汽车发动机在停车时自动关闭并在发动机自动重起前对汽车进行再次电动加速的电动机.混合动力汽车系统可以提高汽车的燃油经济性达30%~40%,并降低碳排放达60%.纯电动汽车的研发工作仍在继续,而且范围已拓展至电动汽车或插入式混合动力汽车.这些汽车采用更大的电池组,可以在纯电动驱动的情况下,行驶更长的距离.最后,供应商和汽车制造商正在开发气缸压力传感和均质充量压燃燃烧(HCCI )等系统,以在经济性和汽油发动机排放方面取得更大的进展.所有这些动力系统的创新技术都将在未来的5~15年里为全世界的汽车增加大量电子内容. (2)安全性.汽车电子发展的第二大趋势是安 2010年第1期 Journal of Shenzhen Polytechnic No.1, 2010 深圳职业技术学院学报

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

议电气工程技术与学科发展的历史及展望

议电气工程技术与学科发展的历史及展望 论文摘要:梳理了电气工程技术从电磁学理论的建立到新技术革命时期电气工程技术的进步这样一个发展脉络,介绍了电气学科的形成与发展,并分析了电气工程技术的发展趋势。 论文关键词:电气工程技术;电气学科;发展史 一、电气工程技术的发展史 电气工程(Electrical Engineering)是现代科技领域核心学科之一,传统的电气工程定义为用于创造产生电气与电子系统的有关学科的总和。21世纪的电气工程概念已经远远超出这一范畴,如今电气工程涵盖了几乎所有与电子、光子有关的工程行为。电气工程的发展程度直接体现了国家的科技进步水平,因此,电气工程的教育和科研在发达国家大学中始终占据重要地位。 1.电磁学理论的建立及通讯技术的发展 大自然中的雷电使人类对电有了最早、最朴素的认识,天然磁石吸铁是人类对磁现象的最早观察,然而,人类对电磁现象的研究始于16世纪的英国,1663年德国科学家盖利克发明了摩擦起电的仪器,1729年英国科学家发现电荷可以通过金属传导等等,这是人类对电的早期实验,之后又出现了一系列具有里程碑意义的发现与发明。 (1)库仑定律。1785年法国物理学家库仑通过扭秤测量静电力和磁力总结出:两个电荷之间的作用力与它们间距离的平方成反比,与它们所带电荷量的乘积成正比,这就是著名的库仑定律。这一发现的历史意义在于它标志着人类对电磁现象的研究从定性阶段进入了定量阶段。 (2)“伏打电池”。1799年意大利物理学家伏特经过反复实验发现把任何潮湿物体放到两个不同金属之间都会产生电流,一年后伏特发明了世界上第一个电池,自此人类对电的研究由静电扩大到了动电,开辟了电学研究的新领域。(3)奥斯特发现电流的磁效应和安培右手定则。1820年奥斯特偶然发现通电铂丝周围的小磁针发生轻微晃动,之后他经过反复实验证实了这一发现。其后安培进行了更深入的研究,提出了右手定则,发现了电流方向与磁针转动方向之间的关系。安培还通过实验发现了两个通电导体和两个通电线圈之间相互作用的规

纳米材料研究现状及应用前景要点

纳米材料研究现状及应用前景 摘要:文章总结了纳米粉体材料、纳米纤维材料、纳米薄膜材料、纳米块体材料、纳米复合材料和纳米结构的制备方法,综述了纳米材料的性能和目前主要应用领域,并简单展望了纳米科技在未来的应用。 关键词:纳米材料;纳米材料制备;纳米材料性能;应用 0 引言 自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得铁纳米微粒以来,纳米材料的制备、性能和应用等各方面的研究取得了重大进展。纳米材料的研究已从最初的单相金属发展到了合金、化合物、金属无机载体、金属有机载体和化合物无机载体、化合物有机载体等复合材料以及纳米管、纳米丝等一维材料,制备方法及应用领域日新月异。 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料,包括纳米粉体( 零维纳米材料,又称纳米粉末、纳米微粒、纳米颗粒、纳米粒子等) 、纳米纤维( 一维纳米材料) 、纳米薄膜( 二维纳米材料) 、纳米块体( 三维纳米材料) 、纳米复合材料和纳米结构等。纳米粉体是一种介于原子、分子与宏观物体之间的、处于中间物态的固体颗粒,一般指粒度在100nm以下的粉末材料。纳米粉体研究开发时间最长、技术最成熟,是制备其他纳米材料的基础。纳米粉体可用于:高密度磁记录材料、吸波隐身材料、磁流体材料、防辐射材料、单晶硅和精密光学器件抛光材料、微芯片导热基片与布线材料、微电子封装材料、光电子材料、先进的电池电极材料、太阳能电池材料、高效催化剂、高效助燃剂、敏感元件、高韧性陶瓷材料、人体修复材料、抗癌制剂等。纳米纤维指直径为纳米尺度而长度较大的线状材料,如纳米碳管,可用于微导线、微光纤( 未来量子计算机与光子计算机的重要元件) 材料、新型激光或发光二极管材料等。纳米薄膜分为颗粒膜与致密膜。颗粒薄膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜;致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于气体催化材料、过滤器材料、高密度磁记录材料、光敏材料、平面显示器材料、超导材料等。纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料,主要用途为超高强度材料、智能金属材料等。纳米复合材料包括纳米微粒与纳米微粒复合( 0- 0 复合) 、纳米微粒与常规块体复合( 0- 3复

微电子技术的发展

什么是集成电路和微电子学 集成电路(Integrated Circuit,简称IC):一半导体单晶片作为基片,采用平面工艺,将晶体管、电阻、电容等元器件及其连线所构成的电路制作在基片上所构成的一个微型化的电路或系统。 微电子技术 微电子是研究电子在半导体和集成电路中的物理现象、物理规律,病致力于这些物理现象、物理规律的应用,包括器件物理、器件结构、材料制备、集成工艺、电路与系统设计、自动测试以及封装、组装等一系列的理论和技术问题。微电子学研究的对象除了集成电路以外,还包括集成电子器件、集成超导器件等。 集成电路的优点:体积小、重量轻;功耗小、成本低;速度快、可靠性高; 微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向; 衡量微电子技术进步的标志要在三个方面:一是缩小芯片器件结构的尺寸,即缩小加工线条的宽度;而是增加芯片中所包含的元器件的数量,即扩大集成规模;三是开拓有针对性的设计应用。 微电子技术的发展历史 1947年晶体管的发明;到1958年前后已研究成功一这种组件为基础的混合组件; 1958年美国的杰克基尔比发明了第一个锗集成电路。1960年3月基尔比所在的德州仪器公司宣布了第一个集成电路产品,即多谐振荡器的诞生,它可用作二进制计数器、移位寄存器。它包括2个晶体管、4个二极管、6个电阻和4个电容,封装在0.25英寸*0.12英寸的管壳内,厚度为0.03英寸。这一发明具有划时代的意义,它掀开了半导体科学与技术史上全新的篇章。 1960年宣布发明了能实际应用的金属氧化物—半导体场效应晶体管(metal-oxide-semiconductor field effect transistor ,MOSFET)。 1962年生产出晶体管——晶体管逻辑电路和发射极耦合逻辑电路; 由于MOS电路在高度集成和功耗方面的优点,70年代,微电子技术进入了MOS电路时代;随着集成密度日益提高,集成电路正向集成系统发展,电路的设计也日益复杂、费事和昂贵。实际上如果没有计算机的辅助,较复杂的大规模集成电路的设计是不可能的。 微电子发展状态与趋势 微电子也就是集成电路,它是电子信息科学与技术的一门前沿学科。中国科学院王阳元院士曾经这样评价:微电子是最能体现知识经济特征的典型产品之一。在世界上,美国把微电子视为他们的战略性产业,日本则把它摆到了“电子立国”的高度。可以毫不夸张地说,微电子技术是当今信息社会和时代的核心竞争力。 在我国,电子信息产业已成为国民经济的支柱性产业,作为支撑信息产业的微电子技术,近年来在我国出现、崛起并以突飞猛进的速度发展起来。微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志。 1.微电子发展状态 1956年五校在北大联合创建半导体专业:北京大学、南京大学、复旦大学、

微电子技术发展趋势及未来发展展望

微电子技术发展趋势及未来发展展望 论文概要: 本文介绍了穆尔定律及其相关内容,并阐述对微电子技术发展趋势的展望。针对日前世界局势紧张,战争不断的状况,本文在最后浅析了微电子技术在未来轻兵器上的应用。由于这是我第一次写正式论文,恳请老师及时指出文中的错误,以便我及时改正。 一.微电子技术发展趋势 微电子技术是当代发展最快的技术之一,是电子信息产业的基础和心脏。微电子技术的发展,大大推动了航天航空技术、遥测传感技术、通讯技术、计算机技术、网络技术及家用电器产业的迅猛发展。微电子技术的发展和应用,几乎使现代战争成为信息战、电子战。在我国,已经把电子信息产业列为国民经济的支拄性产业。如今,微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志。 集成电路(IC)是微电子技术的核心,是电子工业的“粮食”。集成电路已发展到超大规模和甚大规模、深亚微米(0.25μm)精度和可集成数百万晶体管的水平,现在已把整个电子系统集成在一个芯片上。人们认为:微电子技术的发展和应用使全球发生了第三次工业革命。 1965年,Intel公司创始人之一的董事长Gorden Moore在研究存贮器芯片上晶体管增长数的时间关系时发现,每过18~24个月,芯片集成度提高一倍。这一关系被称为穆尔定律(Moores Law),一直沿用至今。 穆尔定律受两个因素制约,首先是事业的限制(business Limitations)。随着芯片集成度的提高,生产成本几乎呈指数增长。其次是物理限制(Physical Limitations)。当芯片设计及工艺进入到原子级时就会出现问题。 DRAM的生产设备每更新一代,投资费用将增加1.7倍,被称为V3法则。目前建设一条月产5000万块16MDRAM的生产线,至少需要10亿美元。据此,64M位的生产线就要17亿美元,256M位的生产线需要29亿美元,1G位生产线需要将近50亿美元。 至于物理限制,人们普遍认为,电路线宽达到0.05μm时,制作器件就会碰到严重问题。 从集成电路的发展看,每前进一步,线宽将乘上一个0.7的常数。即:如果把0.25μm看作下一代技术,那么几年后又一代新产品将达到 0.18μm(0.25μm×0.7),再过几年则会达到0.13μm。依次类推,这样再经过两三代,集成电路即将到达0.05μm。每一代大约需要经过3年左右。 二.微电子技术的发展趋势 几十年来集成电路(IC)技术一直以极高的速度发展。如前文中提到的,著名的穆尔(Moore)定则指出,IC的集成度(每个微电子芯片上集成的器件数),每3年左右为一代,每代翻两番。对应于IC制作工艺中的特征线宽则每代缩小30%。根据按比例缩小原理(Scaling Down Principle),特征线条越窄,IC的工作速度越快,单元功能消耗的功率越低。所以,IC的每一代发展不仅使集成度提高,同时也使其性能(速度、功耗、可靠性等)大大改善。与IC加工精度提高的同时,加工的硅圆片的尺寸却在不断增大,生产硅片的批量也不断提高。以上这些导致

浅谈我对微电子的认识

[键入公司名称] 浅谈我对微电子的认识 [键入文档副标题] X [选取日期] [在此处键入文档摘要。摘要通常为文档内容的简短概括。在此处键入文档摘要。摘要通常为文档内容的简短概括。]

我是电子信息科学与技术专业的学生,考虑到微电子对我们专业知识学习的重要性,我怀着极大的热情报了《微电子入门》这门选修课。希望通过这门课的学习,使我对微电子有更深入的认识,以便为以后的专业课学习打下基础。 微电子是一门新兴产业,它的发展关系着国计民生。它不仅应用于科学领域,也被广泛应用于国防、航天、民生等领域。它的广泛应用,使人们的生活更见方便。现代人的生活越来越离不开电子。因此,对电子的了解显得十分重要。微电子作为电子科学的一个分支,也发挥着日益重要的作用。通过几周的学习,我对微电子有了初步的认识。 首先,我了解了微电子的发展史,1947年晶体管的发明,后来又结合印刷电路组装使电子电路在小型化的方面前进了一大步。到1958年前后已研究成功以这种组件为基础的混合组件。集成电路的主要工艺技术,是在50年代后半期硅平面晶体管技术和更早的金属真空涂膜学技术基础上发展起来的。1964年出现了磁双极型集成电路产品。 1962年生产出晶体管——晶体管理逻辑电路和发射极藉合逻辑电路。MOS集成电路出现。由于MOS电路在高度集成方面的优点和集成电路对电子技术的影响,集成电路发展越来越快。 70年代,微电子技术进入了以大规模集成电路为中心的新阶段。随着集成密度日益提高,集成电路正向集成系统发展,电路的设计也日益复杂、费时和昂贵。实际上如果没有计算机的辅助,较复杂的大规模集成电路的设计是不可能的。70年代以来,集成电路利用计算机的设计有很大的进展。制版的计算机辅助设计、器件模拟、电路模拟、逻辑模拟、布局布线的计算辅助设计等程序,都先后研究成功,并发展成为包括校核、优化等算法在内的混合计算机辅助设计,乃至整套设备的计算机辅助设计系统。 微电子技术是随着集成电路,尤其是超大型规模集成电路而发展起来的一门新的技术。微电子技术包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,微电子技术是微电子学中的各项工艺

电子技术历史回顾与未来展望

电子技术历史回顾与未来展望 摘要:当今的世界已经迈入信息化社会,电子通信产品的更新速度也越来越快,科学技术日新月异,我们的生活也在发生前所未有的巨大改变。而这一切都离不开人类对电的开发和利用,大到工厂里面的生产流水线,小到只有不到一毫米的芯片,无一不渗透着人类对电子产品的研发智慧。回顾过去,我们看到了前辈们一路走来所付出的艰辛和努力,展望未来,现在科学家们的不懈努力又为我们勾画出了一幅美好的蓝图。本课题主要是通过对人类电子技术发展的历程的总览以及对一些里程碑式的巨大跨越的详述,结合当今时代最新的电子技术成果,来分析很展望人类未来电子技术的前景。 关键词:电子技术;历史发展;未来前景 1引言 电子技术是十九世纪末、二十世纪初开始发展起来的新兴技术,二十世纪发展最迅速,应用最广泛,成为近代科学技术发展的一个重要标志。进入21世纪,人们面临的是以微电子技术(半导体与集成电路为代表)、电子计算机和因特网为标志的信息社会。高科技的广泛应用使社会生产和经济获得了空前的发展。现在电子技术在国防、科学、工业、医学、通讯(信息处理、传输和交流)及文化生活等各个领域中起着巨大的作用。现在的世界,电子技术无处不在:收音机、彩电、VCD、DVD、电子手表、数码相机、电脑、大规模生产的工业流水线、因特网、机器人、航天飞机、宇宙探测仪……可以说,人们现在生活在电子世界中,一天也离不开它。 从十九世纪末电报、电话和留声机的发明到现在电脑、液晶电视和超大规模计算机的应用,电子技术实现了飞跃式的发展。如今的电子产品已经不再是奢侈品,反而随着科技的发展,它的价格降得越来越低,就像摩尔定律(注:摩尔定律是由英特尔(Intel)创始人之一戈登·摩尔(Gordon Moore)提出来的。其内容为:当价格不变时,积体电路(IC)上可容纳的电晶体数目,约每隔24个月(1975年摩尔将24个月更改为18个月)便会增加一倍,性能也将提升一倍;或者说,每一美元所能买到的电脑性能,将每隔18个月翻两倍以上。这一定律揭示了信息技术进步的速度)说的那样。 2电子技术发展历史 1)发展初期(电子管、晶体管时代) 1895年,荷兰物理学家Hendrik Antoon Lorentz假定了电子的存在。1897年,著名英国物理学家Thomson,Joseph John用实验找出了电子。1883年,美国发明家爱迪生发现了热电子效应。1904年,弗莱明利用这个效应制成了电子二极管,并证实了电子管具有“阀门”作用。弗莱明将制成的第一支电子管用来检测电波,标志着电子时代的到来。过了不久,美国的德福雷斯特(Lee de Forest)在灯丝和极板之间加人了栅极,从而发明了三极管,并于1906年申请了专利。比起二极管,三极管有更高的敏感度,而且集检波、放大和振荡三种功能于一体。1925年,苏格兰的贝尔德公开展示了他制造的电视,成功地传送了人的面部活动,分辨率为30线,重复频率为每秒5帧。

纳米材料的应用和发展前景概要

一、文献调研部分(获取综述的参考文献—精读全文)1.利用中文(期刊、学位论文、会议论文)数据库,检出中文切题题录(批量),选择记录文摘格式10篇(其中学位论文要求不少于2篇、期刊论文6篇); [1]叶灵. 纳米材料的应用与发展前景[J]. 科技资讯. 2011(20) 摘要: 很多人都听说过"纳米"这个词,但什么是纳米,什么是纳米技术,可能很多人并不一定清楚。着名的诺贝尔奖获得者Feyneman在20世纪60年代曾经预言:如果我们对物体微小规模上的排列加以某种控制的话,我们就能使物体得到大量的异乎寻常的特性,就会看到材料的性能产生丰富的变化。他所说的材料就是现在的纳米材料。 [2]赵雪石. 纳米技术及其应用前景[J]. 适用技术市场. 2000(12) 摘要: 纳米技术在精细陶瓷、微电子学、生物工程、化工、医学等领域的成功应用及其广阔的前景,使得纳米技术成为目前科学研究的热点之一,被认为是21世纪的又一次产业革命。 [3]何燕,高月,封文江. 纳米科技的发展与应用[J]. 沈阳师范大学学报(自然科学版). 2010(02) 摘要:纳米科技是21世纪的主导产业,世界各国把纳米科技的研究和应用作为战略重点。在第五次科学技术革命中,新材料家族被推上新一轮科技革命的顶峰。在新材料和新技术中,纳米材料和纳米技术无疑将成为核心材料和核心技术。纳米技术的最终目标是直接操纵单个原子和分子,制造新功能器件,从而开拓人类崭新的生活模式。文章概述了纳米科技的发展过程及纳米材料的性质与制备,介绍了纳米技术在部分领域的应用,并简述了纳米技术对未来社会的巨大影响及潜在的、令人鼓舞的发展前景。 [4]何彦达. 纳米材料的应用及展望[J]. 科技风. 2010(01) 摘要:纳米材料(尺寸在1-100纳米范围内)又称超细微粒、超细粉末,是处在原子簇和宏观物体交界过渡区域的一种典型系统,其结构既不同于体块材料,也不同于单个的原子。其特殊的结构层次使它拥有一系列新颖的物理和化学特性,在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用价值。 [5]樊东黎. 纳米技术和纳米材料的发展和应用[J]. 金属热处理. 2011(02) 摘要:<正>2005年12月在克利夫兰召开了由美国金属学会和克利夫兰纳摩网主办的美国纳米技术应用峰会。许多实体企业,如波音、福特、通用、洛克希德、蒂姆肯等公司高管出席会议和发言。会议的特点是着重于纳米。 [6]张桂芳. 纳米材料应用与发展前景概述[J]. 黑龙江科技信息. 2009(16) 摘要:由于独特的微结构和奇异性能,纳米材料引起了科学界的极大关注,成为世界范围内的研究热点,以下概述了纳米材料的应用与发展前景。 [7]杨萍. 多功能复合纳米材料的制备及其光分析应用研究[D]. 中国科学技术大学 2012 摘要:纳米材料具有独特的化学、物理和生物性能,引起了人们的极大关注。多功能复合结构纳米材料能够将不同功能的纳米材料整合到一个纳米器件中,从而为现代工业、生物医学

相关主题