搜档网
当前位置:搜档网 › Protel+PCB转原理图

Protel+PCB转原理图

Protel+PCB转原理图
Protel+PCB转原理图

万能转换开关原理图

万能转换开关的工作原理及符号表示 教程来源:本站原创作者:未知点击:2301 更新时间:2009-3-4 16:14:36 万能转换开关是一种多档式、控制多回路的主令电器。万能转换开关主要用于各种控制线路的转换、电压表、电流表的换相测量控制、配电装置线路的转换和遥控等。万能转换开关还可以用于直接控制小容量电动机的起动、调速和换向。 如图1所示为万能转换开关单层的结构示意图。 常用产品有LW5和LW6系列。LW5系列可控制5.5kW及以下的小容量电动机;LW6系列只能控制2.2kW 及以下的小容量电动机。用于可逆运行控制时,只有在电动机停车后才允许反向起动。LW5系列万能转换开关按手柄的操作方式可分为自复式和自定位式两种。所谓自复式是指用手拨动手柄于某一档位时,手松开后,手柄自动返回原位;定位式则是指手柄被置于某档位时,不能自动返回原位而停在该档位。 万能转换开关的手柄操作位置是以角度表示的。不同型号的万能转换开关的手柄有不同万能转换开关的触点,电路图中的图形符号如图2所示。但由于其触点的分合状态与操作手柄的位置有关,所以,除在电路图中画出触点图形符号外,还应画出操作手柄与触点分合状态的关系。图中当万能转换开关打向左45°时,触点1-2、3-4、5-6闭合,触点7-8打开;打向0°时,只有触点5-6闭合,右45°时,触点7-8闭合,其余打开。

正泰万能转换开关接点图编码规则 技术交流2010-01-14 20:51:56 阅读1518 评论5 字号:大中小订阅 万能转换开关是一种手动操作的低压电器产品,它是基于通过凸轮控制各对触头从而实现对各个独立线路进行控制的目的,由于它的控制靠凸轮来实现,因此俗称凸轮开关。凸轮开关根据控制的对象和使用的场合不同,大体可以分为万能转换开 关和组合开关。 凸轮开关大体由操作机构、定位助力机构、接触系统三个部分组成。其中接触系统可以由独立接触单位进行线性叠加,每一个接触单元(一节)有两个独立的接触组(1-2、3-4)组成,那么根据排列组合,一个接触单元(一节)可以由4种情况(1-2通3-4断、1-2断3-4断、1-2通3-4通、1-2断3-4通)那么对于n节产品在某个档位的通断情况有4n情况,假如开关有m档,则这个开关理论上存在着m*4n种通断情况。正因为具有如此其他任何开关都不具备的优势,因此被称为万能转换开关。当然接点通断情况十分的复杂,导致顾客在进行产品选择的时候难以下手,即使技术人员也为难。我们正泰由于顾客特殊定做的产品接点图情况十分的普遍,常常由于我们技术人员没有比较可行的接点编码方法,致使产品无法具备具体的产品规格型号,一则导致最终客户无法接线使用,同时没有具体的规格型号,顾客在下次订货时需要重新提供接点情况,延长了产品交付时间,造成顾客退单甚至投诉。为了更好的管理转换开关同时为以后进行软件自动编码准备,这几天将开关做了整理,并查找一些资料,现将这几天对转换开关的编码规则作一个介绍,供大家参考改进。 接点图按产品结构从上至下排列:手柄代号、面板代号、定位特征代号、接触系统(各对触头编号)。这样的分布符合我们的装配习惯,装配时可以完全按照接点图至下而上(反之亦然)对各个部件进行一一对应安装),极大的提高了装配效率 同时便于装配检验。编码过程如下:

模数与数模转换

3. 模数转换器 (1) 模/数(A/D )转换器 A/D 转换器是模拟信号源与计算机或其它数字系统之间联系的桥梁,它的任务是将连续变化的模拟信号转换为数字信号,以便计算机或数字系统进行处理、存储、控制和显示。在工业控制和数据采集及其它领域中,A/D 转换器是不可缺少的重要组成部分。 1) 逐次逼近型A/D 转换器 逐次逼近型A/D 转换器又称逐次渐近型A/D 转换器,是一种反馈比较型A/D 转换器。逐次逼近型A/D 转换器进行转换的过程类似于天平称物体重量的过程。天平的一端放着被称的物体,另一端加砝码,各砝码的重量按二进制关系设置,一个比一个重量减半。称重时,把砝码从大到小依次放在天平上,与被称物体比较,如砝码不如物体重,则该砝码予以保留,反之去掉该砝码,多次试探,经天平比较加以取舍,直到天平基本平衡称出物体的重量为止。这样就以一系列二进制码的重量之和表示了被称物体的重量。例如设物体重11克,砝码的重量分别为1克、2克、4克和8克。称重时,物体天平的一端,在另一端先将8克的砝码放上,它比物体轻,该砝码予以保留(记为1),我们将被保留的砝码记为1,不被保留的砝码记为0。然后再将4克的砝码放上,现在砝码总和比物体重了,该砝码不予保留(记为0),依次类推,我们得到的物体重量用二进制数表示为1011。用下表7.1表示整个称重过程。 表7.1 逐次逼近法称重物体过程表 图7.7 逐次逼近型A/D 转换器方框图 利用上述天平称物体重量的原理可构成逐次逼近型A/D 转换器。 逐次逼近型A/D 转换器的结构框图如图7.7所示,包括四个部分:电压比较器、D/A 转换器、逐次逼近寄存器和顺序脉冲发生器及相应的控制逻辑。 逐次逼近型A/D 转换器是将大小不同的参考电压与输入模拟电压逐步进行比较,比较结果以相应的二进制代码表示。转换开始前先将寄存器清零,即送给D /A 转换器的数字量为0,三个输出门G 7、G 8、G 9被封锁,没有输出。转换控制信号有效后(为高电平)开始转换,在时钟脉冲作用下,顺序脉冲发生器发出一系列节拍脉冲,寄存器受顺序脉冲发生器及控制电路的控制,逐位改变其中的数码。首先控制逻辑将寄存器的最高位置为1,使其输出为100……00。这个数码被D/A 转换器转换成相应的模拟电压U o ,送到比较器与待转换的输入模拟电压U i 进行比较。若U o >U i ,说明寄存器输出数码过大,故将最高位的1变成0,同时将次高位置1;若U o ≤U i ,说明寄存器输出数码还不够大,则应将这一位的1 保留。数码的取舍通过电压比较器的输出经控制器来完成的。依次类推按上述方法将下一位置1进行比较确定该位的1是否保留,直到最低位为止。此时寄存器里保留下来的数码即为所求的输出数字量。 2) 并联比较型A/D 转换器 并联比较型A/D 转换器是一种高速A/D 转换器。图8-9所示是3位并联型A/D 转换器,

数模转换原理及应用

数模(D/A)转换器及模数(A/D)转换器 一、实验目的 1.熟悉D / A转换器的基本工作原理。 2.掌握D / A转换集成芯片DAC0832的性能及其使用方法。 3.熟悉A / D转换器的工作原理。 4.掌握A / D转换集成芯片ADC0809的性能及其使用方法。 二、实验原理 1.数模(D / A)转换 所谓数模(D / A)转换,就是把数字量信号转换成模拟量信号,且输出电压与输入的数字量成一定的比例关系。图47为D / A 转换器的原理图,它是由恒流源(或恒压源)、模拟开关、以及数字量代码所控制的电阻网络、运放等组成的四位D/ A转换器。 四个开关S0 ~ S3由各位代码控制,若―S‖代码为1,则意味着接VREF ,代码―S‖= 0,则意味着接地。 由于运放的输出值为V0= -I∑?Rf ,而I∑为I0、I1、I2、I3的和,而I0 ~ I3的值分别为(―S‖代码全为1): I0 =,I1 =,I2 =,I3 = 若选 R0 =,R1 =,R2 =,R3 = 则I0 ==?20 ,I1 =?21 ,I2 =?22 ,I3 =?23 若开关S0 ~ S3不全合上,则―S‖代码有些为0,有些为1(设4位―S‖代码为D3D2DlD0),则I∑ =D3I3 + D2I2 + DlIl + D0I0 =(D3?23 + D2?22 + D1?21 + D0?20)= B? 所以,V0 = -Rf ? B,B为二进制数,即模拟电压输出正比于输入数字量B ,从而实现了数字量的转换。 随着集成技术的发展,中大规模的D / A转换集成块相继出现,它们将转换的电阻网络和受数码控制的电子开关都集成在同一芯片上,所以用起来很方便。目前,常用的芯片型号很多,有8位的、12位的转换器等,这里我们选用8位的D / A转换器DAC0832进行实验研究。 DAC0832是CMOS工艺,共20管引脚,其管脚排列如图48所示。

数模与模数转换器 习题与参考答案

第11章 数模与模数转换器 习题与参考答案 【题11-1】 反相运算放大器如图题11-1所示,其输入电压为10mV ,试计算其输出电压V O 。 图题11-1 解:输出电压为: mV mV V R R V IN F O 10010101 =?=-= 【题11-2】 同相运算放大器如图题11-2所示,其输入电压为10 mV ,试计算其输出电压V O 。 图题11-2 解:mV mV V R R V IN F O 110101111 =?=+=)( 【题11-3】 图题11-3所示的是权电阻D/A 转换器与其输入数字信号列表,若数字1代表5V ,数字0代表0V ,试计算D/A 转换器输出电压V O 。 11-3 【题11-4】 试计算图题11-4所示电路的输出电压V O 。 图题11-4 解:由图可知,D 3~D 0=0101 因此输出电压为:V V V V O 5625.151650101254 === )( 【题11-5】 8位输出电压型R/2R 电阻网络D/A 转换器的参考电压为5V ,若数字输入为,该转换器输出电压V O 是多少?

解:V V V V O 988.21532565100110012 58≈== )( 【题11-6】 试计算图题11-6所示电路的输出电压V O 。 图题11-6 解:V V V D D V V n n REF O 5625.1516501012 5~240==-=-=)()( 【题11-7】 试分析图题11-7所示电路的工作原理。若是输入电压V IN =,D 3~D 0是多少? 图题11-7 解:D3=1时,V V V O 6221234== ,D3=0时,V O =0。 D2=1时,V V V O 3221224== ,D2=0时,V O =0。 D1=1时,V V V O 5.1221214== ,D1=0时,V O =0。 D0=1时,V V V O 75.0221204 ==,D0=0时,V O =0 由此可知:输入电压为,D3~D0=1101,这时V O =6V++=,大于输入电压V IN =,比较器输出低电平,使与非门74LS00封锁时钟脉冲CLK ,74LS293停止计数。 【题11-8】 满度电压为5V 的8位D/A 转换器,其台阶电压是多少?分辨率是多少? 解:台阶电压为mV mV V STEP 5.192/50008== 分辨率为:%39.00039.05000/5.195000/===mV V STEP

∑-△模数转换器工作原理

∑-△ADC工作原理 越来越多的应用,例如过程控制、称重等,都需要高分辨率、高集成度和低价格的ADC、新型∑-△转换技术恰好可以满足这些要求。然而,很多设计者对于这种转换技术并不十分了解,因而更愿意选用传统的逐次比较ADC。∑-△转换器中的模拟部分非常简单(类似于一个1bit ADC),而数字部分要复杂得多,按照功能可划分为数字滤波和抽取单元。由于更接近于一个数字器件,∑-△ADC的制造成本非常低廉。 一、∑-△ADC工作原理 要理解∑-△ADC的工作原理,首先应对以下概念有所了解:过采样、噪声成形、数字滤波和抽取。 1.过采样 首先,考虑一个传统ADC的频域传输特性。输入一个正弦信号,然后以频率fs采样-按照Nyquist 定理,采样频率至少两倍于输入信号。从FFT分析结果可以看到,一个单音和一系列频率分布于DC到fs /2间的随机噪声。这就是所谓的量化噪声,主要是由于有限的ADC分辨率而造成的。单音信号的幅度和所有频率噪声的RMS幅度之和的比值就是信号噪声比(SNR)。对于一个Nbit ADC,SNR可由公式:SNR=6.02N+1.76dB得到。为了改善SNR和更为精确地再现输入信号,对于传统ADC来讲,必须增加位数。 如果将采样频率提高一个过采样系数k,即采样频率为Kfs,再来讨论同样的问题。FFT分析显示噪声基线降低了,SNR值未变,但噪声能量分散到一个更宽的频率范围。∑-△转换器正是利用了这一原理,具体方法是紧接着1bit ADC之后进行数字滤波。大部分噪声被数字滤波器滤掉,这样,RMS噪声就降低了,从而一个低分辨率ADC, ∑-△转换器也可获得宽动态范围。 那么,简单的过采样和滤波是如何改善SNR的呢?一个1bit ADC的SNR为7.78dB(6.02+1.76),每4倍过采样将使SNR增加6dB,SNR每增加6dB等效于分辨率增加1bit。这样,采用1bit ADC进行64倍过采样就能获得4bit分辨率;而要获得16bit分辨率就必须进行415倍过采样,这是不切实际的。∑-△转换器采用噪声成形技术消除了这种局限,每4倍过采样系数可增加高于6dB的信噪比。 2.噪声成形 通过图1所示的一阶∑-△调制器的工作原理,可以理解噪声成形的工作机制。 图1 ∑-△调制器 ∑-△调制器包含1个差分放大器、1个积分器、1个比较器以及1个由1bit DAC(1个简单的开关,可以将差分放人器的反相输入接到正或负参考电压)构成的反馈环。反馈DAC的作用是使积分器的平均输出电压接近于比较器的参考电平。调制器输出中“1”的密度将正比于输入信号,如果输入电压上升,比较器必须产生更多数量的“1”,反之亦然。积分器用来对误差电压求和,对于输入信号表现为一个低通滤波器,而对于量化噪声则表现为高通滤波。这样,大部分量化噪声就被推向更高的频段。和前面的简单过采样相比,总的噪声功率没有改变,但噪声的分布发生了变化. 现在,如果对噪声成型后的∑-△调制器输出进行数字滤波,将有可能移走比简单过采样中更多的噪声。这种调制器(一阶)在每两倍的过采样率下可提供9dB的SNR改善。

模数转换器原理

模数(A/D)转换器工作原理A/D转换器(Analog-to-Digital Converter)又叫模/数转换器,即是将模拟信号(电压或是电流的形式)转换成数字信号。这种数字信号可让仪表,计算机外设接口或是微处理机来加以操作或胜作使用。 A/D 转换器 (ADC)的型式有很多种,方式的不同会影响测量后的精准度。 A/D 转换器的功能是把模拟量变换成数字量。由于实现这种转换的工作原理和采用工艺技术不同,因此生产出种类繁多的A/D 转换芯片。 A/D 转换器按分辨率分为4 位、6 位、8 位、10 位、14 位、16 位和BCD码的31/2 位、51/2 位等。按照转换速度可分为超高速(转换时间=330ns),次超高速(330~3.3μS),高速(转换时间3.3~333μS),低速(转换时间>330μS)等。 A/D 转换器按照转换原理可分为直接A/D 转换器和间接A/D 转换器。所谓直接A/D 转换器,是把模拟信号直接转换成数字信号,如逐次逼近型,并联比较型等。其中逐次逼近型A/D 转换器,易于用集成工艺实现,且能达到较高的分辨率和速度,故目前集成化A/D 芯片采用逐次逼近型者多;间接A/D 转换器是先把模拟量转换成中间量,然后再转换成数字量,如电压/时间转换型(积分型),电压/频率转换型,电压/脉宽转换型等。其中积分型A/D 转换器电路简单,抗干扰能力强,切能作到高分辨率,但转换速度较慢。有些转换器还将多路开关、基准电压源、时钟电路、译码器和转换电路集成在一个芯片内,已超出了单纯A/D 转换功能,使用十分方便。 ADC 经常用于通讯、数字相机、仪器和测量以及计算机系统中,可方便数字讯号处理和信息的储存。大多数情况下,ADC 的功能会与数字电路整合在同一芯片上,但部份设备仍需使用独立的ADC。行动电话是数字芯片中整合ADC 功能的例子,而具有更高要求的蜂巢式基地台则需依赖独立的ADC 以提供最佳性能。 ADC 具备一些特性,包括: 1. 模拟输入,可以是单信道或多信道模拟输入; 2. 参考输入电压,该电压可由外部提供,也可以在ADC 内部产生; 3. 频率输入,通常由外部提供,用于确定ADC 的转换速率; 4. 电源输入,通常有模拟和数字电源接脚; 5. 数字输出,ADC 可以提供平行或串行的数字输出。在输出位数越多(分辨率越好)以及转换时间越快的要求下,其制造成本与单价就越贵。 一个完整的A/D转换过程中,必须包括取样、保持、量化与编码等几部分电路。 AD转换器需注意的项目: 取样与保持 量化与编码

只要一分钟,教你看懂电气控制电路图!

只要一分钟,教你看懂电气控制电路图! 看电气控制电路图一般方法是先看主电路,再看辅助电路,并用辅助电路的回路去研究主电路的控制程序。电气控制原理图一般是分为主电路和辅助电路两部分。其中的主电路是电气控制线路中大电流流过的部分,包括从电源到电机之间相连的 、“顺 除了合理地选择拖动、控制方案外,在控制线路中还设置了一系列电气保护和必要的电气联锁。在电气控制原理图的分析过程中,电气联锁与电气保护环节是一个重要内容,不能遗漏。 总体检查:经过“化整为零”,逐步分析了每一局部电路的工作原理以及各部分之间的控制关系之后,还必须用“集零为整”的方法检查整个控制线路,看是否有遗漏。

特别要从整体角度去进一步检查和理解各控制环节之间的联系,以达到正确理解原理图中每一个电气元器件的作用。 1、看主电路的步骤 第一步:看清主电路中用电设备。用电设备指消耗电能的用电器具或电气设备,看图首先要看清楚有几个用电器,它们的类别、用途、接线方式及一些不同要求等。 2 则可先排除照明、显示等与控制关系不密切的电路,以便集中精力进行分析。 第一步:看电源。首先看清电源的种类。是交流还是直流。其次。要看清辅助电路的电源是从什么地方接来的,及其电压等级。电源一般是从主电路的两条相线上接来,其电压为380V.也有从主电路的一条相线和一零线上接来,电压为单相220V;此外,也可以从专用隔离电源变压器接来,电压有140、127、36、6.3V等。辅助电

路为直流时,直流电源可从整流器、发电机组或放大器上接来,其电压一般为24、12、6、4.5、3V等。辅助电路中的一切电器元件的线圈额定电压必须与辅助电路电源电压一致。否则,电压低时电路元件不动作;电压高时,则会把电器元件线圈烧坏。 第二步:了解控制电路中所采用的各种继电器、接触器的用途。如采用了一些特殊 而是相互联系、相互制约的。这种互相控制的关系有时表现在一条回路中,有时表现在几条回路中。 第五步:研究其他电气设备和电器元件。如整流设备、照明灯等。 综上所述,电气控制电路图的查线看图法的要点为: (1)分析主电路。从主电路人手,根据每台电动机和执行电器的控制要求去分析各

转换开关

转换开关 转换开关是一种多档式、控制多回路的主令电器。万能转换开关主要用于各种控制线路的转换、电压表、电流表的换相测量控制、配电装置线路的转换和遥控等。万能转换开关还可以用于直接控制小容量电动机的起动、调速和换向。 一、万能转换开关结构与原理: ?由多组相同结构的开关元件叠装而成,外形及凸轮通断触头情况下图所示 LW5系列万能转换开关外形及触头通断示意图 万能转换开关常用产品有LW5和LW6系列。LW5系列万能转换开关按手柄的操作方式可分为自复式和自定位式两种。所谓自复式是指用手拨动手柄于某一档位时,手松开后,手柄自动返回原位;定位式则是指手柄被置于某档位时,不能自动返回原位而停在该档位。路灯低压开关柜中转换开关常用来转换不同相间的电压指示、控制全夜、半夜灯等。 万能转换开关的手柄操作位置是以角度表示的。不同型号的万能转换开关的手柄有不同万能转换开关的触点,电路图中的图形符号如下图所示。但由于其触点的分合状态与操作手柄的位置有关,所以,除在电路图中画出触点图形符号外,还应画出操作手柄与触点分合状态的关系。图中当万能转换开关打向左45°时,触点1-2、3-4、5-6闭合,触点7-8打开;打向0°时,只有触点5-6闭合,右45°时,触点7-8闭合,其余打开。 ?图中每根竖的点划线表示手柄位置,点划线上的黑点“●”表示手柄在该位置时,上面这一路触头接通。

二、万能转换开关表示方法: ?万能转换开关的型号含义如下: L W 5――□□□/□ L:主令电器 W:万能转换开关 5:设计序号 ?□:额定电流 ?□:定位特征代号 ?□:接线图编号 ?□:数字表示触头系统挡数,字母D-直接起动;N-可逆起动;S-双速电机控制。 ?万能转换开关的选用主要根据用途、所需触头挡数和额定电流来选择。 二、主令开关的结构与原理 三、主令开关表示方法: ?主令控制器的动作原理: ?当转动手柄10使凸轮块7转动时,推压小轮8,使支杆5绕轴6转动,动触头4与静触头3分断,将被操作回路断开。相反,当转动手柄10使小轮8位于凸轮块7的凹槽处,由于弹簧9的作用,使动触头4与静触头3闭合,接通被操作回路。触头闭合与分断的顺序由凸轮块的形状所决定的。 ?常用主令控制器有LK1、LK5、LK6、LK14等系列,其型号的含义如下: ? L K 1――□/□ ?L:主令电器 K:控制器 1:设计序号 ?□:控制回路数 ?□:结构形式代号 ?主令控制器的选用主要根据额定电流和所需控制回路数来选择

模数与数模转换电路

第9章模数与数模转换电路 课题第9章模数与数模转换电路 理论课 时 4 实验课 时 4 教学目的 1?掌握模数与数模转换原理; 2?掌握模数与数模转换电路的应用。 重点与重点:模数与数模转换原理; 难点难点:模数与数模转换电路的应用。 教学方法讲授法、演示法:多媒体课件讲授、配合板书。 教学内容 1?模数转换器(ADC); 2?数模转换器(DAC)。 课后作业 习题九 一、二、三、四 9.1 概述 9.2 数模转换器(DAC) 一?作用 D/A转换器是将输入的二进制数字量转换成电压或电流形式的模拟量输出。 二?电路组成 如图9-1所示 图9-1 D/A转换器的一般结构 三.应用 图9-2就是按这种方法实现的D/A转换器,实际上,这是一个加权加法运算电路。图中电阻网络与二进制数的各位权相对应,权越大对应的电阻值越小,故称为权电阻网络。图中 VR为稳恒直流电压,是 D/A转换电路的参考电压。n路电子开关S i由n位二进制数D的每能够把模拟量转变为数字量的器件叫模拟-数字转换器(简称 A/D转换器)。 能够把数字量转变为模拟量的器件叫数字-模拟转换器(简称 D/A转换器)。 参考电压] /

一位数码Di 来控制,Di =O 时开关S i 将该路电阻接通“地端” ,Di =1时S i 将该路电阻接通 参考电压 VR 集成运算放大器作为求和权电阻网络的缓冲,主要是为了减少输出模拟信号 负载变化的影响,并将电流输出转换为电压输出。 图9-2中,因A 点“虚地”,V A=O,各支路电流分别为 -- 岗0 - 9-2 权电阻网络D/A 转换器 In -1+ In -2+ …+ I 0= If 以上各式联立得, U o 咯 V R (D n 1 2 n 1 D n 2 2n 2 D o 20 ) R 从上式可见,输出模拟电压 u O 的大小与输入二进制数的大小成正比,实现了数字量到 模拟量的转换。 权电阻网络D/A 转换器电路简单,但该电路在实现上有明显缺点,各电阻的阻值相差较大, 尤其当输入的数字信号的位数较多时, 阻值相差更大。这样大范围的阻值, 要保证每个都有 很高的精度是极其困难的,不利于集成电路的制造。为了克服这一缺点, D/A 转换器广泛采 用T 型和倒T 型电阻网络 D/A 转换器。 I n I n D n I V R R n 1 D n 2V R D n 1 2n V R I f R i 2 D n 2 2n R V R D O V R D o 20 又因放大器输入端“虚断” ,所以,图9-2 权电阻网络D/A 转换器 U o R f

万能转换开关的工作原理及符号表示

万能转换开关的工作原理及符号表示 一种可供两路或两路以上电源或负载转换用的开关电器。转换开关由接触系统、定位机构、手柄等主要部件组成。这些部件通过螺栓紧固为一个整体。 转换开关又称组合开关,与刀开关的操作不同,它是左右旋转的平面操作。转换开关具有多触点、多 位置、体积小、性能可靠、操作方便、安装灵活等优点,多用于机床电气控制线路中电源的引入开关,起着隔离电源作用,还可作为直接控制小容量异步电动机不频繁起动和停止的控制开关。转换开关同样也有单极、双极和三极。 万能转换开关是一种多档式、控制多回路的主令电器。万能转换开关主要用于各种控制线路的转换、电压表、电流表的换相测量控制、配电装置线路的转换和遥控等。万能转换开关还可以用于直接控制小容量电动机的起动、调速和换向。 如图1所示为万能转换开关单层的结构示意图。 常用产品有LW5和LW6系列。LW5系列可控制5.5kW及以下的小容量电动机;LW6系列只能控制2.2kW 及以下的小容量电动机。用于可逆运行控制时,只有在电动机停车后才允许反向起动。LW5系列万能转换开关按手柄的操作方式可分为自复式和自定位式两种。所谓自复式是指用手拨动手柄于某一档位时,手松开后,手柄自动返回原位;定位式则是指手柄被置于某档位时,不能自动返回原位而停在该档位。 万能转换开关的手柄操作位置是以角度表示的。不同型号的万能转换开关的手柄有不同万能转换开关的触点,电路图中的图形符号如图2所示。但由于其触点的分合状态与操作手柄的位置有关,所以,除在电路图中画出触点图形符号外,还应画出操作手柄与触点分合状态的关系。图中当万能转换开关打向左45°时,触点1-2、3-4、5-6闭合,触点7-8打开;打向0°时,只有触点5-6闭合,右45°时,触点7-8闭合,其余打开。

数模转换器(DAC)原理研究

数字-模拟转换器(DAC> 原理研究 电子0801 班 08214014 08214013 一题目简述随着科学技术地发展, 我们常常要用模拟系统来处理数字信号. 这就需要数字-模拟地转换. DAC 地作用是将计算机或控制器产生地二进制数字转换成与之成比例地模拟电压. 其意义相当于一种译码电路. 本次地数模原理研究主要介绍全电阻网络D/A 转换器和倒T 型电阻网络D/A 转换器, 利用等效方法和叠加原理推导输出电压, 比较两种转换器地特点. 并用EWB 软件来验证电路地工作原理.b5E2RGbCAP

二DAC 原理 1. D/A 数模转换器地设计思想 D/A 数模转换器在某种意义上说相当于一种译码电路,将给定地二进制码地量译成相应地模拟量地数值. 数字量是由二进制数位组合起来,而每位数字符号都有一定地权.例如,四位二进制数1101 每位地权对 应十进制数值从高位到底为排列依次为8,4,2,1<必须位置上是一才有效).所以二进制数1101代表十三.为了将数字量转换成模拟地量,可以将每一位数字量按权地大小装换成模拟量.然后将这些模拟量相加,所得到地总地模拟量就是数字量所必须转换成地模拟

.plEanqFDPw 2.权电阻网络D/A转换器 (1>数模转换地一种方法是使用电阻网络,网络中阻值表示数字码输入位地二进制权值?输入地电平决定电流地有无,开关接入相应电压V s时,输入电压为V s,二进制数位“ 1".开关接地时输入电压为0V,二进制数为“ 0".如下图给出了一个三位地DAC .DXDiTa9E3d 上面已经提及开关K n」,K T ……,K1,K。分别受输入代码D n 「D n“……,D1,D0地状态控制,由于虚地点地存在,其中某个开关K i接到“ 1"或“ 0"在电阻R支路产生地电流为RTCrpUDGiT I i V R Ri k i即I Z D. i Ri i V R R o D。I V R R1 支路电流总和 22R D o + V R 21R D1 + V R R2 D2 Ll i亠 V R 20R D2 R o D o + V R R1 D1+ V R R2 D2

模数转换器基本原理及应用

Σ-Δ模数转换器基本原理及应用 一、Σ-Δ ADC基本原理 Σ-Δ ADC以很低的采样分辨率(1位)和很高的采样速率将模拟信号数字化, 通过使用过采样、噪声整形和数字滤波等方法增加有效分辨率, 然后对ADC输出进行采样抽取处理以降低有效采样速率。Σ-ΔADC的电路结构是由非常简单的模拟电路(一个比较器、一个开关、一个或几个积分器及模拟求和电路)和十分复杂的数字信号处理电路构成。要了解Σ-ΔADC的工作原理, 必须熟悉过采样、噪声整形、数字滤波和采样抽 取等基本概念 1.过采样 ADC是一种数字输出与模拟输入成正比的电路, 图1给出了理想3位单极性ADC的转换特性, 横坐标是输入电压U IN 的相对值, 纵坐标是经过采样量化的数字输出量, 以二进制000~111表示。理想ADC第一位的变迁发生在相当于1/2LSB的模拟电压值上, 以后每隔1LSB都发生一次变迁, 直至距离满度的1 1/2 LSB。因为ADC的模拟量输入可以是任何值, 但数字输出是量化的, 所以实际的模拟输入与数字输出之间存在±1/2LSB的量化误差。在交流采样应用中, 这种量化误差会产生量化噪声。 图1 理想3位ADC转换特性 如果对理想ADC加一恒定直流输入电压, 那么多次采样得到的数字输出值总是相同的, 而且分辨率受量化误差的限制。如果在这个直流输入信号上叠加一个交流信号, 并用比这交流信号频率高得多的采样频率进行采样, 此时得到的数字输出值将是变化的, 用这些采样结果的平均值表示ADC的转换结果便能得到比用同样ADC高得多的采样分辨率, 这种方法称作过采样(oversampling)。如果模拟输入电压本身就是交流信号, 则不必另叠加一个交流信号。采用过采样方法(采样频率远高于输入信号频率)也同样可提高ADC的分辨率。 由于过采样的采样速率高于输入信号最高频率的许多倍, 这有利于简化抗混叠滤波器的设计, 提高信噪比并改善动态范围。可以用频域分析方法来讨论过采样问题。由于直流信号转换具有的量化误差达1/2LSB, 所以数据采样系统具有量化噪声。一个理想的常规N位ADC的采样量化噪声有效值为q/12,均匀分布在奈奎斯特频带直流至fs/2范围内, 如图2所示。其中q为LSB的权重, fs为采样速率, 模拟低通滤波器将滤除fs/2以上的噪声。如果用Kfs的采样速率对输入信号进行采样(K

数模转换器(DAC)原理研究

数字-模拟转换器(DAC)原理研究 电子0801班 08214014 08214013

一题目简述 随着科学技术的发展, 我们常常要用模拟系统来处理数字信号. 这就需要数字-模拟的转换. DAC的作用是将计算机或控制器产生的二进制数字转换成与之成比例的模拟电压. 其意义相当于一种译码电路. 本次的数模原理研究主要介绍全电阻网络D/A转换器和倒T型电阻网络D/A转换器, 利用等效方法和叠加原理推导输出电压, 比较两种转换器的特点. 并用EWB 软件来验证电路的工作原理. 二DAC原理 1. D/A数模转换器的设计思想 D/A数模转换器在某种意义上说相当于一种译码电路,将给定的二进制码的量译成相应的模拟量的数值。 数字量是由二进制数位组合起来,而每位数字符号都有一定的权。例如,四位二进制数1101每位的权对应十进制数值从高位到底为排列依次为8,4,2,1(必须位置上是一才有效)。所以二进制数1101代表十三。为了将数字量转换成模拟的量,可以将每一位数字量按权的大小装换成模拟量。然后将这些模拟量相加,所得到的总的模拟量就是数字量所必须转换成

的模拟量。 2.权电阻网络D/A 转换器 (1) 数模转换的一种方法是使用电阻网络,网络中阻值表示数字码输入位的二进制权值。输入的电平决定电流的有无,开关接入相应电压V s 时,输入电压为V s ,二进制数位“1”。开关接地时输入电压为0V ,二进制数为“0”. 如下图给出了一个三位的DAC 。 上面已经提及开关1 -n K , 2-n K ,……, 1K ,0K 分别受输入代码1-n D ,2-n D ,……,1D ,0D 的状态控制,由于虚地点的存在,其中某个开关i K 接到“1”或“0”在电阻i R 支路产生的电流为 i R i k Ri V I = 即 i R i D Ri V I = 000D R V I R = 11 1D R V I R = 222D R V I R = 支路电流总和 I=∑=20i i I =00D R V R +11D R V R +22 D R V R = 022D R V R +112D R V R +202D R V R =R V R 22[001122222?+?+?D D D ]

一分钟学会如何看懂电气控制电路图!

一分钟学会如何看懂电气控制电路图! 一分钟学会如何看懂电气控制电路图! 看电气控制电路图一般方法是先看主电路,再看辅助电路,并用辅助电路的回路去研究主电路的控制程序。电气控制原理图一般是分为主电路和辅助电路两部分。 、 分析联锁与保护环节:生产机械对于安全性、可靠性有很高的要求,实现这些要求,除了合理地选择拖动、控制方案外,在控制线路中还设置了一系列电气保护和必要的电气联锁。在电气控制原理图的分析过程中,电气联锁与电气保护环节是一个重要内容,不能遗漏。 总体检查:经过“化整为零”,逐步分析了每一局部电路的工作原理以及各部分

之间的控制关系之后,还必须用“集零为整”的方法检查整个控制线路,看是否有遗漏。特别要从整体角度去进一步检查和理解各控制环节之间的联系,以达到正确理解原理图中每一个电气元器件的作用。 1、看主电路的步骤 第一步:看清主电路中用电设备。用电设备指消耗电能的用电器具或电气设备, 2 路化整为零,按功能不同划分成若干个局部控制线路来进行分析。如果控制线路较复杂,则可先排除照明、显示等与控制关系不密切的电路,以便集中精力进行分析。 第一步:看电源。首先看清电源的种类。是交流还是直流。其次。要看清辅助电路的电源是从什么地方接来的,及其电压等级。电源一般是从主电路的两条相线上接来,其电压为380V.也有从主电路的一条相线和一零线上接来,电压为单相220V;

此外,也可以从专用隔离电源变压器接来,电压有140、127、36、6.3V等。辅助电路为直流时,直流电源可从整流器、发电机组或放大器上接来,其电压一般为24、12、6、4.5、3V等。辅助电路中的一切电器元件的线圈额定电压必须与辅助电路电源电压一致。否则,电压低时电路元件不动作;电压高时,则会把电器元件线圈烧坏。 第四步:研究电器元件之间的相互关系。电路中的一切电器元件都不是孤立存在的而是相互联系、相互制约的。这种互相控制的关系有时表现在一条回路中,有时表现在几条回路中。 第五步:研究其他电气设备和电器元件。如整流设备、照明灯等。 综上所述,电气控制电路图的查线看图法的要点为:

数模转换电路

数模转换电路 一、概述 数模转换就是将离散的数字量转换为连接变化的模拟量,实现该功能的电路或器件称为数模转换电路,通常称为D/A转换器DAC。 二、D/A转换器的基本原理 基本原理:将输入的每一位二进制代码按其权的大小转换成相应的模拟量,然后将代表各位的模拟量相加,所得的总模拟量就与数字量成正比,这样便实现了从数字量到模拟量的转换。这就是构成D/A转换器的基本思路。D/A转换器由数码寄存器、模拟电子开关电路、解码网络、求和电路及基准电压几部分组成。数字量以串行或并行方式输入、存储于数码寄存器中,数字寄存器输出的各位数码,分别控制对应位的模拟电子开关,使数码为1的位在位权网络上产生与其权值成正比的电流值,再由求和电路将各种权值相加,即得到数字量对应的模拟量。 1、数模转换器的转换方式 (1)并行数模转换 通过一个模拟量参考电压和一个电阻梯形网络产生以参考量为基准的分数值的权电流或权电压;而用由数码输入量控制的一组开关决定哪一些电流或电压相加起来形成输出量。所谓“权”,就是二进制数的每一位所代表的值。例如三位二进制数“111“,右边第1位的“权”是 20/23=1/8;第2位是21/23=1/4;第3位是22/23=1/2。位数多的依次类推。图2为这种三位数模转换器的基本电路,参考电压VREF在R1、R2、R3中产生二进制权电流,电流通过开关。当该位的值是“0”时,与地接通;当该位的值是“1”时,与输出相加母线接通。几路电流之和经过反馈电阻Rf产生输出电压。电压极性与参考量相反。输入端的数字量每变化1,仅引起输出相对量变化1/23=1/8,此值称为数模转换器的分辨率。位数越多分辨率就越高,转换的精度也越高。工业自动控制系统采用的数模转换器大多是10位、12位,转换精度达0.5~0.1%。 (2)串行数模转换 将数字量转换成脉冲序列的数目,一个脉冲相当于数字量的一个单位,然后将每个脉冲变为单位模拟量,并将所有的单位模拟量相加,就得到与数字量成正比的模拟量输出,从而实现数字量与模拟量的转换。 三、D/A转换器的分类 1、电压输出型 电流输出型DA转换器很少直接利用电流输出,大多外接电流—电压转换电路得到电压输出,后者有两种方法:一是只在输出引脚上接负载电阻而进行电流—电压转换,二是外接运算放大器。用负载电阻进行电流—电压转换的方法,虽可在电流输出引脚上出现电压,但必须在规定的输出电压范围内使用,而且由于输出阻抗高,所以一般外接运算放大器使用。此外,大部分CMOS D/A转换器当输出电压不为零时不能正确动作,所以必须外接运算放大器。当外接运算放大器进行电流电压转换时,则电路构成基本上与内置放大器的电压输出型相同,这时由于在DA转换器的电流建立时间上加入了运算放大器的延迟,使响应变慢。此外,这种电路中运算放大器因输出引脚的内部电容而容易起振,有时必须作相位补偿。 2、乘算型 D/A转换器中有使用恒定基准电压的,也有在基准电压输入上加交流信号的,后者由于能得到数字输入和基准电压输入相乘的结果而输出,因而称为乘算型DA转换器。乘算型DA转换器一般不仅可以进行乘法运算,而且可以作为使输入信号数字化地衰减的衰减器及对输入信号进行调制的调制器使用。 四、D/A转换器的主要性能指标 1、分辨率 指最小输出电压(对应的输入数字量只有最低有效位为“1”)与最大输出电压(对应的输入数字量所有有效位全为“1”)之比。如N位D/A转换器,其分辨率为1/(2N-1)。 2、转换精度 D/A转换器的转换精度与D/A转换器的集成芯片的结构和接口电路配置有关。如果不考虑其他D/A 转换误差时,D/A的转换精度就是分辨率的大小,因此要获得高精度的D/A转换结果,首先要保证选择有足够分辨率的D/A转换器。同时D/A转换精度还与外接电路的配置有关,当外部电路器件或电源误差较大时,会造成较大的D/A转换误差,当这些误差超过一定程度时,D/A转换就产生错误。在D/A 转换过程中,影响转换精度的主要因素有失调误差、增益误差、非线性误差和微分非线性误差。 3、编辑本段温度系数 在满刻度输出的条件下,温度每升高1℃,输出变化的百分数定义为温度系数。 4、失调误差(或称零点误差)

模数和数模转换器类型及原理介绍

QQ:460209698 模数模数//数模数模转换转换转换器器类型及原理类型及原理简介简介简介 (AD 详解详解((连载连载之之一)) https://www.sodocs.net/doc/697344255.html,/open_hard/blog/item/1cc0a8f36f633f53342acccd.html AD:模数转换,将模拟信号转换为数字信号,便于数字设备处理。 DA:数模转换,将数字信号转换为模拟信号,与外部世界接口。 具体可以看看下面的资料,了解一下工作原理: 1. 1. AD AD 转换器的分类 下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型逐次逼近型逐次逼近型、并行并行比较型比较型//串并行型串并行型((流水线型流水线型))、∑∑-Δ调制型 调制型、电容阵列逐次比较型及压频变换型。【【重点理解重点理解加粗的加粗的加粗的三种三种三种】】 1)积分型(如TLC7135) AD 连载之二-----双积分型 AD 转换器 积分型AD 工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率, 但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD 转换器大多采用积分型,现在逐次比较型已逐步成为主流。 2)逐次比较型(如TLC0831) AD 连载之三-----逐次逼近 AD 转换器的工作原理 逐次比较型AD 由一个比较器和DA 转换器通过逐次比较逻辑构成,从MSB 开始,顺序地对每一位将输入电压与内置DA 转换器输出进行比较,经n 次比较而输出 数字值。其电路规模属于中等,其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。 3)并行比较型/串并行比较型(如TLC5510) AD 连载之四-----并行比较型A/D 转换器 并行比较型AD 采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n 位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD 转换器等速度特别高的领域。 串并行比较型AD 结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD 转换器配合DA 转换器组成,用两次比较实行转换,所以称为 Half flash(半快速)型。还有分成三步或多步实现AD 转换的叫做分级 (Multistep/Subrangling)型AD,而从转换时序角度又可称为又可称为 又可称为流水线(Pipelined)型AD,现代的分级型AD 中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD 速度比逐次比较型高,电路规模比并行型小。 7)流水线型A/D 转换器(串并行比较型,特例) (先理解理解并行并行并行比较比较 比较型型A D 转换转换器器原理原理!!!!) 为兼顾高速率和高精度的要求,流水线结构的A/D 转换器应运而生。这种A/D 转换器如图11-6所示,它结合了串行和闪烁[Flash]型ADC 的特点,采用基于

模数、数模转换器工作原理及应用

模数、数模转换器 本章讨论的问题 1、为什么要进行模数和数模转换? 2、怎样将模拟量转换为数字量? 3、怎样将数字量转换为模拟量? 4、怎样保证数据转换的精度和速度? 随着数字电子技术的飞速发展,特别是计算机技术的发展与普及,用数字电路处理模拟信号的应用在自动控制、通信以及检测等许多领域越来越广泛。 自然界中存在的大都是连续变化的物理量,如温度、时间、速度、流量、压力等等。要用数字电路特别是用计算机来处理这些物理量,必须先把这些模拟量转换成计算机能够识别的数字量,经过计算机分析和处理后的数字量又需要转换成相应的模拟量,才能实现对受控对象的有效控制,这就需要一种能在模拟量与数字量之间起桥梁作用的电路--—模数和数模转换电路。 能将模拟量转换成数字量的电路称为模数转换器(简称A/D转换器或ADC);能将数字量转换为模拟量的电路称为数模转换器(简称D/A转换器或DAC)。A/D和D/A 转换器是数字控制系统中不可缺少的组成部分,是用计算机实现工业过程控制的重要接口电路。 6.1 模数(A/D)转换器 6.1.1 A/D转换的基本概念 A/D转换器的作用就是将输入的模拟量转换成与其成比例的数字量,实质上,A/D转换器是模拟系统到数字系统的接口电路。一个完整的模数转换过程必须包括采样→保持→量化→编码等四个部分。 1. 采样定理 图6.1是某一输入模拟信号经采样后得出的波形。为了保证能从采样信号中将原信号恢复,必须满足条件

f s ≥2f i(max) (6.1) 式中:f s 为采样频率,f i(max)为输入信号u i 中最高次谐波分量的频率。这一关系称为采样定理。 A/D 转换器工作时的采样频率只有满足式(6.1)所规定的频率要求,才能做到不失真地恢复出原模拟信号。这就像用照相机拍摄世界级运动员跨栏瞬间的镜头一样,如果相机的速度太慢,是无法留住那精彩瞬间的。采样频率越高,进行转换的时间就越短,对A/D 的工作速度要求就越高。一般取f s =(3~5)f i(max)。 2、采样保持电路 A/D 转换器在进行模数转换期间,要求输入的模拟信号有一段稳定的保持时间,以便对模拟信号进行离散处理,即对输入的模拟信号进行采样。 一个实际的采样保持电路如图6.2所示。图中A 1、A 2是两个集成运算放大器, S 是电子模拟开关,L 是控制S 工作状态的逻辑单元电路。二极管D 1、D 2组成保护电路。保护电路的工作原理是:当O u '比O u 所保持的电压高出一个二极管的正向压降时,D 1管导通,O u '被钳位于1D i U u +(1D U 为D 1的正向导通压降)。同理,当O u '比O u 低一个二极管的压 降时,D 2管导通,O u '被钳位于2D i U u -。保护电路的作用就是防止在S 再次接通以前,i u 发生变化而引起O u '的更大变化,导致O u '与i u 不再保持线性关系,并使开关电路有可能因承受过高的O u '电压而损坏。该电路的整个采样保持过程如下: 当1=L u 时,电子模拟开关S 闭合。A 1、A 2接成电压跟随器,故输出 i O O u u u =='。与此同时, O u '通过电阻R 2对外接电容C h 充电,使i ch u u =。因电压跟随器的输出电阻 图6.1 采样波形图 u u i u u o 图6.2 采样保持电路

相关主题