搜档网
当前位置:搜档网 › 2018版高考数学一轮总复习第4章平面向量数系的扩充与复数的引入4.2平面向量的基本定理及坐标表示模拟演练文

2018版高考数学一轮总复习第4章平面向量数系的扩充与复数的引入4.2平面向量的基本定理及坐标表示模拟演练文

2018版高考数学一轮总复习 第4章 平面向量、数系的扩充与复数的

引入 4.2 平面向量的基本定理及坐标表示模拟演练 文

[A 级 基础达标](时间:40分钟)

1.[2016· 衡水模拟]已知点A (-1,1),B (2,y ),向量a =(1,2),若AB →

∥a ,则实数y 的值为( )

A .5

B .6

C .7

D .8

答案 C

解析 AB →

=(3,y -1),a =(1,2),AB →

∥a ,则2×3=1×(y -1),解得y =7,故选C. 2.[2017·贵阳监测]已知向量a =(1,2),b =(-2,3),若m a -n b 与2a +b 共线(其中

m ,n ∈R 且n ≠0),则m

n

=( )

A .-2

B .2

C .-12

D .12

答案 A

解析 因为m a -n b =(m +2n,2m -3n ),2a +b =(0,7),m a -n b 与2a +b 共线,所以m +2n =0,即m n

=-2,故选A.

3.已知在?ABCD 中,AD →

=(2,8),AB →

=(-3,4),对角线AC 与BD 相交于点M ,则AM →

=( )

A .? ????-12,-6

B .? ????-12,6

C .? ??

??12,-6 D .? ??

??12,6 答案 B

解析 因为在?ABCD 中,有AC →

=AB →+AD →,AM →

=12AC →,所以AM →=12(AB →+AD →)=1

2

×(-1,12)=

? ??

??-12,6,故选B.

4.[2017·广西模拟]若向量a =(1,1),b =(1,-1),c =(-1,2),则c =( ) A .-12a +3

2b

B .12a -3

2b C .32a -12b D .-32a +12

b

答案 B

解析 设c =λ1a +λ2b ,则(-1,2)=λ1(1,1)+λ2(1,-1)=(λ1+λ2,λ1-λ2),

∴λ1+λ2=-1,λ1-λ2=2,解得λ1=12,λ2=-32,所以c =12a -3

2

b .

5.已知向量a ,b 满足|a |=1,b =(22,1),且λa +b =0(λ∈R ),则函数f (x )=3x +

|λ|

x +1(x >-1)的最小值为( ) A .10 B .9 C .6

D .3

答案 D 解析 ∵λa +b =0,∴λa =-b ,∴|λ|=|b ||a |=31=3.f (x )=3x +3

x +1

=3(x +1)+

3

x +1

-3≥23 x +1 ·

3x +1-3=6-3=3,当且仅当3(x +1)=3x +1

,即x =0时等号成立,∴函数f (x )的最小值为3,故选D.

6.若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 答案 -5

4

解析 AB →=(a -1,3),AC →

=(-3,4),

据题意知AB →

∥AC →

,∴4(a -1)=3×(-3),即4a =-5,

∴a =-5

4

.

7.已知点A (7,1),B (1,4),若直线y =ax 与线段AB 交于点C ,且AC →

=2CB →

,则实数a =

________.

答案 1

解析 设C (x 0,ax 0),则AC →

=(x 0-7,ax 0-1),CB →=(1-x 0,4-ax 0).因为AC →=2CB →

所以?

??

??

x 0-7=2 1-x 0 ,ax 0-1=2 4-ax 0 ,解得?

??

??

x 0=3,

a =1.

8.[2017·大同模拟]在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为第一象限内一点且∠AOC =π

4

,|OC |=2,若OC →=λOA →+μOB →

,则λ+μ=________.

答案 2 2

解析 因为|OC |=2,∠AOC =π

4,所以C (2,2),又OC →=λOA →+μOB →

,所以(2,2)

=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.

9.已知三点A (a,0),B (0,b ),C (2,2),其中a >0,b >0.

(1)若O 是坐标原点,且四边形OACB 是平行四边形,试求a ,b 的值; (2)若A ,B ,C 三点共线,试求a +b 的最小值.

解 (1)因为四边形OACB 是平行四边形,

所以OA →

=BC →

,即(a,0)=(2,2-b ),

?

??

??

a =2,2-

b =0,解得?

??

??

a =2,

b =2.故a =2,b =2.

(2)因为AB →=(-a ,b ),BC →=(2,2-b ), 由A ,B ,C 三点共线,得AB →

∥BC →

, 所以-a (2-b )-2b =0,即2(a +b )=ab , 因为a >0,b >0,所以2(a +b )=ab ≤? ??

??a +b 22,

即(a +b )2

-8(a +b )≥0, 解得a +b ≥8或a +b ≤0.

因为a >0,b >0,所以a +b ≥8,即a +b 的最小值是8. 当且仅当a =b =4时,“=”成立.

10.[2017·南宁模拟]如图,已知△OCB 中,A 是CB 的中点,D 是将OB →

分成2∶1的一个

三等分点,DC 和OA 交于点E ,设OA →

=a ,OB →

=b .

(1)用a 和b 表示向量OC →

,DC →

; (2)若OE →

=λOA →

,求实数λ的值.

解 (1)由题意知,A 是BC 的中点,且OD →

=2

3

OB →,由平行四边形法则,得OB →+OC →=2OA →,

所以OC →=2OA →-OB →

=2a -b ,

DC →

=OC →-OD →

=(2a -b )-23b =2a -53

b .

(2)由题意知,EC →∥DC →

, 故设EC →

=xDC →

.

因为EC →=OC →-OE →=(2a -b )-λa =(2-λ)a -b ,DC →

=2a -5

3

b ,所以(2-λ)a -b =

x ?

??

??2a -5

3b . 因为a 与b 不共线,由平面向量基本定理,

得?

???

?

2-λ=2x ,

-1=-5

3x ,解得?????

x =3

5,λ=4

5,

故λ=4

5

.

[B 级 知能提升](时间:20分钟)

11.已知O 为坐标原点,且点A (1,3),则与OA →

同向的单位向量的坐标为( ) A .? ????1

2,32 B .? ????-1

2,32 C .? ????1

2,-32

D .? ????-1

2

,-32

答案 A

解析 与OA →

同向的单位向量a =

OA

|OA →|

,又|OA →

|=1+ 3 2

=2,故a =12

(1,3)=? ??

??1

2,32,故选A. 12.[2017·安徽模拟]在平面直角坐标系中,O (0,0),P (6,8),将向量OP →

按逆时针旋转

4

后,得向量OQ →

,则点Q 的坐标是( )

A .(-72,-2)

B .(-72,2)

C .(-46,-2)

D .(-46,2)

答案 A

解析 解法一:设OP →

=(10cos θ,10sin θ),其中cos θ=35,sin θ=4

5

,则OQ →

? ??

??10cos ? ????θ+3π4,10sin ? ????θ+3π4=(-72,-2). 解法二:将向量OP →

=(6,8)按逆时针旋转3π2后得OM →=(8,-6),则OQ →=-1

2(OP →+OM →

)

=(-72,-2).

13.[2017·枣庄模拟]在平面直角坐标系中,O 为坐标原点,且满足OC →=23OA →+13OB →

,则

|AC →

|

|AB →

|

=________.

答案 1

3

解析 由已知得,3OC →

=2OA →

+OB →

即OC →-OB →=2(OA →

-OC →

), 即BC →

=2CA →

,如图所示,

故C 为BA 的靠近A 点的三等分点,因而|AC →

||AB →|

=1

3

.

14.如图,在平行四边形ABCD 中,O 是对角线AC ,BD 的交点,N 是线段OD 的中点,AN

的延长线与CD 交于点E ,若AE →

=mAB →+AD →

,求实数m 的值.

解 由N 是OD 的中点,得AN →=12AD →+12AO →=12AD →+14(AD →+AB →)=34AD →+1

4

AB →

又因为A ,N ,E 三点共线,故AE →

=λAN →

即mAB →

+AD →

=λ? ????

34

AD →+14AB →,

所以?????

m =1

4λ,1=3

4λ,解得?????

m =1

3,λ=4

3,

故实数m =1

3

.

最新高中数学复习讲义 第四章 平面向量与复数

最新高中数学复习讲义 第四章 平面向量与复数 【知识图解】 Ⅰ.平面向量知识结构表 Ⅱ.复数的知识结构表 【方法点拨】 由于向量融形、数于一体,具有几何形式与代数形式的“双重身份”,使它成为了中学数学知识的一个重要交汇点,成为联系众多知识内容的媒介。所以,向量成为了“在知识网络交汇处设计试题”的很好载体。从高考新课程卷来看,对向量的考查力度在逐年加大,除了直接考查平面向量外,将向量与解析几何、向量与三角等内容相结合,在知识交汇点处命题,既是当今高考的热点,又是重点。 复习巩固相关的平面向量知识,既要注重回顾和梳理基础知识,又要注意平面向量与其他知识的综合运用,渗透用向量解决问题的思想方法,从而提高分析问题与综合运用知识解决问题的能力,站在新的高度来认识和理解向量。 1. 向量是具有大小和和方向的量,具有“数”和“形”的特点,向量是数形结合的桥梁, 在处理向量问题时注意用数形结合思想的应用. 2. 平面向量基本定理是处理向量问题的基础,也是平面向量坐标表示的基础,它表明同一 平面内任意向量都可以表示为其他两个不共线向量的线性组合. 3. 向量的坐标表示实际上是向量的代数形式,引入坐标表示,可以把几何问题转化为代数 问题解决. 4. 要了解向量的工具作用,熟悉利用向量只是解决平面几何及解析几何中的简单问题的方 向量 向量的概念 向量的运算 向量的运用 向量的加、减法 实数与向量的积 向量的数量积 两个向量平行的充要条件两个向量垂直的充要条件 数系的扩充与 复数的引入 复数的概念 复数的运算 数系的扩充

O A P Q B a b 第4题 法. 第1课 向量的概念及基本运算 【考点导读】 1. 理解平面向量和向量相等的含义,理解向量的几何表示. 2. 掌握向量的加法、减法、数乘的运算,并理解其几何意义. 3. 了解平面向量基本定理及其意义. 【基础练习】 1.出下列命题:①若,则;②若A 、B 、C 、D 是不共线的四点,则是四边形为平行四边形的充要条件;③若,则;④的充要条件是 且;⑤若,,则。其中,正确命题材的序号是②③ 2. 化简得 3.在四边形ABCD 中,=a +2b ,=-4a -b ,=-5a -3b ,其中a 、b 不共线, 则四边形ABCD 为梯形 4.如图,设点P 、Q 是线段AB 的三等分点, 若=a ,=b ,则=, = (用a 、b 表示) 【范例导析】 例1 .已知任意四边形ABCD 的边AD 和BC 的中点分别为E 、F , 求证:. 分析:构造三角形,利用向量的三角形法则证明. 证明:如图,连接EB 和EC , 由和可得, (1) 由和可得, (2) (1)+(2)得, (3) ∵E 、F 分别为AD 和BC 的中点,∴,, =a b =a b DC AB =,==a b b c =a c =a b =a b //a b //a b //b c //a c AC -BD +CD -AB 0AB BC CD OA OB OP 21 33+a b OQ 12 33 +a b 2AB DC EF +=EA AB EB +=EF FB EB +=EA AB EF FB +=+ED DC EC +=EF FC EC +=ED DC EF FC +=+2EA ED AB DC EF FB FC +++=++0EA ED +=0FB FC += D C E F A 例1

复数、平面向量与算法(教师版)

高考微点二 复数、平面向量与算法 牢记概念公式,避免卡壳 1.复数z =a +b i(a ,b ∈R )概念 (1)分类:当b =0时,z ∈R ;当b ≠0时,z 为虚数;当a =0,b ≠0时,z 为纯虚数. (2)z 的共轭复数z - =a -b i. (3)z 的模|z |=a 2+b 2. 2.复数的四则运算法则 (a +b i)±(c +d i)=(a ±c )+(b ±d )i ; (a +b i)(c +d i)=(ac -bd )+(bc +ad )i ; (a +b i)÷(c +d i)= ac +bd c 2+d 2+bc -ad c 2+ d 2 i(a ,b ,c ,d ∈R ,c +d i ≠0). 3.平面向量的有关运算 (1)两个非零向量平行(共线)的充要条件:a ∥b a =λb . 两个非零向量垂直的充要条件:a ⊥b a ·b =0|a +b |=|a -b |. (2)若a =(x ,y ),则|a |=a ·a =x 2+y 2. (3)若A (x 1,y 1),B (x 2,y 2), 则|AB →|=(x 2-x 1)2+(y 2-y 1 )2. (4)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 2 2. 4.算法的三种基本逻辑结构 (1)顺序结构;(2)条件结构;(3)循环结构. 活用结论规律,快速抢分 1.复数的几个常用结论 (1)(1±i)2=±2i ; (2) 1+i 1-i =i ,1-i 1+i =-i ; (3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i. 2.复数加减法可按向量的三角形、平行四边形法则进行运算. 3.z ·z - =|z |2 =|z - |2. 4.三点共线的判定

高考文科数学二轮专题复习:11 复数

专题11 复数 本章内容主要是复数的概念、复数的运算.引入虚数,这是中学阶段对数集的最终扩充.需要掌握复数的概念、弄清实数与复数的关系,掌握复数代数形式的运算(包括加、减、乘、除),了解复数的几何表示.由于向量已经单独学习,因此复数的向量形式与三角形式就不作要求,主要解决代数形式. 【知识要点】 1.复数的概念中,重要的是复数相等的概念.明确利用“转化”的思想,把虚数问题转化为实数问题加以解决,而这种“转化”的思想是通过解实数的方程(组)的方法加以实现. 2.复数的代数形式:z =a +bi (a ,b ∈R ).应该注意到a ,b ∈R 是与z =a +bi 为一个整体,解决虚数问题实际上是通过a ,b ∈R 在实数集内解决实数问题. 3.复数的代数形式的运算实际上是复数中实部、虚部(都是实数)的运算. 【复习要求】 1.了解数系的扩充过程.理解复数的基本概念与复数相等的充要条件. 2.了解复数的代数表示法及其几何意义. 3.能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义. 【例题分析】 例1 m (m ∈R )取什么值时,复数z =(m 2-3m -4)+(m 2-5m -6)i 是(1)实数?(2)纯虚数?(3)零? 【分析】此类问题可以应用复数的定义加以解决. 解:(1)当m 2-5m -6=0,即m =-1或m =6时,复数z 为实数; (2)当,即m =4时,复数z 为纯虚数; (3)当,即m =-1时,复数z 为零. 【评析】本题主要考查实数、纯虚数的定义,需要对复数的实部、虚部加以研究.应该注意到复数的实部、虚部都是实数,解决复数的问题时实际上是在进行实数运算.这一点大家在后面的运算中更加能够体会到. 例2 判断下列命题的对错: ?????= /--=--06504322m m m m ?????=--=--0 6504322m m m m

第六章 平面向量与复数

第六章 平面向量与复数 , 第32课 向量的概念与线性运算 激活思维 1. (必修4P 67练习4改编)化简:AB →+CD →+DA →+BC → =________. 2. (必修4P 62习题5改编)判断下列四个命题:①若a ∥b ,则a =b ;②若|a|=|b |,则a =b ;③若|a|>|b|,则a>b ;④若a ∥b ,b ∥c ,则a ∥c .其中正确的个数是________. 3. (必修4P 57习题2改编)对于非零向量a ,b ,“a ∥b ”是“a +b =0”成立的________条件. (第4题) 4. (必修4P 60例1改编)如图,在正六边形ABCDEF 中,BA →+CD →+EF → =________. 5. (必修4P 68习题10改编)在△ABC 中,若|AB →|=|AC →|=|AB →-AC → |,则△ABC 的形状是________. 知识梳理 1. 向量的有关概念 向量:既有大小又有方向的量叫作向量.向量的大小叫向量的________(或模). 2. 几个特殊的向量 (1) 零向量:____________,记作____,其方向是任意的. (2) 单位向量:________________________. (3) 平行向量:________________________,平行向量又称为共线向量,规定0与任一向量共线. (4) 相等向量:________________________. (5) 相反向量:________________________. 3. 向量的加法 (1) 运用平行四边形法则时,将两个已知向量平移到公共起点,和向量是____________的对角线所对应的向量. (2) 运用向量加法的三角形法则时,要特别注意“首尾相接”,即第二个向量要以____________为起点,即由第一个向量的起点指向____________的向量为和向量. 4. 向量的减法 将两个已知向量平移到公共起点,差向量是________的终点指向________的终点的向量.注意方向指向被减向量.

第五章 5.4平面向量及复数

§5.4复数 最新考纲考情考向分析 1.理解复数的基本概念. 2.理解复数相等的充要条件. 3.了解复数的代数表示法及其几何意义.能将代数 形式的复数在复平面上用点或向量表示,并能将复 平面上的点或向量所对应的复数用代数形式表示. 4.能进行复数代数形式的四则运算. 5.了解复数代数形式的加、减运算的几何意义. 主要考查复数的基本概念(复数的实部、 虚部、共轭复数、复数的模等),复数相 等的充要条件,考查复数的代数形式的 四则运算,重点考查复数的除法运算, 突出考查运算能力与数形结合思想.一 般以选择题、填空题的形式出现,难度 为低档. 1.复数的有关概念 (1)定义:我们把集合C={a+b i|a,b∈R}中的数,即形如a+b i(a,b∈R)的数叫做复数,其中a叫做复数z的实部,b叫做复数z的虚部(i为虚数单位). (2)分类: 满足条件(a,b为实数) 复数的分类a+b i为实数?b=0

(3)复数相等:a +b i =c +d i ?a =c 且b =d (a ,b ,c ,d ∈R ). (4)共轭复数:a +b i 与c +d i 共轭?a =c ,b =-d (a ,b ,c ,d ∈R ). (5)模:向量OZ → 的模叫做复数z =a +b i 的模,记作|a +b i|或|z |,即|z |=|a +b i|=a 2+b 2(a ,b ∈R ). 2.复数的几何意义 复数z =a +b i 与复平面内的点Z (a ,b )及平面向量OZ → =(a ,b )(a ,b ∈R )是一一对应关系. 3.复数的运算 (1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R . (2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行. 如图给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即OZ →=OZ 1→+OZ 2→ ,Z 1Z 2→=OZ 2→-OZ 1→.

高中数学复数专题知识点整理

专题二 复数 【1】复数的基本概念 (1)形如a + b i 的数叫做复数(其中R b a ∈,);复数的单位为i ,它的平方等于-1,即1i 2-=.其中a 叫做复数的实部,b 叫做虚部 实数:当b = 0时复数a + b i 为实数 虚数:当0≠b 时的复数a + b i 为虚数; 纯虚数:当a = 0且0≠b 时的复数a + b i 为纯虚数 (2)两个复数相等的定义: 00==?=+∈==?+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且 (3)共轭复数:z a bi =+的共轭记作z a bi =-; (4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi =+,对应点坐标为(),p a b ;(象限的复习) (5)复数的模:对于复数z a bi =+,把z =z 的模; 【2】复数的基本运算 设111z a b i =+,222z a b i =+ (1) 加法:()()121212z z a a b b i +=+++; (2) 减法:()()121212z z a a b b i -=-+-; (3) 乘法:()()1212122112z z a a b b a b a b i ?=-++ 特别22z z a b ?=+。 (4)幂运算:1i i =21i =-3i i =-41i =5i i =61i =-?????? 【3】复数的化简 c di z a bi +=+(,a b 是均不为0的实数);的化简就是通过分母实数化的方法将分母化为实数:()()22ac bd ad bc i c di c di a bi z a bi a bi a bi a b ++-++-==?=++-+ 对于()0c di z a b a bi +=?≠+,当c d a b =时z 为实数;当z 为纯虚数是z 可设为c di z xi a bi +==+进一步建立方程求解

高考数学复数专题复习(专题训练)百度文库

一、复数选择题 1.复数2 1i =+( ) A .1i -- B .1i -+ C .1i - D .1i + 2.在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为( ) A .()3,4 B .()4,3- C .43,55??- ?? ? D .43,55?? - ??? 3.复数()1z i i =?+在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.已知复数5i 5i 2i z =+-,则z =( ) A B .C .D .6.设1z 是虚数,211 1 z z z =+是实数,且211z -≤≤,则1z 的实部取值范围是( ) A .[]1,1- B .11,22?? - ??? ? C .[]22-, D .11,00,22 ????-?? ????? ? 7.设2i z i +=,则||z =( ) A B C .2 D .5 8.若复数2i 1i a -+(a ∈R )为纯虚数,则1i a -=( ) A B C .3 D .5 9.在复平面内,复数z 对应的点为(,)x y ,若2 2 (2)4x y ++=,则( ) A .22z += B .22z i += C .24z += D .24z i += 10.已知i 是虚数单位,a 为实数,且3i 1i 2i a -=-+,则a =( ) A .2 B .1 C .-2 D .-1 11.复数()()212z i i =-+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 12.已知i 是虚数单位,2i z i ?=+,则复数z 的共轭复数的模是( ) A .5 B C D .3

第06练-平面向量与复数(解析版)

第06练-平面向量与复数 一、单选题 1.已知复数2a i i +-是纯虚数(i 是虚数单位),则实数a 等于 A .-2 B .2 C .1 2 D .-1 【答案】C 【解析】 2a i i +-21255a a i -+=+是纯虚数,所以2121 0,0552 a a a -+=≠∴=,选C. 2.设i 为虚数单位,复数z 满足21i i z =-,则复数z 的共轭复数等于( ) A .1-i B .-1-i C .1+i D .-1+i 【答案】B 【解析】 【分析】 利用复数的运算法则解得1i z =-+,结合共轭复数的概念即可得结果. 【详解】 ∵复数z 满足 21i i z =-,∴ ()()()2121111i i i z i i i i +===---+, ∴复数z 的共轭复数等于1i --,故选B. 【点睛】 本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题. 3.虚数()2++x yi ,,x y R ∈,当此虚数的模为1时,y x 取值范围为( ) A .???? B .???? ?? ???? U C .?? D .)( ??? 【答案】B 【解析】 【分析】 虚数()2++x yi ,得0y ≠,根据模长公式可得2 2 (2)1,0x y y ++=≠, y x 表示圆上点(去掉与x 轴交

点)与坐标原点的连线的斜率,当连线为圆的切线时为最大和最小值,即可求出结论. 【详解】 虚数()2++x yi ,得0y ≠, 虚数()2(,)x yi x y R ++∈的模为1, 2222(2)1,(2)1,0x y x y y ∴++=++=≠, y x ∴表示圆上的点(去掉与x 轴交点)与坐标原点的连线斜率, 0y x ∴≠,当过原点的直线与22(2)1x y ++=相切时, y x 取得最值,如下图所示,圆心C ,切点分别为,A B , 3tan tan 3 BOC AOC ∠=∠= , 切线,OA OB 的斜率分别为33 ,33 - , 所以30y x - ≤<或30y x <≤ . 故选:B. 【点睛】 本题以虚数的模的背景,考查斜率的几何意义和直线与圆的位置关系,要注意虚数条件,不要忽略,属于中档题. 4.设复数11i z i =+,21z z i =,12,z z 在复平面内所对应的向量分别为OP uuu v ,OQ uuu v (O 为原点),则OP OQ ?=u u u v u u u v ( ) A .1 2 - B .0

第五章 5.2平面向量及复数

§5.2平面向量基本定理及坐标表示 最新考纲考情考向分析 1.了解平面向量基本定理及其意义. 2.掌握平面向量的正交分解及其坐标表示. 3.会用坐标表示平面向量的加法、减法与数 乘运算. 4.理解用坐标表示的平面向量共线的条件. 主要考查平面向量基本定理、向量加法、减法、 数乘的坐标运算及向量共线的坐标表示,考查向 量线性运算的综合应用,考查学生的运算推理能 力、数形结合能力,常与三角函数综合交汇考查, 突出向量的工具性.一般以选择题、填空题的形 式考查,偶尔有与三角函数综合在一起考查的解 答题,属于中档题.

1.平面向量基本定理 如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. 其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标表示 (1)向量及向量的模的坐标表示 ①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB → |=(x 2-x 1)2+(y 2-y 1)2. (2)平面向量的坐标运算 设a =(x 1,y 1),b =(x 2,y 2),则 a + b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2), λa =(λx 1,λy 1). 3.平面向量共线的坐标表示 设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ,b 共线?x 1y 2-x 2y 1=0.

浙江省名校协作体高考数学复数专题复习(专题训练)

一、复数选择题 1.已知复数1=-i z i ,其中i 为虚数单位,则||z =( ) A . 12 B . 22 C .2 D .2 2.已知复数()2m m m i z i --=为纯虚数,则实数m =( ) A .-1 B .0 C .1 D .0或1 3.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A ,B 对应的复数分别是1z ,2z ,则12z z -=( ) A 2 B .2 C .2 D .8 4.已知复数5i 5i 2i z =+-,则z =( ) A 5B .52C .32D .255.已知复数5 12z i =+,则z =( ) A .1 B 5 C 5 D .5 6.若复数z 满足421i z i +=+,则z =( ) A .13i + B .13i - C .3i + D .3i - 7.设复数z 满足方程4z z z z ?+?=,其中z 为复数z 的共轭复数,若z 2,则z 为( ) A .1 B 2 C .2 D .4 8.若复数()4 1i 34i z += +,则z =( ) A . 4 5 B . 35 C . 25 D . 25 9.若1i i z ,则2z z i ?-=( )

A . B .4 C . D .8 10.设复数z 满足41i z i =+,则z 的共轭复数z 在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 11.已知(),a bi a b R +∈是()()112i i +-的共轭复数,则a b +=( ) A .4 B .2 C .0 D .1- 12.复数z 对应的向量OZ 与(3,4)a =共线,对应的点在第三象限,且10z =,则z =( ) A .68i + B .68i - C .68i -- D .68i -+ 13.已知i 是虚数单位,设复数22i a bi i -+=+,其中,a b ∈R ,则+a b 的值为( ) A .7 5 B .75- C . 15 D .15 - 14.若i 为虚数单位,,a b ∈R ,且2a i b i i +=+,则复数a bi -的模等于( ) A B C D 15.题目文 件丢失! 二、多选题 16.已知复数2020 11i z i += -(i 为虚数单位),则下列说法错误的是( ) A .z 的实部为2 B .z 的虚部为1 C .z i = D .||z =17.已知复数z 满足2 20z z +=,则z 可能为( ). A .0 B .2- C .2i D .2i+1- 18.已知复数z 满足2 20z z +=,则z 可能为( ) A .0 B .2- C .2i D .2i - 19.下面是关于复数2 1i z =-+的四个命题,其中真命题是( ) A .||z = B .22z i = C .z 的共轭复数为1i -+ D .z 的虚部为1- 20.已知复数12z =-,则下列结论正确的有( ) A .1z z ?= B .2z z = C .31z =- D .2020122 z =- + 21.已知复数(),z x yi x y R =+∈,则( ) A .2 0z B .z 的虚部是yi

高考数学专题练习:平面向量与复数

高考数学专题练习:平面向量与复数 1.已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥(a +b )”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 解析:由题意得a +b =(2,2+m ),由a ∥(a +b ),得-1×(2+m )=2×2,解得m =-6,则m =-6时,a =(-1,2),a +b =(2,-4),所以a ∥(a +b ),则“m =-6”是“a ∥(a +b )”的充要条件,故选A. 答案:A 2.在梯形ABCD 中,AD ∥BC ,已知AD =4,BC =6,若CD →=mBA →+nBC →(m ,n ∈R ),则m n =( ) A .-3 B .-13 C.13 D .3 解析:过点A 作AE ∥CD ,交BC 于点E ,则BE =2,CE =4,所以mBA →+nBC →=CD →=EA →=EB →+BA →= -26BC →+BA →=-13BC →+BA →,所以m n =1-13 =-3. 答案:A 3.已知向量a =(x ,3),b =(x ,-3),若(2a +b )⊥b ,则|a |=( ) A .1 B. 2 C. 3 D .2 解析:因为(2a +b )⊥b ,所以(2a +b )·b =0,即(3x ,3)·(x ,-3)=3x 2-3=0,解得x =±1,所以a =(±1,3),|a |= ±12+32=2,故选D. 答案:D 4.已知向量a =(m,1),b =(m ,-1),且|a +b |=|a -b |,则|a |=( ) A .1 B.62 C. 2 D .4 解析:∵a =(m,1),b =(m ,-1),∴a +b =(2m,0),a -b =(0,2),又|a +b |=|a -b |,∴|2m |=2,∴m =

高中数学讲义 第四章 平面向量与复数(超级详细)

高中数学复习讲义第四章平面向量与复数 【知识图解】 Ⅰ.平面向量知识结构表 Ⅱ.复数的知识结构表 【方法点拨】 由于向量融形、数于一体,具有几何形式与代数形式的“双重身份”,使它成为了中学数学知识的一个重要交汇点,成为联系众多知识内容的媒介。所以,向量成为了“在知识网络交汇处设计试题”的很好载体。从高考新课程卷来看,对向量的考查力度在逐年加大,除了直接考查平面向量外,将向量与解析几何、向量与三角等内容相结合,在知识交汇点处命题,既是当今高考的热点,又是重点。 复习巩固相关的平面向量知识,既要注重回顾和梳理基础知识,又要注意平面向量与其他知识的综合运用,渗透用向量解决问题的思想方法,从而提高分析问题与综合运用知识解决问题的能力,站在新的高度来认识和理解向量。 1.向量是具有大小和和方向的量,具有“数”和“形”的特点,向量是数形结合的桥梁,在处理向量问 题时注意用数形结合思想的应用. 2.平面向量基本定理是处理向量问题的基础,也是平面向量坐标表示的基础,它表明同一平面内任意向 量都可以表示为其他两个不共线向量的线性组合. 3.向量的坐标表示实际上是向量的代数形式,引入坐标表示,可以把几何问题转化为代数问题解决. 4.要了解向量的工具作用,熟悉利用向量只是解决平面几何及解析几何中的简单问题的方法.

第1课 向量的概念及基本运算 【考点导读】 1. 理解平面向量和向量相等的含义,理解向量的几何表示. 2. 掌握向量的加法、减法、数乘的运算,并理解其几何意义. 3. 了解平面向量基本定理及其意义. 【基础练习】 1.出下列命题:①若=a b ,则=a b ;②若A 、B 、C 、D 是不共线的四点,则DC AB =是四边形为平行四边形的充要条件;③若,==a b b c ,则=a c ;④=a b 的充要条件是=a b 且//a b ;⑤若//a b , //b c ,则//a c 。其中,正确命题材的序号是②③ 2. 化简AC -u u u r BD +u u u r CD -u u u r AB u u u r 得0 3.在四边形ABCD 中,=a +2b ,BC =-4a -b ,CD =-5a -3b ,其中a 、b 不共线,则四边形ABCD 为梯形 4.如图,设点P 、Q 是线段AB 的三等分点, 若OA u u u r =a ,OB u u u r =b ,则OP u u u r =21 33 +a b , OQ u u u r =12 33+a b (用a 、b 表示) 【范例导析】 例1 .已知任意四边形ABCD 的边AD 和BC 的中点分别为E 、F , 求证:2AB DC EF +=u u u r u u u r u u u r . 分析:构造三角形,利用向量的三角形法则证明. 证明:如图,连接EB 和EC , 由EA AB EB +=u u u r u u u r u u u r 和EF FB EB +=u u u r u u u r u u u r 可得,EA AB EF FB +=+u u u r u u u r u u u r u u u r (1) 由ED DC EC +=u u u r u u u r u u u r 和EF FC EC +=u u u r u u u r u u u r 可得,ED DC EF FC +=+u u u r u u u r u u u r u u u r (2) (1)+(2)得, 2EA ED AB DC EF FB FC +++=++u u u r u u u r u u u r u u u r u u u r u u u r u u u r (3) ∵E 、F 分别为AD 和BC 的中点,∴0EA ED +=u u u r u u u r r ,0FB FC +=u u u r u u u r r , 代入(3)式得,2AB DC EF +=u u u r u u u r u u u r 点拨:运用向量加减法解决几何问题时,需要发现或构造三角形或平行四边形. 例1

高考数学复数专题

高考专题:复 数 1、 已知0

平面向量、复数w

平面向量 一、向量 1、即有大小又有方向的量叫向量 2、O 方向是任意的 3、单位向量a =1 4、平行向量?共线向量 ?//,a b a b ? 方向相同或相反。(注意//o a ) 5、相反向量,a a - 6、相等向量——方向相同,长度相等。 注://,////a b b c a c ?/ (当b o = 不成立)。 二、向量的运算 1.加法 (1)平行四边形法则(共起点、对角线) (2)三角形法则(首尾相连,起点到终点) 122311n n n A A A A A A A A -+++= 2.减法,共起点,终点指向被减数向量 3.实数与向量的积 (1)a λ 仍是一个向量|||||| 0000a a a a a a a λλλλλλλλ=?? >??

①a b b a ?=? ②()()()a b a b a b λλλ?=?=? ③()a b c a c b a +?=?+? 但 ()()a b c a b c ??≠?? a b a c b c ?=??=/ ()0a b a o b o ?=?==/ 或(可能a ⊥b ) (4)cos ||||a b a b θ?==? (5) ||||||a b a b ?≤? 三、平面向量的基本定理 12,e e 不共线,在平面内任一向量a ,有且仅有唯一12,R λλ∈,使1122a e e λλ=+ 。当12,e e 为i ,j 时,12(,)λλ即为直角坐标 四、平面向量的坐标运算 1. 11222121(,)(,)(,)A x y B x y AB x x y y =-- 则 2. 1212(,)a b x x y y ±=±± 3. 1212a b x x y y ?=+ 4. 12120a b x x y y ⊥?+= 5. 1221//0a b x y x y ?-= ?=λ()R ∈λ cos θ= 7. a b 在五、定比分点公式 AP AP PB PB λλ=?= 000,1P P P A P λλλλ>??

高考数学压轴专题最新备战高考《复数》真题汇编及答案

【最新】数学《复数》高考复习知识点(1) 一、选择题 1.已知为虚数单位, m R ∈,复数()()22288z m m m m =-+++-,若z 为负实数, 则m 的取值集合为( ) A .{}0 B .{}8 C .()2,4- D .()4,2- 【答案】B 【解析】由题设可得2280{280 m m m m -=-++<,解之得8m =,应选答案B 。 2.如图所示,在复平面内,OP uuu v 对应的复数是1-i ,将OP uuu v 向左平移一个单位后得到00 O P u u u u v ,则P 0对应的复数为( ) A .1-i B .1-2i C .-1-i D .-i 【答案】D 【解析】 【分析】 要求P 0对应的复数,根据题意,只需知道0OP u u u v ,而0000 OP OO O P =+u u u v u u u u v u u u u v ,从而可求P 0对应的复数 【详解】 因为00O P OP =u u u u v u u u v ,0OO u u u u v 对应的复数是-1, 所以P 0对应的复数, 即0 OP u u u v 对应的复数是()11i i -+-=-,故选D. 【点睛】 本题考查复数的代数表示法及其几何意义,复平面内复数、向量及点的对应关系,是基础题. 3.在复平面内,若复数z 满足|z +1|=|1+i z |,则z 在复平面内对应点的轨迹是( ) A .直线 B .圆 C .椭圆 D .抛物线 【答案】A 【解析】 【分析】

设()z x yi x y R =+∈、,代入11z iz +=+,求模后整理得z 在复平面内对应点的轨迹是直线. 【详解】 设()z x yi x y R =+∈、, 1x yi ++= ,()11iz i x yi +=++= y x =-, 所以复数z x yi =+对应点的轨迹为直线,故选A. 【点睛】 本题考查复数的代数表示法及其几何意义,考查复数模的求法,动点的轨迹问题,是基础题. 4.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( ) A B C .2 D .3 【答案】A 【解析】 () 11z i i i =-=+,故z = A. 5.已知复数z 的模为2,则z i -的最大值为:( ) A .1 B .2 C D .3 【答案】D 【解析】 因为z i -213z i ≤+-=+= ,所以最大值为3,选D. 6.已知复数z 满足()1i z i += ,i 为虚数单位,则z 等于( ) A .1i - B .1i + C .1122i - D .1122i + 【答案】A 【解析】 因为|2(1)11(1)(1) i i z i i i i -===-++-,所以应选答案A . 7.欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,e 2i 表示的复数在复平面中对应的点位于

2015届高考数学总复习第四章 平面向量与复数第4课时 复 数课时训练

第四章 平面向量与复数第4课时 复 数 1. (2013·南通期末)已知复数z =3-2i i (i 是虚数单位),则复数z 所对应的点位于复平面的第________象限. 答案:三 解析:z =3-2i i =(3-2i )(-i )i (-i ) =-2-3i. 2. (2013·苏州期末)设复数z 满足z(2+i)=1-2i(i 为虚数单位),则|z|=________. 答案:1 解析:由z(2+i)=1-2i ,得z =1-2i 2+i =(1-2i )(2-i )(2+i )(2-i ) =0-5i 5=-i ,故|z|=1. 3. (2013·徐州三模)已知i 是虚数单位,若a +3i i =b +i(a 、b ∈R ),则ab 的值为________. 答案:-3 解析:由a +3i i =b +i(a 、b ∈R ),得a +3i =bi -1,根据复数相等的条件得a =-1,b =3,ab =-3. 4. (2013·常州期末)已知复数z =-1+i(i 为虚数单位),计算:z·z -z -z -=________. 答案:-i 解析:z =-1+i ,z·z -z -z - =(-1+i )(-1-i )(-1+i )-(-1-i )=22i =-i. 5. (2013·苏锡常镇一模)若实数a 满足2+ai 1-i =2i ,其中i 是虚数单位,则a =________. 答案:2 解析:由2+ai 1-i =2i 得2+ai =(1-i)2i ,即2+ai =2+2i ,根据实部、虚部分别相等,可知a =2. 6. 若z -·z +z =154 +2i(i 为虚数单位),则复数z =________. 答案:-12 +2i 解析:设z =x +yi(x ,y ∈R ),则由z -·z +z =154+2i ,得x 2+y 2+x +yi =154 +2i ,所以?????x 2+y 2+x =154,y =2,解得?????x =-12,y =2, 所以z =-12 +2i. 7. 若复数z 满足|z -i|=1(其中i 为虚数单位),则|z|的最大值为________. 答案:2 解析:设z =x +yi(x ,y ∈R ),则由|z -i|=1,得x 2+(y -1)2=1,由画图可知|z|的最大值为2. 8. 已知x =-3-2i(i 为虚数单位)是一元二次方程x 2+ax +b =0(a ,b 均为实数)的一个根,则a +b =________. 答案:19

复数与向量的关系

重视复平面上复数与向量的联系作用 平面向量与复数是高中数学的重要内容,联系紧密,联系是在复平面进行的。随着知识的发展,相互对应相互促进是联系的主要体现。复数中的概念、运算等在向量中可以作出几何解释;向量的运算,可以对应有关的复数运算.复数与向量的这种联系,只要我们需要,可以将它们组合起来,在计算推理中发挥它们的联系作用,将是一件高效快乐的事情. 一 复数商与内积的联系 复数运算,向量运算之间的许多联系,在现有课本里是可以学习到的,下面我们来看复数商与内积的联系. 例1 复数z 1=a 1+b 1i, z 2=a 2+b 2i ,它们的三角式分别为z 1=|z 1|(cos θ1+isin θ1), z 2=|z 2|(cos θ2+isin θ2),对应的向量分别是1oz =(a 1,b 1)、2oz =(a 2,b 2). 然后复数作商: 代数式作商: 21z z =2221122121||)()(z i b a b a b b a a -++;-------------(1) 三角式作商: 21z z =| || |21z z [cos(θ1-θ2)+isin(θ1-θ2)],------(2) 比较(1)(2)式,可得 ||||21z z [cos(θ1-θ2)]=222121||z b b a a +, ……(3) ||||21z z [sin(θ1-θ2)]=222112| |z b a b a -………(4) 则从中可得下列变式: (1) 复数对应向量间的夹角余弦公式: cos(θ1-θ2| |||212121oz oz ? ,( 我們总可以适当选择θ1、θ2的主值范围,使得|θ 1-θ2 |∈),0[π,所以1oz 与2oz 的夹角就是|θ1-θ2|). (2) 向量内积: 1oz ·2oz =a 1a 2+b 1b 2=|1oz |·|oz 2|cos(θ1-θ2). 若对(4)取绝对值得到:|1oz ×2oz |=|a 1b 2 -a 2b 1|=|1|oz |·2|oz |sin(θ1-θ2)|, 这是空间xoy 平面上向量)0,,(),0,,(2121b b a a ==叉积的绝对值,是以线段oz 1、oz 2为邻边的平行四边形的面积公式. 复数商运算式中,隐含着向量间的夹角公式,向量的内积,平行四边形面积的公式. 若复数代数式i y x z i y x z 222111,-=+=的三角式分别是)sin (cos 1111θθi r z +=,

相关主题