搜档网
当前位置:搜档网 › Characterization of mango (Mangifera indica L.) transcriptome and

Characterization of mango (Mangifera indica L.) transcriptome and

Characterization of mango (Mangifera indica L.) transcriptome and
Characterization of mango (Mangifera indica L.) transcriptome and

DOI 10.1007/s11103-014-0179-8

Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome

M. Kamran Azim · Ishtaiq A. Khan · Yong Zhang

Received: 26 October 2013 / Accepted: 4 February 2014 ? Springer Science +Business Media Dordrecht 2014

by a combination of Sanger and next generation sequenc-ing. The draft mango cp genome size is 151,173 bp with a pair of inverted repeats of 27,093 bp separated by small and large single copy regions, respectively. Out of 139 genes in mango cp genome, 91 found to be protein cod-ing. Sequence analysis revealed cp genome of C. sinensis as closest neighbor of mango. We found 51 short repeats in mango cp genome supposed to be associated with extensive rearrangements. This is the first report of transcriptome and chloroplast genome analysis of any Anacardiaceae family member.

Keywords Transcriptome analysis · RNA-seq · Anacardiaceae · Plant genome

Introduction

Mango (Mangifera indica L.), a member of family Anac-ardiaceae is an important fruit crop which is commer-cially grown in over hundred tropical and subtropical countries (Mukherjee and Litz 2009). According to Food and Agriculture Organization (FAO) of United Nations, after banana, mango is the dominant tropical fruit vari-ety produced worldwide, followed by pineapples, papaya and avocado (https://www.sodocs.net/doc/688792563.html,/docrep/006/y5143e/y5143e1a.htm ). Major mango growing countries are India, China, Thailand, Pakistan, Australia, Indonesia, Bangla-desh, Philippines, Nigeria, Myanmar and Egypt.

The mango tree is considered to have evolved in the rainforests of South and South-east Asia (Krishna and Singh 2007). Full-grown mango trees reach a height of 40 m and can stay alive for several 100 years. Mango leaves are exstipulate, simple and usually alternate; depending on the cultivar, leaf morphology is highly variable (Mukherjee

Abstract We characterized mango leaf transcriptome and chloroplast genome using next generation DNA sequenc-ing. The RNA-seq output of mango transcriptome gen-erated >12 million reads (total nucleotides sequenced >1 Gb). De novo transcriptome assembly generated 30,509 unigenes with lengths in the range of 300 to ≥3,000 nt and 67× depth of coverage. Blast searching against non-redundant nucleotide databases and several Viridiplantae genomic datasets annotated 24,593 mango unigenes (80 % of total) and identified Citrus sinensis as closest neigh-bor of mango with 9,141 (37 %) matched sequences. The annotation with gene ontology and Clusters of Ortholo-gous Group terms categorized unigene sequences into 57 and 25 classes, respectively. More than 13,500 unigenes were assigned to 293 KEGG pathways. Besides major plant biology related pathways, KEGG based gene annota-tion pointed out active presence of an array of biochemical pathways involved in (a) biosynthesis of bioactive flavo-noids, flavones and flavonols, (b) biosynthesis of terpenoids and lignins and (c) plant hormone signal transduction. The mango transcriptome sequences revealed 235 proteases belonging to five catalytic classes of proteolytic enzymes. The draft genome of mango chloroplast (cp) was obtained

Electronic supplementary material The online version of this article (doi:10.1007/s11103-014-0179-8) contains supplementary material, which is available to authorized users.

M. K. Azim (*) · I. A. Khan

Jamil-ur-Rehman Center for Genome Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan

e-mail: kamran.azim@https://www.sodocs.net/doc/688792563.html,; mkamranazim@https://www.sodocs.net/doc/688792563.html, Y . Zhang

BGI-Shenzhen, Beishan Road, Yantian District, Shenzhen 518083, China

and Litz 2009). The inflorescence of mango flowers is rigid and erect, usually 30 cm long, widely branched and is always cymose. Mango fruit varieties have been known for attractive colours, savouring smell, delightful taste and high nutritional value (Mukherjee and Litz 2009). Mango is an ever green dicot angiosperm. Although several tetra-ploid individuals were reported, mango is usually a diploid tree (Mukherjee 1950; Duval et al. 2005; Viruel et al. 2005; Schnell et al. 2005, 2006). It has 2n = 40 chromosomes with estimated genome size of 441 mega basepairs (http:// https://www.sodocs.net/doc/688792563.html,/cvalues/).

During last few years, a number of reports addressed the genetic diversity of mango for application in culti-var identification using PCR and sequencing based tech-niques viz. RAPD, ISSR, DAMD etc. (Srivastava et al. 2012; Chinag et al. 2012; Souza et al. 2011; Rocha et al. 2012; Ravishankar et al. 2011; Hirano et al. 2010; Khan and Azim 2011). Despite its global importance, genomic sequence resources available for the mango tree are scarce. As of October 2013, there are only 684 highly redundant sequence entries in the GenBank for mango. Large scale discovery and characterization of functional genes via genome sequencing or global exploration of the transcrip-tome are required for better understanding of fundamental molecular biology of mango.

Recently development of RNA sequencing (RNA-seq) methodology has facilitated the analysis of transcriptomes of a number of crop and medicinal plants (Xu et al. 2013; Duangjit et al. 2013; Sara et al. 2010). RNA-seq is char-acterized by sequencing of the transcriptome using mas-sively paralleled next generation DNA sequencing tech-nology. It is among the most popular techniques of NGS (Strickler et al. 2012). RNA-seq generate millions of short cDNA reads which either aligned to a reference genome or reference transcripts, or assembled de novo to produce a genome-scale transcription map that consists of both the transcriptional structure and/or level of expression for each gene (Mortazavi et al. 2008). Sequencing of RNA has long been recognized as an efficient method for gene discovery and remains the gold standard for annotation of both cod-ing and non-coding genes (Adams et al. 1991; Haas and Zody 2010). Furthermore, the RNA-seq method offers a holistic view of the transcriptome, revealing many novel transcribed regions, splice isoforms, single nucleotide poly-morphisms (SNPs) and the precise location of transcription boundaries (Li et al. 2010; Wilhelm et al. 2010). RNA-seq is expected to revolutionize the manner in which eukaryotic transcriptomes are analyzed (Wang et al. 2009).

Here we report the characterization of mango leaf tran-scriptome and chloroplast genome using next generation sequencing. We generated over 1.0 billion bases of high quality DNA sequence of mango using RNA-seq tech-nology and demonstrated the suitability of short-read sequencing for de novo assembly and annotation of genes without prior genome information. Moreover, we also sequenced the mango chloroplast genome with the help of a blend of Sanger and next generation sequencing. The results provide a cost effective and efficient way to global discovery of new functional genes in mango.

Materials and methods

Plant materials

Mangifera indica cultivar Langra used in this study was grown in Botanical Gardens of University of Karachi, Karachi, Pakistan. The leaf specimen of the tree used is preserved in the Herbarium of Department of Botany, Uni-versity of Karachi, Karachi, Pakistan. Healthy and mature leaves from same tree were taken for RNA-seq and chloro-plast DNA sequencing.

RNA isolation, cDNA synthesis and sequencing

Total RNA was isolated from mango leaves using RNAesy kit (Qiagen GmbH, Hilden, Germany). RNA integrity was confirmed using a 2100 Bioanalyzer (Agilent Inc., USA). Beads with oligo(dT) were used to isolate poly(A) mRNA from total RNA (Qiagen GmbH, Hilden, Germany). The purified mRNA was fragmented into short fragments using divalent cations under elevated temperature. The cDNA was synthesized with random hexamer primers and mRNA fragments as templates using Superscript?III Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA). Short fragments were purified with the PCR extraction kit (Qia-gen GmbH, Hilden, Germany) followed by end repair and poly(A) addition. The short fragments were then connected with sequencing adapters. The paired-end library (with 200 bp insert size) was prepared following the manufactur-er’s protocol (Illumina Inc., San Diego, CA, USA). Finally, the library was sequenced using Illumina HiSeq2000 (Illu-mina Inc., San Diego, CA, USA). The library was linked the flow-cell containing complementary adapters, and then bound fragments were amplified to create ‘clusters’. The adapters were designed to allow selective cleavage of the forward DNA strand after resynthesis of the reverse strand during sequencing. The copied reverse strand was then used to sequence from the opposite end of the fragment. The raw reads were cleaned by removing adaptor sequences, empty read and low quality sequences.

Transcriptome de novo assembly

Transcriptome denovo assembly was carried out with short reads assembling program—Trinity (Grabherr et al. 2011).

Trinity combines three independent software modules: Inchworm, Chrysalis, and Butterfly. Trinity applies these programs one after the other to process large volumes of RNA-seq reads. Firstly, Inchworm assembles the RNA-seq data into the unique sequences of transcripts, often generating full-length transcripts for a dominant isoform, but then reports just the unique portions of alternatively spliced transcripts. Secondly, Chrysalis clusters the Inch-worm ‘contigs’ into clusters and constructs complete de Bruijn graphs for each cluster. Each cluster represents the full transcriptional complexity for a given gene (or sets of genes that share sequences in common). Chrysalis then par-titions the full read set among these disjoint graphs. Finally, Butterfly processes the individual graphs in parallel, trac-ing the paths that reads and pairs of reads take within the graph, ultimately reporting full-length transcripts for alter-natively spliced isoforms, and teasing apart transcripts that corresponds to paralogous genes. The resultant sequences are termed as ‘unigenes’.

Annotation and classification of unigenes

Mango unigenes were analyzed by BLASTN (Zhang et al. 2000) against the NR database (NCBI non-redundant sequence database) with an E-value cut-off of 10?5. The coding sequences in mango unigenes were also analyzed using BLASTN against genomic sequence datasets of Cit-rus sinensis (sweet orange), Populus trichocarpa (black cottonwood), Vitis vinifera (Grapevine), Ricinus communis (castor bean), Glycine max (soya bean), Medicago trun-catula (Barrel Medic) and Arabidopsis thaliana. Unigene sequences were further aligned by BLASTX to protein databases; SwissProt, KEGG (Kanehisa et al. 2008) and COG. This step retrieved proteins with the highest sequence similarity with the given unigenes along with their func-tional annotations. In case of disagreement between data-bases, a priority order of NR, Swiss-Prot, KEGG and COG was followed. For unigenes that did not align to any of the above databases, ESTScan software (Iseli et al. 1999) was used to predict their coding regions and decide sequence direction.

The Blast2GO and WEGO programs were used for GO functional annotations, KEGG and COG analysis of mango unigenes (Conesa et al. 2005; Ye et al. 2006). The analysis mapped annotated unigenes to GO terms and calculated the number of unigenes associated with every term.

Comparison with Genbank M. indica sequence entries

Six hundred and eighty four mango sequences (ESTs and nucleotide sequences) were downloaded from the GenBank and used for nucleotide BLAST search against 30,509 uni-genes using an E-value cut-off of 10?5.Mango chloroplast genome sequencing

A combination of Sanger-based and next-generation sequenc-ing strategies were used for mango chloroplast DNA (cpDNA) sequencing. The mango leaves (5.0 grams) were used for iso-lation of total DNA using AxyGen multisource DNA mini-prepration kit (Axygen Scientific, USA). Initially, a primer walking strategy termed as “ASAP: amplification, sequenc-ing and annotation of plastomes” (Dhingra and Folta 2005) was used for amplification and Sanger-based sequencing of inverted repeat (IR) and large single copy (LSC) regions of cpDNA. Briefly, purified mango DNA was used for genera-tion of 6.0 kb amplicons with consensus set of primers (Sup-plementary data) (Dhingra and Folta 2005). The 6.0 kb ampli-cons were then used for generation of 1.0 kb fragments using internal sets of primers (Supplementary data) corresponding to 6.0 kb amplicons. Later on, gap filling primers were designed to fill the gaps within the inverted repeat region (Supplemen-tary data). The Sanger-based sequencing of the above men-tioned fragments was carried out by CEQ8000 Genetic Ana-lyzer (Beckman Coulter Inc., USA). For cycle sequencing reactions, the DTCS kit (Beckman Coulter Inc., USA) was used, with conditions as recommended by the suppliers. Fur-ther mango cpDNA sequencing was carried out by next-gener-ation sequencing technology of GS FLX System (Roche Inc., USA) using Titanium Mini kit and 7.0 μg of purified DNA.

The sequences obtained from Sanger-based sequenc-ing were assembled using the Lasergene package version 7.1 (DNASTAR Inc., Madison, WI, USA). The sequencing data from the GS FLX system was assembled using CLC Genomics Workbench version 3.5.1 (CLCbio, Denmark). The assembled sequences obtained from Sanger-based and next generation sequencing were combined using CLC Genomics Workbench (CLC bio, Denmark). Genome annotation was performed through the DOGMA server (Dual Organellar Genome Annotator; (Wyman et al. 2004), ORF Finder (https://www.sodocs.net/doc/688792563.html,/projects/gorf/), and BLAST (Altschul et al. 1990). Repeat analysis was performed using the REPuter program (Kurtz et al. 2001).

A circular genome map of mango cpDNA was constructed using the GenomeVx tool (Conant and Wolfe 2008). Con-struction of multiple alignments and phylogenetic trees of complete cpDNA sequences was carried out by the mVISTA comparative genomics tool (Frazer et al. 2004). Results and discussion

RNA-seq and de novo assembly of mango transcriptomic sequences

To characterize the mango transcriptome, total RNAs were isolated from leaves. After DNase treatment and

confirmation of RNA integrity using bioanalyzer, total RNA was used for mRNA preparation, fragmentation and cDNA synthesis. After cleaning and quality checks, Illu-mina NGS sequencing generated 12,153,196 sequence reads, encompassing 1,093,787,640 nucleotides, with each sequence read averaging ca. 90 bp in length (Table 1). This dataset has been submitted to the NCBI Short Read Archive with accession number SRR947746.

Transcriptome de novo assembly was carried out with short reads assembling program—Trinity (Grabherr et al. 2011). Using this method, initially 85,651 contigs with a mean length of 238 were generated (Table 2). As shown in the contig length distribution in Fig. 1, the contig count is inversely proportional to length. Later on, the contigs sequences were assembled into 30,509 unigenes. Mean size of unigenes was 536 bp with lengths in the range of 300 to >3,000 bp (Fig. 2). Sum of all unigenes length was 16,354,267 nucleotides with depth of coverage of 66.8× [depth of coverage was calculated by dividing number of clean nucleotides i.e. 1,093,787,640 by sum of nucleo-tides in 30,509 unigenes (16,354,267 nt)]. The unigenes were divided into two clusters. In cluster-1, unigenes with sequence homology >70 % were grouped (prefixed CL); whereas cluster-2 contained singleton unigenes (prefixed unigene). The assembled mango transcriptome sequences have been deposited in the Genbank with Transcription Shotgun Assembly number SUB363843.

Comparison of assembled unigenes with mango sequences in Genbank

As of October 2013, the Genbank contained 684 sequence entries of mango (both gene sequences and ESTs); many of them are redundant, analyzed in the frame of phylogenetic studies and yet unpublished. After removing the redun-dancy, Genbank mango sequences were divided into com-plete and partial gene sequences. Subsequently, 30 and 59

nonredundant complete and partial mango gene sequences were found respectively (indicating 89 nonredundant mango gene sequences in Genbank). These sequences were submitted to the BLAST searches against 30,509 unigenes in present mango dataset. Out of 89 nonredundant mango gene sequences in Genbank, 76 (85.4 %) matched with assembled unigenes with a cutoff E-value of 10?5. This analysis provided an evaluation of the quality of unigene sequences in present dataset. Further analysis showed that

Table 1 Output statistics of mango RNA-seq experiment * Total clean nucleotides = total clean reads1 × read1 size + total clean reads2 × read2 size

Total raw reads

Total clean reads Total clean nucleotides

(nt)

Q20 (%)N (%)GC (%)

15,851,73612,153,1961,093,787,64091.960.0144.73

Table 2 Statistics of assembly of NGS reads using Trinity

Total number

Total length (nt)Mean length (nt)N50Total consensus sequences Distinct clusters Distinct singletons Contig 85,65120,364,178238291–––Unigene

30,509

16,354,267

536

687

30,509

11,403

19,106

Fig. 1 Length distribution of contigs obtained after assembly of

mango RNA-seq reads

Fig. 2 Length distribution of assembled mango Unigene sequences

majority of matched sequences had percent identities more than 95 % and E-value lower than 10?40 indicating reliabil-ity of alignment.

Recently mass spectrometry based proteomic analy-sis identified 538 proteins in mango leaves (Renuse et al. 2012). This mango leave proteome data contained 151 non-redundant protein sequences (length of the peptides used for protein matching were in the range of 09–34 amino acids; mean = 17). Comparative analysis showed that the present mango leaf transcriptome dataset was in full agree-ment with proteomic data. The integration of proteomic and transcriptomic data further evaluate the quality of assembled unigenes.Annotation of unigenes

BLAST searching of mango unigene sequences against nucleotide databases (NR and NT), protein database Swiss-Prot, as well as KEGG and COG was performed with Evalue cutoff 10?5. BLAST searches against NR database annotated 24,593 unigenes out of total 30,509 (80 %) uni-genes (Table 3). Sequence analyses with NR database and several Viriplantae species genomic datasets showed that 37 % of C. sinensis coding region sequences matched with mango sequences, followed by P . trichocarpa (22.5 %), V . vinifera (18.3 %), R. communis (17.9 %), G. max (17.3 %), M. truncatula (10.5 %) and Arabidopsis thaliana (6.7 %) (Fig. 3; Table 4) (10.4 % of mango transcriptome sequences matched with sequences of other species).

Based on sequence homology, 21,054 mango unigenes were categorized into 57 functional groups, belonging to three main GO ontologies: molecular function, cellular component and biological process (Table 5). The results showed a high percentage of genes from categories of “cel-lular process”, “metabolic process”, “cell/cell part”, “orga-nelle”, “catalytic”, and “binding” with only a few genes related to “locomotion” and “nucleoid”. On the other side, genes were not grouped in the categories of “cell killing”, “extracellular matrix”, “metallochaperone activity”, “nutri-ent reservoir activity”, “protein tag” and “translation regu-lator” (Table 5).

To further evaluate the function of the assembled uni-genes, we searched the annotated unigenes involved in Clusters of Orthologous Groups (COG). Out of 24,593 NR Blast hits, 7,594 unigenes had a COG classification (Fig. 4). Among the 25 COG categories, the cluster for

“general function prediction” represented the largest group, followed by three categories related to transcription, trans-lation and posttranslational modification (categories J, K and O; see Fig. 4). Other most predicted gene functions were replication, recombination, repair and signaling (cat-egories L and T; see Fig. 4). The categories “cell motility”, “extracellular structures” and “nuclear structure” were least represented groups.

To identify active biochemical pathways in mango, the unigenes were mapped to the reference canonical path-ways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al. 2008). The KEGG database con-tains systematic analysis of inner-cell metabolic pathways and functions of gene products, which aid in studying the complex biological behaviors of genes. In total, 13,561 unigenes were assigned to 293 KEGG pathways. The path-ways with most representation were “metabolic pathways”, “photosynthesis”, “transcription/translation”, “DNA repair/recombination”, “signal transduction” and “cell cycle”. Considerable numbers of unigenes were identified as “vita-min metabolism”, “N- and O-linked glycan biosynthesis”, “ubiquitin mediated proteolysis/proteasome”, “endocyto-sis” and “circadian rhythm”. KEGG analysis discovered an array of biochemical pathways involved in biosynthesis of secondary metabolites/natural products known to partici-pate in plant hormonal, flavors, aromatic and other cellular processes.

Characterization of natural products biosynthetic pathways Annotation of mango unigenes identified many genes involved in phenylpropanoid, flavonoid, flavone/flavonol, isoflavonoid, terpenoid and carotenoid biosynthetic path-ways (Pandit et al. 2010; Andrade Jde et al. 2012).

Phenylpropanoids comprise a large group of plant based natural compounds, derived from phenylalanine (Michal 1999). First step in the phenylpropanoid biosynthesis pathways is formation of cinnamic acid from phenylala-nine which leads the formation of cinnamoyl-CoA, p -cou-maroyl-CoA, feruloyl-CoA and sinapoyl-CoA. These CoA activated compounds are starting metabolites for the syn-thesis of lignins (the second most frequent class of com-pounds in biosphere after cellulose), flavonoids, flavones and flavonols (Michal 1999). KEGG analyses of mango transcriptome sequences revealed presence of 13 genes involved in biosynthesis of above mentioned CoA activated

Table 3 Summary of mango unigene annotation with the nucleotide and protein sequence databases NR, NT, Swiss-Prot, KEGG, COG and GO The number of unigenes annotated with each database along with total number

NR NT Swiss-Prot KEGG COG GO ALL 24,593

21,974

14,447

13,561

7,594

21,054

25,453

compounds. Analysis showed active pathways for the syn-thesis of several lignins in mango including guaiacyl lignin, 5-hydroxyguaiacyl lignin, synringyl lignin, p-hydroxyphe-nyl lignin.

Several phenylpropanoid and flavonoid biosynthetic pathways genes found in the mango transcriptome dataset were methyltransferases. Mining of mango sequence data revealed >200 unigenes corresponding to different classes of methyltransferases. The methyltransferases transfer a methyl group from a donor to an acceptor. In plants, meth-ylation occurs on nucleotide bases in DNA and amino acids in proteins (Lam et al. 2007). This process is involved in many cellular functions including epigenetic modification and gene regulation. Methyltransferase are also involved in methylation of plant secondary metabolites (such as salicy-clic acid) that are important contributors to taste and aroma of many fruits and flowers (Tieman et al. 2010). Identifi-cation of >200 methyltransferases in mango provided a wealth of data related to this important class of enzymes. The high number of unigenes encoding methyltransferases indicated variability in structures and functions which in turn reflected the diversity in epigenetic mechanisms and secondary metabolites turnover in mango.

Moreover, mango transcriptome dataset contained 12 enzymes required for the synthesis of following flavonoids (including flavones and flavonols). Pinostrobin, pinobank-sin, buetin, dihydrofisetin (futin), naringenin, luteolin, afzelechin, epiafzelechin, catechin, epicatechin, homoe-riodictyol, eriodictyol, quercetin and garbanzol (Table 6). Several of these flavonoids are known to exhibit antioxi-dant, anti-inflammatory, antimutagenic etc. properties (see Table 6 for references). For instance, butein is proposed in

Fig. 3 Annotation of mango unigenes with nonredundant nucleotide database NR. Pie diagram showing a E-value dis-tribution, b percentage identity distribution and c species distri-

bution of mango unigenes

the treatment of breast cancer due to its ability to inhibit aromatase in the human body (Wang 2005). Interestingly, two compounds in this list (i.e. homoeriodictyol, eriodic-tyol) are bitter-masking flavonones (Ley et al. 2005).

The present dataset contained sequences encoding enzymes for biosynthesis of precursors in Isoflavonoid biosynthetic pathway (i.e. liquiritigenin and naringenin), Flavone and flavonol biosynthetic pathway (i.e. apigenin and kaemferol) and Anthocyanin biosynthetic pathway (i.e. cyanidin).

A number of terpene and benzenoid metabolism related genes including geranylgeranyl pyrophosphate synthase, Farnesyl pyrophosphate synthase and isochorismate hydro-lase were also found in mango unigenes. Terpenoids and benzenoids are important natural products in mango. These genes are reported to involve in fruit ripening process (Pan-dit et al. 2010; Kulkarni et al. 2013). However, they are not limited to tissues of fruit ripening and transcribe in leaf tis-sues as well. Since most these genes are comprised of large families, most likely different genes would be expressed in leaf and fruit tissues.

Twenty-two enzyme sequences involved in terpenoid backbone biosynthetic pathways were present in mango unigenes. Mevalonate pathway for the synthesis of Isopen-tenyl-pyrophosphate was found active in mango. Moreover, enzymes required for syntheses of other key intermedi-ates i.e. geranyl-pyrophosphate, farnesyl-pyrophosphate and geranyl-geranyl-pyrophosphate were also present. The farnesal biosynthetic pathway from farnesyl-pyrophosphate was also found active as all required enzymes were pre-sent. Moreover, enzymes for the synthesis of dehydrodeli-chol-pyrophosphate from farnesyl-pyrophosphate; phy-tyl-pyrophosphate and nona-prenyl-pyrophosphate from greanyl-geranyl-pyrophosphate were also present. Among several monoterpenoid biosynthetic pathways, enzyme for production of Linalool from geranyl-pyrophosphate was found. As a terpene alcohol, Linalool has a pleasant scent and found in many flowering and spice plants (Lewinshon et al. 2001). Triterpenoid biosynthetic pathway from farn-eyl-pyrophosphate was found active in mango. However, enzymes needed for sesqui terpenoid biosynthesis was not detected in present dataset.

Plant hormone signal transduction pathways in mango The subsystem based gene annotation identified active presence of a number of plant hormone signal transduc-tion pathways in the present dataset. These plant hormones included auxin, cytokinin, gibberillin, abscisic acid, ethyl-ene, brassinosteroid, jasmonic acid, salicylic acid. Genes encoding receptors, enzymes and others proteins of these signaling pathways and found in the present mango dataset are given in Table 7.

T a b l e 4 S u m m a r y o f B L A S T N s e a r c h e s o f m a n g o c o d i n g r e g i o n s e q u e n c e s (n = 24,642) w i t h t h e c o d i n g s e q u e n c e s o f s e v e n V i r i d i p l a n t a e s p e c i e s

N a m e o f p l a n t s p e c i e s C i t r u s s i n e n s i s (s w e e t o r a n g e )

P o p u l u s t r i c h o c a r p a (b l a c k c o t t o n w o o d )

V i t i s v i n i f e r a (G r a p e -v i n e )

R i c i n u s c o m m u n i s (C a s t o r b e a n s )G l y c i n e m a x (s o y a

b e a n )M e d i

c a g o t r u n c a t u l a (B a r r e l M e

d i c )

A r a b i d o p s i s t h a l i a n a

S o u r c e

C i t r u s G e n o m e

D B (w w w .c i t r u s g e n o m e d b .o r g )

P l a n t G e n o m e D B (w w w .p l a n t g d b .o r g )

w w w .g e n o s c o p e .f r )J . C r a i g V e n t o r I n s t i t u t e (c a s t o r b e a n .j c v i .o r g /i n d e x .p h p )P l a n t G e n o m e D B (w w w .p l a n t g d b .o r g )J . C r a i g V e n t o r I n s t i t u t e , C a s t o r (c a s t o r b e a n .j c v i .o r g /i n d e x .p h p )P l a n t G e n o m e D B (w w w .p l a n t g d b .o r g )N o . o f t r a n s c r i p t / c o d i n g r e g i o n s e q u e n c e s

46,147

45,033

26,346

31,22555,787

62,31941,671

N o . o f m a n g o c o d i n g s e q u e n c e s m a t c h e d (%)

9,141 (37.0)

5,568 (22.5)

4,529 (18.3)

4,427 (17.9)3,634 (17.3)2,606 (10.5)1,663 (6.7)

From work in model plants, it is known that the ethyl-ene receptors (ER) are negative modulators of the plant hormone ethylene, and therefore likely to play an impor-tant part in plant cell physiology. In Arabidopsis, ER is perceived by a family of 05 receptors, divided into two subfamilies (Bleecker et al. 1998). The type-I subfamily include ETR1 and ERS1 and the type-II subfamily recep-tors include ETR2, ERS2 and EIN4. Mining of mango transcriptome dataset identified a total of five receptor genes. Multiple alignment and phylogenetic comparisons of mango ER sequences with representative ER sequences from other fruit species identified two ETR1 genes (CL3814 and CL5014), one ETR2 gene (CL3814), ETR2-like gene (Unigene15424) and EIN4 gene (Unigene2479) each (Fig. 5). Hence the analysis showed that both ER sub-family members were present in mango. This study demon-strates the potential for the whole genome sequence to be used as a resource for characterization of large multi-gene families in mango.

Proteolytic enzymes in mango

Proteases or peptidases are involved in myriad important cellular functions. Few studies have been reported on pro-teolytic enzymes in mango (Mehrnoush et al. 2012). The current mango transcriptome analysis revealed 235 uni-genes (0.8 % of all unigenes) corresponding to proteases. These unigenes were grouped in five catalytic classes of peptidases/proteases. Number of unigenes related to dif-ferent classes of peptidases were as follows; serine pepti-dases (n = 89), metallo peptidases (n = 72), cysteine pepti-dases (n = 25), aspartic peptidases (n = 40) and threonine peptidases (n = 09) (Table 8). This list contains several plant-specific proteases including Xylem serine protease,

Table 5 Gene ontology (GO) classification of mango transcriptome unigenes

No.Functional class Unigenes No.Functional class Unigenes No.Functional class Unigenes

GO ontology: biological_process GO ontology: cellular_component GO ontology: molecular_function

01Biological adhesion19526Cell17,54143Antioxidant activity109

02Biological regulation5,89127Cell junction1,18344Binding10,722 03Carbon utilization0828Cell part17,54145Catalytic activity10,009 04Cell killing0129Extracellular matrix1946Electron carrier activity353

05Cell proliferation20630Extracellular matrix part0347Enzyme regulator activity227

06Cellular component organiza-

tion or biogenesis

4,26531Extracellular region1,05648Metallochaperone activity03

07Cellular process14,28533Extracellular region part2049Molecular transducer activity329

08Death59234Macromolecular complex2,84450Nucleic acid binding transcrip-

tion factor activity

670

09Developmental process4,28634Membrane7,24951Nutrient reservoir activity13

10Establishment of localization4,33435Membrane part2,69852Protein binding transcription

factor activity

102

11Growth1,05336Membrane-enclosed lumen1,07653Protein tag04

12Immune system process1,09037Nucleoid3854Receptor activity142

13Localization4,56138Organelle14,29355Structural molecule activity581

14Locomotion3139Organelle part4,39356Translation regulator activity07

15Metabolic process13,42540Symplast1,17557Transporter activity1,631

16Multi-organism process2,05441Virion03

17Multicellular organismal proc.4,28542Virion part03

18?ve regulation of biological

proc.

1,445

19+ve regulation of biological

proc.

1,276

20Regulation of biological

process

5,403

21Reproduction2,552

22Reproductive process2,548

23Response to stimulus7,526

24Signaling2,265

25Single-organism process5,756

thalakoidal processing peptidase, Chloroplast process-ing peptidase, and Germination-specific cysteine protease. Highest number of unigenes for a specific protease was estimated for ATP dependent protease ClpAP (n = 36). The ClpAP is a two component system energy depend-ent protease system composed of ClpP, the peptidase and ClpA, the ATPase. ClpAP is involved in intracellular pro-teolysis. We found 25 unigene sequences of ClpP (both cytosolic and chloroplast) which indicated presence of sev-eral isoforms of ClpP probably due to alternative splicing. The ClpP isoforms would be responsible for degradation of different proteins due to variation in substrate specific-ity as a result of sequence variation at the substrate bind-ing cleft of ClpP. Mango contained several unigenes related to papain-like cysteine proteases. These include actinidin homologues with >65 % sequence similarity (CL3299 and Unigene4699) and cathepsins L/H homologues with 40 % sequence similarity (CL3398, CL3842 and CL4516).Stress response genes

Several stress response genes identified in mango uni-gene sequences included metallothionein (04 unigenes), Ubiquitin-protein ligase (03 unigenes), cysteine proteinase inhibitor (03 unigenes), FtsJ-like methyltransferase (several unigenes), 14-3-3 protein (12 unigenes), small heat shock protein (04 unigenes) and chitinase (13 unigenes). Two out of four metalothionin (MTH) sequences (i.e. Unigene10572 and Unigene12274) were classified as plant MTH type 1. Sequence motif analysis showed that Unigene12272 codes for MTH type-2 and Unigene10535 codes for MTH type-3 protein. Therefore present data provided evidence of pres-

ence of type-1, -2 and -3 MTH in mango.

Fig. 4 COG functional classification of mango Unigene sequences. A RNA processing and modification; B Chromatin structure and dynamics; C Energy production and conversion; D Cell cycle control, cell division, chromosome partitioning; E Amino acid transport and metabolism; F Nucleotide transport and metabolism; G Carbohydrate transport and metabolism; H Coenzyme transport and metalbolism; I Lipid transport and metabolism; J Translation, ribosomal structure and biogenesis; K Transcription; L Replication, recombination and repair; M Cell wall/membrane/envelope biogenesis; N Cell motility; O Post-translational modification, protein turnover, chaperones; P Inorganic ion transport and metabolism; Q Secondary metabolites biosynthesis, transport and catabolism; R General function prediction only; S Func-tion unknown; T Signal transduction mechanisms; U Intracellular traf-ficking, secretion, and vesicular transport; V Defense mechanisms; W Extracellular structures; Y Nuclear structure; Z Cytoskeleton

Table 6 Analysis of mango transcriptome sequences revealed active biosynthetic pathways for bioactive flavonoids mentioned in the table https://www.sodocs.net/doc/688792563.html, of flavonoid compounds Known bioactivities

1Pinostrobin, Pinobanksin Antioxidant flavonoids that inhibit peroxidation of low density lipoprotein (Fahey and Stephenson 2002)

2Homoeriodictyol, eriodictyol Bitter-masking flavanones (Ley et al. 2005)

3Afzelechin

A flavan-3ol, a type of flavonoids, found in Bergenia ligulata (aka Paashaanbhed in Ayurveda tradi-tional Indian medicine) (https://www.sodocs.net/doc/688792563.html,/wiki/afzelechin )

4Garbanzol Antimutagenic flavonoid (Park et al. 2004)5Butein A chalconoid with antioxidative, aldose reductase and advanced glycation endproducts inhibitory

effects. (Lee et al. 2008; Wang 2005)

6Catechin, epicatechain, gallocatechin Flavan-3-ol compounds with antioxidant and number of other health benefits

(https://www.sodocs.net/doc/688792563.html,/wiki/catechin )

7Dihydrofisetin (also known as fustin) A flavanonol, a type of flavonoid; showed protective effects on 6-hydroxydopamine-induced neu-ronal cell death (Park et al. 2007)

8Quercetin Antioxidant (Edwards et al. 2007)9

Naringenin A flavanone, a type of flavonoid. It has antioxidant, free radical scavenging, anti-inflammatory,

carbohydrate metabolism promoting, and immune system modulating activities (Mulvihill et al. 2009)10

Luteolin

A flavones with antioxidant and anti-inflammatory activities (López-Lázaro 2009)

Mango chloroplast genome We carried out chloroplast genome sequencing of mango using Sanger-based and next-generation sequencing methods. Chloroplast genome contains a pair of inverted repeat (IR) regions separated by small and large sin-gle copy regions (SSC and LSC). Initially, 22,918 bp of the inverted repeat (IR) region were sequenced using the ASAP protocol (Dhingra and Folta 2005). For this, primers reported by Dhingra and Folta (2005) were used. Addition-ally, gap filling primers was designed. Consequently, com-plete IR region of mango cpDNA was sequenced with size of 27,093 bp. Furthermore, 5,783 bp of LSC region was also sequenced using same strategy. Therefore, collectively 32,876 bp of complete IR region and partial LSC region of mango chloroplast genome was obtained using Sanger-based sequencing.

To get more sequence coverage, the mango cpDNA was subjected to pyrosequencing based 454 technology

adopted in GS FLX genome sequencer. The raw data of GS FLX was analyzed to get finished sequences. GS FLX sequencer generated sequence data of 10.573 megabases containing 26,988 reads with average length of 400

nucleotides. This data along with the 32,876 bp sequence

obtained from Sanger sequencing was used to generate

a circular map of mango chloroplast genome contain-ing 151,173 base pairs. However, a complete cpDNA

Table 7 List of genes involved in plant hormone signaling found in mango mango transcriptome dataset No.Plant hormone Plant hormone signal transduction pathways genes found in mango transcriptome dataset 1

Auxin

auxin influx carrier (AUX1 LAX family),auxin response factor,

auxin responsive GH3 gene family,SAUR family protein

2Cytokinin

histidine-containing phosphotransfer protein,

two-component response regulator ARR-A family protein,two-component response regulator ARR-B family protein 3Gibberillin gibberellin receptor GID1,DELLA protein

4

Abscisic acid

abscisic acid receptor PYR/PYL family,protein phosphatase 2C [EC:3.1.3.16],

serine/threonine-protein kinase SRK2 [EC:2.7.11.1],ABA responsive element binding factor 5Ethylene

ethylene receptor,

serine/threonine-protein kinase CTR1 [2.7.11.1],mitogen-activated protein kinase 6 [2.7.11.24],ethylene-insensitive protein 2,EIN3-binding F-box protein,ethylene-insensitive protein 3

6Brassinosteroid

protein brassinosteroid insensitive 1,BR-signaling kinase [2.7.11.1],brassinosteroid resistant 1/27Jasmonic acid

jasmonic acid-amino synthetase,coronatine-insensitive protein 1,

jasmonate ZIM domain-containing protein,transcription factor MYC28Salicylic acid

regulatory protein NPR1,transcription factor TGA,

pathogenesis-related protein 1

Fig. 5 Phylogenetic tree generated based on multiple alignment of 12 representative ethylene receptor (ER) sequences and five mango

ER sequences found in present RNA-seq dataset

sequence could not be obtained as the 151,173 bp mango cpDNA sequence contained 30 gaps when compared to Citrus cpDNA (17 gaps located in intergenic homopoly-mer repeat regions whereas 13 intragenic gaps). Prelimi-nary sequence comparison revealed close relationship of mango and C. sinensis cpDNA sequences. The chloroplast genome size of C. sinensis is 160,129 base pairs. This comparison indicated that 95 % of mango chloroplast genome sequences have been obtained resulting from the current study. The draft sequence of mango chloroplast genome was submitted in GenBank with accession num-ber FJ212316.

Table 8 Proteolytic enzymes found in mango transcriptome dataset

No.Protease Unigenes No.Protease Unigenes

Metallo-peptidases Serine peptidases

1Zn metallopeptidase (endoproteinase)1219ATP dependent protease Clp; proteolytic subunit (18),

proteolytic subunit (chloroplast) (7), ATPase subunit

(5)

36

2FTSH4 (2), FTSH9 (3), FTSH2 (1), FTSH6 (2),

FTSH10 (2), FTSH (Chloroplast) (1)

1120ATP-dependent protease La (Lon)9

3Methionine aminopeptidase (6) Methionine amin-opeptidase 1A-like (2)821Serine carboxypeptidase (6), carboxypeptidase type

III (2),

8

4Oligopeptidase A722Subtilisin like5 5Xaa-Pro aminopeptidase623Protease Do-like 7-like (2), Protease Do-like 2-like

(1), Protease Do-like 9-like (1)

4

6Mitochondrial processing peptidase624Thalakoidal processing peptidase 24 7Aminopeptidase (2), Aminopeptidase N-like (2)425Xylem serine proteinase13 8Carboxypeptidase A2-like326Proline iminopeptidase3 9Puromycin-sensitive aminopeptidase327Mitochondrial inner membrane protease3 10Glutamate pro-X carboxypeptidase 2-like328Site-1 protease2 11Caax prenyl protease ste24229Serine endopeptidase depp22 12Zinc metaloprotesae SLR1821-like isoform 2130Prolyl oligopeptidase like2 13Protease ecfe (RseP peptidase)131Dipeptidyl peptidase 8-like2 14Zinc protease PQQL-like protease132Ubiquitin-specific protease 21(ESD4-like) serine

protease HtrA 2

1 15Membrane-bound transcription factor protease Site-2133Serine endopeptidase II-21 16Endoplasmic reticulum metallopeptidase1134Leucine endopeptidase1 17Aspartyl aminopeptidase-like135Lysosomal pro-X carboxypeptidase1 18Chloroplast processing peptidase136Glutamyl endopeptidase (choloplastic)1

37Protease 4-like1 Cysteine proteases Aspartic proteases

38Cysteine peptidase-like749Aspartic proteinase-nepenthesin-1 (7), aspartic

proteinase-nepenthesin-2 (4)

11

39Cysteine protease (5), Cysteine protease like (3),

Cysteine protease ATG4B (2),

550Aspartic proteinase-like protein2-like7

40Sentrin/sumo-specific protease (2), sentrin-specific

protease (1)

251Signal peptide peptidase-like 2B6 41UFM1-specific protease-like252d-Alanyl-d-alanine endopeptidase6 42Cysteine protease2

43pyrrolidone-carboxylate peptidase253Aspartic proteinase (2), Aspartic proteinase 1 (1),

Aspartic proteinase 2 (1)

4 44Germination-specific cysteine protease 1-like154Aspartic proteinase-Asp13 45Cysteine proteinase 15A-like155Aspartic Proteinase-like protein1-like3 46Legumain-like proteinase1Threonine proteases

47PPPDE peptidase domain-containing protein2 like15626S proteasome regulatory subunits 6A, S10B, 6B, 77 48Asparaginyl endopeptidase157Isoarpartyl peptidase/L-aspargenase21

58Gamma-glutamyltranspeptidase11

The available sequence of mango cpDNA (151,173 bp; GC 38.18 %) contains a pair of inverted repeats (IRA and IRB) of 27,093 bp separated by small and large single copy (SSC, LSC) regions, respectively (Fig. 6). The inverted repeat of mango chloroplast is larger as compared to sev-eral previously reported angiosperms for example length of cpDNA inverted repeat of A. thaliana is 26,264 bp (Sato et al. 1999), Solanum tuberosum is 25,595 bp (Chung et al. 2006), Nicotiana tabacum is 25,339 bp (Shinozaki et al. 1986) and Gossypium barbadense is 25,591 bp (Ibrahim et al. 2006). The length of mango cpDNA IR region is only 97 base pairs larger compared to its closest neighbour C. sinensis which has 26,996 bp (Bausher et al. 2006). This finding support the previous observations that contraction and expansion of IR region of chloroplast DNA is a major source of size variation of cpDNA among angiosperms (Chung, et al. 2006).

A total of 139 genes were detected in mango cpDNA sequence (119 single copy genes while 20 duplicated genes in inverted repeat regions). 91 genes code for proteins, including nine duplicated genes in the inverted repeats. There were four rRNA genes and 29 distinct tRNAs, 7 of which are duplicated in the inverted repeat. Notably, M. indica cpDNA contains the infA gene which code for a translation initiation factor and not present in its clos-est neighbour Citrus genome (Bausher et al. 2006). The detailed list of gene contents is present in Table 9.

Chloroplast genome-wide comparative analysis was carried by multiple alignment of cp DNA sequence from mango and 16 representatives of land plants and 2

Fig. 6 Circular map of mango chloroplast DNA indicating LSC, SSC and IR regions and the color scheme for gene indi-cation. The map has been con-structed by GenomeVx at http:// wolfe.gen.tcd.ie/GenomeVx/ (Conant and Wolfe 2008

)

representatives of Chlorophyta using VISTA web server (Asif et al. 2013; Khan et al. 2012; Frazer et al. 2004). The phylogenetic tree also indicated grouping of mango cpDNA sequences with C. sinensis (citrus sp.), Gossypium hirsu-tum (cotton) and V . vinifera (red grape). However, the most closely related sequence is C. sinensis cpDNA (Fig. 7).

Repeats in M. indica chloroplast genome

Along with two large inverted repeats in chloroplast

genome sequences i.e. IRA and IRB, a large number of rel-atively small repeats have been recently observed (Haberle et al. 2008). In mango chloroplast genome 51 direct repeats (Supplementary data) could be found using RePuter server http://bibiserv.techfak.uni-ielefeld.de/reputer/submission.html (Kurtz et al. 2001). The RePuter pro-gram provides software solutions to compute and visual-ize repeats in whole genomes or chromosomes. It provides interactive as well as static images of the results. Figure 8 indicates the position of repeats along with their sizes and orientation. RePuter analysis of mango cpDNA revealed 15 repeats of size >50 bp while rest were less than 50 bp. These repeats occur as the part of genes as well as inter-genic spacers. It is interesting to note that presence of hundreds of repeats in Trachelium caeruleum chloroplast genome is supposed to be associated with extensive rear-rangements (Haberle et al. 2008).

Conclusion

Mango genomic research lags that of other crops of eco-nomic importance. To facilitate biochemical and molecular biological research in mango, we characterized mango leaf transcriptome and cpDNA. Most of the resultant unigenes

Table 9 Genes encoded by mango chloroplast DNA a

Partial gene sequences due to gaps in respective regions of mango chloroplast genome

transfer RNA

trnH-GUG, trnK-UUU, trnQ-UUG, trnR-UCU, trnC-GCA, trnD-GUC, trnY-GUA, trnE-UUC, trnT-GGU, trnM-CAU, trnS-UGA, trnG-UCC, trnfM-CAU, trnS-GGA, trnT-UGU, trnL-UAA, trnF-GAA, trnV-UAC, trnM-CAU, trnT-GGU, trnW-CCA, trnP-UGG, trnI-CAU, trnL-CAA, trnV-GAC, trnI-GAU, trnI-GAU, trnA-UGC, trnR-ACG, trnA-UGC, trnI-GAU, trnI-GAU, trnV-GAC, trnL-CAA, trnL-UAG a , trnI-CAU

Photosystem I psa A a , psa B, psa C, psa J, psa I

Photosystem II

psb A, psb B, psb C, psb D, psb E, psb F,psb H,psb I,psb J, psb L, psb M, psb N, psb T

Assembly stability of photosystem I Ycf3a , ycf4Ribosomal proteins rps 2, rps 3, rps 4, rps 7, rps 8, rps 11, rps12, rps14, rps15, rps16, rps18, rps19, rpl14, rpl16, rpl20,

rpl22, rpl23, rpl32, rpl33, rpl36

ATP synthase subunits atpA,atpB,atpE, atpF, atpH, atpI Unknown function YCF Ycf1a , ycf2, ycf15Ribosomal RNA rrn23, rrn16, rrn5, rrn4.5NAHD dehydrogenase ndhA a , ndhB, ndhC, ndhD, ndhE, ndhF, ndhG a , ndhH,ndhI, ndhJ, ndhK Rubisco subunit rbcL cytochrome related PetA, PetB a , PetD, PetG, PetL, PetN,ccsA Plastid encoded RNA polymerase rpo A a ,rpo B,rpo C1a , rpo C2Maturase

matK a Acetyl-CoA carboxylase subunit accD ATP dependnt protease subunit clpP Gene for inorganic carbon uptake

cemA

a

Fig. 7 Phylogenetic tree of cpDNA from 19 plant species (includ-ing mango) using VISTA comparative genomics server (https://www.sodocs.net/doc/688792563.html,/vista/mvista/submit.shtml )

were aligned with mango sequences deposited in the Genbank, whereas all of coding regions in unigenes were matched with proteins sequences identified in mango pro-teomic dataset. Subsystem based gene annotation provided information for the production of a number of bioactive fla-vonoids, carotenoids and terpenoids in mango. These bio-active natural products are known to have a range of health beneficial properties. The large number of unigenes identi-fied in this study provides an important resource for future studies on mango biology. The advancements in transcrip-tomic, genomic, epigenomic, proteomic resources of non-model plants would greatly facilitate research in plant biology.References

Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos

MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF et al (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252(5013):1651–1656

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic

local alignment search tool. J Mol Biol 215:403–410

Andrade Jde M, Toledo TT, Nogueira SB, Cordenunsi BR, Lajolo

FM, do Nascimento JR (2012) 2D-DIGE analysis of mango (Mangifera indica L.) fruit reveals major proteomic changes associated with ripening. J Proteomics 75:3331–3341

Asif H, Khan A, Iqbal A, Khan IA, Heinze B, Azim MK (2013) The

chloroplast genome sequence of Syzygium cumini (L.) and its rela-tionship with other angiosperms. Tree Genet Genomes 9:867–877Bausher MG, Singh ND, Lee SB, Jansen RK, Daniell H (2006)

The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var ‘Ridge Pineapple’: organization and phyloge-netic relationships to other angiosperms. BMC Plant Biol 6:21. doi:10.1186/1471-2229-6-21

Bleecker AB, Esch JJ, Hall AE, Rodríguez FI, Binder BM (1998) The

ethylene-receptor family from Arabidopsis: structure and func-tion. Philos Trans R Soc Lond B Biol Sci 353(1374):1405–1412Chinag YC, Tasi CM, Chen YK, Lee SR, Chen CH, Lin YS, Tasi CC

(2012) Development and characterization of 20 new polymorphic microsatellite markers from mangifera indica (Anacardiaceae). Am J Bot 99(3):e117–e119

Chung HJ, Jung JD, Park HW, Kim JH, Cha HW, Min SR, Jeong WJ,

Liu JR (2006) The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis of with solanaceae species identified the presence of 241 bp deletion in cultivated potato chloroplast DNA sequence. Plant Cell Rep. doi:10.1007/s0029-006-0196-4

Conant GC, Wolfe KH (2008) GenomeVx: simple web-based crea-tion of editable circular chromosome maps. Bioinformatics 24:861–862

Conesa A, Gotz S et al (2005) Blast2GO: a universal tool for annota-tion, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

Dhingra A, Folta KM (2005) ASAP: amplification, sequencing and

annotation of plastomes. BMC Genom 6:176

Duangjit J, Bohanec B, Chan AP, Town CD, Havey MJ (2013) Tran-scriptome sequencing to produce SNP-based genetic maps of onion. Theor Appl Genet. doi:10.1007/s00122-013-2121-x

Duval M, Bunel FJ, Sitbon C, Risterucci AM (2005) Development

of microsatellite markers for mango (Mangifera indica L.). Mol Ecol Notes 5:823

Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T

(2007) Quercetin reduces blood pressure in hypertensive sub-jects. J Nutr 137(11):2405–2411

Fahey JW, Stephenson KK (2002) Pinostrobin from honey and Thai

ginger (Boesenbergia pandurata): a potent flavonoid inducer of mammalian phase 2 chemoprotective and antioxidant enzymes. J Agric Food Chem 50(25):7472–7476

Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004)

VISTA: computational tools for comparative genomics. Nucleic Acids Res 32:W273–W275

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I,

Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nus-baum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-seq data without a ref-erence genome. Nat Biotechnol 29(7):644–652

Haas BJ, Zody MC (2010) Advancing RNA-seq analysis. Nat Bio-

technol 28(5):421–423

Fig. 8 Diagrammatic representation of short repeats in mango chlo-roplast genome sequence. The graph outlines the length and loca-tion of repeats. The lines indicating repeats are colored according to

length. Each part of a repeat is displayed on a separate strand to keep the starting position visible

Haberle RC, Fourcade HM, Boore JL, Jansen RK (2008) Extensive rearrangements in the chloroplast genome of Trachelium caer-uleum are associated with repeats and trna genes. J Mol Evol 66:350–361

Hirano R, Htun Oo T, Watanabe KN (2010) Myanmar mango lan-draces reveal genetic uniqueness over common cultivars from Florida, India, and Southeast Asia. Genome 53(4):321

Ibrahim RIH, Azuma JI, Sakamoto M (2006) Complete nucleotide sequence of the cotton (Gossypium barbadense L.) chloroplast genome with a comparative analysis of sequences among 9 dicot plants. Genes Genet Syst 81:311–321

Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol 138–148 Kanehisa M, Araki M et al (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36(Database issue):D480–D484

Khan IA, Azim MK (2011) Variations in intergenic spacer rpl20-rps12 of Mango (Mangifera indica) chloroplast DNA: implica-tions in cultivar identification. Plant Evol Syst 292(3–4):249–255 Khan A, Khan IA, Heinze B, Azim MK (2012) The chloroplast genome sequence of date palm (Phoenix dactylifera L. cv.

‘Aseel’). Plant Mol Biol Rep 30:666–678

Krishna H, Singh SK (2007) Biotechnological advances in mango (Mangifera indica L.) and their future implication in crop improvement: a review. Biotechnol Adv 25:223–243

Kulkarni R, Pandit S, Chidley H, Nagel R, Schmidt A, Gershenzon J, Pujari K, Giri A, Gupta V (2013) Characterization of three novel isoprenyl diphosphate synthases from the terpenoid rich mango fruit. Plant Physiol Biochem 71:121–131

Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29(22):4633–4642

Lam KC, Ibrahim RK, Behdad B, Dayanandan S (2007) Structure, function, and evolution of plant O-methyltransferases. Genome 50(11):1001–1013

Lee EH, Song DG, Lee JY, Pan CH, Um BH, Jung SH (2008) Inhibi-tory effect of the compounds isolated from Rhus verniciflua on aldose reductase and advanced glycation endproducts. Biol Pharm Bull 31(8):1626–1630

Lewinshon E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Nam K, Amar O, Lastochkin E, Larkov O, Ravid U, Hiatt W, Gepstein S, Pichersky E (2001) Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol 127:1256–1265

Ley JP, Krammer G, Reinders G, Gatfield IL, Bertram HJ (2005) Evaluation of bitter masking flavanones from Herba Santa (Erio-dictyon californicum (H. and A.) Torr., Hydrophyllaceae. J Agric Food Chem 53(15):6061–6066

Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN (2010) RNASeq gene expression estimation with read mapping uncertainty. Bioin-formatics 26(4):493–500

López-Lázaro M (2009) Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem 9(1):31–59 Mehrnoush A, Mustafa S, Sarker MZ, Yazid AM (2012) Optimiza-tion of serine protease purification from mango (Mangifera indica cv. Chokanan) peel in polyethylene glycol/dextran aqueous two phase system. Int J Mol Sci 13:3636–3649

Michal G (1999) Biochemical pathways, an atlas of biochemistry and molecular biology. Spektrum Akademischer, Heidelberg Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 5(7):621–628

Mukherjee SK (1950) Mango: its allopolyploid nature. Nature 4213:196–197Mukherjee SK, Litz RE (2009) Introduction: Botany and Importance.

In: Litz RE (ed) The mango botany, production and uses, 2nd edn. CBI International, Wallingford, pp 1–18

Mulvihill EE, Allister EM, Sutherland BG, Telford DE, Sawyez CG, Edwards JY, Markle JM, Hegele RA, Huff MW (2009) Narin-genin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulinemia in LDL receptor-null mice with diet-induced insulin resistance. Diabetes 58(10):2198–2210

Pandit SS, Kulkarni RS, Giri AP, Kollner TG, Degenhardt J, Gersh-enzon J, Gupta VS (2010) Expression profiling of various genes during the fruit development and ripening of mango. Plant Phys-iol Biochem 48:426–433

Park KY, Jung GO, Lee KT, Choi J, Choi MY, Kim GT, Jung HJ, Park HJ (2004) Antimutagenic activity of flavonoids from the heart-wood of Rhus verniciflua. J Ethnopharmacol 90(1):73–79

Park BC, Lee YS, Park HJ, Kwak MK, Yoo BK, Kim JY, Kim JA (2007) Protective effects of fustin, a flavonoid from Rhus vernici-flua Stokes, on 6-hydroxydopamine-induced neuronal cell death.

Exp Mol Med 39(3):316–326

Ravishankar KV, Mani BH, Anand L, Dinesh MR (2011) Devel-opment of new microsatellite markers from mango (Mangif-era indica) and cross-species amplification. Am J Bot 98(4): e96–e99

Renuse S, Harsha HC, Kumar P, Acharya PK, Sharma J, Goel R, Kumar GSS, Raju R, Prasad TSK, Slotta T, Pandey A (2012) Pro-teomic analysis of an unsequenced plant-Mangifera indica. J Pro-teomics 75:5793–5796

Rocha A, Salomao LC, Salomao TM, Cruz CD, de Siqueira DL (2012) Genetic diversity of ‘uba’ mango tree using ISSR markers.

Mol Biotechnol 50(2):108–113

Sara Z, Alberto F, Enrico G, Luciano X, Marianna F, Giovanni M, Diana B, Mario P, Massimo D (2010) Characterization of tran-scriptional complexity during berry development in Vitis vinifera using RNA-seq. Plant Physiol 152:1787–1795

Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S (1999) Com-plete structure of the chloroplast Genome of Arabidopsis thali-ana. DNA Res 6:283–290

Schnell RJ, Olano CT, Quintanilla WE, Meerow AW (2005) Isola-tion and characterization of 15 microsatellite loci from mango (Mangifera indica L.) and cross-species amplification in closely related taxa. Mol Ecol Notes 5:625

Schnell RJ, Brown JS, Olano CT, Meerow AW, Campbell RJ, Kuhn DN (2006) Mango genetic diversity analysis and pedigree infer-ences for Florida cultivars using microsatellite markers. J Am Soc Hort Sci 131:214

Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Mat-subayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki J, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Toh-doh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

Souza IG, Valente SE, Britto FB, de Souza V A, Lima PS (2011) RAPD analysis of the genetic diversity of mango (Mangifera indica) germplasm in Brazil. Genet Mol Res 10(4):3080–3089 Srivastava N, Bajpai A, Chandra R, Rajan S, Muthukumar M, Srivas-tava MK (2012) Comparison of PCR based marker systems for genetic analysis in different cultivars of mango. J Environ Biol 33(2):159–166

Strickler SR, Aureliano Bombarely A, Mueller LA (2012) Designing

a transcriptome next-generation sequencing project for a non-

model plant species. Am J Bot 99(2):257–266

Tieman D, Zeigler M, Schmelz E, Taylor MG, Rushing S, Jones JB, Klee HJ (2010) Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. Plant J 62:113–123

Viruel MA, Escribano P, Barbieri M, Ferri M, Hormaza JI (2005) Fin-gerprinting, embryo type and geographic differentiation in mango (Mangifera indica L., Anacardiaceae) with microsatellites. Mol Breeding 15:383

Wang Y (2005) The plant polyphenol butein inhibits testosterone-induced proliferation in breast cancer cells expressing aromatase.

Life Sci 77(1):39–51

Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev 10(1):57–63

Wilhelm BT, Marguerat S, Goodhead I, Bahler J (2010) Defining transcribed regions using RNA-seq. Nat Protoc 5(2):255–266Wyman SK, Jansen RK, Boore JL (2004) Automatic annota-tion of organellar genomes with DOGMA. Bioinformatics 20(17):3252–3255

Xu J, Li Y, Ma X, Ding J, Wang K, Wang S, Tian Y, Zhang H, Zhu X-G (2013) Whole transcriptome analysis using next-generation sequencing of model species Setaria viridis to support C4 photo-synthesis research. Plant Mol Biol. doi:10.1007/s11103-013-0025-4 Ye J, Fang L et al (2006) WEGO: a web tool for plotting GO annota-tions. Nucleic Acids Res 34(Web Server issue):W293–W297 Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7(1–2):203–214

如何写先进个人事迹

如何写先进个人事迹 篇一:如何写先进事迹材料 如何写先进事迹材料 一般有两种情况:一是先进个人,如先进工作者、优秀党员、劳动模范等;一是先进集体或先进单位,如先进党支部、先进车间或科室,抗洪抢险先进集体等。无论是先进个人还是先进集体,他们的先进事迹,内容各不相同,因此要整理材料,不可能固定一个模式。一般来说,可大体从以下方面进行整理。 (1)要拟定恰当的标题。先进事迹材料的标题,有两部分内容必不可少,一是要写明先进个人姓名和先进集体的名称,使人一眼便看出是哪个人或哪个集体、哪个单位的先进事迹。二是要概括标明先进事迹的主要内容或材料的用途。例如《王鬃同志端正党风的先进事迹》、《关于评选张鬃同志为全国新长征突击手的材料》、《关于评选鬃处党支部为省直机关先进党支部的材料》等。 (2)正文。正文的开头,要写明先进个人的简要情况,包括:姓名、性别、年龄、工作单位、职务、是否党团员等。此外,还要写明有关单位准备授予他(她)什么荣誉称号,或给予哪种形式的奖励。对先进集体、先进单位,要根据其先进事迹的主要内容,寥寥数语即应写明,不须用更多的文字。 然后,要写先进人物或先进集体的主要事迹。这部分内容是全篇材料

的主体,要下功夫写好,关键是要写得既具体,又不繁琐;既概括,又不抽象;既生动形象,又很实在。总之,就是要写得很有说服力,让人一看便可得出够得上先进的结论。比如,写一位端正党风先进人物的事迹材料,就应当着重写这位同志在发扬党的优良传统和作风方面都有哪些突出的先进事迹,在同不正之风作斗争中有哪些突出的表现。又如,写一位搞改革的先进人物的事迹材料,就应当着力写这位同志是从哪些方面进行改革的,已经取得了哪些突出的成果,特别是改革前后的.经济效益或社会效益都有了哪些明显的变化。在写这些先进事迹时,无论是先进个人还是先进集体的,都应选取那些具有代表性的具体事实来说明。必要时还可运用一些数字,以增强先进事迹材料的说服力。 为了使先进事迹的内容眉目清晰、更加条理化,在文字表述上还可分成若干自然段来写,特别是对那些涉及较多方面的先进事迹材料,采取这种写法尤为必要。如果将各方面内容材料都混在一起,是不易写明的。在分段写时,最好在每段之前根据内容标出小标题,或以明确的观点加以概括,使标题或观点与内容浑然一体。 最后,是先进事迹材料的署名。一般说,整理先进个人和先进集体的材料,都是以本级组织或上级组织的名义;是代表组织意见的。因此,材料整理完后,应经有关领导同志审定,以相应一级组织正式署名上报。这类材料不宜以个人名义署名。 写作典型经验材料-般包括以下几部分: (1)标题。有多种写法,通常是把典型经验高度集中地概括出来,一

头脑风暴文档

[转载] 头脑风暴法在小学英语课堂教学中的运用(2007-01-11 21:58) 头脑风暴法在小学英语课堂教学中的运用(节选) 1、词汇教学 ??? 比如,有一位老师在教了生词“mango”后,让学生用mango一词造句,要求所造的句子不能重复,最后看学生能够造出多少个正确的句子。开始时,学生都依据教材内容进行造句,如: S1: Mangoes are red. S2: Mangoes are sweet. S3: I want a mango. ? ??? 在学生将书上的句子用完以后,教师继续鼓励学生造出更多的句子,学生们又踊跃

举手造出以下句子: S4: Eat a mango. S5: Give me a mango. S6: I want a mango. S7: I have a mango. ? ??? 这时,教室里出现了片刻的沉默,学生知道句子会越来越难造。突然,一个学生说道:“Draw a mango.”此时,学生的思维又有了新的扩展。教师高兴地表扬那个学生:“A clever boy!”随后,课堂里又出现了学生踊跃举手的场面: S8: Colour the mango yellow. S9: Colour the mango green.

S10: Colour the mango orange. S11: Colour the mango with you hand. ? ??? 教师再次表扬学生:“You are great!”在老师的鼓励下,学生的思维更加活跃,句子越造越多。由于所造的句子不能重复,迫使学生想法设法开阔思路。这时,有个学生造出了一个新句子:“My name is Mango.”教师高兴地为其鼓掌并夸奖说:“Good sentence!”由于mango成了人名,也就拟人化了,学生的思维又有了新的发散点,许多学生再次举起了手,造出了如下句子: S12: Mango is tall. S13: Mango is a girl. S14: Mango wants to eat a banana.

最新小学生个人读书事迹简介怎么写800字

小学生个人读书事迹简介怎么写800字 书,是人类进步的阶梯,苏联作家高尔基的一句话道出了书的重要。书可谓是众多名人的“宠儿”。历来,名人说出关于书的名言数不胜数。今天小编在这给大家整理了小学生个人读书事迹,接下来随着小编一起来看看吧! 小学生个人读书事迹1 “万般皆下品,惟有读书高”、“书中自有颜如玉,书中自有黄金屋”,古往今来,读书的好处为人们所重视,有人“学而优则仕”,有人“满腹经纶”走上“传道授业解惑也”的道路……但是,从长远的角度看,笔者认为读书的好处在于增加了我们做事的成功率,改善了生活的质量。 三国时期的大将吕蒙,行伍出身,不重视文化的学习,行文时,常常要他人捉刀。经过主君孙权的劝导,吕蒙懂得了读书的重要性,从此手不释卷,成为了一代儒将,连东吴的智囊鲁肃都对他“刮目相待”。后来的事实证明,荆州之战的胜利,擒获“武圣”关羽,离不开吕蒙的“运筹帷幄,决胜千里”,而他的韬略离不开平时的读书。由此可见,一个人行事的成功率高低,与他的对读书,对知识的重视程度是密切相关的。 的物理学家牛顿曾近说过,“如果我比别人看得更远,那是因为我站在巨人的肩上”,鲜花和掌声面前,一代伟人没有迷失方向,自始至终对读书保持着热枕。牛顿的话语告诉我们,渊博的知识能让我们站在更高、更理性的角度来看问题,从而少犯错误,少走弯路。

读书的好处是显而易见的,但是,在社会发展日新月异的今天,依然不乏对读书,对知识缺乏认知的人,《今日说法》中我们反复看到农民工没有和用人单位签订劳动合同,最终讨薪无果;屠户不知道往牛肉里掺“巴西疯牛肉”是犯法的;某父母坚持“棍棒底下出孝子”,结果伤害了孩子的身心,也将自己送进了班房……对书本,对知识的零解读让他们付出了惨痛的代价,当他们奔波在讨薪的路上,当他们面对高墙电网时,幸福,从何谈起?高质量的生活,从何谈起? 读书,让我们体会到“锄禾日当午,汗滴禾下土”的艰辛;读书,让我们感知到“四海无闲田,农夫犹饿死”的无奈;读书,让我们感悟到“为报倾城随太守,西北望射天狼”的豪情壮志。 读书的好处在于提高了生活的质量,它填补了我们人生中的空白,让我们不至于在大好的年华里无所事事,从书本中,我们学会提炼出有用的信息,汲取成长所需的营养。所以,我们要认真读书,充分认识到读书对改善生活的重要意义,只有这样,才是一种负责任的生活态度。 小学生个人读书事迹2 所谓读一本好书就是交一个良师益友,但我认为读一本好书就是一次大冒险,大探究。一次体会书的过程,真的很有意思,咯咯的笑声,总是从书香里散发;沉思的目光也总是从书本里透露。是书给了我启示,是书填补了我无聊的夜空,也是书带我遨游整个古今中外。所以人活着就不能没有书,只要爱书你就是一个爱生活的人,只要爱书你就是一个大写的人,只要爱书你就是一个懂得珍惜与否的人。可真所谓

芒果的英文翻译单词及例句

芒果的英文翻译单词及例句 那么你知道芒果的英文是什么吗?今天在这里为大家介绍关于芒果的英语知识,欢迎大家阅读!芒果的英文mango芒果的词组习语mango shake1.芒果冰沙2.芒果沙冰mango juice1.芒果汁mango tango1.芒果探戈mango jam1.芒果酱芒果的英文例句1. 300 tons of Peruvian mangoes were kept from entering France.300吨秘鲁芒果被禁止进入法国。 2. Peel, stone and dice the mango.将芒果削皮、去核、切丁。 3. He and his mates were out picking mangoes.他和他的同伴出去摘芒果了. 4. I did once send some mongoes to the States by air.我曾有一次空运芒果到美国. 5. Do you like eating mango?你喜欢吃芒果吗? 6. Hawaii's best mangoes grew at Hanakai, its most brilliant hibiscus and its best horses.夏威夷最肥美的芒果, 最鲜艳的木槿和最纯种的骏马都在海那卡伊. 7. OBJECTIVE To study a preparation method of mangiferin monosodium salt.目的:研究芒果苷单钠盐的制备工艺. 8. Mangoes and rice, mangoes and rice, we prefer mangoes and rice.芒果和大米, 芒果和大米, 我们更喜欢芒果和大米. 9. Determination of residue of chlorine pesticides in mango leave.测定芒果叶中有机氯农药的残留量.10. ResultsThin film coating can promote the storage stability of Mango Anticough Tablet.结果薄膜包衣可提高芒果止咳片的储存期稳定性.11. After eating feral mango very how to after itching, do?吃了野生的芒果后

is this a mango_教案

湖南少年儿童出版小学英语三年级下 Is this a mango ?教案 教学目标: 知识目标:1、掌握三会单词apple, banana, lemon, pear, orange. 2、掌握句型Is this a/an …? Yes, it is. No, it isn’t. 能力目标:能运用所学单词和句型在生活情境中进行语言交流。 情感目标:热爱身边多姿多彩的事物。 教学重点: 掌握三会单词apple, banana, lemon, pear, orange. 和Is this a/an …? Yes, it is. No, it isn’t. 句型。 教学难点:能熟练运用所学单词和句型进行语言交流。 教具准备:卡片、水果、图片、小组奖品等。 教学过程: Step1: Warming up 1: Greetings 2:师生简单日常对话.表现好的同学奖励贴片. 3: Sing a song together, “ABC” song. Step2: Presentation and drill 1: 师出示5种水果的图片贴在黑板上,依次教授5个单词: apple, banana, lemon, pear, orange. 2:反复教读新单词,大小声读、升降调读、师找单个学生读、小组读帮助纠音。 3: Play a game: 师把画有水果的图片从黑板上拿下来,找学生按正确顺序贴上。 做对的同学奖励贴片. 4:a small competition:把全班分为三大组,认读单词比赛,先抢答且答对的 组奖励一面小红旗,看哪组胜。 5:学句子:

师拿出一水果,问“Is this a /an …?”“这是…吗?”引导学生回答出: Yes, it is. 和No it isn’t. 6: 师借用实物水果带学生操练新句型. 7:学生练习句型: in pairs, boys vs. girls, in groups 8:猜水果的游戏;蒙住眼睛,通过触摸和闻水果,猜出是哪种水果 9:奖励水果游戏:师拿出水果问学生“Is this a /an …?”,抢答正确则将水果奖励给他。将课堂气氛推向最高潮。 Step3: Consolidation and conclusion 回顾、再巩固、师生一起总结本课所学内容。 Step4: Homework Read the text to your parents. 板书: apple pear Is this a /an …? banana orange Yes, it is. lemon No it isn’t.

个人先进事迹简介

个人先进事迹简介 01 在思想政治方面,xxxx同学积极向上,热爱祖国、热爱中国共产党,拥护中国共产党的领导.利用课余时间和党课机会认真学习政治理论,积极向党组织靠拢. 在学习上,xxxx同学认为只有把学习成绩确实提高才能为将来的实践打下扎实的基础,成为社会有用人才.学习努力、成绩优良. 在生活中,善于与人沟通,乐观向上,乐于助人.有健全的人格意识和良好的心理素质和从容、坦诚、乐观、快乐的生活态度,乐于帮助身边的同学,受到师生的好评. 02 xxx同学认真学习政治理论,积极上进,在校期间获得原院级三好生,和校级三好生,优秀团员称号,并获得三等奖学金. 在学习上遇到不理解的地方也常常向老师请教,还勇于向老师提出质疑.在完成自己学业的同时,能主动帮助其他同学解决学习上的难题,和其他同学共同探讨,共同进步. 在社会实践方面,xxxx同学参与了中国儿童文学精品“悦”读书系,插画绘制工作,xxxx同学在班中担任宣传委员,工作积极主动,认真负责,有较强的组织能力.能够在老师、班主任的指导下独立完成学院、班级布置的各项工作. 03 xxx同学在政治思想方面积极进取,严格要求自己.在学习方面刻苦努力,不断钻研,学习成绩优异,连续两年荣获国家励志奖学金;作

为一名学生干部,她总是充满激情的迎接并完成各项工作,荣获优秀团干部称号.在社会实践和志愿者活动中起到模范带头作用. 04 xxxx同学在思想方面,积极要求进步,为人诚实,尊敬师长.严格 要求自己.在大一期间就积极参加了党课初、高级班的学习,拥护中国共产党的领导,并积极向党组织靠拢. 在工作上,作为班中的学习委员,对待工作兢兢业业、尽职尽责 的完成班集体的各项工作任务.并在班级和系里能够起骨干带头作用.热心为同学服务,工作责任心强. 在学习上,学习目的明确、态度端正、刻苦努力,连续两学年在 班级的综合测评排名中获得第1.并荣获院级二等奖学金、三好生、优秀班干部、优秀团员等奖项. 在社会实践方面,积极参加学校和班级组织的各项政治活动,并 在志愿者活动中起到模范带头作用.积极锻炼身体.能够处理好学习与工作的关系,乐于助人,团结班中每一位同学,谦虚好学,受到师生的好评. 05 在思想方面,xxxx同学积极向上,热爱祖国、热爱中国共产党,拥护中国共产党的领导.作为一名共产党员时刻起到积极的带头作用,利用课余时间和党课机会认真学习政治理论. 在工作上,作为班中的团支部书记,xxxx同学积极策划组织各类 团活动,具有良好的组织能力. 在学习上,xxxx同学学习努力、成绩优良、并热心帮助在学习上有困难的同学,连续两年获得二等奖学金. 在生活中,善于与人沟通,乐观向上,乐于助人.有健全的人格意 识和良好的心理素质.

全部翻译段落

第一作业 1 The mango is native to southern Asia, especially Burma and eastern India. It spread early on to Malaya, eastern Asia and eastern Africa. Mangos were introduced to California (Santa Barbara) in 1880. 芒果原产于南亚,尤其是在缅甸和印度东部。它在很早的时候就传到了马来西亚、东亚和东非。在1880年,芒果被引进了加利福尼亚州(圣芭芭拉)。 2 The mango exists in two races, one from India and the other from the Philippines and Southeast Asia. 芒果现在有两个品种,一种来自印度,另一种来自菲律宾和南亚。The Indian race is intolerant of humidity, has flushes of bright red new growth that are subject to mildew, and bears monoembryonic fruit of high color and regular form. 印度的那支可以不能忍受潮湿,新生的鲜红的嫩芽很容易被霉菌感染,有色泽饱满、形状规则的单胚胎的果实。The Philippine race tolerates excess moisture, has pale green or red new growth and resists mildew.菲律宾的那支能够在更加潮湿的环境下继续生长出浅绿或者红色的嫩芽并且抵御霉菌。Its polyembryonic fruit is pale green and elongated kidney-shaped. 它的多胚胎的果实是浅绿色的并且呈现细长的肾的形状。 3 Mangos basically require a frost-free climate. 芒果基本上需要无霜冻的气候环境。Flowers and small fruit can be killed if temperatures drop below 40° F, even for a short period. 即使是在很短的时间内,花朵和幼果会被低于40华氏度的温度损伤。Young trees may be seriously damaged if the temperature drops below 30° F, but mature trees may withstand very short periods of temperatures as low as 25° F. 如果温度低于30华氏度,年幼的小树会被严重损伤,但成熟的树可以在极短时期内忍受低至25华氏度的温度。The mango must have warm, dry weather to set fruit. 芒果树必须在温暖、干燥的气候下结果。Mangos luxuriate in summer heat and resent cool summer fog. Wet, humid weather favors anthracnose and poor fruit set. 芒果喜欢夏季的炎热,讨厌夏季的凉雾。潮湿的天气更容易导致炭疽病和果实的减产。 4 Mango trees make handsome landscape specimens and shade trees. They are erect and fast growing with sufficient heat, and the canopy can be broad and rounded, or more upright, with a relatively slender crown.芒果树成为一种漂亮的景观代表树,并且是一种遮阴树。只要有充足的热量,它生长的会非常快,相对于细长的冠来说,芒果树冠会呈圆形四周扩散或向上生长。The tree is long-lived with some specimens known to be over 300 years old and still fruiting. 芒果树和其他一些超过300年的树一样长寿并且依旧能够结果。In deep soil the taproot descends to a

优秀党务工作者事迹简介范文

优秀党务工作者事迹简介范文 优秀党务工作者事迹简介范文 ***,男,198*年**月出生,200*年加入党组织,现为***支部书记。从事党务工作以来,兢兢业业、恪尽职守、辛勤工作,出色地完成了各项任务,在思想上、政治上同党中央保持高度一致,在业务上不断进取,团结同事,在工作岗位上取得了一定成绩。 一、严于律己,勤于学习 作为一名党务工作者,平时十分注重知识的更新,不断加强党的理论知识的学习,坚持把学习摆在重要位置,学习领会和及时掌握党和国家的路线、方针、政策,特别是党的十九大精神,注重政治理论水平的提高,具有坚定的理论信念;坚持党的基本路线,坚决执行党的各项方针政策,自觉履行党员义务,正确行使党员权利。平时注重加强业务和管理知识的学习,并运用到工作中去,不断提升自身工作能力,具有开拓创新精神,在思想上、政治上和行动上时刻同党中央保持高度一致。 二、求真务实,开拓进取 在工作中任劳任怨,踏实肯干,坚持原则,认真做好学院的党务工作,按照党章的要求,严格发展党员的每一个步骤,认真细致的对待每一份材料。配合党总支书记做好学院的党建工作,完善党总支建设方面的文件、材料和工作制度、管理制度等。

三、生活朴素,乐于助人 平时重视与同事间的关系,主动与同事打成一片,善于发现他人的难处,及时妥善地给予帮助。在其它同志遇到困难时,积极主动伸出援助之手,尽自己最大努力帮助有需要的人。养成了批评与自我批评的优良作风,时常反省自己的工作,学习和生活。不但能够真诚的指出同事的缺点,也能够正确的对待他人的批评和意见。面对误解,总是一笑而过,不会因为误解和批评而耿耿于怀,而是诚恳的接受,从而不断的提高自己。在生活上勤俭节朴,不铺张浪费。 身为一名老党员,我感到责任重大,应该做出表率,挤出更多的时间来投入到**党总支的工作中,不找借口,不讲条件,不畏困难,将总支建设摆在更重要的位置,解开工作中的思想疙瘩,为攻坚克难铺平道路,以支部为纽带,像战友一样团结,像家庭一样维系,像亲人一样关怀,践行入党誓言。把握机遇,迎接挑战,不负初心。

主要事迹简介怎么写(2020年最新)

主要事迹简介怎么写 概括?简要地反映?个单位(集体)或个?事迹的材料。简要事迹不?定很短,如果情况 多的话,也有?千字的。简要事迹虽然“简要”,但切忌语?空洞,写得像?学?期末鉴定。 ?应当以事实来说话。简要事迹是对某单位或个?情况概括?简要地反映情况,?如有三个??很突出,就写三个??,只是写某???时,要把主要事迹突出出来。 简要事迹?般来说,?少要包括两个??的内容。?是基本情况。简要事迹开头,往往要??段?字来表述?些基本情况。如写?个单位的简要事迹,应包括这个单位的?员、 承担的任务以及?段时间以来取得的主要成绩。如写个?的简要事迹,应包括该同志的性 别、出?年?、参加?作时间、籍贯、民族、?化程度以及何时起任现职和主要成绩。这 样上级组织在看了材料的开头,就会对这个单位或个?有?个基本印象。?是主要特点。 这是简要事迹的主体部分,最突出的事例有?个??就写成?块,并按照?定的逻辑关系进 ?排列,把同类的事例排在?起,?个??通常由?个?然段或?个?然段组成。 写作时,特别要注意以下四点: 1.?第三?称。就是把所要写的对象,是集体的?“他们”来表述,是个?的称之为“他(她)”。 (她)”,单位可直接写名称,个?可写其姓名。 为了避免连续出现?个“他们”或“他 2.掌握好时限。?论是单位或个?的简要事迹,都有?个时间跨度,既不要扯得太远,也不 要故意混淆时间概念,把过去的事当成现在的事写。这个时间跨度多长,要根据实际情况 ?定。如上级要某个同志担任乡长以来的情况就写他任乡长以来的事迹;上级要该同志两年 来的情况,就写两年来的事迹。当然,有时为了需要,也可适当地写?点超过这个时间的 背景情况。 3.?点他?的语?。就是在写简要事迹时,可?些群众的语?或有关?员的语?,这样会给??种?动、真切的感觉,衬托出写作对象?较?的思想境界。在?他?语?时,可适当加?,但不能造假。 4.?事实说话。简要事迹的每?个??可分为多个层次,?个层次先??句话作为观点,再???两个突出的事例来说明。?事实说话时,要尽量把?个事例说完整,以给?留下深 刻印象。

最新树立榜样的个人事迹简介怎么写800字

树立榜样的个人事迹简介怎么写800字 榜样是阳光,温暖着我们的心;榜样如马鞭,鞭策着我们努力奋斗;榜样似路灯,照亮着我们前进的方向。今天小编在这给大家整理了树立榜样传递正能量事迹作文,接下来随着小编一起来看看吧! 树立榜样传递正能量事迹1 “一心向着党”,是他向着社会主义的坚定政治立场;“人的生命是有限的,可是,为人民服务是无限的,我要把有限的生命投入到无限的为人民服务中去”,是他的至理名言;“甘学革命的“螺丝钉”,是他干一行爱一行、钻一行的爱岗敬业态度。他——雷锋,是我们每一个人的“偶像”…… 雷锋的事迹传遍大江南北,他,曾被人们称为可敬的“傻子”。一九六零年八月,驻地抚顺发洪水,运输连接到了抗洪抢险命令。他强忍着刚刚参加救火工作被烧伤的手的疼痛,又和战友们在上寺水库大坝连续奋战了七天七夜,被记了一次二等功。望花区召开了大生产号召动员大会,声势很大,他上街办事,正好看到这个场面,他取出存折上在工厂和部队攒的200元钱,那时,他的存折上只剩下了203元,就跑到望花区党委办公室要为之捐献出来,为建设祖国做点贡献,接侍他的同志实在无法拒绝他的这份情谊,只好收下一半。另100元在辽阳遭受百年不遇洪水的时候,他捐献给了正处于水深火热之中的辽阳人民。在我国受到严重的自然灾害的情况下,他为国家建设,为灾区捐献出自已的全部积蓄,却舍不得喝一瓶汽水。就这样,他毫不犹豫的捐出了自己的所有积蓄,不求功名,不求名利,只求自己心安理得,只求为

革命献出自己的微薄之力,甘愿做革命的“螺丝钉”——在一次施工任务中,他整天驾驶汽车东奔西跑,很难抽出时间学习,他就把书装在挎包里,随身带在身边,只要车一停,没有其他工作时,就坐在驾驶室里看书。他曾经在自己的日记中写下这样一段话:”有些人说工作忙,没时间学习,我认为问题不在工作忙,而在于你愿不愿意学习,会不会挤时间来学习。要学习的时间是总是有的,问题是我们善不善于挤,愿不愿意钻。一块好好的木板,上面一个眼也没有,但钉子为什么能钉进去呢?这就是靠压力硬挤进去的。由此看来,钉子有两个长处:一个是挤劲,一个是钻劲。我们在学习上也要提倡这种”钉子“精神,善于挤和钻。”这就是他,用自己的实际行动来证明自己,用自己的亲生经历来感化世人,用自己的所作所为来传颂古今……人们都拼命地学习他的精神,他的精神被不同肤色的人所敬仰。现在,一切都在变,但是,那些决定人类向前发展的基本要素没有变,那些美好的事物没有变,那些所谓的“螺丝钉”精神没有变——而这正是他的功劳,是他开启了无私奉献精神的大门,为后人树立了做人的榜样…… 这就是他,一位中国家喻户晓的全心全意为人民服务的楷模,一位共产主义战士!他作为一名普通的中国人民解放军战士,在他短暂的一生中却助人无数。而且,伟大领袖毛泽东主席于1963年3月5日亲笔为他题词:“向雷锋同志学习”。 正是因为如此,全国刮起了学习雷锋的热潮。雷锋已经离开我们很长时间了。但是雷锋的精神却深深地在所有中国人心中扎下了根,现在它已经长成一株小树。正以其顽强的生命力,茁壮成长。我坚信,

大学生先进事迹简介怎么写

大学生先进事迹简介怎么写 苑xx,男,汉族,1990年07月22日出生,中国共青团团员,入党积极分子,现任xx学院电气优创0902班班长,担任xx学院09级总负责人、xx学院团委学生会科创部干事、xx学院文艺团主持部部长。 步入大学生活一年以来,他思想积极,表现优秀,努力向党组织靠拢,学习刻苦,品学兼优,工作认真负责,脚踏实地,生活勤俭节约,乐于助人。一直坚持多方面发展,全面锻炼自我,注重综合能力、素质拓展能力的培养。再不懈的努力下获得了多项荣誉: ●获得09-10学年xx大学“百佳千优”(文化体育)一等奖学金和“百佳千优”(班级建设)二等奖学金; ●获得09-10学年xx大学“优秀学生干部”荣誉称号; ●2010年xx大学普通话知识竞赛中获得一等奖; ●2010年xx大学主持人大赛中获得一等奖,被评为金话筒; ●xx学院首届“大学生文明修身”活动周——再生比赛中获得一等奖; ●xx学院首届“大学生文明修身”活动周——演讲比赛中获得一等奖。 一、刻苦钻研树学风 作为班长,他在学习方面,将班级同学分成各个学习小组,布置每日学习任务,分组竞争,通过开展各项趣味学习活动,全面调动班级同学的积极性,如:排演英语戏剧、文学常识竞答、数学辅导小组等。他带领全班同学努力学习、勤奋刻苦,全班同学奖学金获得率达91%,四级通过率达66%。 二、勤劳负责建班风

在日常班级工作中,他尽心尽力,通过网络组织建立班级博客,把班级的日常情况,班级比赛,特色主题班会等活动,及时上传到 班级博客,以方便更多同学了解自己的班级,也把班级的魅力、特色,更全面、更具体的展现出来。 在班级建设中,他带领全班同学参加学院组织的各项文体活动中也收获颇多: ●在xx学院首届“大学生文明修身”活动周中荣获第二名, ●xx学院首届乒乓球比赛中荣获第一名、精神文明奖, ●在xx学院“迎新杯”男子篮球赛中荣获第四名、最佳组织奖。 除了参加学院组织的各项活动外,为了进一步丰富班级同学们的课余生活,他在班级内积极开展各式各样的课余活动: ●普通话知识趣味比赛,感受中华语言的魅力,复习语文文学常识,为南方同学打牢普通话基础,推广普通话知识。 ●“我的团队我的班”主题班会活动中,创办特色活动“情暖你我心”天使行动,亲切问候、照顾其他同学的生活、学习方面细节 小事,即使在寒冷的冬天,也要让外省的同学感受到家一样的温暖。 ●“预览科技知识”科技宫之行,作为现代大学生,不能只顾书本知识,也要跟上时代,了解时代前沿最新科技。 ●感恩节“感谢我们身边的人”主题班会活动,在这个特殊的节日里,他带领同学们通过寄贺卡、送礼物等方式,来感谢老师辛勤 的付出;每人写一封家书,寄给父母,感谢父母劳苦的抚育,把他们 的感激之情,转化为实际行动来感化周围的人;印发感恩宣传单,发 给行人,唤醒人们的感恩的心。 三、热情关怀暖人心 生活中,他更能发挥榜样力量,团结同学,增强班级凝聚力。时刻观察每一位同学的情绪状态,在心理上帮助同学。他待人热情诚恳,积极帮助生活中有困难的同学:得知班级同学生病高烧,病情 严重,马上放下午饭,赶到同学寝室,背起重病同学到校医院进行

个人事迹简介

个人事迹简介 我是来自计算机与与软件学院的学生,现在为青年志愿者协会的干事,在班级担任生活委员。在过去的一年里,我注重个人能力的培养积极向上,热心公益,服务群众,奉献社会,热忱的投身于青年支援者的行动中!一年时间虽短,但在这一年的时间里,作为一名志愿者,我确信我成长了很多,成熟了很多。“奉献、友爱、互助、进步”这是我们志愿者的精神,在献出爱心的同时,得到的是帮助他人的满足和幸福,得到的是无限的快乐与感动。路虽漫漫,吾将上下而求索!在以后的日子里,我会在志愿者事业上做的更好。 在思想上,我积极进取,关心国家大事,并多次与同学们一起学习志愿者精神,希望我们会在新的世纪里继续努力,发扬我国青年的光传统,不懈奋斗,不断创造,奋勇前进,为实现中华民族的伟大复兴做出了更大的贡献。 在学习上刻苦认真,抓紧时间,不仅学习好学科基础知识,更加学好专业课知识,在课堂上积极配合老师的教学,乐意帮助其它同学,有什么好的学习资料,学习心得也与他们交流,希望大家能共同进步。在上一个年度总成绩在班级排名第四,综合考评在班级排名第二。在工作中,我认真负责,出色的完成老师、同学交给的各项任务,所以班级人际关系良好。

此外参加了学院组织的活动,并踊跃地参加,发挥自己的特长,为班级争得荣誉。例如:参加校举办的大合唱比赛并获得良好成绩;参加了计算机与软件学院党校学习并顺利结业;此外,参加了计算机与软件进行的“计算机机房义务打扫与系统维护”的活动。在这些活动中体验到了大学生生活的乐趣。 现将多次参与各项志愿活动汇报如下:2013年10月26日,参加计算机与软件学院团总支实践部、计算机与软件学院青年志愿者协会组织“志愿者在五福家园的健身公园开展义务家教招新活动”;2013年11月7日,参加组成计算机与软件学院运动员方阵在田径场参加学院举办的学校运动会;2013年12月5日,参与学校学院组织的”一二.五“大合唱比赛;2014年3月12日,参加由宿舍站长组织义务植树并参与植树活动;2014年3月23日,在计算机与软件学院团总支书记茅老师的带领下,民俗文化传承协会、计算机与软件学院青年志愿者协会以及学生会的同学们参观了“计算机软件学院的文化素质教育共建基地--南京市民俗博物馆”的活动;2014年3月26日,参加有宿舍站长组织的“清扫宿舍公寓周围死角垃圾”的活动;2014年4月5日,参加由校青年志愿者协会、校实践部组织的“南京市雨花台扫墓”活动,2014年4月9日,作为班级代表参加计算机软件学院组织部组织的“计算机应用office操作大赛”的活动。 在参与各项志愿活动的同时,我的学习、工作、生活能力得到了提高和认可,丰富生活体验,提供学习的机会,提供学习的机会。

The House on Mango Street(芒果街上的小屋)中英

The House on Mango Street We didn’t always live on Mango Street. Before that we lived on Loomis on the third floor, and before that we lived on Keeler it was Paulina, and before that I can’t remember, But what I remember most is moving a lot. Each time it seems there’d be one more of us. By the time we got to Mango Street we were six—Mama, Papa, Carlos, Kiki, my sister Nenny and me. The house on Mango Street is ours, and we don't have to pay rent to anybody, or share the yard with the people downstairs, or be careful not to make too much noise, and there isn't a landlord banging on the ceiling with a broom. But even so, it's not the house we'd thought we'd get. We had to leave the flat on Loomis quick. The water pipes broke and the lanlord wouldn't fix them because the house was too old. We had to leave fast. We were using the washroom next door and carrying water over in empty milk gallons. That's why Mama and Papa looked for a house, and that's why we moved into the house on Mango Street, far away, on the other side of town. They always told us that one day we would move into a house, a real house that would be ours for always so we wouldn't have to move each year. And our house would have running water and pipes that worked. And inside it would have real stairs, not hallway stairs, but stairs inside like the houses on T.V. And we'd have a basement and at least three washrooms so when we took a bath we wouldn't have to tell everybody. Our house would be white with trees around it, a great big yard and grass growing without a fence. This was the house Papa talked about when he held a lottery ticket and this was the house Mama dreamed up in the stories she told us before we went to bed. But the house on Mango Street is not the way they told it at all. It's small and red with tight steps in front and windows so small you'd think they were holding their breath. Bricks are crumbling in places, and the front door is so swollen you have to push hard to get in. There is no front yard only four little elms the city planted by the curb. Out back is a small garage for the car we don't own yet and a small yard that looks smaller between the two buildings on either side. There are stairs in our house, but they're ordinary hallway stairs, and the house has only one

个人事迹简介10篇(优秀版)

《个人事迹简介》 个人事迹简介(一): 李维波,男,中共党员,自2003年应聘农电工以来,他就把自己的一切奉献给了他热爱的电力事业。在多年的工作中爱岗敬业,勤勤恳恳,任劳任怨。2003年至2007年先后担任过xx供电所线损管理员、用电检查管理员、两率管理员、线路工作负责人;2007年调到xx供电所任用电检查管理员、客户经理;2009年5月调到xx供电所任营销员兼用电检查管理员。 刚踏入电力工作的时候,他还是个电力行业的门外汉,可他深深的明白:知识改变思想!思想改变行动!行动决定命运这句话,明白在当今学习的社会里,对于电力更就应不断的吸取新的知识,更新新的观念,以满足时代对于电力的更高的要求。正是这样他透过自己的努力学习,一步步的从门外汉变成了此刻的技术骨干。 一、加强政治学习,提高理论思想水平 多年以来,他在工作中始终坚持学习邓小平理论和三个代表重要思想。他深知:一个人只有有了与时俱进的思想做指导,人的认识才会提高,思想才能净化,行为也才能与时代同步,与社会同步,与发展同步,也才能成为社会发展的推动者、有作为者,正因为如此,他严格要求自己,认真学习思想理论方面的知识,抓紧一切时间学习,认真听,做好笔记,写好心得,并且用三个代表思想来约束自己,不断提高自身的修养,从而真正实践党的全心全意为人民服务的宗旨。 二、加强专业知识的学习,提高专业技术 在当今信息化的时代,科学技术飞速发展,尤其在电力行业这个技术密集型企业中,学习显得尤为重要。从踏进电力企业的大门开始,他就自觉学习专业知识,以书本为老师,阅读各方面的相关书籍,不断丰富自己的理论基础;以老同志为师傅,细心观察他们的实际操作,不断丰富自己的实践经验;以实践为老师,从中加深对知识的理解和领会。从2003年开始,学会了计算机普通操作,掌握了电力安全方面相关知识、电工基础知识、供电营业规则,参加局每年安规考试多次得到全局前十名,2005年农电体制改革考试应知和应会总分全局第5名。 三、发扬三千精神,做好优质服务 2007年,xx所因滩坑移民影响,电费回收率难以上升,应对电费回收的复杂严峻形势,

主要事迹简介怎么写

员工主要事迹写法: xx,一个普通的名字。一个平凡的身影,经常出现在酒店的各个区域巡视。他是保安部副主管。 xx,自20xx年x月份进入酒店工作以来,一直表现出色,爱岗敬业,努力学习业务知识,也因此由一名普通保安员逐步成长为酒店一名管理人员,在20xx年x月正式接手保安部副主管一职。同年6月,参加宁波消防安全管理员的培训,并拿到了相应的资格证书。 作为酒店一名基层管理者,他处处起到了模范带头的作用,他的工作态度会影响整个团队,正所谓:火车跑得快,全靠车头带。在日常工作中他不怕困难,勇于承担责任,用在工作上,就是那份执着、坚定、信念。每当这时,他总是憨厚的笑笑:“还是领导有方,我只是一个执行者罢了”! 20xx年x月份,根据国家气象局预报的台风预测消息,第9号强台风“梅花”正向本地移动,可能在6日夜间在浙江省中北部沿海登陆,或紧擦宁波市沿海北上,但不管哪种路线都将对宁波造成严重影响。我酒店在林总经理的号召下,立即由工程部张经理带领工程保安部及各部门相关人员迅速成立临时抗台小组。xx也同时参加了前期各项准备工作,并同相关人员一同在酒店蹲守两个日夜,直至“梅花”绕道离开。他还开玩笑说:“这个日子很特别,七夕情人节碰上了梅超风”。

20xx年,对于酒店保安部来说,是较为艰辛的一年,由于市场原因,使得保安部人力处于紧张状态,即使如此,他还是较为圆满的完成了部门的各项培训及其它各项工作,并在xx月份对酒店全员进行了为期三天的消防知识培训,用自己所学到的知识来跟大家一起分享。同月底,在酒店各层领导的组织与鼓励下圆满的完成了消防模拟演习,事后他说:“大家都比我做的好,我还要努力加强学习啊”。 20xx年底,酒店餐饮客情非常好,餐饮部自身人员不能满足服务需求,需要其他部门帮工跑菜,这个问题也就落在了工程保安部的肩上。每天在厨房都能看到那一身保安制服的跑菜员,不用问,那肯定是xx。仅x月份,他在做好自己本职工作的同时,利用非当班时间帮工累计56小时。当然也有其他部门的帮工人员,他们都是优秀的,正是有这些非常优秀的员工,使得酒店营业部门顺利完成了各项任务。每当这时,他又会说:“我虽然是过来帮忙的,但我要把它当成自己的本职工作来做”。 20xx年底,临近春节,好多员工都想回家过年,保安部员工也不例外,但人员紧张怎么办呢,他又给大家做思想工作,同时分开安排人员回家的假期,以保证春节期间的正常排班,保障酒店的正常运行。但谁能知道他在酒店工作三年多了,每年的春节都是在酒店过的,每年的中秋节也都是在酒店过的,难道他不想在佳节时与家人团聚吗?每当这时,他又说:“人员紧张,名额有限,让给他们。呵呵,再说,我是以店为家”,也许这时,他的笑容里带有一丝让人难以察觉的苦涩!

相关主题