搜档网
当前位置:搜档网 › 海上单桩风力发电

海上单桩风力发电

Type of structure: Wind turbines, 2 MW. Vestas type. V80Location: Irish sea. Liverpool bay.Maximum water depth: 21 m (*)Pile diameter at seabed: 4.0 m Soil conditions: 10 m sediments, sand and clay underlaid by Mudstone and sandstone.Installed: 2003Installation method: Driving through upper sediment layers followed by drilling and driving through rock layer Number of foundations: 30 Maximum pile penetration below seabed: 33 m Connection tower/pile: Flange connection on grouted transition piece. Special feature: Grouted transition piece between pile and tower above sea water level.Scour protection: Stones placed on stony sea bottom protecting power cables.LICengineering tasks: Tender design, detailed design, specifications. Engineering follow-up.

Special supervision.(*) Water depth at highest tide. The tidal variations in the area are up to 10 m.

The North Hoyle Farm comprises 30 Vestas V 80 2 MW turbines.

MONOPILE FOUNDATIONS

Introduction

The North Hoyle Windfarm is the first completed large

scale UK offshore windfarm, comprising 30 x 2 MW wind turbines. The windfarm is located 8-11 km off the coast of Rhyl in North Wales in an area with very high tidal variations. LICengineering A/S undertook design of the 30 monopile foundations and associated structures such as tower flange connection, grouted transition piece, boatlanding, J-tubes and access platform. The foundations were installed in 2003.

Project Details

The windfarm is operated by National Wind Power Offshore. Vestas-Celtic was the main partner in the supply and construction contract and Seacore installed the 30 monopile foundations, using an 8 legged jack-up drill rig. The turbines and towers were supplied by Vestas. LICengineering A/S carried out the detailed design for the foundations and provided engineering support throughout the project.

Smulders B.V. supplied the main steel and provided the fabrication layout for some of the steel details.

Design Analysis

The design analyses were carried out to determine the required wall thickness and penetration depth for the monopile. Dynamic analyses were carried out including the vibrational behaviour of the pile and tower subjected to combined wave and wind loads. The pile was designed to resist ultimate storm loads and fatigue loads in the operational lifetime. The integrated boatlanding and J-tube arrangement was analysed for extreme waves on the location.

North Hoyle

Access and J-Tube Arrangement

Due to the very high tidal variations the access arrangement was made in two main sections. The upper part of the access arrangement and the access platform is welded and bolted to the transition piece. The lower part of the access arrangement comprising boatlanding with fenders is a separate item which is locked to the doubler plates by a hanger and bolt arrangement. The J-tubes are part of the fender arrangements on the boatlanding and includes a hinged straight J-tube extension section to allow for lowering of the J-tube and protection of the cables all the way to the horizontal exit on the seabed well away from the pile.

Installation

The handling of the very heavy and large pile onshore at the yard and quayside was a difficult task. The weight of the foundations was up to 270 tonnes. The piles were offloaded directly to sea and floated to the site towed by tugboats. The installation was then carried out from a large 8-legged jack-up rig. This saved barge costs. The bulkhead arrangement included an upending tool. After upending, the monopiles were installed using a combined drive and drill technique. Each pile was initially driven through the upper sand and clay layers using a large hydraulic offshore hammer. A slightly undersize hole was then drilled into the underlying bedrock formations and the pile finally driven into this hole to the required penetration. After pile installation the transition piece was landed and grouted in place. The access platform was then installed and bolted in place. The lower part of the access arrangement including a hinged lower J-tubes section was then installed on the doubler plate hangers and locked to these with bolt arrangements. The hinged J-tube extensions were then rotated into position. After cable pull-in, scour protection was installed.

Foundation Layout

The main components of the foundation consist of a monopile with an outer diameter of 4 m and a grouted transition piece landed over the monopile top section after pile installation. The monopile is mainly a bare pile only fitted with a number of doubler plates. This allows for driving of the pile. The doubler plates are used for hang-off of the J-tube and boatlanding arrangement after completion of the grouted connection, which is done with high strength grout. The transition piece is fitted with weld-on flange for connection to the turbine tower. There is an internal platform in the upper part of the transition section.

Hydrographics

The windfarm is placed approximately 8 km from the shoreline. The seabed is relatively level at the location but subjected to very high tidal variations. The mean water depth is around 12 m but ranging up to 21 m at high tide.

Geotechnical Conditions

The geotechnical

conditions on the location show high local variations. A number of geotechnical boreholes were drilled prior to foundation installation. The upper seabed layers comprise variations of sand and clay layers. Layers of mudstone or sandstone are present below these top layers.

Monopile

Access platform

Scour

Boatlanding &J-tube Intermediate platforms

Anode clamp

Grouting

9m tidal variation

各种海上风电地基基础的比较及适用范围

各种海上风电地基基础的适用范围 1 海上风电机组基础结构设计需考虑的因素 海上风电机组基础结构设计中,基础形式选择取决于水深、水位变动幅度、土层条件、 海床坡率与稳定性、水流流速与冲刷、所在海域气候、风电机组运行要求、靠泊与防撞要求、 施工安装设备能力、预加工场地与运输条件、工程造价和项目建设周期要求等。 当前阶段国内外海上风电机组基础常用类型包括单桩基础、重力式基础、桩基承台基础 (潮间带风电机组)、高桩承台基础、三脚架或多脚架基础、导管架基础等。试验阶段的风电 机组基础类型包括悬浮式、吸力桶式、张力腿式、三桩钢架式基础等形式,但仅处于研究或 试验阶段。 基础型式结构特征优缺点造价成本适用范围安装施工 重力式有混凝土重 力式基础和 钢沉降基础结构简单、抗风 浪袭击性能好; 施工周期长,安 装不便 较低浅水到中等水 深(0~10m) 大型起重船等 单桩式靠桩侧土压 力传递风机 荷载安装简便,无需 海床准备;对土 体扰动大,不适 于岩石海床 高浅水到中等水 深(0~30m) 液压打桩锤、钻 孔安装 多桩式上部承台/三 脚架/四脚架/ 导管架适用于各种地质 条件,施工方便; 建造成本高,难 移动 高中等水深到深 水(>20m) 蒸汽打桩锤、液 压打桩锤 浮式直接漂浮在 海中(筒型基 础/鱼雷锚/平 板锚)安装灵活,可移 动、易拆除;基 础不稳定,只适 合风浪小的海域 较高深水(>50m)与深水海洋平 台施工法一致 吸力锚利用锚体内 外压力差贯 入海床 节省材料,施工 快,可重复利用; “土塞”现象,倾 斜校正 低浅水到深水 (0~25m) 负压下沉就位表1 当前常用风电基础形式的比较 2 中国各海域适用风电基础形式的分析 我国渤海水深较浅,辽东湾北部浅海区水深多小于10 m ,海底表层为淤泥、粉质粘土、淤泥质粉砂,粉土底部沉积物以细砂为主,承载力相对较大,可作持力层。和粉砂层,承载力小,易液化,不适宜作持力层;而黄河口海域多为黄河泥沙冲淤海底,因此,渤海的大部分海域为淤泥质软基海底,冲刷现象也较为严重,且冬季有冰荷载的作用,不宜采用重力式基础和负压桶基础,可采用单桩结构。单桩结构在海床活动区域和海底冲刷区域是非常有利的,主要是缘于其对水深变化的灵活性。相比黄河口海域,长江口、杭州湾、珠江口受潮汐影响大,水流速度较快,近场区分布有多个岛屿,造成海底地层的岩面起伏大,且容易受到台风等气象因素影响,宜采用重力式或多桩式结构。

海上风电场海水养殖一体化

Perceived Concerns and Advocated Organisational Structures of Ownership Supporting ‘Offshore Wind Farm —Mariculture Integration’ 表示关注和主张 组织结构的企业 支持“离岸风场 —海水养殖一体化” Gesche Krause, Robert Maurice Griffin and Bela Hieronymus Buck 1Leibniz Center for Tropical Marine Ecology (ZMT), Bremen 1莱布尼兹热带海洋生态中心(ZMT),不莱梅 2Department of Environmental and Natural Resource Economics, University of Rhode Island 2环境与自然资源经济学院,罗德岛大学 3Alfred Wegener Institute for Polar and Marine Science (AWI), Bremerhaven 3阿尔弗雷德韦格纳极地和海洋科学研究所(AWI),不来梅港 4Institute for Marine Resources (IMARE), Bremerhaven 4海洋资源研究所(IMARE),不来梅港 5University of Applied Sciences Bremerhaven, Bremerhaven 5不莱梅应用科学技术大学,不来梅港 1,3,4,5Germany 1,2,4,5 德国 2USA 2 美国

海上风力发电及其关键技术分析 林亮

海上风力发电及其关键技术分析林亮 发表时间:2019-09-05T10:34:49.077Z 来源:《中国电业》2019年第09期作者:林亮屈伟 [导读] 随着我国社会不断发展,能源日益紧缺的背景下,低碳环保的理念受到人们重视,并被应用到电力企业中,企业越来越重视清洁新能源的开发与利用。 中国船舶重工集团(天津)海上风电工程技术有限公司天津 300450 摘要:随着我国社会不断发展,能源日益紧缺的背景下,低碳环保的理念受到人们重视,并被应用到电力企业中,企业越来越重视清洁新能源的开发与利用。 关键词:海上;风力发电;关键技术 1我国风力发电技术发展所面临的障碍 1.1发电机组安全性能不足 即使风力发电技术在今年来备受国家和企业重视,然而在安全性能方面没有过多关注,无法保证发电机组的安全性与稳定性,甚至部分设备存在安全隐患。发电机组是风力发电系统重要组成部分,机组运行效率与安全稳定性直接关系到系统的运行效率。国家与电力企业对风力发电技术推广不到位,部分地区没有科学进行技术改革,导致发电机组缺乏安全性,经常出现机组事故,给风力发电系统带来不良影响,降低系统安全性与稳定性,不利于新能源产业的可持续发展。 1.2成本高且监管力度薄弱 经济是限制海上风电发展的重要原因,对比化石能源电力,海上风电的发电成本高,现在我国近海风电统一电价0.85元/千瓦时,一些海域预期投资收益不理想。海上风电对设备和施工技术要求严格,海上风电机组要克服台风、盐雾腐蚀问题,且施工需要专业施工队伍和施工船舶。除此,有的海上设施寿命短,以及停止使用后的拆除与续期的问题都不可避免。海底电缆审批和海域论证审批的分离加大了企业成本,事中事后监管不足,相关配套政策的缺失也加大了建设与运营维护的难度。 1.3风力发电的市场化水平低 风力发电虽然已经有一定的发展时期,但在和市场对接方面仍处于起步阶段,商品化程度依旧很低。风力发电在商品化这一方面仍需要长时间的发展,才能有一台完善的市场机制。相应的市场化人才也是不可或缺的,风力发电需要的商品化人才依旧处于空缺阶段。国家和社会仍需要投入大量的人力物力财力发展相配套的设施和人员。 2海上风力发电及其关键技术分析 2.1海上风力发电技术概述 与传统能源的开采利用相比,利用海上风力资源面临空前的技术难题,如:能量转换设备的设计研发、发电设备的安装施工、海上风力发电电能的传输和供电网络的建设以及海上风力电场的运维管理等方面。因此尽管早在二十世纪的七十年代就有人提出了利用海上风力发电的设想,但是全面的科学研究和实践应用到上个世纪末才真正的全面展开。这由于与陆地风力发电技术的研究相比,海上风力发电面临的复杂施工地质环境缺乏成熟和可借鉴的工程技术做为基础,针对海水的波浪冲击、海冰影响、海水腐蚀以及海上风力和风向变化也没有系统的荷载计算和分析标准。另一方面因为特殊的工程环境和施工、运输以及运维技术需要等因素,造成海上风力发电场建设缺少足够的成熟经验做为参考,导致建设海上风力发电场的投资规模和回报率具有很多不确定性,因而海上风力发的商用推广近十年才随着相关技术的日渐成熟真正展开。 2.2关键技术 (1)海上风力发电机的选择 1)双馈式感应风力发电机双馈式感应风力发电机在海上风力发电站的应用最广泛,基本上普及了海上风力发电站。根据电刷和滑环调节转子电功率频率方式的不同,又可以分为有刷和无刷两种。2)永磁直驱式风力发电机永磁直驱式风力发电机组是目前海上风机发电的主要研究方向。它的涡轮机可以直接进行驱动,减少了齿轮箱环节,有效降低了发电机组运行过程中产生的噪音,且故障率较低,维护成本较低。永磁同步发电机直接与涡轮机连接,利用涡轮机的转化能力,将风能转化为机械能,然后利用永磁同步发电机将传递过来的机械能转化为交流电,并利用并网变频器实现对交流电的蒸馏、升压及逆变处理,最终得到三相电压频率恒定的交流电,并入到电网系统。3)无铁芯电机随着科学技术的发展,无铁芯电机具有安装和运输成本低的优点,越来越多地应用到海上风力发电机组设计中。例如:通过定子和转子均无铁芯的辐条式结构设计,降低了电机重量,同时有效扩大了电机容量。 (2)完善风力产业结构 风力发电技术发展过程中,需要重视风力产业结构的科学与完善。近日,某智慧新能源企业开展“变频控制风力发电系统的拓扑结构”,项目结构简单,功能全面且造价成本低。企业研究部署海上风力发电产业建设工作,推动区域内产业结构调整和风能结构调整,技术人员实地调研生产车间与大数据中心。技术人员使用3MW风机在珠海进行台风测试,设备在每秒68.5m风速下依旧可以稳定运行,并利用台风中的风资源为企业提供额外发电量。例如电白黄岭风电场,与同兆瓦级风电场单机相比,电白黄岭的电机累计发电量高达78.6%,真正意义上实现了风力产业的高质量发展与绿色发展。 (3)桩基式基础技术原理及其应用 在目前已经建成的海上风力发电场当中,桩式基础的应用占有最大的比例,尤其是其中的单桩式基础,是海上风电大国丹麦海上电场建设的主要基础形式。这一方面是因为这一设计形式的施工技术相对简单和经济,另一方面与丹麦沿海的海床工程地质条件有关。单桩式基础的材料采用大径空心柱形钢管,利用大功率的打桩设备直接嵌入海床,为了实现风电设施在海上的可靠稳定运行,单体式的钢管直径最大可达六米,能够适用的海水最大深度为30m。但是由于来自海水、海风和风机运行荷载的承载形式所限,这种风电设施基础形式对海床工程地质的要求相对较高,而且由于目前海上风力发电机组的单机容量越来越大,单桩的直径过大导致其经济性变差和面临施工技术瓶颈。因此在实践应用过程中又演化出了单立柱三桩、导管架式以及多桩承台式等多种桩基式基础,通过复杂的结构形式来增强基础的稳定性和对施工地质条件、荷载变化规律的适应性。其中的导管架式基础由于良好的经济性和广泛的适用性而获得了较多应用,而多桩承台式基础在桥梁和码头的建设中有着广泛应用,因此在我国有着比较丰富的设计使用经验和施工技术资源,因此在国内的海上风力发电场建设

海上风电基础桩及塔桶油漆配套方

海上风电基础桩及塔桶油漆配套方案及涂装施工技术手册 江苏道蓬科技有限公司

目录 一、钢材表面处理 (1) 二、施工环境要求 (7) 三、油漆施工一般要求 (9) 四、涂层完工检验 (12) 五、储罐油漆配套及施工注意事项 (13) 六、HSE............................................................................................... 18

一、钢材表面处理 (一)结构前处理: 打磨锐边:锐边处漆膜变薄,极易受损,一般要求打磨到半径不 小于1 毫米。 焊缝的处理:焊缝表面实际上很粗糙,不利于油漆的附着,因此 必须将焊缝磨光顺,焊接飞溅及焊渣也必须清除干净 (二)除油 钢结构表面的油污会直接影响到表面预处理的质量。采用喷砂除锈,钢材表面的油污会污染磨料,钢材表面也会残留油污,严重影响油漆的附着力。 油和油脂必须用乳化清洁剂清除,小范围的清洁可以用溶剂但这 种方法决不可以用在漆膜表面。同时,要不断地更换抹布和溶剂以确保使用的抹布是干净的。如果冲水后留有明显水滴,那就意味着施工表面还有油/油脂,重复清洁步骤。 1

(三)除盐分 可溶性盐:工件表面的可溶性盐会对油漆的防腐能力造成不利的影响,会导致油漆起泡等缺陷,使油漆过早失效。 稀释剂不能将可溶性盐除掉,有效的办法是用淡水冲洗,或喷砂除锈和打磨也可除去表面的可溶性盐分。 (四)氧化皮、旧涂膜等其他污物的清除 在喷砂除锈前,较松散的氧化皮,老化涂层等需用动力工具除去,以免污染砂子、降低除锈效率。 1、表面清洁-喷砂或抛丸除锈 作业系统由空气压缩机、水冷却的后冷却器、储气罐、输气 管、气鼓、喷砂罐、输砂管、喷嘴组成。生产前应仔细检查各种设备,确保处于完好状态。 清除冷却器、储气罐等附件内的积水及油污。 连接好输气/输砂管道及喷嘴,尽可能缩短喷砂罐与工作位 置的距离,并保证各连接端不漏气。 a.缩短喷砂机到工作位置的距离能更有效地减少压降,为此应 准备几种标准长度的输砂管,视情况选用。 b.无论是风管或砂管在工作中均应尽量保持顺直,过多的转弯 /盘绕将增加压降和砂管的磨损。 c.连接管道时要检查胶管是否完好,接头是否牢固,接头连接 2

海上风电场单桩基础施工技术方案研究

海上风电场单桩基础施工技术方案研究 摘要:随着国内海上风电的开发,风电场建设各方面技术均日益成熟。风机机组逐步大型化,风机基础随之呈现多样化趋势。单桩基础为主流基础型式之一,国内针对大体型单桩基础的施工方案随着江苏、福建等海域的海上风电场工程的建设,进行了深入细致的研究,各种施工方案代表了目前国内近海海域单桩基础施工的先进施工思路与水平,船机设备的选择也符合目前国内现有大型工程船只的资源条件。 关键词:海上风电;单桩基础;浮式起重船 近年来,国内海上风电建设飞速发展,风机基础型式多样化,目前已经应用的海上风电基础施工方案有单桩基础、多桩基础、重力式基础等,其中单桩基础因其结构简单、施工方便快捷、造价相对较低等优点,受到施工单位和建设单位的青睐,是目前海上风电基础的主要类型。 单桩基础由大直径钢管桩与附属构件组成,根据目前国内海上风电项目的最新数据获悉,单桩基础的钢管桩直径已达到8m以上,桩重则突破1500t。钢管桩由液压冲击锤沉入海床,海上沉桩系统主要包括打桩船、运桩船、抛锚艇、拖轮与交通艇等船舶组合,其中以打桩船为主要施工设备。施工前,需根据钢管管桩设计参数与海洋环境的特点对沉桩的各环节进行分析,选择合适的设备配置。根据目前各海上风电场工程的实施,单桩基础包括非嵌岩桩和嵌岩桩两种情况,本文主要介绍非嵌岩单桩基础常规采用的浮式起重船施工方案。 1.船只设备的选择 单桩基础常采用起重船配置打桩锤进行吊打施工。大型浮式起重船在单桩基础施工中,主要承担单桩结构的起吊、立桩、进龙口、稳桩、定位等作业,吊打沉桩之前全部的准备工作将由其完成,因此对浮式起重船的性能要求很高。如采用无法单独完成钢管桩空中翻身工作的全回转式起重船,则需配置辅助起重船,采用双船抬吊的方式完成管桩的空中起吊、翻身的工作。 辅助起重船可利用全回转起重船配合完成,主臂架操作灵活,便于与主起重船的协调配合进行空中操作。 2.锤击沉桩系统 目前大型的海上打桩机械主要有筒式柴油打桩锤、液压打桩锤、液压振动锤三种型式,其中以柴油打桩锤应用最为广泛,但考虑到海上风电单桩基础钢管桩属于超长大直径钢管桩,承载力要求高,对锤击能力要求较高,同时采用吊打的沉桩施工方式,使用柴油锤需增加一定的临时设施才可以进行沉桩施工,降低了其使用优越性。根据国内已施工的风机单桩基础相关施工经验,通常选择大型液压冲击锤进行锤击沉桩。 液压冲击锤属于大当量打击能力的打桩锤,根据地质条件、钢管桩的特性选择合适的打桩锤,并可采用GRLWEAP等软件进行沉桩可打性分析。 在国内龙源振华、中交三航局、中铁大桥局、中海油等多家海上施工单位具有S1200、S1800、S2000、S3000等级别大型液压打桩锤可供选择。 3.辅助定位稳桩平台 辅助定位稳桩平台设施是保证单管桩沉桩施工精度控制的主要配套设施,也是整个施工方案的关键工艺。稳桩平台上需设置扶正、导向装置,以调整大直径钢管桩的垂直度,稳桩平台的安装位置决定了钢桩沉桩的桩位,故必须严格控制稳桩平台的测量放样定位的准确度,特别要控制下桩龙口的定位精度。

海上风电场施工安装风险管理

海上风电场施工安装风险管理 摘要:随着经济与社会的发展,海上风力发电已成为可再生能源发展的重要方向,在进行近海风电场机组安装的过程中,技术操作比较复杂,施工过程中有很 大的作业风险,万一出现安全事故,就可能造成很大的人身和财产损失。本文对 海上风电场施工安全风险进行分析,并提出相关的管理策略,希望对海上风电场 施工风险管理效果有所帮助。 关键词:海上风电场;施工安装;风险;管理策略 可再生能源是解决能源短缺问题的战略选择,而风能是目前发展最快、产业 前景最好的可再生能源之一。而海上风力发电项目属于建设工程的范畴,具有一 般建设工程风险的特点,风险存在的客观性和普遍性;风险的不确定性,但具有 一定的规律性和预测性;风险的潜在性和可变性。基于此,探讨海上风电场施工 安全风险管理措施就显得尤为必要。 一、海上风力发电项目的特点 (一)海上风力发电项目风险管理对各专业工程方面的知识要求较高 我国由于海上风电开发、海运、海事工程发展相对欧美国家发展比较晚,相 应的在过去近海风资源监测和研究工作也不足。随着海上风电的即将大规模上马,基础的海上测风和研究工作也已在中国近海大规模展开[1]。海上风电场距离远, 除了风机的质量、系统可靠性要求高以外,必要的维护是必不可少的,且因为海 上风力发电项目的特点,对其维修方面的专业知识要求较高。 (二)海上风力发电项目的风险受自然因素影响较大 海上台风对中国近海风电场的影响是需要特殊考虑的风险,由于气象资料的 时空分辨率和完整性方面具有一定局限性[2],高分辨率气象模式及有限元分析软 件也经常被用到风电场微观选址工作中,因此,海上风力发电项目的风险受自然 因素影响较大,需要重视自然因素的影响。 (三)风险因素之间的关联度较大 海上风力发电项目风险因素间的关联关系使得现有常用的风险评价方法的应 用受到很大的限制,由于海上风机叶轮的面积一般都远大于陆上,故其造成的尾 流对后方风机的影响也比陆地大得多[3],尽管邻近风机之间的距离也增大许多, 但距离的增加对消减这种尾流影响的效果仍有待研究,故在海上海上风力发电项 目风险分析中也要注意各个风险因素之间的关联。 (四)海上风力发电项目的风险具有明显的阶段性 海上风力发电项目风险因施工过程呈现明显的阶段性,在施工准备阶段、施 工阶段和后期维护阶段的风险都不同,且受到外力的阶段性影响,例如风力[4], 对施工风险就具有阶段性的影响,一旦海上有台风预警就会停止施工,以保证海 上施工安全。 二、海上风电场施工安装风险识别与控制 (一)基础施工风险识别与控制 1.钢管桩施工安装分析识别与控制 首先,地质的变化情况较大,造成钢管桩没有达到设计的标高。其次,钢管 桩的最终高程与水平误差没有在设计的要求范围内。 钢管桩施工安装控制措施有:根据未沉入的钢管桩的具体长度与贯入的程度

海上风力发电发展现状解读

海上风电发展 大纲: 一、国外海上风电发展现状及各国远景规划 二、海上风电的特点与面临的困难 三、海上风电发展的关键技术 四、国外海上风电发展现状及各国远景规划 目前已进入运营阶段的海上风电场均位于西北欧,西班牙和日本也建立了各自的首个试验性海上风电场。截至2006年6月,全球共建立了24个海上风电场,累计安装了了402台海上风机,总容量805MW,年发电量约2,800,000,000千瓦时。 西北欧地区的海上风电场布局如下图所示,红色标志由兆瓦级风机构成的运营风电场,紫红色标志由小容量风机构成的运营风电场,而灰色则标志已完成规划的在建风电场。 图1 西北欧海上风电场 已投入运营的大规模海上风电场大多集中在丹麦和英国。其中丹麦海上风电总装机容量达426.8MW,其次是英国339MW,共计现有海上风电装机容量的95%。而德国早在2004年就在北海的Emden树立了首台Enercon的4.5MW风机,西班牙也于今年在其北部港市毕尔巴鄂树立了5台Gamesa 2MW风机。美国已经规划的三个海上风电场Cape Cod,Bluewater Wind,Nai Kun正处于不同阶段的论证与评估阶段,其中Cape Cod风电场将于2009年正式投入运营。 由此可见,各风电大国都不约而同地把注意力集中到海上风电开发的技术研发与运营经验实践中,以图控制海上风电发展的制高点。 根据欧盟的预测,到2020年欧洲的海上风电场总装机容量将从现有的805兆瓦增长到40,000MW。相比之下,过去7年来欧洲海上风电装机容量的年增长率约为35%。欧盟指派的工作组预测欧洲的海上风电潜力约达140,000MW。

海上风电施工简介(经典)

海上风电施工简介 目录 1 海上风电场主要单项工程施工方案 (1) 1.1 风机基础施工方案 (1) 1.2 风机安装施工方案 (13) 1.3 海底电缆施工方案 (19)

1.4海上升压站施工方案 (23) 2 国内主要海上施工企业以及施工能力调研 (35) 2.1 中铁大桥局 (35) 2.2 中交系统下企业 (41) 2.3 中石(海)油工程公司 (46) 2.4 龙源振华工程公司 (48) 3 国内海洋开发建设领域施工业绩 (52) 3.1 跨海大桥工程 (52) 3.2 港口设施工程 (55) 3.3 海洋石油工程 (55) 3.4 海上风电场工程 (58) 4 结语 (59)

1 海上风电场主要单项工程施工方案 1.1 风机基础施工方案 国外海上风电起步较早,上世纪九十年代起就开始研究和建设海上试验风电场,2000年后,随风力发电机组技术的发展,单机容量逐步加大,机组可靠性进一步提高,大型海上风电场开始逐步出现。国外海上风机基础一般有单桩、重力式、导管架、吸力式、漂浮式等基础型式,其中单桩、重力式和导管架基础这三种基础型式已经有了较成熟的应用经验,而吸力式和漂浮式基础尚处于试验阶段。舟山风电发展迅速。 目前国内海上风机基础尚处于探索阶段,已建成的四个海上风电项目,除渤海绥中一台机利用了原石油平台外,上海东海大桥海上风电场和响水近海试验风电场均采用混凝土高桩承台基础,江苏如东潮间带风电场则采用了混凝土低桩承台、导管架及单桩三种基础型式。 图1.1-1 重力式基础型式 图1.1-2 多桩导管架基础型式

图1.1-3 四桩桁架式导管架基础型式图1.1-4单桩基础型式 图1.1-5 高桩混凝土承台基础型式图1.1-6低桩承台基础型式基于国内外海上、滩涂区域风电场的建设经验,结合普陀6号海上风电场2区工程的特点及国内海洋工程、港口工程施工设备、施工能力,可研阶段重点考察桩式基础,并针对5.0MW风电机组拟定五桩导管架基础、高桩混凝土承台基础和四桩桁架式导管架基础作为代表方案进行设计、分析比较。 1.1.1 多桩导管架基础施工 图1.1-7 五桩导管架基础型式图1.1-8 四桩桁架式基础型式

中国海上风力发电发展现状以及趋势

中国海上风力发电发展现状以及趋势【摘要】:由于具有资源丰富,对人们的生产生活影响小,以及不占用耕地等优势,近几年,我国的海上风力发电得到越来越多的关注。本文就我国近海风电的行业背景、海上风电市场区域分析、国家政策、社会效益、技术支持、发展瓶颈及建议、以及未来发展趋势等几个方面进行论述。 【关键词】:海上风力发电,发展现状,发展趋势,海上风电技术,社会效益,国家政策 前言: 相对于我国陆地风能,海上风能以其资源丰富,风速稳定,对环境负面影响小,装机容量大,且不占用耕地等优势得到了众多风电开发商的青睐。 经过连续多年的高速增长,我国风电装机容量已居世界第1位。目前我国正在大力推动海上风电发展,将从以陆上风电开发为主向陆上和海上风电全面开发转变,目标是成为海上风电大国。近年来,政府相关部门多次出台技术和管理政策,大力推动我国海上风电开发进程。 1、行业背景: 我国近海风能资源丰富。拥有18,000多公里长的大陆海岸线,可利用海域面积多达300多万平方公里,是世界上海上风能资源最丰富的国家之一。据统计,我国可开发利用的风能资源初步估算约为10亿kW,其中,海上可开发和利用的风能储量约7.5亿kW]。 目前我国已经成功并网发电的海上风电项目有:东海大桥海上风电示范项目,响水潮间带实验项目,龙源如东潮间带风电场项目,华能荣成海上风电项目等。另外有南港海上风电项目,江苏大丰200MW海上风电项目等44个项目拟建或者在建。这意味着我国的海上风电正在高速发展着。 另外,随着海上风能的高速发展,也带动着风能产业链的高速发展。我国现有海上风机供应厂家12家,其中以明阳风能以及金风科技最为卓越,在全球最佳海上风机评选中,分别位列第二和第十,这标志着我国风机制造业已经拥有国际先进水平。 据数据分析,未来的15年内,我国风电设备市场的总利润将高达1400亿至2100亿元。巨大的利润,也必将使得我国海上风机制造业得到更加快速的发展。

海上风电

Nysted海上风电场:项目时间表与前期招标 2007-12-06 21:45 Nysted海上风电场:项目时间表与前期招标 供稿人:张蓓文;陆斌供稿时间:2007-6-15 项目时间表 现简单介绍其项目时间表与前期招标情况。 1998年,丹麦政府同生产商达成协议,实施一个大型海上风力发电示范项目,目的在于调查发展海上风力发电场的经济,技术和环境等问题,并为未来风力发电场选择区域。 1999年,丹麦能源部原则上批准安装,并开始了Horns Rev和Nysted初期调研和设计。 2000年夏天,政府得到风力发电场的环境影响评估,于2001年批准了发电场建造的申请。 海上风力发电场的基座建设起始于2002年7月末,基座的建造和安装根据时间表执行,始于承包公布的2002年3月,2003年夏天全部完成,并做好了接收风力涡轮机的准备。第一台涡轮机于年5月9日起开始安装,2003年7月12日开始运行。最后一台涡轮机于2003年9月12日安装并电网,试运行在2003年11月1日结束。 前期招标 ENERGI E2为项目准备了一份技术上非常详细的招标书,其中评价了ENERGI E2在丹麦东部传统火和电网建造,策划和运行方面的经历,以及来自海上风力发电场Vindeby(11×450 kW Bonus)Middelgrunden(10 of 20 x 2MW Bonus)的经验。 涡轮机的选择:选择涡轮机的重要参数有:96%可用性;雷电保护;塔架低空气湿度(为防止腐采用单个起重机用于安装大型部件;能完全打开机舱;在所有电力设备采用电弧监测的防火措施等最后丹麦制造商Bonus(现为Siemens)获得了生产涡轮机的合同,涡轮机额定容量为2.3MW(是机组的升级版),是2004年Bonus所能生产的最大容量涡轮机。 风机叶片的选择:Bonus为Nysted的2.3MW涡轮机开发了一种特殊的叶片(不含胶接接头,一片成此前,叶片先在2000年1.3MW涡轮机预先检测过,运行一年后被拆卸进行全面观察。此外,Bon 专门成立队伍从生产线随机抽取叶片来检测,检测内容包括20年的寿命测试和叶片的断裂测试。基座的选择:海上风机基座设计需要考虑Nysted风力发电场的工作负载、环境负载、水文地理条地质条件。基座适用性包括涡轮机尺寸、土壤条件、水深、浪高、结冰情况等多个技术要素。水力可用于冲刷保护和起重机驳船安装基座的操作研究。基座面积大约为45000m2,占发电场总面积0.2%。水力模型研究包括各项可能的极端事件,如:波浪扰动的数值模拟和海浪,水流和冰受力算。由于Nysted海底石头较多,单桩式基座不可行,重力式基座较为合适。图1: Nysted 风电用的重力型基座,基座运载和安装的过程要求混凝土基座尽可能轻质。为此,该项目的基座采用带个开孔、单杆、顶部冰锥形的六边形底部结构,底部直径15米,最大高度16.25米,单个基座在中重量低于1300吨,适合海上操作。EIDE V号起重机船从运输码头把基座运载过去。然后,通过孔内添加重物和单杆为基座又增加了500吨重量,这些重量可保持基座的稳定性,防止滑移和倾覆刷保护分为两层结构,包括石头外层和一过滤层,材料由驳船上的液力挖掘机放置。 塔架要求:每个塔架有69米高,比陆上涡轮机的塔架低大约10%,这是由于陆上风切高于海上,只要采用较低的塔架就可获得相同的发电量。

(非常好)海上风电场经验总结:由ScrobySands、Nysted等建设得到的启发

海上风电场经验总结:由ScrobySands、Nysted等建设得到的启发 作者:张蓓文陆斌发布日期:2008-5-8 18:13:30 (阅270次) 关键词: 风电总结 DS 海上风电场的风速高于陆地风电场的风速,不占用陆地面积,虽然其电网联接成本相对较高,但是海上风 能开发的经济价值和社会价值正得到越来越多的认可,海上风电的发电成本也将越来越低。海上风电场的 建设对于风电行业的进一步发展而言很关键,现已进入到一个重要阶段,进一步发展可以吸引大量项目资 金的进入,其具有震撼力的阵形正在全球范围地受到沿袭[1]。全球海上风力发电场装机容量增长详见图1。欧洲地区的发展目前领先于全球。丹麦于1991年建成第一个海上风力发电场,此后直到2006年末,全球 运行了超过900MW装机容量的海上风电场,几乎所有发电场都在欧洲[2]。 表1.17座离岸1km以外的建成或在建风电场 建设地点始建年 份风电机组数量 (台) 风电机组型号总装机容 量 TunaKnob丹麦1995 10 VestasV39/500kW 5MW Utgrunden瑞典2000 7 EnronWind70/1500kW 10.5MW Middelgrunden丹 麦2001.3 20 Bonus76/2.000MW 40MW HornsRev丹麦2002.12 80 VestasV80/2.000MW 160MW Nysted丹麦2003.11 72 Bonus82,4/2.300MW 165.6MW NorthHoyle英国2003.12 30 VestasV80/2.000MW 60MW KentishFlats英国2005.8 30 VestasV90/3.000MW 90MW Beatrice英国2006.9 2 OWEZ荷兰2006.11 36 VestasV90/3.000MW 108MW 来源:“Off-andNearshoreWindEnergy”,上海科技情报研究所整理 国外海上风力发电场技术正日趋成熟,建成的风电场容量为2.75至165.6MW(详见表1),规划中的风电场容量为4.5至1000MW[3]。而海上风电场产业还处于“做中学”的阶段[5],对于以往的经验教训进行总结对未来产业发展是很有必要的。笔者之前已依据德国专业研究机构公开的 “CaseStudy:Eur opeanOffshoreWindFarms-ASurveyfortheAnalysisoftheExperiencesandLessonsLearntbyDevelope

关于海上风力发电技术及风力发电机组可靠性问题的探析

关于海上风力发电技术及风力发电机组可靠性问题的探析 发表时间:2018-06-12T13:28:37.837Z 来源:《建筑学研究前沿》2018年第4期作者:李钢幕[导读] 我们应当积极借鉴并利用世界上已有的先进工程实例,充分挖掘我国沿海风力资源,推进海上风电场建设,为我国节能减排工作的顺利进行做出贡献。 中国电建集团核电工程有限公司摘要:本文作者结合多年工作经验,主要就海上风力发电技术及风力发电机组可靠性问题进行了相关研究,希望对加快我国海上风力发电发展有所帮助。 关键词:海上风力发电;风电场;能源海上风力发电是节能减排工作中的一项重要内容,具备诸多优势,海上风况明显优于陆地,湍流较小,空间大,环境污染和噪音污染较小便于开发,但海上风力发电也存在一定不足,其初期投资较大,并且在风电机组基础结构选型与实施、风电机组运输以及后期维护等方面的技术难度较大。此种情况下,加大力度探讨海上风力发电技术对于海上风能资源的开发和利用具有重要意义。 1 当前海上风力发电主要技术 1.1海上风场选址 海上风力发电场需要选择一个适合的地方进行,这将是一个繁琐复杂的工作。如果选址不正确的话很可能会导致项目建设的失败。那么,电场选址应该考虑的因素主要包括以下几方面:(1)关于项目建设的审批是否经过相关部门的许可。(2)建设之前一定要注意是否获得海域的使用权。(3)建设的时候要对环境进行相关的了解,包括水深度、海域的范围、风能资源的多少以及地质条件是否有优势。(4)要考虑环境制约的因素,相关人员要考虑到风力发电场的坚实是否会对当地的生态环境造成破坏。 1.2海上风力发电机的结构支撑 目前海上风力发电机的建造结构形式主要有四种,分别是:单桩、混凝土重力式陈翔、多桩、吸力式:(1)单桩:单桩的结构通常是在海床下十米到二十米深处,深度应该要按照海床的类型变化。通常桩径大约是两到四米左右,单桩的结构制造比较简单,缺点是施工安装费用都比较高。(2)混凝土沉箱。它的优势是造价比较低,不太受海床的影响,但是在进行建造的过程当中必须要海底准备,此外,它的尺寸和重量比较大,施工的时候也比较复杂。(3)多桩基础,它的特点是桩径比较小,但适用于深海的建造,由于多桩的建造经验较少,因而较少实际应用到工作方面。(4)吸力式基础,吸力式基础主要分为单柱和多柱沉箱基础。吸力式沉箱基础适用于软粘土,吸力式沉箱基础的安装费用比较高。 1.3海上风机机组 海上风电机组的安装主要包括两种方式:分体安装和整体安装。分体安装是指在目标海域按照基础→塔筒→机舱→叶片的顺序依次将机组的各主要部件装配成一个整体,这种施工方法与陆上风电场类似,适用于潮间带及近海区域,目前运行的多数风电场均按该方法建造;而整体安装则是在岸边将机组各部件装配成一个整体,竖直放置于运输船运送并安放至目标地点,以减少海况对装配精度的影响,作业费用较低,这种施工方法是近年发展起来的,也已有成功案例。 2海上风电机组运行可靠性问题研究 2.1 塔架基础的可靠性 目前海上风电机组基础主要分为两大类:悬浮式和底部固定式。悬浮式主要利用海水的浮力,及绳缆的固定作用,将风电机组“固定”在海里;底部固定式即利用单桩或多桩,直接把塔架与海底基础连接起来。目前浅海区域多采用单桩或三桩结构,而深海区域则多采用悬浮式基础。 悬浮式:悬浮式基础适用于深海区域,在保证风电机组正常运行的情况下,悬浮式基础可以大大降低基础的建设成本,从而降低海上风电的生产成本,但是在强风等恶劣环境下,其可靠性远远不及底部固定式,所以在其基础缆绳以及底部配重的设计上要求留有较大余量。 底部固定式:相对于悬浮式,稳定性更加优越,不会受海水波浪冲击效应的影响。由于其底部与海底直接刚性连接,所以不会有较大幅度的摆动,这很好的保证了塔顶发电机组的平稳运行,同时对于主轴而言,载荷的波动较小,这有力的延长了主轴的使用寿命,降低了风电机组的使用成本。 对于底部固定式基础,由于浸泡在海水中,长期受海浪、洋流的冲刷作用以及海水的腐蚀作用,基础易发生松动,严重时甚至会导致风电机组倾覆,这个问题必须引起重视。建议要在风电机组上安装基础实时监视装置,然后通过无线发射器将检测信号传输至主控室,以便安全检修人员及时发现和排除风电机组基础的安全隐患。 2.2机组的防腐蚀与防潮湿 风力机内部有很多的电气控制部分,其运行时不允许湿度过大,所以在海上高湿度的环境中,防潮防湿显得尤为重要。防湿的手段有很多,现在普遍采用的是密闭舱式,即把风电机组的机舱做成密闭形式,然后利用空调系统对风电机组内部构件散热和保温。这样能达到较好的防潮效果,但对空调系统运行的可靠性要求相对很高。除了防潮,防腐蚀也相当关键。由于海上的空气湿度大,并且海水中各种溶盐离子较多,致使风电机组结构很容易发生电化学腐蚀。一般风电机组的设计使用寿命都在二十年以上,所以还上的风电机组一定要有较强的抗腐蚀能力。现在比较常用的手段是在风电机组易腐蚀的部位适用抗腐蚀材料、在风电机组外表面涂刷防腐蚀涂料、使用不会被腐蚀的高强度复合材料等。这对风电机组有效的起到了防腐蚀作用。 2.3 极端恶劣天气的影响 我国南方沿海地区,在夏季和秋季经常会遭受台风和强热带风暴的影响,而在北方沿海地区,冬季经常会出现严寒低温、海面结冰情况,因此海上风电机组必须要考虑台风、海啸、冰冻、海冰等极端恶劣天气的影响。首先,风电场的选址要尽量选择风速稳定、台风路径较少经过的区域。对于北方可能出现海冰的区域,要根据往年气象资料,研究海冰厚度及对风电机组的影响,然后进行实验模拟,最后科学选址。其次,在风电机组设计时,要考虑破坏性天气发生时对风电机组的损坏,以及制定相应的安全防范措施。比如风电机组的叶片强度可以根据塔架及机舱的强度而设计,使其强度低于塔架的强度,这样在遇到破坏性强风的时候,叶片可以先行断裂脱落,从而最大程度的保护主机舱,把损失减小到最小。

世界上最大的风力涡轮叶片和海上风力发电场平台

世界上最大的风力涡轮叶片和海上风力发电场平台 风力发电产业作为一种新技术在全球的发展中已赢得媒体的关注,最近,无排放发发电部门一年一年又一年的继续增加其全球范围内的装机容量。 西门子早在八月宣布,它已建成75米高的风力发电机,是世界上最大的风力涡轮机转子叶 片。 通过比较,了解到西门子新的叶片有多长,参加2012年4月在哥本哈根举行的欧洲风能协会年度盛会的人还记得,大量的LM风力发电机有73.5米长的叶片在贝勒中心以外(Bella Center)。 西门子说,大量的玻璃纤维制成的叶片将用在该公司的新的6兆瓦海上风力发电机组。 该公司表示,在今年夏天晚些时候在丹麦安装?sterild154米转子的第一个原型,6兆瓦的涡轮机将被安装风力发电机叶片。 公司的新闻稿指出:“每个转子直径为154米,占地18600平方米,这是两个半足球场的大小,”。 叶片移动速度将达到80米每秒,每小时290公里。巨大的转子可以通过特殊的技术,使用西门子非常坚固而轻巧的结构。“ 然而,根据风电月刊的一篇文章中,中国风机制造商中船重工将在在江苏省示范海上风电场建设海上安装一个5兆瓦的风力涡轮机也将采用75米的叶片安装。 中船重工是不是在中国唯一的75米的风力发电机叶片制造商,风电月刊说,中孚Liazhong

今年早些时候表示,它也能产生这种规模的风力发电机叶片。这一切,是为了再次提醒欧洲的政治家,中国发展非常迅速,欧盟必须大力投资于风电技术研发,如果它要保持领先。在另一方面,也将有利于海上风电行业,三星重工最近公布的世界上最大的风力发电场安装船的交付。 三星表示,该公司的新闻稿称,Pacific Orca的运输和安装将有助于继续建立其在沿海水域的海上风力发电市场。 Pacific Orca是161米长,宽49米,高10.4米的庞然大物。三星表示,该容器是能够携带和安装多达12台3.6兆瓦级的风电场。 发布的消息称:“这也可以让安装在深度为60米的海上风力发电场,在世界上最深的地方成为可能,以及超大规模的风电场,容量为10兆瓦或更大的安装量。”。 该公司增加了新船的建立是为了安装的风力发电场,即使在极端条件下速度为每秒20米,波高为2.5米的大风中依然能正常工作。 此外,三星还表示,全球海上风电场容量达到293万千瓦,到2030年预计将增长迅速。“这是目前的市场规模3.5万千瓦,1000台3.5兆瓦级发电机约70倍。” 注:来源自青岛日川精密机械有限公司https://www.sodocs.net/doc/674567478.html,

截至2017年8月我国在建海上风电项目概况

截至2017年8月我国在建海上风电项目概况 截止2017年8月31日,我国开工建设的海上风电项共19个,项目总装机容量4799.05MW。项目分布在江苏、福建、浙江、广东、河北、辽宁和天津七个省(市、区)海域,其中江苏8个在建项目共计2305.55MW,福建6个在建项目共计1428.4MW,浙江、广东、河北、辽宁和天津分别有1个在建项目。 在建的19个海上风电项目里,使用(拟使用)上海电气机组总容量为2232MW;使用(拟使用)金风科技机组总容量为964.15MW;使用(拟使用)明阳智慧能源机组总容量为567MW;使用(拟使用)远景能源机组总容量为400.8MW;使用中国海装机组总容量为110MW;使用西门子歌美飒机组总容量为90MW。 一、华能如东八角仙300MW海上风电项目 华能如东八角仙300MW海上风电项目 开发商:华能如东八仙角海上风力发电有限责任公司。 项目概况:项目位于江苏省南通市如东县小洋口北侧八仙角海域,分南区和北区两部分,共安装风电70台,总装机容量302.4MW,配套建设两座110千伏海上升压站和一座220千伏陆上升压站。北区项目面积36平方千米,平均岸距15千米,平均水深0-18米,装机容量156MW,安装14台上海电气SWT-4.0-130机组和20台中国海装5.0MW机组(H171-5MW、H151-5MW两种机型都有安装),北区装机共34台;南区项目面积46平方千米,平均岸距25千米,平均水深0-8

米;装机容量146.4MW,安装远景能源EN-136/4.2机组12台和上海电气SWT-4.0-130机组24台,南区装机共36台。项目造价为约为17000元/kW,总投资约51亿元。 项目进度:2015年1月26日获得江苏省发改委核准,2016年4月份开工建设,2017年9月3日完成全部机组吊装。 二、鲁能江苏东台200MW海上风电场项目 开发商:江苏广恒新能源有限公司。 项目概况:项目位于江苏省东台市东沙沙洲东南部,场区中心离岸距离36km,涉海面积29.8km2,共布置50台上海电气SWT-4.0-130风电机组、一座220kV 海上升压站和一座陆上集控中心,通过35kV海缆将50台机组连接至海上升压站,再通过220kV海缆将海上升压站电能送至陆上集控中心。 项目进度:2015年7月11日东台项目正式启动。2016年4月份开工建设。2016年10月12日正式开始首台机组吊装,2016年12月16日完成首批机组并网发电。首批12台机组与2017年5月28日通过240试运行;2017年7月24日完成全部机组吊装工作。 三、大唐江苏滨海300MW海上风电场 开发商:大唐国信滨海海上风力发电有限公司。 项目概况:项目位于江苏省滨海县废黄河口至扁担港口之间的近海海域,涉海面积150平方公里,平均水深18-22米,平均岸距21千米。项目初期计划安装100台华锐风电3.0MW机组,并于2015年底曾完成海上机组试桩工作。2017年该项目重新进行机组招标,金风科技和明阳风电分别中标150MW。 项目进度:2016年12月19日,该项目220kV海上升压站完成吊装。2017年5月重新进行风电机组招标并于2017年8月公布了机组中标结果,2017年年内完成数台机组的吊装。 四、国华投资江苏分公司东台四期(H2)300MW海上风电场项目 开发商:国华(江苏)风电有限公司。 项目概况:此项目是国华集团第一个获得核准的海上风电项目,位于江苏省东台近海北条子泥海域,风电场中心离岸距离约42公里,平均水深约6米,项目共安装机组75台,总装机容量302.4兆瓦,计划安装63台4.0兆瓦上海电气

第二章 海上风电场的选址

第二章海上风电场的选址 2.1 概述 近海风电场一般都是在水深10~20m、距岸线10~15km左右的近海,从空间上看,地域大,选址余地大。实际上海上风电场的建设受到诸多因素的影响和制约。按制约因素的性质可为以下几方面: 硬性制约(比如军事区、航道等)、软性制约(如:渔民的利益、规划上的冲突)、技术制约(如:风资源、海床条件、不利因素等)、环境制约(如:生态因素、噪声等)、经济制约。 根据各国的海上风电场经验,综合各种影响因素,得出风电场选址的几项基本原则: (1)考虑风资源的类型、频率和周期 (2)考虑海床的地质结构、海底深度和最高波浪级别 (3)考虑地震类型及活跃程度及雷电等其它天气情况 (4)考虑城市海洋功能区的规划要求 (5)场址规划与城市建设规划、岸线和滩涂开发利用规划相协调 (6)符合环境和生态保护的要求,尽量减少对鸟类、渔业的影响。 (7)避开航道,尽量减少对船舶航行及紧急避风的影响。 (8)避开通信、电力和油气等海底管线的保护范围。 (9)尽量避开军事设施及周围 (10)考虑基础施工条件和施工设备要求及经济性,场址区域水深一般控制在5~15m。 2.2 选址考虑的各种因素 2.2.1 风资源因素 1. 风资源:风资源是风电场选址的首要因素,一个良好的风资源是必备条 200W/m2 。我国最佳风资源区在台湾海峡,平均风速达到8m/s以上,功率密度达到700w/m2 ,其次就是广东、再次就是上海江浙一带,然后就是山东、河北等地。 在从风资源方面选址上,首先要从宏观上确定区域,然后再进行区域风资源

测试评估。 2. 风资源上的不利因素:台风 海上风电场在风资源上的不利因素首先就是台风,强台风不仅仅损害叶片、机舱,还包括结构部件,如塔筒和基础,对发电设备影响很大。 台风机倒了20台,整个风场几乎报废。”如果没有科学、扎实的研究,海上风场

相关主题