搜档网
当前位置:搜档网 › osgEarth数据加载及组织解析

osgEarth数据加载及组织解析

osgEarth数据加载及组织解析
osgEarth数据加载及组织解析

osgEarth数据加载及组织解析

1.osgEarth的数据加载流程

由前文可知,用户可以使用osgEarth自己的earth文件,简单指定各种数据源,而不用关心数据如何渲染,便能在三维球上显示各种地形数据。本节,将会解读osgEarth如何解析earth 文件,利用用户提供的数据源,来构建三维球上的各种地形。

图3.1所示是加载数据的整体流程,本节将就这四个步骤进行具体的解读。

图3.1 osgEarth数据加载整体流程

1.1 读取earth文件

osgEarth继承了OSG的插件机制,所以osgEarth提供了专门读取earth文件的osgdb_earth 插件。通过查找并调用此插件,达到读取earh文件的目的。图3.2展示了查找读取earth插件的具体流程:

图3.2 查找读取earth插件的具体流程

这个具体流程展示了osgEarth如何找到读取earth的插件——osgdb_earth.dll。这个流程其实也是osg插件机制中的具体流程,主要在read函数中根据文件后缀名查找读写插件,查找策略见前文2.1.3的OSG插件机制,找到插件后便根据文件名构建ReadNodeFunctor的仿函数,然后调用doRead()函数来具体读取。

无论读取earth文件,还是读取影像数据、高程数据或一般的文字,都是这样一个流程,通过找到具体插件后调用插件里的doRead函数。

在osgdb_earth中,主要就是将earth文件中的内容转换成后面构造map需要的conf对象。图3.3展示了一个包含标签比较全面的earth文件,图3.4为转换后的conf结果结构图:

图3.3 普通earth文件内部代码

图3.4 earth文件转换后的conf对象结构图

如图所示,将earth文件中的标签转换成就conf对象就是将标签语言的嵌套转换成父子关系,然后每个对象包含自己的属性值。

1.2 构建map

由上一节可知,通过earth插件,将earth文件中的数据属性,渲染属性等构成conf对象。接下来,就是根据这些属性,来构造一个包含影像、高程、模型等的map。图3.5展示了osgEarth 构造map流程:

图3.5 通过属

性构造map对象

由图可知,此时构造的map,并没有实际的读取数据,仅仅是将从earth文件中获取的conf 对象属性进行分类,构造了一个逻辑map,主要指定了map包含什么图层,每个图层的名字、数据源和所需driver插件。

1.3 构建mapNode

这一步将是加载数据中的重点。在这一步,将会通过上一步获取的map对象及options对象,调用具体的driver插件,来构成地形节点。

构建mapNode的过程可以分为两步,第一步是在osgViewer(OSG最基本的场景图形浏览器,osgEarth最基本的场景图形浏览器是在osgViewer基础上改进的osgEarth_viewer,其主要是加载组织地形数据等,核心渲染功能还是osgViewer)渲染前的预处理,主要在地形引擎的preInitialize()中完成。osgEarth2.4的默认地形引擎为MpterrainEngineNode,所以一般是在MpterrainEngineNode::preInitialize()中完成第一步。这其中,主要完成地形节点的初步框架构建,及底图影像的加载。如图3.6所示

图3.6 构建mapNode第一步逻辑

第二步便是在osgviewer开始渲染,创建漫游,相机开始添加场景时,进行后续的添加,并使用TileKey管理构建四叉树组织。此时根据视点范围及距离,通过OSG的PagedLOD分页机制,动态调度选择加载区域瓦片节点。关于数据如何按四叉树进行组织,分页LOD如何动态调度选择加载数据将在后文进行详细解读。此处主要关注构建mapNode的流程和最后mapNode的逻辑节点树。如图3.7所示。

图3.7 构建mapNode第二步逻辑

下面便来解读每一步的详细流程。

图3.8 构建mapNode第一步详细流程

图3.8展示的是构建mapNode第一步的详细流程,最后生成包含了地形节点、模型节点和overlay模型节点的子树。其中,在根据map的空间参考坐标系设置TerrainEngineNode的坐标系和椭球模型时,map对象有获取profile属性。Profile是确定数据的空间信息重要属性,其如何确定数据的空间信息将在后文进行详细说明。若map对象的options中没有设置profile,默认将其中的SRS(空间参考系)设置为WGS84坐标系。

图3.9 构建mapNode第二步详细流程

图3.9展示的是构建mapNode第二步详细流程。此处只挑出了重点的函数,主要创建了第一层的TileKey和根节点。每个rootNode包含四叉树索引组织的key,包括范围信息等,然后还包含这块范围的各种数据,所以,创建根节点的createRootNode将是我们下面分析的重点。

图3.10 创建根节点的逻辑流程

图3.10展示的是创建根节点的逻辑流程。由图可知,归纳为做了两件事,第一件即创建了包含影像图层、高程图层及TileKey的瓦片模型,第二件事是将这个模型以PagedLOD形式加入根节点。其中TileKey包含模型的空间信息,能正确确定数据在三维球上的正确位置,且以四叉树形式被组织起来。PagedLOD即分页LOD,能根据视点范围动态选择加载哪些节点。这两个技术将在后文详细解读。

图3.11 createRootNode流程

图 3.11展示了创建根节点的详细流程。其中,在创建影像图层和高程图层中,相应的execute函数里分别调用了createImage()函数和createHeightfields()函数,这两个函数根据数据中的option属性,调用了相应driver的插件,而进行了实际具体的数据读取。如果需要写自己的插件读取影像数据或高程数据,则必须重载这两个函数。

图3.12 GeoLocator的具体空间信息处理

GeoLocator确定了瓦片模型的位置,如图3.12所示,主要通过key获取地形块的范围,然后再移至相应的位置。

综上,一个包含地形节点、模型节点和overlay模型节点的mapNode便被正确的构成了。其中最主要的便是地形节点的构造,它包含的影像图层、高程图层等都以四叉树结构进行组织,以分页LOD模式进行动态调度渲染。

更为详细的流程图,可参见附件中的osgEarth数据读取流程。

1.4 加载节点至场景树

最后的加载节点至场景树很简单,就是创建一个group节点,将mapNode包含进去,然后这个将加入osgViewer的渲染流程。

具体代码如下:

osg::Group* root = new osg::Group();

root->addVhild(mapNode.get());

在程序运行时,因为视野的改变,osgEarth会利用PagedLOD动态的加载卸载瓦片节点,而会重复上面构造mapNode的步骤来构造新的节点。

2.空间信息组织编码及位置确定

上一节内容解读了osgEarth 如何将earth 文件读入,并利用其中的XML 标签构建地形结点从而达到渲染目的。这一节则主要解读如何将数据放入三维球正确的位置并进行组织。

简单而言,关于位置属性的记录,osgEarth 就只是利用任何地形数据都会包括的投影坐标系及经纬度信息进行定位。这样的优点在于,无论何种数据源的数据,只要能最后确定一定的投影参考系,便能保证被放置在正确的位置,数据之间保持正确的拓扑关系和逻辑关系。而相关的投影系转换,标准,表达方式,国际上规定也十分明确。一个统一的标准,使osgEarth 能接纳更多源的数据。

本节,就会首先介绍osgEarth 相关的空间参考系,然后再解读其具体如何确定数据在三维球上的位置。同时,由前文可知,osgEarth 通过创建用四叉树结构的分层瓦片缓存,可以快速加载大地形数据。最后,将解读其生成的缓存文件编码。

2.1 空间参考系

osgEarth 中,每个map 对象,layer 对象,tilesource 对象,均有决定其所属空间位置的属性profile 。Profile 中,包含记录对象空间参考系的属性SRS 。通常,我们用经纬度来表示数据的位置。可是不同空间参考系中,相同的经纬度不一定表示一个地方。所以,osgEarth 中每个数据对象都会包含空间参考系属性SRS 。

一个空间参考系,包含以下内容[15]: ①坐标系类型 ②水平基准 ③高程基准 ④投影

下面也就这四个方面对osgEarth 的空间参考系进行介绍。 (一)坐标系类型

osgEarth 支持三种地图的显示方法。 ①地理坐标系类型

展示的方式便是三维数字地球,使用角度制的经纬度。代表包括WGS84坐标系和NAD83坐标系。

②投影坐标系类型

展示的方式是将三维区域投影到二维(X,Y )平面。代表包括UTM 投影,墨卡托投影。 ① ECEF

即Earth Centered Earthh Fixed 。是osgEarth 自定义的坐标系类型,是一种三维的笛卡尔坐标系,原点定于球心,X 轴指向纬度/经度(0,0),Y 轴指向纬度/经度(0,-90),Z 轴指向北极。其坐标系体系同OSG 的世界坐标系体系是一致的,如图3.13所示。

图3.13 ECEF

(二)水平基准面

根据地理空间测量方法的不同,基准面便会不同。同一个地方也可以有不同的基准标准。

Z 轴

Y 轴 X 轴

因为地球并不是一个完美的球体,甚至不是一个完美的椭球,所以为了拟合地球的形状,特定的地方会选用特定的水平基准面。一般而言,在北美会使用WGS84和NAD83,在欧洲会使用ETR89。

在osgEarth中,默认的水平基准面是WGS84,如果没有为数据设定相应的水平基准信息,osgEarth会默认设置WGS84的相关参数。

(三)高程基准面

高程基准是为了测量高程的。有许多类的高程基准,osgEarth支持两种高程基准:大地基准面(基于椭球)和大地水准面(基于地球上一些高程点)。

osgEarth内置以下四种高程基准面:

①Geodetic(大地基准面)。此为默认高程基准面,osgEarth使用水平基准面椭球来作参考。

②EGM84 geoid(大地水准面)

③EGM96 geoid(大地水准面),一般被称为MSL,在DTED和KML数据中会被使用

④EGM2008 geoid(大地水准面)

在osgEarth中,默认的高程基准面是geodetic高程水准面,海拔依据HAE(height above ellipsoid)来测量。

(四)投影

SRS同时也提供投影信息,即将三维点投影到二维平面的方法。

因为osgEarth依赖GDAL和OGR两个工具库,所以它能支持上千种投影方法,如有名的UTM投影,兰伯特投影。

SRS使用WKT(Well Known Text),PROJ4或EPSG方式来表达SRS空间参考系。这三种方式都是国际上比较通用的方式,这也增加了osgEarth的通用性。本文就不详细介绍这三种空间参考系表达方法了。

2.2 数据组织及位置确定

在前文的数据预处理中有提到过,osgEarth是实时建立分层瓦片集来进行实时渲染。简单而言,osgEarth就是通过记录了SRS和范围信息的profile属性,创建瓦片数据TileSource,并通过TileKey来进行四叉树进行管理。

图3.14 瓦片分层LOD

如图3.14所示,osgEarth 中的世界范围是以经纬度来表示,若将球形表面剖开铺成平面,其最左为西经180度,最右为东经180度,最上为北纬90度,最下为南纬90度。

实时加载时,osgEarth 会根据map 或数据的profile 属性实时进行分层瓦片化。表3.1列出的是profile 中关于瓦片分层的一些属性,其中的数值是一个全球影像数据的属性值。下面将会详细解说osgEarth 如何利用这些数据将数据分层瓦片化,并确定数据的位置。

numTilesWideAtLod0和 numTilesHighAtLod0是确定最高一层的宽度与高度,即行数与列数。默认是宽度为2,高度为1。这个默认值正好将第一层的全球数据分成东西半球。然后osgEarth 将继续向下分层瓦片,随着一层层的深入,地形块就变得越来越小。当地形块大小比视点到块的距离还小时,便不再继续深入了。

…………

第二层

lod:1

0 1 2 3 4 5 6 7

0 1

2 3

x

y

西半球

东半球

第一层

lod:0

第三层

lod:2

(-180,90)

(180,90)

(-180,-90)

(-180,90)

TileKey

TileKey(2,5,1)

每向下深入一层,每一个瓦片TileSource 便会等分成四块。每一个瓦片TileSource 均有一个TileKey 进行管理,上一层的TileKey 会有下一层的4个子key ,由此体现了四叉树组织的思想。

在osgEarth 中,瓦片的左上角是原点,TileKey 便是从左上角开始编码。一般为TileKey (lod ,x ,y ),如图10中第三层瓦片所示。其中阴影部分所对应的key 为TileKey (2,5,1)。

随着瓦片的细化,每一块瓦片的范围也会逐渐变小。如图10中第三层瓦片里的阴影区域,其坐标范围便是西至东经45度,东至东经90度,南至赤道,北至北纬45度的瓦片块。这些数值将被记录到这个瓦片的extent 属性中,如表2所示,其对应值分别为west ,east 、south 和north 。

当数据源在此范围内有数据时,此瓦片便会加载,否则不会加载。这样总的加载块数也不会那么多。同时根据这个范围,osgEarth 将会确定了数据所处位置。

2.3 缓存编码

osgEarth 支持缓存机制,可以提前将网络数据缓存在本地,使快速访问。图3.15便是一个缓存文件夹的示例。

图3.15 缓存文件夹

图3.15中,第一层的文件夹名称是缓存的名称编号。一般一个cache 只加载一个数据源。图 3.15中显示的缓存包括三个数据源的数据。第二层,第三层和第四层,就分别按TileKey 的(lod ,x ,y )来进行编码,最里层的osgb 是osg 的一种二进制文件,便存储了每个瓦片tileSource 的数据。在每一个数据源的缓存文件夹中,包括了一个记载数据源属性的json 文件。从图3.15可知,第一层的数据源缓存文件夹编码似乎是乱码,其实其为利用哈希算法压缩过的conf 配置属性。

如图3.15中的缓存文件夹617891fe_3be5346,可以分为两段来理解。第一段是下划线前面的字符串61781fe ,代表着cacheId ,第二段是下划线后面的字符串3be5346,代表HorizSignature ,水平署名。

第一段的cacheId 是在分解conf 属性,构建map 对象的时候计算的。它只取得map 的layer 中的tilesource 的conf 属性,将其写成Json 文件,然后对此文件使用MumurHash 算法,进行哈希压缩,最后形成cacheId 的字符串。具体流程见图3.16。

第一层

第二层

第三层 第四层

tilesource的

,然后将之转

JSON格式,使

算法

cacheId。

图3.16 cacheId计算流程

第二段的horizSignature(表2中也有此属性),是在用map构造mapNode时获取map的profile属性时计算。此时,获取map中可以确定空间信息的水平基准面、垂直基准面、地图范围、numTileWideAtLod0、numTilesHighAtLod0属性,这些属性构成的conf属性,同cacheId 一样,先转换成Json文件,然后对此文件使用MumurHash算法,进行哈希压缩,最后形成horizSignature的字符串。

所以,缓存的文件名并不是乱码,也是包含了数据源tilesource与map的空间信息的。

数据库sql课后练习题及答案解析

数据库sql课后练习题及答案解析 (borrow 表) (reader表)1) 找出姓李的读者姓名(NAME)和所在单位(COMPANY)。2) 列出图书库中所有藏书的书名(BOOK_NAME)及出版单位(OUTPUT)。3) 查找“高等教育出版社”的所有图书名称(BOOK_NAME)及单价(PRICE),结果按单价降序排 序。4) 查找价格介于10元和20元之间的图书种类(SORT),结果按出版单位(OUTPUT)和单价(PRICE)升序排序。5) 查找书名以”计算机”开头的所有图书和作者(WRITER)。6) 检索同时借阅了总编号(BOOK_ID)为112266和449901两本书的借书证号(READER_ID)。##7)* 查找所有借了书的读者的姓名(NAME)及所在单位(COMPANY)。8)* 找出李某所借所有图书的书名及借书日期(BORROW_DATE)。9)* 无重复地查询xx年10月以后借书的读者借书证号(READER_ID)、姓名和单位。##10)* 找出借阅了一书的借书证号。11) 找出与”赵正义”在同一天借书的读者姓名、所在单位及借书日期。12) 查询xx年7月以后没有借书的读者借书证号、姓名及单位。#13) 求”科学出版社”图书的最高单价、最低单价、平均单价。##14)* 求”信息系”当前借阅图书的读者人次数。#15) 求出各个出版社图

书的最高价格、最低价格和总册数。#16) 分别找出各单位当前借阅图书的读者人数及所在单位。17)* 找出当前至少借阅了2本图书(大于等于2本)的读者姓名及其所在单位。18) 分别找出借书人次数多于1人次的单位及人次数。19) 找出藏书中各个出版单位的名称、每个出版社的书籍的总册数(每种可能有多册)、书的价值总额。20) 查询经济系是否还清所有图书。如果已经还清,显示该系所有读者的姓名、所在单位和职称。附录:建表语句创建图书管理库的图书、读者和借阅三个基本表的表结构:创建BOOK:(图书表)CREATE TABLE BOOK ( BOOK_ID int, SORT VARCHAR(10), BOOK_NAME VARCHAR(50), WRITER VARCHAR(10), OUTPUT VARCHAR(50), PRICE int); 创建READER:(读者表)CREATE TABLE READER (READER_ID int,COMPANY VARCHAR(10),NAME VARCHAR(10),SEX VARCHAR(2),GRADE VARCHAR(10),ADDR VARCHAR(50)); 创建BORROW:(借阅表)CREATE TABLE BORROW ( READER_ID int, BOOK_ID int, BORROW_DATE datetime)插入数据:BOOK表:insert into BOOK values(445501,'TP3/12','数据库导论','王强','科学出版社', 17、90);insert into BOOK values(445502,'TP3/12','数据库导论','王强','科学出版社', 17、90);insert into BOOK values(445503,'TP3/12','数据库导论','王强','科学出版社',

数据分析作业

一、第4题方差分析 1.1 建立数据文件 由题意可知,在同一浓度和温度下各做两次实验,将每一次的实验结果看作一个样本量,共342=24 ??个样本量。 (1) 在“变量视图”下,名称分别输入“factor1”、“factor1”、“result”,类型设为“数值”,小数均为“0”,标签分别为“浓度”、“温度”、“收率”,factor1的值“1=A1,2=A2,3=A3”,factor2的值“1=B1,2=B2,3=B3,4=B4”,对齐选择“居中”。 (2) 在“数据视图”下,根据表中数据输入对应的数据。 数据文件如图1所示,其中“factor1”表示浓度,“factor2”表示温度,“result”表示收率。三种不同浓度分别用1、2、3表示,四种不同温度分别用1、2、3、4表示。 图1.1 SPSS数据文件格式 1.2 基本思路 ,利用单因素方差分析,对 (1) 设“浓度对收率的影响不显著”为零假设H 该假设进行判定。 ,则可 (2) 设“它们间的交互作用对收率没有显著影响”分别依次为假设H 是否成立。 以通过多因素方差分析工具,利用得出的结果即能证明假设H 1.3 操作步骤 (1) 单因素的方差分析操作 ①分析—比较均值—单因素;因变量列表:收率;因子:浓度; ②两两比较:选中“LSD”复选框,定义用LSD法进行多重比较检验;显著性水平:0.05,单击“继续”; ③选项:选中“方差齐次性检验”,单击“继续”; ④单击“确定”。 (2) 有交互作用的两因素方差分析操作

①分析—一般线性模型—单变量;因变量:收率;固定因子:温度、浓度; ②绘制。水平轴:factor1,选择浓度作为均值曲线的横坐标,单图:factor2,选择温度作为曲线的分组变量;单击添加—继续。 ③选项。显示均值:factor1,定义估计因素1的均值;显著性水平:0.05;单击“继续”; ④单击“确定”。 1.4 结果分析 (1) “浓度对收率有无显著影响”结果分析 执行上述操作后,生成下表。 表1.1 方差齐性检验 表1中Levene统计量的取值为0.352,Sig.的值为0.708,大于0.05,所以认为各组的方差齐次。 表1.2 单因素方差分析 从表2可以看出,观测变量收率的总离差平方和为119.58;如果仅考虑浓度单因素的影响,则收率总变差中,浓度可解释的变差为39.083,抽样误差引起的变差为80.875,它们的方差分别为19.542、3.851,相除所得的F统计量的观测值为5.074,对应的概率P值为0.016,小于显著性水平0.05,则应拒绝原假设,认为不同浓度对收率产生了显著影响,它对收率的影响效应不全为0。

2020年1月浙江自学考试试题及答案解析数据库原理试卷及答案解析

浙江省2018年1月高等教育自学考试 数据库原理试题 课程代码:02336 一、单项选择题(本大题共15小题,每小题2分,共30分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.在数据库系统中,把可以相互区别的客观事物称为() A.属性 B. 字段 C.文件 D.实体 2.数据库的存储设备和存取方法变化不影响整体逻辑结构的特点,称为数据库的()A.实体独立性 B.物理数据独立性 C.客观独立性 D.逻辑数据独立性 3.数据库系统中,使用专用的查询语言操作数据的人员是() A.数据库管理员 B.专业用户 C.应用程序员 D.最终用户 4.学生社团可以接纳多名学生参加,但每个学生只能参加一个社团,从社团到学生之间的联系类型是() A. 多对多 B. 一对多 C. 多对一 D. 一对一 5.在SQL语言中,用于测试列值非空的语句是() A. IS NOT EMPTY B.IS NOT NULL C. NOT UNIQUE D.NOT EXISTS 6.如果关系模式R上有函数依赖AB→C和A→C,则R中存在() A. 完全依赖 B.部分依赖 C. 传递依赖 D.多值依赖 7.关系模型的参照完整性约束是指() A.限制引用一个关系中的不同元组数据 B.限制引用不同关系中的元组数据 C.限制一个关系引用与之联系关系中不存在的元组数据 D.限制两个关系间的互相引用 1

8.4元关系R为:R(A,B,C,D),则() A.ΠA,C(R)为取属性值为A、C的两列组成 B.Π1,3(R)为取属性值为l、3的两列组成 C.Π1,3(R)与ΠA,C(R)是等价的 D.Π1,3(R)与ΠA,C(R) 是不等价的 9.下列叙述中正确的是() A.X →→Y,其中Z=U-X-Y=Φ,则称X→→Y为非平凡的多值依赖; B.X →→Y,其中Z=U-X-Y=Φ,则称X→→Y为平凡的多值依赖; C.对于函数依赖A1,A2,…,An→B来说,如果B是A中的某一个,则称为非平凡函数依赖; D.对于函数依赖A1,A2,…,An→B来说,如果B是A中的某一个,则称为平凡函数依赖; 10.在嵌入式SQL中,为了把集合操作转换成单记录处理方式,引进了以下哪个概念() A.宿主语言 B.游标 C.DDL语言 D.DML语言 11.已知事务T1的封锁序列为:LOCK S(A)…LOCK S(B)…LOCK X(C) …UNLOCK(B) …UNLOCK (A) …UNLOCK (C) 事务T2的封锁序列为:LOCK S(A) …UNLOCK (A) …LOCK S(B) …LOCK X(C) …UNLOCK (C) …UNLOCK (B) 则遵守两段封锁协议的事务是() A.T1 B.T2 C.T1和T2 D.没有 12.设计DB的存储结构属于数据库设计的() A. 需求设计 B. 概念设计 C. 逻辑设计 D. 物理设计 13.恢复机制的关键问题是建立冗余数据,最常用的技术是() A.数据镜像 B.数据转储 C.登录日志文件 D.B+C 14.下列SQL语句中,能够实现“将查询SC表的权限授予用户U1,并允许该用户将此权限 2

数据分析spss作业

数据分析方法及软件应用 (作业) 题目:4、8、13、16题 指导教师: 学院:交通运输学院 姓名: 学号:

4、在某化工生产中为了提高收率,选了三种不同浓度,四种不同温度做试验。在同一浓度与温度组合下各做两次试验,其收率数据如下面计算表所列。试在α=0.05显著性水平下分析 (1)给出SPSS数据集的格式(列举前3个样本即可); (2)分析浓度对收率有无显著影响; (3)分析浓度、温度以及它们间的交互作用对收率有无显著影响。 解答:(1)分别定义分组变量浓度、温度、收率,在变量视图与数据视图中输入表格数据,具体如下图。 (2)思路:本问是研究一个控制变量即浓度的不同水平是否对观测变量收率产生了显著影响,因而应用单因素方差分析。假设:浓度对收率无显著影响。 步骤:【分析-比较均值-单因素】,将收率选入到因变量列表中,将浓度选入到因子框中,确定。 输出: 變異數分析 收率 平方和df 平均值平方 F 顯著性 群組之間39.083 2 19.542 5.074 .016 在群組內80.875 21 3.851 總計119.958 23 显著性水平α为0.05,由于概率p值小于显著性水平α,则应拒绝原假设,认为浓度对收率有显著影响。

(3)思路:本问首先是研究两个控制变量浓度及温度的不同水平对观测变量收率的独立影响,然后分析两个这控制变量的交互作用能否对收率产生显著影响,因而应该采用多因素方差分析。假设,H01:浓度对收率无显著影响;H02:温度对收率无显著影响;H03:浓度与温度的交互作用对收率无显著影响。 步骤:【分析-一般线性模型-单变量】,把收率制定到因变量中,把浓度与温度制定到固定因子框中,确定。 输出: 主旨間效果檢定 因變數: 收率 來源第 III 類平方 和df 平均值平方 F 顯著性 修正的模型70.458a11 6.405 1.553 .230 截距2667.042 1 2667.042 646.556 .000 浓度39.083 2 19.542 4.737 .030 温度13.792 3 4.597 1.114 .382 浓度 * 温度17.583 6 2.931 .710 .648 錯誤49.500 12 4.125 總計2787.000 24 校正後總數119.958 23 a. R 平方 = .587(調整的 R 平方 = .209) 第一列是对观测变量总变差分解的说明;第二列是观测变量变差分解的结果;第三列是自由度;第四列是均方;第五列是F检验统计量的观测值;第六列是检验统计量的概率p值。可以看到观测变量收率的总变差为119.958,由浓度不同引起的变差是39.083,由温度不同引起的变差为13.792,由浓度和温度的交互作用引起的变差为17.583,由随机因素引起的变差为49.500。浓度,温度和浓度*温度的概率p值分别为0.030,0.382和0.648。 浓度:显著性<0.05说明拒绝原假设(浓度对收率无显著影响),证明浓度对收率有显著影响;温度:显著性>0.05说明不拒绝原假设(温度对收率无显著影响),证明温度对收率无显著影响;浓度与温度: 显著性>0.05说明不拒绝原假设(浓度与温度的交互作用对收率无显著影响),证明温浓度与温度的交互作用对收率无显著影响。 8、以高校科研研究数据为例:以课题总数X5为被解释变量,解释变量为投入人年数X2、投入科研事业费X4、专著数X6、获奖数X8;建立多元线性回归模型,

数值分析作业思考题汇总

¥ 数值分析思考题1 1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 2、相对误差在什么情况下可以用下式代替 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 4、取 ,计算 ,下列方法中哪种最好为什么(1)(3 3-,(2)(2 7-,(3) ()3 1 3+ ,(4) ()6 1 1 ,(5)99- , 数值实验 数值实验综述:线性代数方程组的解法是一切科学计算的基础与核心问题。求解方法大致可分为直接法和迭代法两大类。直接法——指在没有舍入误差的情况下经过有限次运算可求得方程组的精确解的方法,因此也称为精确法。当系数矩阵是方的、稠密的、无任何特殊结构的中小规模线性方程组时,Gauss消去法是目前最基本和常用的方法。如若系数矩阵具有某种特殊形式,则为了尽可能地减少计算量与存储量,需采用其他专门的方法来求解。 Gauss消去等同于矩阵的三角分解,但它存在潜在的不稳定性,故需要选主元素。对正定对称矩阵,采用平方根方法无需选主元。方程组的性态与方程组的条件数有关,对于病态的方程组必须采用特殊的方法进行求解。 数值计算方法上机题目1 1、实验1. 病态问题 实验目的: 算法有“优”与“劣”之分,问题也有“好”和“坏”之别。所谓坏问题就是问题本身的解对数据变化的比较敏感,反之属于好问题。希望读者通过本实验对此有一个初步的体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 $ r e x x e x x ** * ** - == 141 . ≈)61

空间分析复习重点

空间分析的概念空间分析:是基于地理对象的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息。包括空间数据操作、空间数据分析、空间统计分析、空间建模。 空间数据的类型空间点数据、空间线数据、空间面数据、地统计数据 属性数据的类型名义量、次序量、间隔量、比率量 属性:与空间数据库中一个独立对象(记录)关联的数据项。属性已成为描述一个位置任何可记录特征或性质的术语。 空间统计分析陷阱1)空间自相关:“地理学第一定律”—任何事物都是空间相关的,距离近的空间相关性大。空间自相关破坏了经典统计当中的样本独立性假设。避免空间自相关所用的方法称为空间回归模型。2)可变面元问题MAUP:随面积单元定义的不同而变化的问题,就是可变面元问题。其类型分为:①尺度效应:当空间数据经聚合而改变其单元面积的大小、形状和方向时,分析结果也随之变化的现象。②区划效应:给定尺度下不同的单元组合方式导致分析结果产生变化的现象。3)边界效应:边界效应指分析中由于实体向一个或多个边界近似时出现的误差。生态谬误在同一粒度或聚合水平上,由于聚合方式的不同或划区方案的不同导致的分析结果的变化。(给定尺度下不同的单元组合方式) 空间数据的性质空间数据与一般的属性数据相比具有特殊的性质如空间相关性,空间异质性,以及有尺度变化等引起的MAUP效应等。一阶效应:大尺度的趋势,描述某个参数的总体变化性;二阶效应:局部效应,描述空间上邻近位置上的数值相互趋同的倾向。 空间依赖性:空间上距离相近的地理事物的相似性比距离远的事物的相似性大。 空间异质性:也叫空间非稳定性,意味着功能形式和参数在所研究的区域的不同地方是不一样的,但是在区域的局部,其变化是一致的。 ESDA是在一组数据中寻求重要信息的过程,利用EDA技术,分析人员无须借助于先验理论或假设,直接探索隐藏在数据中的关系、模式和趋势等,获得对问题的理解和相关知识。 常见EDA方法:直方图、茎叶图、箱线图、散点图、平行坐标图 主题地图的数据分类问题等间隔分类;分位数分类:自然分割分类。 空间点模式:根据地理实体或者时间的空间位置研究其分布模式的方法。 茎叶图:单变量、小数据集数据分布的图示方法。 优点是容易制作,让阅览者能很快抓住变量分布形状。缺点是无法指定图形组距,对大型资料不适用。 茎叶图制作方法:①选择适当的数字为茎,通常是起首数字,茎之间的间距相等;②每列标出所有可能叶的数字,叶子按数值大小依次排列;③由第一行数据,在对应的茎之列,顺序记录茎后的一位数字为叶,直到最后一行数据,需排列整齐(叶之间的间隔相等)。 箱线图&五数总结 箱线图也称箱须图需要五个数,称为五数总结:①最小值②下四分位数:Q1③中位数④上四分位数:Q3⑤最大值。分位数差:IQR = Q3 - Q1 3密度估计是一个随机变量概率密度函数的非参数方法。 应用不同带宽生成的100个服从正态分布随机数的核密度估计。 空间点模式:一般来说,点模式分析可以用来描述任何类型的事件数据。因为每一事件都可以抽象化为空间上的一个位置点。 空间模式的三种基本分布:1)随机分布:任何一点在任何一个位置发生的概率相同,某点的存在不影响其它点的分布。又称泊松分布

空间数据分析模型

第7 章空间数据分析模型 7.1 空间数据 按照空间数据的维数划分,空间数据有四种基本类型:点数据、线数据、面数据和体数据。 点是零维的。从理论上讲,点数据可以是以单独地物目标的抽象表达,也可以是地理单元的抽象表达。这类点数据种类很多,如水深点、高程点、道路交叉点、一座城市、一个区域。 线数据是一维的。某些地物可能具有一定宽度,例如道路或河流,但其路线和相对长度是主要特征,也可以把它抽象为线。其他的线数据,有不可见的行政区划界,水陆分界的岸线,或物质运输或思想传播的路线等。 面数据是二维的,指的是某种类型的地理实体或现象的区域范围。国家、气候类型和植被特征等,均属于面数据之列。 真实的地物通常是三维的,体数据更能表现出地理实体的特征。一般而言,体数据被想象为从某一基准展开的向上下延伸的数,如相对于海水面的陆地或水域。在理论上,体数据可以是相当抽象的,如地理上的密度系指单位面积上某种现象的许多单元分布。 在实际工作中常常根据研究的需要,将同一数据置于不同类别中。例如,北京市可以看作一个点(区别于天津),或者看作一个面(特殊行政区,区别于相邻地区),或者看作包括了人口的“体”。 7.2 空间数据分析 空间数据分析涉及到空间数据的各个方面,与此有关的内容至少包括四个领域。 1)空间数据处理。空间数据处理的概念常出现在地理信息系统中,通常指的是空间分析。就涉及的内容而言,空间数据处理更多的偏重于空间位置及其关系的分析和管理。 2)空间数据分析。空间数据分析是描述性和探索性的,通过对大量的复杂数据的处理来实现。在各种空间分析中,空间数据分析是重要的组成部分。空间数据分析更多的偏重于具有空间信息的属性数据的分析。 3)空间统计分析。使用统计方法解释空间数据,分析数据在统计上是否是“典型”的,或“期望”的。与统计学类似,空间统计分析与空间数据分析的内容往往是交叉的。 4)空间模型。空间模型涉及到模型构建和空间预测。在人文地理中,模型用来预测不同地方的人流和物流,以便进行区位的优化。在自然地理学中,模型可能是模拟自然过程的空间分异与随时间的变化过程。空间数据分析和空间统计分析是建立空间模型的基础。 7.3 空间数据分析的一些基本问题 空间数据不仅有其空间的定位特性,而且具有空间关系的连接属性。这些属性主要表现为空间自相关特点和与之相伴随的可变区域单位问题、尺度和边界效应。传统的统计学方法在对数据进行处理时有一些基本的假设,大多都要求“样本是随机的”,但空间数据可能不一定能满足有关假设,因此,空间数据的分析就有其特殊性(David,2003)。

数据库知识考试及答案

数据库基础知识试题及答案 -、单项选择题。下列各题A)、B)、C)、D)四个选项中,只有-个选项是正确的。 (1)在数据库技术中,实体-联系模型是一种( ) A)概念数据模型 B)结构数据模型 C)物理数据模型 D)逻辑数据模型 答案:A)解析:概念模型是对信息世界建模,所以概念模型应该能够方便、准确地表示信息世界中的常用概念。概念模型的表示方法很多,其中最为常用的是P.P.Chen于1976后提出的实体一联系方法。该方法用E—R图来描述现实世界的概念模型,称为实体一联系模型(Entity- Relationship Model)简称E —R模型。 (2)假定学生关系是S(S#,SNAME,SEX,AGE),课程关系是C(C#,CNAME,TEACHER),学生选课关系是SC(S#,C#,GRADE),要查找选修“COMPUTER”课程的女学生的姓名,将涉及到关系( ) A)S B)SC,C C)S,SC D)S,C,SC 答案:D)解析:选修“COMPUTER”课程的女学生的姓名,涉及的字段有课程名称、学生姓名、学生性别和选课关系,这些分别存放在S,C,SC这3个关系中。 (3)数据是信息的符号表示或称载体;信息则是数据的内涵,是数据的( ) A)语法解释 B)语义解释 C)语意说明 D)用法说明 答案:B)解析:数据是信息的符号表示或称载体;信息则是数据的内涵,是数据的语义解释。 (4)数据管理技术发展阶段中,人工管理阶段与文件系统阶段的主要区别是文件系统( ) A)数据共享性强 B)数据可长期保存 C)采用一定的数据结构 D)数据独立性好 答案:B)解析:人工管理阶段的特点是:数据不保存,数据无专门软件管理,数据不共享.数据不具有独立性。文件系统阶段特点是:数据可以长期保存,文件系统管理数据,数据独立性差,数据共享性差。 (5)下列关于关系数据模型的术语中,哪一个术语所表达的概念与二维表中的“行”的概念最接近?( ) A)属性 B)关系 C)域 D)元组 答案:D)解析:二维表中的“行”即关系数据模型中的“元组”,二维表中的“列”即关系数据模型中的“属性”。 (6)在下面的两个关系中,学号和班级号分别为学生关系和班级关系的主键(或称主码),则外键是( ) 学生(学号,姓名,班级号,成绩) 班级(班级号,班级名,班级人数,平均成绩) A)学生关系的“学号” B)班级关系的“班级号” C)学生关系的“班级号” D)班级关系的“班级名” 答案:C)解析:外键的概念是:当关系中的某个属性(或属性组合)虽不是该关系的关键字或只是关键字的一部分,但却是另一个关系的关键字时,则称该属性(或属性组合)为这个关系的外部关键字或外键。 (7)在FoxBASE中要建立一个与现有的某个数据库有完全相同结构和数据的新数据库,应该使用如下语句中的哪个语句?( ) A)CREATE B)APPEND C)COPY D)INSERT 答案:C)解析:CREATE用于数据定义,COPY用于复制,INSERT用于插入数据。 (8)关系数据模型通常由3部分组成,它们是( ) A)数据结构,数据通信,关系操作 B)数据结构,数据操作,数据完整性约束 C)数据通信,数据操作,数据完整性约束 D)数据结构,数据通信,数据完整性约束 答案:B)解析:关系模型由关系数据结构、数据操作和数据完整性约束3大要素组成。 (9)SQL语言集数据定义功能、数据操纵功能和数据控制功能于一体。如下所列语句中,哪一个是属于数据控制功能的?( ) A)GRANT B)CREATE C)INSERT D)SELECT 答案:A)解析:CREATE属于数据定义语句,INSERT和SELECT属于数据操纵语句,只有GRANT(授权语句)才是数据控制语句。 (10)如果有两个事务,同时对数据库中同一数据进行操作,不会引起冲突的操作是( ) A)其中有一个是DELETE B)一个是SELECT,另一个是UPDATE

统计与数据分析数据分析作业

《统计与数据分析》 数据分析实验作业 数据来源于大肠杆菌Escherichia coli K-12 MG1655注释的4289个编码蛋白基因的长度l(单位:核苷酸,NT)及其GC含量r(%)。其中,第1列为基因序号,第2列为基因的长度l(单位:核苷酸,NT),第3列为基因的GC含量r(%)。试针对这一组数据完成下列数据分析工作: 一. 将全部4289个基因视为总体Y,请完成如下工作: 1. 严格按照要求(注意:软件自动生成的结果视为无效作业),分别画出基因长度l和基因GC含量r的频率直方图和箱线图,并对这两类数据的异常值进行分析; 2. 分别求出基因长度l和基因GC含量r的均值、标准差、极差、中位数、众数、变异系数,并在k≤10范围内依次、完整地检验Chebyshev定理; 3. 基于总体Y,考察l与GC含量r比值l/r,请设计抽样对l/r进行比值估计与单随机变量估计的抽样效率的比较分析,并以合适的图示表示比较结果; 4. 基于总体Y,根据中心极限定理构造一个基于GC含量r值的模拟总体数据X,并以合适的图示表示,要求总体X为经过显著性水平α=0.01下的K-S检验的标准正态分布,且X的个体数目也为4289,取值可表示为R。(提示:简单随机抽样的样本均值R近似服从正态分布,样本容量n自定。) 二. 基于服从标准正态分布的总体X,请完成如下工作: 1. 从中进行1次简单随机抽样(容量n=277),求出样本均值和样本标准差,并画出这一样本的频率直方图和箱线图;由此估计总体X的正态分布参数(方法不限,需写出具体求解过程),并分别采用自举法(Bootstrap)重复抽样1000次,分别确定该样本均值和该样本标准差是否处于90%的置信区间(以上下5%分位数来定义90%的置信区间),并以合适的图示表示自举法重复抽样1000次以及该置信区间的结果; 2. 进一步地,进行100次容量为n=61的简单随机抽样,分别画出样本均值、样本标准差的频率直方图,考察同样参数估计方法所估计参数的90%置信区间的情况,并以合适的图示表示(提示:(1)相关分布的分位数表可参考本课程讲义;(2)请参考本课程讲义的表示方式。)。 三. 对于总体Y,将全部4289个基因视为从某一总体中进行1次简单随机抽样的样本(容量n=4289),给定显著性水平为10%,试考察基因长度l与GC含量r是否相互独立。要求写出具体的分析过程。(提示:相关分布的分位数表可参考本课程讲义。) 要求: (1)本次数据分析以实验报告形式打印、装订提交,请在第一页注明学号、姓名; (2)请保证独立完成本作业,鼓励自行编程完成上述数据分析,也可使用相关软件(不限);(3)本作业占课程总成绩15%。

空间数据分析

空间数据分析报告 —使用Moran's I统计法实现空间自相关的测度1、实验目的 (1)理解空间自相关的概念和测度方法。 (2)熟悉ArcGIS的基本操作,用Moran's I统计法实现空间自相关的测度。2、实验原理 2.1空间自相关 空间自相关的概念来自于时间序列的自相关,所描述的是在空间域中位置S 上的变量与其邻近位置Sj上同一变量的相关性。对于任何空间变量(属性)Z,空间自相关测度的是Z的近邻值对于Z相似或不相似的程度。如果紧邻位置上相互间的数值接近,我们说空间模式表现出的是正空间自相关;如果相互间的数值不接近,我们说空间模式表现出的是负空间自相关。 2.2空间随机性 如果任意位置上观测的属性值不依赖于近邻位置上的属性值,我们说空间过程是随机的。 Hanning则从完全独立性的角度提出更为严格的定义,对于连续空间变量Y,若下式成立,则是空间独立的: 式中,n为研究区域中面积单元的数量。若变量时类型数据,则空间独立性的定义改写成 式中,a,b是变量的两个可能的类型,i≠j。 2.3Moran's I统计 Moran's I统计量是基于邻近面积单元上变量值的比较。如果研究区域中邻近面积单元具有相似的值,统计指示正的空间自相关;若邻近面积单元具有不相似的值,则表示可能存在强的负空间相关。

设研究区域中存在n 个面积单元,第i 个单位上的观测值记为y i ,观测变量在n 个单位中的均值记为y ,则Moran's I 定义为 ∑∑∑∑∑======n i n j ij n i n j ij n i W W n I 11 11j i 1 2i ) y -)(y y -(y )y -(y 式中,等号右边第二项∑∑==n 1i n 1j j i ij )y -)(y y -(y W 类似于方差,是最重要的项,事 实上这是一个协方差,邻接矩阵W 和) y -)(y y -(y j i 的乘积相当于规定)y -)(y y -(y j i 对邻接的单元进行计算,于是I 值的大小决定于i 和j 单元中的变量值对于均值的偏离符号,若在相邻的位置上,y i 和y j 是同号的,则I 为正;y i 和y j 是异号的, 则I 为负。在形式上Moran's I 与协变异图 {}{}u ?-)Z(s u ?-)Z(s N(h)1(h)C ?j i ∑=相联系。 Moran's I 指数的变化范围为(-1,1)。如果空间过程是不相关的,则I 的期望接近于0,当I 取负值时,一般表示负自相关,I 取正值,则表示正的自相关。用I 指数推断空间模式还必须与随机模式中的I 指数作比较。 通过使用Moran's I 工具,会返回Moran's I Index 值以及Z Score 值。如果Z score 值小于-1.96获大于1.96,那么返回的统计结果就是可采信值。如果Z score 为正且大于1.96,则分布为聚集的;如果Z score 为负且小于-1.96,则分布为离散的;其他情况可以看作随机分布。 3、实验准备 3.1实验环境 本实验在Windows 7的操作系统环境中进行,使用ArcGis 9.3软件。 3.2实验数据 此次实习提供的数据为以湖北省为目标区域的bount.dbf 文件。.dbf 数据中包括第一产业增加值,第二产业增加值万元,小学在校学生数,医院、卫生院床位数,乡村人口万人,油料产量,城乡居民储蓄存款余额,棉花产量,地方财政一般预算收入,年末总人口(万人),粮食产量,普通中学在校生数,肉类总产量,规模以上工业总产值现价(万元)等属性,作为分析的对象。

中级数据库系统工程师试题、答案及详细解析

试题某工厂的信息管理数据库的部分关系模式如下所示: 职工(职工号,姓名,年龄,月工资,部门号,电话,办公室) 部门(部门号,部门名,负责人代码,任职时间) 问题1]解答(a)PRIMARY KEY(b)FOREIGN KEY (负责人代码)REFERENCES 职工 (c)FOREIGN KEY (部门号)REFERENCES 部门(d)月工资〉=500 AND V月工资=5000,或月工资BETWEEN 500 AND 5000(e)count(*), Sum (月工资),Avg (月工资)(f)GrOup by 部门号 [问题2]解答 (1)该行不能插入“职工”关系,它违反了实体完整性中主码必须惟一区分关系中的每一个属性。 (2)该行可以插入“职工”关系,尽管部门号、电话和办公室为空,但是它表示该雇员没有分配到某个 部门。⑶该行不能插入“职32''关系,它违反了参照完整性。因为6在关系“部门”中不存在。 [问题3]解答(1)和(2)都不能更新,因为使用分组合聚集函数定义的视图是不可更新的。(3)不一定,视子查 询的返回值而定,(4)和(5)允许查询。 [问题4]解答(1)对于外层的职工关系E中的每一个元组,都要对内层的整个职工关系M进行检索,因此查询效率不高。(2)Select 职工号from 职工,(Select Max (月工资)as 最高工资,部门号Group by 部门号)as depMax where 月工资=最高工资and 职工.部门号=depMax .部门号 [问题5]解答Select姓名,年龄,月工资from 职工where 年龄〉45 ; Union Select姓名,年龄,月工资from 职工where 年龄月工资V 1000 ; 试题某仓储超市采用POS(Poi nt of Sale)收银机负责前台的销售收款,为及时掌握销售信息,并依此指导进货,拟建立商品进、销、存数据库管理系统。该系统的需求分析已经基本完成,下面将进入概念模型的设计。 试题解答[问题1]解答 [问题2]解答商品(商品编号,商品名称,供应商,单价)直销商品(商品编号,生产批号,消费期限)库存商品(商品编号,折扣率) [问题3]解答 销售详单(销售流水号,商品编码,数量,金额,收银员,时间)销售日匚总(日期,商品编码,数量) 存货表(商品编码,数量)进货表(送货号码,商品编码,数量,日期) 商品(商品编号,商品名称,供应商,单价)直销商品(商品编号,生产批号,消费期限)库存商品(直显组号,折扣率) [问题4]解答 1 .采用商品信息集中存储在中心数据库中,则在销售前台的每笔计费中,都必须从中心数据库提取 商品名称和单价,增加网络的负载,在业务繁忙时直接影响到前台的销售效率;同时,如果发生网络故障,则该POS机不能工作。采用这种方式,对商品库的更新,如引入新的商品和修改商品价格,会及时体现在前台的销售业务中。2 .采用商品信息存储在中心数据库中,各POS机存储商品表的备份,POS机直 接从本地读取商品信息,减少了网络的负载,可以提高交易的效率;同时即使有短时间的网络故障,也不影响该POS 机的正常使用,只有当存在商品信息变更时才需要与中心数据库同步。采用这种方式,必须在每次商品信息变更时同步各POS机的数据。 [问题5]解答1 .对销售详单关系模式做如下的修改,增加积分卡号属性。销售详单(销售流水号,商品编

数据库复习题集答案解析

一、选择题: 1、DB,DBMS和DBS三者的关系是(B) A、DB包括DBMS和DBS B、DBS包括DB和DBMS C、DBMS包括DBS和DB D、DBS与DB、DBMS无关 2、假定学生关系式S(S#,SNAME,SEX,AGE),课程关系式C(C#,CNAME,TEACHER),学生选课关系是SC(S#,C#,GRAND)。要查找选修“COMPUTER”课程的“女”学生,将涉及到关系(D) A、S B、SC,C C、S,SC D、S,C,SC 3、将E-R图转换为关系模式时,如果两实体间的联系是m:n,下列说确的是(C) A、将m方主键(主码)和联系的属性纳入n方的属性中 B、将m方属性和n方属性中均增加一个表示级别的属性 C、增加一个关系表示联系,其中纳入m方和n方的主键(主码) D、将n方主键(主码)和联系的属性纳入m方的属性中 4、由SELECT—FROM—WHERE—GROUP—ORDER组成的SQL语句,在被DBMS处理时,各字句的执行次序为(C) A、SELECT—FROM—WHERE—GROUP—ORDER B、FROM —SELECT—WHERE—GROUP—ORDER C、FROM —WHERE—GROUP—SELECT—ORDER D、SELECT—FROM—GROUP—WHERE—ORDER 5、以下不是数据库技术所具备的特点是(D) A、数据结构化 B、数据冗余小 C、有较高的数据独立性 D、数据联系弱 6、在信息模型的“学生”尸体中,对每个学生的具体情况的描述,称为(A) A、实体值 B、实体型 C、属性值 D、属性型 7、关系数据库三级模式中的(B),可用视图实现。 A、模式 B、外模式 C、存储模式 D、模式 8、可用于区别实体集中不同个体的属性或属性集合,称为该实体的(B) A、属性型 B、键 C、外部键 D、实体型 9、设有一个体育项目可以有多个运动员报名,一个运动员课参加多个项目,运动员与体育项目之间是(D) A、一对一的联系 B、一对多的联系 C、多对一的联系 D、多对多的联系 10、关系R与关系S只有1个公共属性,T1是R与S作等值连接的结果,T2是R与S作自然连接的结果,则(D) A、T1的属性个数等于T2的属性个数 B、T1的属性个数小于T2的属性个数 C、T1的属性个数大于或等于T2的属性个数 D、T1的属性个数大于T2的属性个数 11、数据库系统是由应用程序、DBMS、DB以及DBA组成。其中核心部分是(C) A、应用程序 B、DBA C、DBMS D、DB 12、下列集函数中不忽略空值(NULL)的是(A) A、COUNT(*) B、MAX(列名) C、SUM(列名) D、A VG(列名) 13、一个关系中的候选关键字(B) A、至少一个 B、可多个 C、必须多个 D、至少3个 14、在数据库设计中,具有最小性、唯一性和非空性的是(B) A、索引 B、关系模型主关键字(主码) C、外关键字(外码) D、约束 15、常用的关系运算时关系代数和(C) A、集合代数 B、逻辑演算 C、关系演算 D、集合演算 16、在基本层次联系中,记录型之间的联系是(B) A、一对一联系 B、一对多联系 C、多对多联系 D、多对一联系 17、关于冗余数据的叙述中,不正确的是(C) A、冗余的存在容易破坏数据库的完整性 B、冗余的存在给数据库的维护增加困难 C、不应该在数据库中存储任何冗余数据 D、冗余数据是指可由基本数据导出的数据 18、五种基本关系代数运算分别(D)

实验设计与数据处理分析大作业(正交试验)

枣果皮中酚类物质提取工艺优化及抗氧化活性分析 1.实验数据背景叙述。 一:实验关于枣果皮中酚类物质提取工艺优化及抗氧化活性分析。酚类物质是植物体内重要的次生代谢产物,主要通过莽草酸和丙二酸途径合成,广泛分布于植物界。许多的酚类物质具有营养保健功效。现代流行病学研究证明,经常食用富含酚类物质的果蔬能够预防由活性氧导致的相关疾病如癌症、糖尿病、肥胖症等的发生。 二:实验问题:为提高枣果皮中的酚类物质的提取效率,该文以马牙枣为试验材料,对枣果皮中酚类物质提取条件进行了优化。同时分析枣果皮提取物中酚类物质的抗氧化活性。 三:实验目的:要通过实验得到枣果皮中酚类物质提取的最优条件。并对提取物中酚类物质清除DPPH,2,2'-连氮基双(3-乙基苯并噻唑啉)-6-磺酸(ABTS)自由基及铁还原能力进行探讨,同时与合成抗氧化剂2,6-二叔丁基对甲酚(BHT)的抗氧化能力进行比较。 2. 实验数据处理方法选择及论述。 一:单因素试验(获得数据,将数据输入excel中,使用excel绘制图表,以便直观感受影响因素对实验的影响趋势。)

以冻干枣果皮为材料,分别以甲醇浓度、提取温度、提取料液比和提取时 间作为因素,分析不同的提取条件对枣果皮中酚类物质提取效果的影响,检测 指标为提取物中总酚含量。 二:正交试验(设计正交试验以便获得到枣果皮中酚类物质提取的最优条件, 用excel进行结果直观分析,见表2。) 以冻干枣果皮为材料,以提取溶剂浓度(A)、提取温度(B)、料液比(C)、和浸提时间(D)作4 因素3水平的L9(34)正交设计(见表1),检测指标为 提取物中总酚含量。 表1 枣果皮中酚类物质提取因素水平表 三:统计分析 所有提取试验均重复3 次,每次提取液的测定均重复3 次。结果表示为平 均值±标准偏差。应用excel软件对所有数据进行方差分析。 3. 实验数据的处理的过程叙述。 一:在单因素试验中,将每次试验结果输入excel中,选中表格,点击“插入”柱形图。

空间分析实习报告

空间分析实习报告 学院遥感信息工程学院班级 学号 姓名 日期

一、实习内容简介 1.实验目的: (1)通过实习了解ArcGIS的发展,以及10.1系列软件的构成体系 (2)熟练掌握ArcMap的基本操作及应用 (3)了解及应用ArcGIS的分析功能模块ArcToolbox (4)加深对地理信息系统的了解 2.实验内容: 首先是对ArcGIS有初步的了解。了解ArcGIS的发展,以及10.1系列软件的构成体系,了解桌面产品部分ArcMap、ArcCatalog和ArcToolbox的相关基础知识。 实习一是栅格数据空间分析,ArcGIS软件的Spatial Analyst模块提供了强大的空间分析工具,可以帮助用户解决各种空间分析问题。利用老师所给的数据可以创建数据(如山体阴影),识别数据集之间的空间关系,确定适宜地址,最后寻找一个区域的最佳路径。 实习二是矢量数据空间分析,ArcToolbox软件中的Analysis Tools和Network Analyst Tools提供了强大的矢量数据处理与分析工具,可以帮助用户解决各种空间分析问题。利用老师所给的数据可以通过缓冲区分析得到矢量面数据,通过与其它矢量数据的叠置分析、临近分析来辅助选址决策过程;可以构建道路平面网络模型,进而通过网络分析探索最优路径,从而服务于公交选线、智能导航等领域。 实习三是三维空间分析,学会用ArcCatalog查找、预览三维数据;在ArcScene中添加数据;查看数据的三维属性;从二维要素与表面中创建新的三维要素;从点数据源中创建新的栅格表面;从现有要素数据中创建TIN表面。 实习四是空间数据统计分析,利用地统计分析模块,你可以根据一个点要素层中已测定采样点、栅格层或者利用多边形质心,轻而易举地生成一个连续表面。这些采样点的值可以是海拔高度、地下水位的深度或者污染值的浓度等。当与ArcMap一起使用时,地统计分析模块提供了一整套创建表面的工具,这些表面能够用来可视化、分析及理解各种空间现象。 实习五是空间分析建模,空间分析建模就是运用GIS空间分析方法建立数学模型的过程。按照建模的目的,可分为以特征为主的描述模型(descriptive model)和提供辅助决策信息和解决方案为目的的过程模型(process model)两类。本次实习主要是通过使用ArcGIS的模型生成器(Model Builder)来建立模型,从而处理涉及到许多步骤的空间分析问题。 二、实习成果及分析 实习一: 练习1:显示和浏览空间数据。利用ArcMap和空间分析模块显示和浏览数据。添加和显示各类空间数据集、在地图上高亮显示数值、查询指定位置的属性值、分析一张直方图和创建一幅山体阴影图。

数据库习题与答案

数据库习题与答案

一.选择题: 1.数据库分析与设计中,其设计对象称客观世界的() A.逻辑对象 B.目标对象 C.实体对象 D.需求对象 答案:B (150) 2. 数据库物理设计完成后,进入数据库实施阶 段,下列各项中不属于实施阶段的工作是() A.建立库结构 B.扩充功能 C.加载数据 D.系统调试 答案:B (150) 3. 通常用以下的顺序来完成数据库的设计工作() A.概念设计、物理设计、逻辑设计 B.逻辑设计、概念设计、物理设计 C.概念设计、逻辑设计、物理设计 D.物理设计、逻辑设计、概念设计 答案:C (150) 4. 在数据库设计中,在概念设计阶段可用E-R 方法,其设计出的图称为() A.实物示意图 B.实用概念图 C.

实体表示图 D.实体联系图 答案:D (153) 5. E-R图是数据库设计的工具之一,它适用于建立数据库的() A.概念模型 B.逻辑模型 C.结构模型 D.物理模型 答案:A (155) 6.在关系数据库设计中,完成设计关系模式的任务是属于() A.需求分析阶段 B.概念设计阶段 C.逻辑设计阶段 D.物理设计阶段 答案:C (157) 7. 数据库逻辑设计的主要任务是() A.建立E-R图和说明书 B.创建数据库说明 C.建立数据流图 D.把数据送入数据库 答案:B (158) 二.填空题

1.数据库概念设计是在数据需求分析基础上进 行的,其目的是分析数据间的内在语义关联,在此基础上建立一个数据的______________。 答案:抽象模型(152) 2.数据库的逻辑设计的基本方法是将E-R图转 换成指定RDBMS中的______________,此外还包括关系的规范化以及性能调整,最后是约束条件设置。 答案:关系模式(156) 3.数据库的逻辑设计的基本方法是将E-R图转 换成指定RDBMS中的关系模式,此外还包括______________以及性能调整,最后是约束条件设置。 答案:关系的规范化(156) 4.数据库的逻辑设计的基本方法是将E-R图转 换成指定RDBMS中的关系模式,此外还包括关系的规范化以及______________,最后是约束条件设置。 答案:性能调整(156) 5.数据库的逻辑设计的基本方法是将E-R图转 换成指定RDBMS中的关系模式,此外还包

相关主题