搜档网
当前位置:搜档网 › 几何计算题选讲

几何计算题选讲

几何计算题选讲
几何计算题选讲

江苏地区中考数学复习几何计算题选讲

几何计算题历年来是中考的热点问题。

几何计算是以推理为基础的几何量的计算,

主要

有线段 与弧的长度计算、角和弧的度数计算、三角函数值的计算、线段比值的计算以及面 积、体积的计算,从图形上分类有:三角形、四边形、多边形以及圆的有关计算。解几何计 算题的常用方法有:几何法、代数法、三角法等。 一、三种常用解题方法举例

例1. 如图,在矩形ABCD 中,以边AB 为直径的半圆 0恰与对边CD 相切于T ,与对角线AC 交于P,

PEL AB 于E, AB=10,求PE 的长.

1

解法一:(几何法)连结 0T, 则OT L CD 且OT —AB = 5

2

说明:几何法即根据几何推理, 隐含条件?

解法二:(代数法) PE AE ? PE CB 1 CB AB AE AB 2

设:PE=x ,贝U AE=2 x , EB=10- 2 x . 连结 PB. ?/ AB 是直径,?/ APB=90.

在 Rt △ APB 中,PE L AB,「.A PBE^A APE .

EB PE 1 ?—— —— -.? EP=2EB 即 x=2 (10- 2x )

EP AE 2

解得 x =4. ? PE=4.

说明:代数法即为设未知数列方程求解, 关键在于找出可供列方程的相等关系,例如: 相似

三角形中的线段比例式; 勾股定理中的等式; 相交弦定理、切割线定理中的线段等积式,以 及其他

的相等关系. 解法三:(三角法)

连结 PB,贝U BP L AC.设/ PAB=c 在 Rt △ APB 中,AP=10CO a,

在 Rt △ APE 中,PE=APsin a , ? PE=10sin a COS a .

5 < 在 Rt △ ABC 中,BC=5,AC= 5, 5 . ? sin a =—

5/5

5

10 215 V5 2J5

co a = 10

S. ??? PE=10X 」g=4.

5 5

5

5

5

BC=0T=5 ,AC= 100

25 =5、、5

?/ BC 是O O 切线,??? B C =CP ? CA.

??? PC= .5 , ? AP=CA-CP=4. 5 . ?/ PE// BC ?

PE BC

AP AC

PE=4 5 X 5=4.

5 5

由几何关系式进行求解的方法, 推理时特别要注意图形中的 ?/ PE// BC,

说明:在几何计算中,必须注意以下几点:

(1) 注意“数形结合”,多角度,全方位观察图形,挖掘隐含条件,寻找数量关系和相等 关系.

(2)

注意推理和计算相结合,先推理后计算,或边推理边计算,力求解题过程规范化 .

(3)

注意几何法、代数法、三角法的灵活运用和综合运用

二.其他题型举例

例2.如图,ABCD 是边长为2 a 的正方形,AB 为半圆0的直径,CE 切O 0于E ,与BA 的延长

D,交O Q 于点E ,过点C 作CF 丄CE 交EA 的延长线于点 F ,若DE=2, AE=2. 5 (1) 求证:EF 是O 0的切线; (2) 求线段CF 的长; (3)

求 tan / DAE 的值.

分析:(1)连结0A, 0E 是O Q 的直径,0A 丄EF ,从而知 EF 是O 0的切线.

(2)由已知条件 DE=2, AE=2j5,且EA 、EDC 分别是O 0的切线 和割

线,运用切割线定理 EA 2=ED- EC,可求得EC=10.由CF 丄CE 可得CF 是

O 0的切线,从而 FC=FA 在Rt △ EFC 中,设CF=x ,则

FE=X + 2...5.又 CE=1Q 由勾股定理可得:(x +2、一 5 ) 2= x 2+102, 解得 x =4.5 .即 CF=4、. 5.

(3)要求tan / DAE 的值,通常有两种方法:①构造含/ DAE 的直角三角形;②把求 tan /

DAE 的值转化为求某一直角三角形一锐角的正切(等角转化) .在求正切值时,又有两种方

法可供选择:①分别求出两线段(对边和邻边)的值;②整体求出两线段(对边和邻边)的 比值.

解:(1)连结0A ,

?/ 0E 是O Q 的直径,? 0A 丄EF ? EF 是O 0的切线..

(2)T DE=2, AE=2\5,且EA EDC 分别是O 0的切线和割线

2

? EA=ED- EC ? EC=10

由CF 丄CE 可得CF 是O 0的切线,从而 FC=FA 在Rt △ EFC 中,设CF=x ,贝U FE= x + 2. 5 .

线交于F ,求EF 的长.

分析:本题考察切线的性质、切割线定理、相似三角形性质、 以及正方形有关性质.本题可用代数法求解. 解:连结 .0E …BC 设 EF=x , ?/ FE 切O 0于 E

4 解得x = a ,

3

例3?已知:如图, 0E T CE 切O 0于 E , ? 0EL CF

EF3A BFC

FE 11 1 -- 又??? 0E A AB=—BC, ? EF=—FB

FB ' 2

2

2

则 FB=2x , FA=2x - 2a ? FE "=FA- FB,「. x 2= (2x - 2a ) ? 2x EF=4 a.

3

O 0与O Q 相交于点

A B ,且点0在O O 上, 连心线00交O 0于点C

A

B

°2

又CE=10,由勾股定理可得:

(x + 2 5 ) 2= x 2+102,解得 x =4.5 .即 CF=4 .. 5 .

(3)解法一:(构造含/ DAE 的直角三角形)

作DGL AE 于G 求AG 和DG 的值.分析已知条件,在Rt △ AOE 中,三边长都已知或可求(O A=4,

O E=6),又DE=2,且DG// A O (因为DG 丄AE ),运用平行分线段成比例可求得

c 4

4^5

75

DG= , AG

,从而 tan / DAE=. 3

3 5

解法二:(等角转化)

连结AC,由EA 是O O 的切线知/ DAE=/ ACD 只需求tan / ACD 易得/ CAD=90,所以只需求

说明:(1)从已知条件出发快速地找到基本图形, 得到基本结论,在解综合题时更显出它的 基础性和重要性.如本题(2)求CF 的长时,要能很快地运用切割线定理,先求出 CE 的长. (2)方程思想是几何计算中一种常用的、重要的方法,要熟练地掌握

例4.如图,已知矩形 ABCD 以A 为圆心,AD 为半径的圆交 AC AB 于M E , CE 的延长线交

O A 于 F , CM=2 AB=4.

(1) 求O A 的半径;

(2)

求CF 的长和△ AFC 的面积.

解:(1 厂??四边形 ABCD 是矩形,??? CD=AB=4 在 Rt △ ACD 中, AC=CD+AD ,?( 2+AD ) 2=42+AD 解得 AD=3.

例 5.如图,△ ABC 内接于O O,BC=4,S A ABC = 6. 3 , / B 为锐角,且关于 x 的方程 x 2 -

4xcosB+1=0

有两个相等的实数根.D 是劣弧AC 上的任一点(点 D 不与点A 、C 重合),DE 平分/ ADC

O O 于点E,交AC 于点F.

(1) 求/ B 的度数; (2) 求CE 的长.

分析:本题是一道综合了代数知识的几何计算题,考察了圆的有关性 质,解题时应注意线段的转化 .

解:(1 )?关于x 的方程x 2-4xcosB+1=0有两个相等的实数根,

AD AC

的值即可.观察和分析图形,可得△

AD AD 0A CAE -

AC

空空2从而tan

CE 10 5

/ ACD=

AD AC

5

,即 tan / DAE 」.

5 5

(2) A 作 AG 丄 EF 于 G. ?/

BG=3 , BE=AB — AE=1 ,

CE= BC 2

BE 2 ,32

12 <10

由 CE- CF =C D,

得 CF=C^

CE

-Vi0 .又B=Z AGE=90,/ BEC=/ GEA ?△ BCE

10

5

“△ GAE 「.

BC

AG

CE 即 2AF J CF ? AG =36. AE ' AG 3 '

2 5

A

E M

A

F O

B H

C

2

1 1

???△ = (-4cosB ) -4=0. /? cosB=—,或 cosB=- (舍去) 2 2

又???/ B 为锐角,?/ B=600.

1 1

点 A 作 AH L BC,垂足为 H. S △ ABC ^-BC- AH= BC- AB- sin60 °=6j3,解得 AB=6

2 2

1

在 Rt △ ABH 中,BH=AB-cos600=6X =3, AH=A B sin60 °=6X

2

在 Rt △ ACH 中,A C +C H=27+1=28. ? AC= 2 7 (负值舍去).? AC=2 7 .连结 AE,在圆内 接四边形 ABCD 中, / B+Z ADC=180,?/ ADC=120.又 T DE 平分/ ADC ?/ EDC=60=/ EAC. 又???/ AECZ B=60°,.?.Z AEC=Z EAC ?- CE=AC=2,7 .

例6.已知:如图,O O 的半径为r , CE 切O O 于点C,且与弦AB 的延长线交于点 E, CD 丄

AB 于D.如果CE=2BE 且AC BC 的长是关于 x 的方程x 2- 3 (r - 2) x+ r 2-4=0的两个实数 根.求(1) AC BC 的长;(2) CD 的长.

分析:(1)图中显然存在切割线定理的基本图形, 从而可得厶ECB^A EAC AC=2BC 又T AC BC 是方程的两根,由根与系数关系可列出关于 AC BC 的方程组求解.(2)T CD 是 Rt △ CDB

的一边,所以考虑构造直角三角形与之对应 .若过C 作直径CF ,连结AF ,则Rt △ CD 阴Rt △

CAF ,据此可列式计算.

解:(1 )T CE 切O O 于 C,「.Z ECB Z A.又T Z E 是公共角,?

BC BE 1

△ ECB^A EAC —

— 丄,二 AC=2BC.由 AC BC 的长是

AC CE 2

关于x 的方程x 2- 3(r - 2)x+ r 2- 4=0的两个实数根,? AC+BC=3 (r-2 ); AC- BC=r -4,解得 r=6, ? BC=4 AC=8.

(2) CO 并延长交O O 于 F ,连结 AF ,则Z CAF=9(J ,Z CFA= Z CBD. T

Z CDB=90= Z CAF ,

? △ CAF s △ CDB,

AC CF AC BC 8 4 8 --CD=

.

CD BC

CF 12

3

说明:(1)这是一道代数、几何的综合题,关键是寻找相似三角形,建立线段之间的比例关 系,再根据根与系数关系列等式计算; (2 )构造与相似的直角三角形的方法有许多种, 同学

们不妨试一试.

例7.如图,△ ABC 内接于O O, AB 是O O 的直径,PA 是过A 点的直线,Z PAC Z B. (1)求证:PA 是O O 的切线;

(2)如果弦 CD 交 AB 于 E , CD 的延长线交 PA 于 F , AC=CE EB=6: 5, AE : EB=2 : 3, 求 AB 的长和Z FCB 的正切值.

解:(1 )T AB 是O O 的直径,???/ ACB=90. CAB+Z B=90°,又Z

PAC 玄 B,「.Z CAB+Z PAC=90.即 PA 丄 AB,「. PA 是O O 的切线.

(2)

设 CE=6a ,AE=2x,贝U ED=5a EB=3 x.

由相交弦定理,得 2x - 3x=5a - 6a ? x= ?、5 a.连结

BCE^

f —

(2)

3 3 , ??? CH=BC -BH=4-3=1.

A

F

-EB.连结BD.由△ BED s △ CEA,得

△ DAE,得匹

AD ED

BD BE 5

AC AE 2

??? BD=4 .一5 .由勾股定理得BC=... AB282, AD= AB (4.5)2.

A B2 82 3 ?5

_ AB 8两边平方,整理得AB2 100 AB 10 (负值舍去)

5

AB2(4 5)2

? AD=2V5.T/ FCB=/ BAD ?- tan / FCB= tan / BAD^_ 2.

AD 2/5

解几何计算题要求我们必须掌握扎实的几何基础知识,较强的逻辑推理能力,分析问题时应注意分析法与综合法的同时运用,还特别要注意图形中的隐含条件,在平时的学习中要善于总结归纳,只有这样才能掌握好几何计算题的解法

5

射影几何

南京师范大学 毕业设计(论文) (2009 届) 题目:漫谈射影几何的几种子几何及其关系 学院:数学科学学院 专业:数学与应用数学 姓名:刘峰 学号:0 6 0 5 0 2 1 0 指导教师:杨明升 南京师范大学教务处制

漫谈射影几何的几种子几何及其关系 刘峰 数学与应用数学(师范)06050210 一.摘要 射影几何学是研究图形的射影性质,即它们经过射影变换不变的性质. 射影几何集中表现了投影和截影的思想,论述了同一射影下,一个物体的不同截景所形成的几何图形的共同性质,以及同一物体在不同射影下的几何图形的共同性质,一度也叫做投影几何学,在经典几何学中,射影几何处于一种特殊地位,通过它可以把其他一些几何联系起来. 概括的说,射影几何学是几何学的一个重要分支学科,它是专门研究图形的位置关系的,也是专门用来讨论在把点投影到直线或者平面上的时候,图形的不变性质的科学. 这门”诞生于艺术的科学”,今天成了最美的数学分支之一. 二.关键词 射影几何,摄影仿射几何,摄影欧氏几何,仿射几何,欧氏几何,射影变换,仿射变换,正交变换,射影变换群,仿射变换群,正交变换群,克莱因变换群. 三.射影几何(projective geometry)的发展简况 十七世纪,当笛卡儿和费尔马创立的解析几何问世的时候,还有一门几何学同时出现在人们的面前. 这门几何学和画图有很密切的关系,它的某些概念早在古希腊时期就曾经引起一些学者的注意,欧洲文艺复兴时期透视学的兴起,给这门几何学的产生和成长准备了充分的条件. 这门几何学就是射影几何学. 基于绘图学和建筑学的需要,古希腊几何学家就开始研究透视法,也就是投影和截影. 在文艺复兴时期,人们在绘画和建筑艺术方面非常注意和大力研究如何在平面上表现实物的图形. 那时候,人们发现,一个画家要把一个事物画在一块画布上就好比是用自己的眼睛当作投影中心,把实物的影子影射到画布上去,然后再描绘出来. 在这个过程中,被描绘下来

射影几何中仿射变换解初等几何题

利用仿射变换可以解决许多初等几何问题,下面给出它在以下几个方面的应用。 平行投影 平行投影是仿射变换中最基本、最简单的一类。因此平行投影变换具有仿射变换中的一切性质。解这类题的关键是选定平行投影方向,应用平行线段之比是仿射不变量。 例1 P 是ABC ?内任一点,连结AP 、BP 、CP 并延长分别交对边于D 、E 、F 。求证: 1=++CF PF BE PE AD PD . [2] C 图1 证明:如图1,分别沿AB 和AC 方向作平行投影。P →P '、P →P ''由仿射变换保简单比不变得, DC DP BD D P AD PD '''==,所以BC P P AD PD ' ''= , 同理 BC C P BE PE ''=,BC BP CF PF ' = , 所以 1''''''=++=++BC BP BC C P BC P P CF PF BE PE AD PD . 例2 一直线截三角形的边或其延长线,所得的顶点到分点和分点到顶点的有向线段的比的乘积等于﹣1,其逆也真。(梅涅劳斯定理 )[3] 分析:如图2,本题要求证明当L 、M 、N 三点共线时,1-=??NB AN MA CM LC BL 。其逆命题亦成立 。 N B A L'(L) A'C B A M M N A' L C 图2 (1)证明梅涅劳斯定理成立 由于要证明的三条线段分别处在三条直线上,不便于问题的证明,为此应用平行投影将其集中到一条直线上,自然采用原三角形的一边最简便。

如图2(a),以MN 为投影方向,将A 、N 、M 点平行投影到直线BC 上的A '、L 、L '点,则 1''-=??=??LB L A LA CL LC BL NB AN MA CM LC BL .即原命题成立。 (2)证明逆命题成立 证明当BC 、CA 、AB 上三点L 、M 、N 满足1-=??NB AN MA CM LC BL 时,则L 、M 、N 三点共线。 设直线MN 交BC 于L ',如图2(b) ,由已知条件知,1''-=??NB AN MA CM C L BL , 所以L '与L 重合,故L 、M 、N 三点共线。 三角形仿射等价性 因为任一三角形可以经过平行投影变成正三角形。因此,如果我们要证明一个有关三角形的命题,只要这个命题的条件和结论都是图形的仿射性质,那么只要证明命题对正三角形成立,便可断言命题对任意三角形也成立。而正三角形是最特殊的三角形,它有很多特殊的性质可以利用,证明起来要容易得多。 例3 在ABC ?的中线AD 上任取一点P ,连接BP 、CP ,并延长BP 交AC 于E ,延长CP 交AB 于F ,求证:EF ∥BC . [4] D 'C ' D B B' 图3 证明:如图3,作仿射变换T ,使得ABC ?对应正C B A '''?,由仿射性质可知,点D 、P 、 E 、 F 相应地对应D '、P '、E '、F ',且D A ''为正C B A '''?的中线。 在正C B A '''?中D A ''也是C B ''边上的高,且B '、P '、E '与C '、P '、F '关于D A ''对称,E '、F '到C B ''的距离相等,则F E ''∥C B '', 由于平行性是仿射不变性,因此,在ABC ?中EF ∥BC . 例4 证明G 为ABC ?重心的充要条件是:BGC AGC AGB S S S ???==.[4]

初中八年级数学函数几何计算题

D C B A 函数几何计算题 1、如图7,平面直角坐标系中,已知一个一次函数的图像经过点A (0,4)、B (2,0). (1)求这个一次函数的解析式; (2)把直线AB 向左平移,若平移后的直线与x 轴交于点C 且AC =BC .求点C 2. 如图9,已知矩形ABCD ,把矩形ABCD 沿直线BD 翻折,点C 落在点E 处,联结AE . (1)若AB=3,BC=6,试求四边形ABDE 的面积; (2 )记AD 与BE 的交点为P ,若AB=a ,BC =b , 试求PD 的长(用a 、b 表示). 3. 上周六,小明一家共7人从南桥出发去参观世博会。小明提议: 让爸爸载着爷爷、奶奶、外公、外婆去,自己和妈妈坐世博 41路车去,最后在地铁8号线航天博物馆站附近汇合。图中 l 1,l 2分别表示世博41路车与小轿车在行驶中的路程(千米) 与时间(分钟)的关系,试观察图像并回答下列问题: (1)世博41路车在途中行驶的平均速度为_______千米/分钟; 此次行驶的路程是____ ___千米.(2分) (2)写出小轿车在行驶过程中s 与t 的函数关系式: ________________,定义域为___________.(3分) (3)小明和妈妈乘坐的世博41路车出发 分钟后被爸爸的小轿车追上了.(3分) 4、(本题7分)如图,在梯形ABCD 中,AB ∥CD . (1)如果∠A =?50,∠B =?80,求证:AB CD BC =+. (2)如果AB CD BC =+,设∠A =?x ,∠B =?y ,那么y 关于x 的函数关系式是_______. 5. 如图,一次函数b x y +=3 1 的图像与x 轴相交于点A (6,0)、与y 轴相交于点B , (图1) (图2) C D (第3题图) (分钟)

射影几何的诞生与发展

射影几何的诞生与发展 一从透视学到射影几何 1.在文艺复兴时期,描绘现实世界成为绘画的重要目标,这就使画家们在将三维现实世界绘制到二维的画布上时,面临这样的问题: (1)一个物体的同一投影的两个截影有什么共同的性质? (2)从两个光源分别对两个物体投影到同一个物影上,那么两个物体间具有什么关系? 2.由于绘画、制图的刺激而导致了富有文艺复兴特色的学科---透视学的兴起(文艺复兴时期:普遍认为发端于14世纪的意大利,以后扩展到西欧,16世纪大道鼎盛),从而诞生了射影几何学。意大利人布努雷契(1377-1446)是第一个认真研究透视法并试图运用几何方法进行绘画的艺术家。 3.数学透视法的天才阿尔贝蒂(1401-1472)的《论绘画》一书(1511)则是早期数学透视法的代表作,成为射影几何学发展的起点。 4.对于透视法产生的问题给予数学上解答的第一人是德沙格(1591-1661)法国陆军军官,后来成为工程师和建筑师,都是靠自学的。1639年发表《试论锥面截一平面所得结果的初稿》,这部著作充满了创造性的思想,引入了无穷远点、无穷远直线、德沙格定理、交比不变性定理、对合调和点组关系的不变性、极点极带理论等。 5.数学家帕斯卡(1623-1662)16岁就开始研究投射与取景法,1640年完成著作《圆锥曲线论》,不久失传,1779年被重新发现,他最突出的成就是所谓的帕斯卡定理,即圆锥曲线的内接六边形的对边交点共线 6.画家拉伊尔(1640-1718)在《圆锥曲线》(1685)这本射影几何专著中最突出的地方在于极点理论方面的创新。 7.德沙格等人把这种投影分析法和所获得的结果视为欧几里得几何的一部分,从而在17世纪人们对二者不加区别,但这一方法诱发了一些新的思想和观点: 1)一个数学对象从一个形状连续变化到另一形状 2)变换与变换不变性 3)几何新方法------仅关心几何图形的相交与结构关系,不涉及度量 二射影几何的繁荣 1.在19世纪以前,射影几何一直是在欧氏几何的框架下被研究的,并且由于18世纪解析几何、微积分的发展洪流而被人遗忘,到

中考数学几何计算题

分析中考的几何计算题 几何计算题历年来是中考的热点问题。几何计算是以推理为基础的几何量的计算,主要有线段与弧的长度计算、角和弧的度数计算、三角函数值的计算、线段比值的计算以及面积、体积的计算,从图形上分类有:三角形、四边形、多边形以及圆的有关计算。解几何计算题的常用方法有:几何法、代数法、三角法等。 一、三种常用解题方法举例 例1. 如图,在矩形ABCD 中,以边AB 为直径的半圆O 恰与对边CD 相切于T ,与对角线AC 交于P , PE ⊥AB 于E ,AB=10,求PE 的长。 解法一:(几何法)连结OT,则OT ⊥CD ,且OT=2 1 AB =5,BC=OT=5,AC=25100+=55 ∵BC 是⊙O 切线,∴BC 2 =CP ·CA ∴PC=5,∴AP=CA-CP=54 ∵PE ∥BC ∴ AC AP BC PE = ,PE=5 554×5=4 说明:几何法即根据几何推理,由几何关系式进行求解的方法,推理时特别 要注意图形中的隐含条件。 解法二:(代数法)∵PE ∥BC ,∴AB AE CB PE = ∴2 1 ==AB CB AE PE 设:PE=x ,则AE=2x ,EB=10–2x 连结PB 。 ∵AB 是直径,∴∠APB=900 在Rt △APB 中,PE ⊥AB ,∴△PBE ∽△APE ∴2 1==AE PE EP EB ∴EP=2EB ,即x=2(10–2x ) 解得x=4 ∴PE=4 说明:代数法即为设未知数列方程求解,关键在于找出可供列方程的相等关系,例如:相似三角形中的线段比例式;勾股定理中的等式;相交弦定理、切割线定理中的线段等积式,以及其他的相等关系。 解法三:(三角法)连结PB ,则BP ⊥AC 。设∠PAB=α 在Rt △APB 中,AP=10COS α 在Rt △APE 中,PE=APsin α, ∴PE=10sin αCOS α 在Rt △ABC 中, BC=5,AC=55 ∴sin α= 555 55= ,COS α=55 25 510= ∴PE=10×55255?=4 说明:在几何计算中,必须注意以下几点: (1) 注意“数形结合”,多角度,全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系。

圆锥曲线和射影几何

圆锥曲线与射影几何 射影几何是几何学的重要内容,射影几何中的一些重要定理与结论往往能运用在欧式几何中,有利于我们的解题。在这里,我们将对解析几何中一些常见的圆锥曲线问题进行总结,并给中一些较为方便的解法。 例1:设点C(2,0)B(1,0),A(-1,0),, D 在双曲线12 2=-y x 的左支上,A D ≠,直线 CD 交双曲线122=-y x 的右支于点E 。求证:直线AD 与直线BE 的交点P 在直 线2 1= x 上。 如果是用解析几何的做法,这将是非常麻烦的。但是如果用射影几何的知识求解,将会有意想不到的效果。 我们知道,圆与圆锥曲线在摄影变换下是可以互相转换的。我们先不考虑题目中的数据与特殊的关系,仅仅考虑点线之间的位置关系,那么题设变成: 有一点 A 在一条双曲线内部,过A 引两条直线与双曲线分别交于 B , C , D , E 。连 BD ,CE 交于点P ,且P 点在四边形BCDE 外部。 又因为双曲线与圆在射影几何中属同一个变换群,所以可以将双曲线变为圆。如图1 连 BE ,CD 交于点Q ,连PQ ,先证明:直线PQ 是A 点的极线。 D

证明: 对 C 于'C 重合,B 于'B 重合的六边形''EBB DCC 用帕斯卡定理得: DC 于EB 的交点Q ,'CC 于'BB 的交点M ,E C '于'DB 的交点P 三点共线, 同理P ,Q ,N 三点共线 所以 P ,Q ,M ,N 四点共线。 又因为 BC 是M 的极线,DE 是N 的极线,所以MN 是BC 与DE 的交点A 的极线,即 PQ 是A 的极线。 回到原图,由极线的定义与性质得 PQ OA ,且FAGH 为调与点列。

射影几何学

在射影几何学中,把无穷远点看作是“理想点”。通常的直线再加上一个无穷点就是无穷远直线,如果一个平面内两条直线平行,那么这两条直线就交于这两条直线共有的无穷远点。通过同一无穷远点的所有直线平行。 德国数学家克莱因(图)在爱尔朗根大学提出著名的《爱尔朗根计 划书》中提出用变换群对几何学进行分类 在引入无穷远点和无穷远直线后,原来普通点和普通直线的结合关系依然成立,而过去只有两条直线不平行的时候才能求交点的限制就消失了。 由于经过同一个无穷远点的直线都平行,因此中心射影和平行射影两者就可以统一了。平行射影可以看作是经过无穷远点的中心投影了。这样凡是利用中心投影或者平行投影把一个图形映成另一个图形的映射,就都可以叫做射影变换了。 射影变换有两个重要的性质:首先,射影变换使点列变点列,直线变直线,线束变线束,点和直线的结合性是射影变换的不变性;其次,射影变换下,交比不变。交比是射影几何中重要的概念,用它可以说明两个平面点之间的射影对应。 在射影几何里,把点和直线叫做对偶元素,把“过一点作一直线”和“在一直线上取一点”叫做对偶运算。在两个图形中,它们如果都是由点和直线组成,把其中一图形里的各元素改为它的对偶元素,各运算改为它的对偶运算,结果就得到另一个图形。这两个图形叫做对偶图形。在一个命题中叙述的内容只是关于点、直线和平面的位置,可把各元素改为它的对偶元素,各运算改为它的对偶运算的时候,结果就得到另一个命题。这两个命题叫做对偶命题。这就是射影几何学所特有的对偶原则。在射影平面上,如果一个命题成立,那么它的对偶命题也成立,这叫做平面对偶原则。同样,在射影空间里,如果一个命题成立,那么它的对偶命题也成立,叫做空间对偶原则。研究在射影变换下二次曲线的不变性质,也是射影几何学的一项重要内容。如果就几何学内容的多少来说,射影几何学;仿射几何学;欧氏几何学,这就是说欧氏几何学的内容最丰富,而射影几何学的内容最贫乏。比如在欧氏几何学里可以讨论仿射几何学的对象(如简比、平行性等)和射影几何学的对象(如四点的交比等),反过来,在射影几何学里不能讨论图形的仿射性质,而在仿射几何学里也不能讨论图形的度量性质。

2016五年级几何图形计算练习题

五年级数学几何图形练习题 一、计算题 1、一块平行四边形的水稻田,底180厘米、高70米。它的面积是多少平方米?(画图及计算) 2、一个近似于梯形的林地,上底1.5千米、下底3.9千米、高0.9千米。这个林地的面积是多少平方千米?(画图及计算) 3、一个长方形的苗圃,长41米、宽19米,按每平方米育树苗5棵计算。这个苗 圃一概可以育多少棵树苗? 4、爷爷家有一块三角形的小麦地,底32米、高15米,今年一共收小麦134.4千 克。平均每平方米收小麦多少千克? 5、张大伯家有一块梯形的玉米地,上地120米、下底160米、高40米。预计每 公顷可以收玉米6000千克。这块玉米地一共可以收玉米多少千克?按每千克玉米0.8元计算,玉米收入有多少元?

6、爷爷家的一块长120米、宽30米的地,按照每平方米收稻谷0.92千克计算。 今年这块地收稻谷多少千克?收的稻谷的质量是小麦的2.4倍,今年收小麦多少千克? 7、一块三角形的果园,面积是0.84公顷,已知底是250米。它的高是多少米? 选择题 1、把一个平行四边形活动框架拉成一个长方形,那么现在的长方形与原来的平行四边形相比,周长(),面积() A 、变大B、变小C、没变D、无法比较 2、一个三角形底不变,高扩大6倍,面积() A、不变B扩大6倍C、扩大3倍D、缩小3倍 3、一个平行四边形的底是40厘米,高是20厘米,与它等底等高的三角形的面积是() A 、4平方分米 B 400平方分米C、8平方分米 4、下列说法中错误的是() A 、在6与7之间的小数有无数个B、0既不是正数也不是负数。 C 、生活中,一般把盈利用正数表示D、两个不同形状的三角形面积也一定不相等 5、图中阴影部分与空白部分相比( A、面积相等,周长相等 B、面积不等,周长相等。 C、面积相等,周长不等。 D、无法比较。 三、求下面图形的周长和面积。

浅析射影几何及其应用讲解

浅析射影几何及其应用 湖北省黄冈中学 一、概述 射影几何是欧几里得几何学的一个重要分支,研究的是在射影变换中图形所具有的性质。在高等数学中,射影几何的定义是根据克莱因的变换群理论与奥古斯特·费迪南德·莫比乌斯(1970-1868)的齐次坐标理论,这一部分已经涉及了群论和解析几何,但是这两位数学家对于射影几何的发展作出的巨大贡献是令人钦佩的。在本次综合性学习中小组成员对于射影几何的纯几何内容进行了探究,对以下专题进行了研究: 1、射影几何的基本概念及交比不变性 2、笛沙格定理(早期射影几何中最重要的定理之一) 3、对偶原理 4、二次曲线在射影几何上的应用 5、布列安桑定理和帕斯卡定理 6、二次曲线蝴蝶定理

二、研究过程 1、射影几何的基本概念及交比不变性 射影几何虽然不属于高考内容,射影几何与较为容易的中学几何具有更加抽象、难以理解的特点,但是射影几何所研究的图形的性质是极具有吸引力的,可以说是中学几何的一个延伸。 射影几何所研究的对象是图形的位置关系,和在射影变换下图形的性质。射影,顾名思义,就是在光源(可以是平行光源或者是点光源),图形保持的性质。在生活中,路灯下人的影子会被拉长,矩形和圆在光源照射下会出现平行四边形和椭圆的影子,图形的形状和大小发生了变化。然而,在这种变换中图形之间的有些位置关系没有变,比如,相切的椭圆和直线在变换之后仍相切。此外,射影几何最重要的概念之一——交比也不会发生改变。 在中学的几何中,我们认为两条平行的直线是不相交的。但是在射影几何中,我们可以规定一簇平行直线相交于平面上一个无穷远点,而通过这个点的所有直线是一簇有确定方向的平行直线。一条直线有且只有一个无穷远点,平面上方向不同的直线经过不同的无穷远点。所有这样的无穷远点构成了一条无穷远直线,同样在三维空间中可类似地定义出无穷远平面,这样就扩充了两个公理: 1、过两点有且只有一条直线 2、两条直线有且只有一个交点 这两条公理对普通点(即非无穷远点)和无穷远点均成立。这两条公

平面几何习题集大全

平面几何习题大全 下面的平面几何习题均是我两年来收集的,属竞赛围。共分为五种类型,1,几何计算;2,几何证明;3,共点线与共线点;4,几何不等式;5,经典几何。 几何计算-1 命题设点D是Rt△ABC斜边AB上的一点,DE⊥BC于点E,DF⊥AC于点F。若AF=15,BE=10,则四边形DECF的面积是多少? 解:设DF=CE=x,DE=CF=y. ∵Rt△BED∽Rt△DFA, ∴BE/DE=DF/AF <==> 10/y=x/15 <==> xy=150. 所以,矩形DECF的面积150. 几何证明-1 命题在圆接四边形ABCD中,O为圆心,己知∠AOB+∠COD=180.求证:由O向四边形ABCD所作的垂线段之和等于四边形ABCD的周长的一半。 证明(一) 连OA,OB,OC,OD,过圆心O点分别作AB,BC,CD,DA的垂线,垂足依次为P,Q,R,S。 易证ΔAPO≌ΔORD,所以DR=OP,AP=OR, 故OP+OR=DR+AP=(CD+AB)/2。 同理可得:OQ+OS=(DA+BC)/2。 因此有OP+OQ+OR+OS=(AB+BC+CD+DA)/2。

证明(二) 连OA,OB,OC,OD,因为∠AOB+∠COD=180°,OA=OD,所以易证 RtΔAPO≌RtΔORD,故得DR=OP,AP=OR, 即OP+OR=DR+AP=(CD+AB)/2。 同理可得:OQ+OS=(DA+BC)/2。 因此有OP+OQ+OR+OS=(AB+BC+CD+DA)/2。 几何不等式-1 命题设P是正△ABC任意一点,△DEF是P点关于正△ABC的接三角形[AP,BP,CP延长分别交BC,CA,AB于D,E,F],记面积为S1;△KNM是P点关于正△ABC的垂足三角形[过P 点分别作BC,CA,AB垂线交于K,N,M],记面积为S2。求证:S2≥S1 。 证明设P点关于正△ABC的重心坐标为P(x,y,z),a为正△ABC的边长,则正△ABC的面积为S=(a^2√3)/4。 由三角形重心坐标定义易求得: AD=za/(y+z),CD=ya/(y+z),CE=xa/(z+x),AE=za/(z+x),AF=ya/(x+y),BF=xa/(x+y). 故得: △AEF的面积X=AE*AF*sin60°/2=Syz/(z+x)(x+y); △BFD的面积Y=BF*BD*sin60°/2=Szx/(x+y)(y+z); △CDE的面积Z=CD*CE*sin60°/2=Sxy/(y+z)(z+x). 从而有S1=S-X-Y-Z=2xyzS/(y+z)(z+x)(x+y)。 因为P点是△KNM的费马点,从而易求得:

射影几何学

射影几何学 射影几何是研究图形的射影性质,即它们经过射影变换后,依然保持不变的图形性质的几何学分支学科。一度也叫做投影几何学,在经典几何学中,射影几何处于一种特殊的地位,通过它可以把其他一些几何学联系起来。 发展简况 十七世纪,当笛卡儿和费尔马创立的解析几何问世的时候,还有一门几何学同时出现在人们的面前。这门几何学和画图有很密切的关系,它的某些概念早在古希腊时期就曾经引起一些学者的注意,欧洲文艺复兴时期透视学的兴起,给这门几何学的产生和成长准备了充分的条件。这门几何学就是射影几何学。 基于绘图学和建筑学的需要,古希腊几何学家就开始研究透视法,也就是投影和截影。早在公元前200年左右,阿波罗尼奥斯就曾把二次曲线作为正圆锥面的截线来研究。在4世纪帕普斯的著作中,出现了帕普斯定理。 在文艺复兴时期,人们在绘画和建筑艺术方面非常注意和大力研究如何在平面上表现实物的图形。那时候,人们发现,一个画家要把一个事物画在一块画布上就好比是用自己的眼睛当作投影中心,把实物的影子影射到画布上去,然后再描绘出来。在这个过程中,被描绘下来的像中的各个元素的相对大小和位置关系,有的变化了,有的却保持不变。这样就促使了数学家对图形在中心投影下的性质进行研究,因而就逐渐产生了许多过去没有的新的概念和理论,形成了射影几何这门学科。 射影几何真正成为独立的学科、成为几何学的一个重要分支,主要是在十七世纪。在17世纪初期,开普勒最早引进了无穷远点概念。稍后,为这门学科建立而做出了重要贡献的是两位法国数学家——笛沙格和帕斯卡。

笛沙格是一个自学成才的数学家,他年轻的时候当过陆军军官,后来钻研工程技术,成了一名工程师和建筑师,他很不赞成为理论而搞理论,决心用新的方法来证明圆锥曲线的定理。1639年,他出版了主要著作《试论圆锥曲线和平面的相交所得结果的初稿》,书中他引入了许多几何学的新概念。他的朋友笛卡尔、帕斯卡、费尔马都很推崇他的著作,费尔马甚至认为他是圆锥曲线理论的真正奠基人。 迪沙格在他的著作中,把直线看作是具有无穷大半径的圆,而曲线的切线被看作是割线的极限,这些概念都是射影几何学的基础。用他的名字命名的迪沙格定理:“如果两个三角形对应顶点连线共点,那么对应边的交点共线,反之也成立”,就是射影几何的基本定理。 帕斯卡也为射影几何学的早期工作做出了重要的贡献,1641年,他发现了一条定理:“内接于二次曲线的六边形的三双对边的交点共线。”这条定理叫做帕斯卡六边形定理,也是射影几何学中的一条重要定理。1658年,他写了《圆锥曲线论》一书,书中很多定理都是射影几何方面的内容。迪沙格和他是朋友,曾经敦促他搞透视学方面的研究,并且建议他要把圆锥曲线的许多性质简化成少数几个基本命题作为目标。帕斯卡接受了这些建议。后来他写了许多有关射影几何方面的小册子。 不过迪沙格和帕斯卡的这些定理,只涉及关联性质而不涉及度量性质(长度、角度、面积)。但他们在证明中却用到了长度概念,而不是用严格的射影方法,他们也没有意识到,自己的研究方向会导致产生一个新的几何体系射影几何。他们所用的是综合法,随着解析几何和微积分的创立,综合法让位于解析法,射影几何的探讨也中断了。 射影几何的主要奠基人是19世纪的彭赛列。他是画法几何的创始人蒙日的学生。蒙日带动了他的许多学生用综合法研究几何。由于迪沙格和帕斯卡等的工作被长期忽视了,前人的许多工作他们不了解,不得不重新再做。 1822年,彭赛列发表了射影几何的第一部系统著作。他是认识到射影几何是一个新的数学分支的第一个数学家。他通过几何方法引进无穷远虚圆点,研究了配极对应并用它来确立对偶原理。稍后,施泰纳研究了利用简单图形产生较复杂图形的方法,线素二次曲线概念也是他引进的。为了摆脱坐标系对度量概念的依赖,施陶特通过几何作图来建立直线上的点坐标系,进而使交比也不依赖于长度概念。由于忽视了连续公理的必要性,他建立坐标系的做法还不完善,但却迈出了决定性的一步。 另—方面,运用解析法来研究射影几何也有长足进展。首先是莫比乌斯创建一种齐次坐标系,把变换分为全等,相似,仿射,直射等类型,给出线束中四条线交比的度量公式等。接着,普吕克引进丁另一种齐次坐标系,得到了平面上无穷远线的方程,无穷远圆点的坐标。他还引进了线坐

几何计算题选讲

几何计算题选讲 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

江苏地区中考数学复习几何计算题选讲 几何计算题历年来是中考的热点问题。几何计算是以推理为基础的几何量的计算,主要有线段 与弧的长度计算、角和弧的度数计算、三角函数值的计算、线段比值的计算以及面积、体积的计算,从图形上分类有:三角形、四边形、多边形以及圆的有关计算。解几何计算题的常用方法有:几何法、代数法、三角法等。 一、三种常用解题方法举例 例1. 如图,在矩形ABCD 中,以边AB 为直径的半圆O 恰与对边CD 相切于T , 与对角线AC 交于P ,PE ⊥AB 于E ,AB=10,求PE 的长. 解法一:(几何法)连结OT ,则OT ⊥CD ,且OT=21 AB =5 BC=OT=5,AC=25100+=55 ∵BC 是⊙O 切线,∴BC 2 =CP ·CA. ∴PC=5,∴AP=CA-CP=54. ∵PE ∥BC ∴ AC AP BC PE = ,PE=5 55 4×5=4. 说明:几何法即根据几何推理,由几何关系式进行求解的方法,推理时特别要 注意图形中的隐含条件. 解法二:(代数法) ∵PE ∥BC ,∴AB AE CB PE =. ∴2 1 ==AB CB AE PE . 设:PE=x ,则AE=2 x ,EB=10–2 x . 连结PB. ∵AB 是直径,∴∠APB=900. 在Rt △APB 中,PE ⊥AB ,∴△PBE ∽△APE . ∴21==AE PE EP EB .∴EP=2EB ,即x=2(10–2x ). 解得x =4. ∴PE=4. 说明:代数法即为设未知数列方程求解,关键在于找出可供列方程的相等关系,例如:相似三角形中的线段比例式;勾股定理中的等式;相交弦定理、切割线定理中的线段等积式,以及其他的相等关系. 解法三:(三角法) 连结PB ,则BP ⊥AC.设∠PAB=α 在Rt △APB 中,AP=10COS α, 在Rt △APE 中,PE=APsin α, ∴PE=10sin αCOS α. 在Rt △ABC 中, BC=5,AC=55.∴sin α= 5 55 55= , COS α= 5 5 25 510= .∴PE=10×55255?=4.

中考数学专题1 几何计算专题

中考系列复习——几何计算专题 一、中考要求 证明与计算,是几何命题的两大核心内容。几何计算题,通常需要借助几何中的概念、定义、定理、公理等知识,求解相关几何元素的数值。在解题时,要求能准确灵活地选用有关知识,采用各种数学方法(既可以是几何方法,也可以是代数方法),加以求解。为了能在有限的时间内,迅速准确地解题,就需要在平时练习中,强化基础题,多采用一题多解、优化方案等训练方法,积累经验,达到熟能生巧的效果。 二、知识网络图 如图1所示: 图 1 三、基础知识整理 几何计算题的重点比较分散,从知识点本身来说,解直角三角形的知识具有计算题得天独厚的优势,所以涉及解直角三角形的试题大部分是计算题。但是,在实际命题时,更多的是圆的有关计算题和四边形的计算题,它们与其它几何知识都有密切的联系,能在主要考查一个知识点的同时,考查其他知识点。就题型而言,各种题型中都能见到几何计算题的身影,比如线与角计算题、三角形计算题、相似形计算题等等,综合性计算题则更多出现在中档解答题和压轴题中。 需要说明的是,根据中考命题改革的大趋势,几何计算题的难度比以前有所下降,更突出在题目的内容、形式、解法上有所创新,所以,我们不必把重点放到一些繁难的计算题上,而应扎实学好基础知识,多分析解题使用到的数学思想方法,比如方程与函数、分类讨论、转化构造等数学思想方法,重视数学知识的实际应用。 四、考点分析(所选例题均为2004年中考试题) 1、线与角计算题 所用知识主要有线段的中点、角平分线、线段或角的和差倍分、余角、补角的基本概念的定义,以及角的计量、对顶角性质、平行线性质等。难度不大,可直接利用上述定义、

射影几何对初等几何教学的指导.

前言 射影几何对初等几何教学的指导,不仅表现在提高数学思想与观点上,还 直接表现在对初等几何图形性质的研究中。由射影几何、仿射几何和欧氏几何 三者的关系,我们知道,欧氏几何为仿射几何及射影几何的子几何,因此可以 通过图形的仿射性质和射影性质,指导研究初等几何中的一些问题。完全四点 (线)形的调和性是射影几何的重要不变性,它在射影几何中占有重要地位, 不仅如此,它在初等几何中也有广泛应用。由于它跟初等几何课程有紧密的联 系,它对未来中学数学教师在几何方面基础的培养、观点的提高、思维的灵活、 方法的多样起着重要作用,从而有助于中学数学教学质量的提高和科研能力的 培养,所以我尽量从几何的概念出发,运用活生生的几何直观,作为简化思维 过程进行高度概括总结的武器。经验表明,学了射影几何之后,学生对几何的 学习兴趣提高了很多。所以紧密联系中学数学教学,是本论文的着重点之一。 1.完全四点(线)形的定义及性质 1.1 完全四点形的定义 定义1 平面内无三点共线的四点及其两两连线所构成的图形称为完全四点 形(完全四角形),记作完全四点形ABCD。 定义1′完全四点形含四点六线,每一点称为顶点,每一直线称为边,不过 同一顶点的两边称为对边,六边分为三对,每一对对边的交点称为对边点(对角 点),三个对边点构成的三角形称为对角三角形,如图1。 图1 图2 定义2:平面内无三线共点的四直线及其两两交点所构成的图形。称为完全四线 形(完全四边形),记作完全四线形abcd。 定义2′:完全四线形abcd含四线六点,每一直线称为边,每一点称为顶点,不在

同一边上的两个顶点称为对顶,六个顶点分为三对,每一对对顶的连线称为对顶线(对角线),三条对顶线构成的三角形称为对角三角形,如图2。 1.2 完全四点(线)形的调和性质 定理1:设s、s′是完全四点形ABCD的一对对边,它们的交点是点X,若X与其它二对边点的连线是t、t′,则有 (ss′, tt′) =-1。 图3 证明:如图3,根据定理[1] 1.10,有 (AB,PZ)=(DC,PZ) 同理(DC,QZ)=(BA,PZ) ∴(AB,PZ)=(BA,PZ) 但是(BA, PZ)= 1 (,) AB PZ ∴2 (,) AB PZ=1 但(AB,PZ)≠1 因此(AB,PZ)=-1 由定理[2] 1.9,有 (AB,CD)=(ab,cd) (ss′,tt′)=-1. 推论1:在完全四点形的对边三点形的每条边上有一组调和共轭点,其中两个点是对边点,另两个点是这条边与通过第三个对边点的一对对边的交点。 证明:如图3,根据定理[1] 1.10,有 (AB,PZ)=(DC,QZ) 同理(ML,YZ)=(DC,QZ),(DC,QZ)=(BA,PZ) ∴(AB,PZ)=(ML,YZ)=(BA,PZ)

几何计算题参考答案.

几何计算题 1.如图6,矩形纸片ABCD 的边长AB=4,AD=2.翻折矩形纸片,使点A 与点C 重合,折痕分别交AB 、CD 于点E 、F , (1)在图6中,用尺规作折痕EF 所在的直线(保留作图痕迹,不写作法),并求线段EF 的长; (2)求∠EFC 的正弦值. 解:(1) 作图正确 ∵矩形ABCD , ∴90B ∠=,BC AD =. ∵在Rt △ABC 中,AB =4,AD =2 ∴由勾股定理得:AC =设EF 与AC 相交与点O , 由翻折可得 AO CO ==90AOE ∠=. ∵在Rt △ABC 中, tan 1BC AB ∠=, 在Rt △AOE 中,tan 1EO AO ∠=. ∴ EO BC AO AB = , ∴2EO =. 同理:2FO = . EF =. (2)过点E 作EH CD ⊥垂足为点H , 2EH BC == ∴sin 5EH EFC EF ∠= == 2、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE . (1)求证:ABE △DFA ≌△; (2)如果10AD AB =,=6,求sin EDF ∠的值. D C B A D A B C E F

3、如图7,△ABC 中,AB=AC , 4 cos ∠(1) 求AB 的长; (2) 求ADC ∠的正切值. 解:(1)过点 A 作AH ⊥BC ,垂足为 ∵AC A B = ∴B C HC BH 2 1==设x CD AC AB === ∵6=BD ∴6+=x BC , 2 6+=x BH 在Rt △AHB 中,AB BH ABC =∠cos ,又5 4 cos =∠ABC ∴ 5 426 =+x x 解得:10=x ,所以10=AB (2)82 1===BC HC BH 2810=-=-=CH CD DH 在Rt △AHB 中,222AB BH AH =+,又10=AB ,∴6=AH 在Rt △AHD 中,32 6tan ===∠DH AH ADC ∴ADC ∠的正切值是3 4、如图,AB 为⊙O 的直径,点C 在⊙O 上,过点C 作⊙O 的切线交AB 的延长线于点D ,已知∠D =30°. (1)求∠A 的度数; (2)若点F 在⊙O 上,CF ⊥AB ,垂足为E ,CF =34,求图中阴影部分的面积. 解:(1) 连结OC ,∵CD 切⊙O 于点C ,∴∠OCD =90°∵∠D =30°,∴∠COD =60°. ∵OA=OC ,∴∠A=∠ACO=30°. (2)∵CF ⊥直径AB , CF =34,∴CE = ∴在Rt △OCE 中,OE =2,OC =4. ∴2 BOC 6048 3603 S ππ?扇形= =,EOC 1 22 S ??=∴EOC BOC S S S π阴影扇形8=-=-3

初中几何题解题技巧带例题

初中几何题解题技巧带例 题 Newly compiled on November 23, 2020

初中几何题解题技巧 在小学阶段,我们学过许多关于几何图形面积计算的知识。在计算几何图形面积时,除了能正确运用面积计算公式外,还需要掌握一定的解题技巧。 一、割补法割补法是指将一些不规则的、分散的几何图形经过分割、移补,拼成一个规则的几何图形,从而求出面积的方法。例1如图1,已知正方形的边长是6厘米,求阴影部分的面积。分析与解:如图2所示,连接正方形的对角线,可以将阴影I分割成I1和I2两部分,然后将阴影I1移至空白I1′处,将阴影I2移至空白I2′处,这样阴影部分就拼成了一个等腰直角三角形。要求阴影部分的面积,只要求出这个等腰直角三角形的面积即可,列式为:6×6÷2=18(平方厘米)。练一练1:如图3,已知AB=BC=4厘米,求阴影部分的面积。二、平移法平移法是指把一些不规则的几何图形沿水平或垂直方向移动,拼成一个规则的几何图形,从而求出面积的方法。例2如图4,已知长方形的长是12厘米,宽是6厘米,求阴影部分的面积。分析与解:如图5所示,连结长方形两条长的中点,把阴影部分分成左右两部分,然后把左边的阴影部分向右平移至空白处,这样阴影部分就转化成了一个边长为6厘米的正方形。要求阴影部分的面积,只要求出这个正方形的面积,列式为:6×6=36(平方厘米)。练一练2:如图6,求阴影部分的面积(单位:分米)。 三、旋转法旋转法是指把一些几何图形绕某一点沿顺时针(或逆时针)方向转动一定的角度,使分散的、不规则的几何图形合并成一个规则的几何图形,从而求出面积的方法。例3如图7,已知ABC是等腰直角三角形,斜边AB=20厘米,D是AB的中点,扇形DAE和DBF都是圆的,求阴影部分的面积。分析与解:如图8所示,把扇形DBF绕D点沿顺时针方向旋转180°后,扇形DBF与扇形DAE就合并成了一个半径为10厘米的半圆,两个空白三角形也合并成了一个直角边为10厘米的等腰直角三角形,要求阴影部分的面积,只要用半圆的面积减去空白部分的面积即可,列式为:×(20÷2)2÷2-(20÷2)2÷2=107(平方厘米)。练一练3:如图9,在直角三角形ABC中有一个正方形BDEF,E点正好落在直角三角形的斜边AC上,已知AE=8厘米,EC=12厘米,求图中阴影部分的面积。 四、等分法等分法是指把一个几何图形平均分成若干个完全相同的小图形,然后根据大图形与小图形面积之间的倍数关系进行求解的方法。例4如图10,三角形ABC的面积是48平方分米,点D、E、F与G、H、I分别是三角形ABC与三角形DEF各边的中点。求阴影部分的面积。分析与解:通过作辅助线,可以将三角形ABC平均分成16个完全一样的小三角形(如图11所示),阴影部分为其中3个小三角形,即阴影部分的面积占三角形ABC 的面积的。阴影部分的面积为:48×=9(平方分米)。练一练4:如图12所示,长方形ABCD的长是10厘米,宽是6厘米,E、F分别是AB和AD的中点,求阴影部分的面积。五、轴对称法轴对称法是指根据轴对称图形的特点,在原图上再构造一个完全相同的图形,使原图的面积扩大2倍,然后通过计算新图形的面积来求出原图面积的方法。例5如图13,

位置几何──射影几何学

位置几何──射影几何学 射影几何是研究图形的射影性质,即它们经过射影变换后,依然保持不变的图形性质的几何学分支学科。一度也叫做投影几何学,在经典几何学中,射影几何处于一种特殊的地位,通过它可以把其他一些几何学联系起来。 射影几何的发展简况 十七世纪,当笛卡儿和费尔马创立的解析几何问世的时候,还有一门几何学同时出现在人们的面前。这门几何学和画图有很密切的关系,它的某些概念早在古希腊时期就曾经引起一些学者的注意,欧洲文艺复兴时期透视学的兴起,给这门几何学的产生和成长准备了充分的条件。这门几何学就是射影几何学。 基于绘图学和建筑学的需要,古希腊几何学家就开始研究透视法,也就是投影和截影。早在公元前200年左右,阿波罗尼奥斯就曾把二次曲线作为正圆锥面的截线来研究。在4世纪帕普斯的著作中,出现了帕普斯定理。 在文艺复兴时期,人们在绘画和建筑艺术方面非常注意和大力研究如何在平面上表现实物的图形。那时候,人们发现,一个画家要把一个事物画在一块画布上就好比是用自己的眼睛当作投影中心,把实物的影子影射到画布上去,然后再描绘出来。在这个过程中,被描绘下来的像中的各个元素的相对大小和位置关系,有的变化了,有的却保持不变。这样

就促使了数学家对图形在中心投影下的性质进行研究,因而就逐渐产生了许多过去没有的新的概念和理论,形成了射影几何这门学科。 射影几何真正成为独立的学科、成为几何学的一个重要分支,主要是在十七世纪。在17世纪初期,开普勒最早引进了无穷远点概念。稍后,为这门学科建立而做出了重要贡献的是两位法国数学家──笛沙格和帕斯卡。 笛沙格是一个自学成才的数学家,他年轻的时候当过陆军军官,后来钻研工程技术,成了一名工程师和建筑师,他很不赞成为理论而搞理论,决心用新的方法来证明圆锥曲线的定理。1639年,他出版了主要著作《试论圆锥曲线和平面的相交所得结果的初稿》,书中他引入了许多几何学的新概念。他的朋友笛卡尔、帕斯卡、费尔马都很推崇他的著作,费尔马甚至认为他是圆锥曲线理论的真正奠基人。 迪沙格在他的著作中,把直线看作是具有无穷大半径的圆,而曲线的切线被看作是割线的极限,这些概念都是射影几何学的基础。用他的名字命名的迪沙格定理:“如果两个三角形对应顶点连线共点,那么对应边的交点共线,反之也成立”,就是射影几何的基本定理。 帕斯卡也为射影几何学的早期工作做出了重要的贡献,1641年,他发现了一条定理:“内接于二次曲线的六边形的三双对边的交点共线。”这条定理叫做帕斯卡六边形定理,也是射影

【小学数学一题多解系列】几何计算题-小学数学网-学而思教育

【小学数学一题多解系列】几何计算题-小学数学网-学而思 教育 例116 有两个完全相同的长方体恰好拼成了一个正方体,正方体的表面积是30平方厘米.如果把这两个长方体改拼成一个大长方体,那么大长方体的表面积是多少? (北京市西城区) 【分析1】因为正方体有6个相等的面,所以每个面的面积是30÷6=5平方厘米.拼成一个大长方体要减少一个面的面积,同时增加两个面的面积.由此可求大长方体的表面积. 【解法1】30-30÷6+30÷6×2 =30-5+10=35(平方厘米). 或:30+30÷6×(2-1) =30+5=35(平方厘米). 【分析2】因为拼成大长方体后,表面积先减少一个面的面积,同时又增加两个面的面积,实际上增加了一个面的面积. 【解法2】30+30÷6=30+5=35(平方厘米). 【分析3】把原来正方体的表面积看作“1”.先求出增加的一个面是原来正方体表面积的几分之几,再运

用分数乘法应用题的解法求大长方体的表面积. 【分析4】因为原来正方体的表面积是6个小正方形面积的和,拼成大长方体的表面积是7个小正方形面积的和,所以可先求每个小正方形的面积,再求7个小正方形的面积. 【解法4】30÷6×(6+1) =30÷6×7=35(平方厘米). 答:大长方体的表面积是35平方厘米. 【评注】比较以上四种解法,解法2和解法3是本题较好的解法. 例117 大正方体棱长是小正方体棱长的2倍,大正方体体积比小正方体的体积多21立方分米,小正方体的体积是多少? (北京市东城区) 【分析1】把小正方体的体积看作“1倍”,那么大正方体的体积是小正方体的2×2×2=8(倍),比小正方体多8-1=7(倍).由此本题可解. 【解法1】21÷(2×2×2-1) =21÷7=3(立方分米). 【分析2】把小正方体的棱长看作“ 1”,

相关主题