搜档网
当前位置:搜档网 › 任意波形发生器方案

任意波形发生器方案

任意波形发生器方案
任意波形发生器方案

任意波形发生器的设计方案

12电信1 张晓航 1200301108 一,选择课题:

电子测量仪器设计——任意波形发生器设计

二,设计要求:

能产生方波、三角波、正弦波、锯齿波信号。主要技术指标:

(1)输出频率范围100HZ~1KHZ、1~10KHZ

(2)输出电压:方波UPP=6V,三角波UPP=6V,正弦波UPP>1V,锯齿波UPP=6V。

三,仪器仪表清单:

1.直流稳压电源 1台 2.双踪示波器 2台

3.运放741(LM324n)*3 4.二极管 1N4154*2 1N4680*2

5.电位器50K*2 1K*1 6.电容1μF 47nF *1

7.电阻 100k 10k 5k 3k 4k 96k若干 8.面包板 1块

9.剪刀1把 10.仪器探头线 2根

11.电源线若干

四,设计考虑因素:

信号发生器可以通过多种方法设计产生,但是考虑到如果使用芯片去完成可能所需要的成本比较高,但如果用单片机等则设计太复杂,还需要嵌入相应代码,有点大材小用,综合多方面的因素考虑该方案是可行性比较高,性价比比较高的一种方案,同时,能够让我对于一些专业基础知识有了更深的了解。元器件可重复利用,符合现在可持续发展的绿色思想。

该电路具有结构、思路简单,运行时性能稳定且能较好的符合设计要求,对原器件要求不高,且成本低廉、调整方便.

五,函数发生器的总方案:

为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波(锯齿波)—正弦波函数发生器的设计方法。

本课题中函数发生器电路组成框图如下所示:

函数发生器电路组成框图

由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。

方波、三角波、正弦波、锯齿波信号发生器的原理框图六,模拟仿真:

Multisim 12中电路仿真

两款函数任意波形发生器产品简介

是德科技 30 MHz 函数/任意波形发生器 33521A 单通道函数/任意波形发生器 33522A 双通道函数/任意波形发生器 技术资料 ?????????????????? ?????????????????? ???? (alias-protected) ?????? ??

33500 系列函数/任意波形发生器 实现更出色的精度和灵活性?わょ??????????????????わ???????????????????????????? Keysight 33500 ????/??????????????????????????????????????????????????⒔????? 10 ???????????????????????????????????? 主要特性 —30 MHz ??????? ??????????? —???? 40 ps???????? 0.04%???????????—250 MSa/s ???? 16 ??? ????????????????? —????????????????????????????????? —??? 33522A ?????勚??????ㄩ? —?㈨ 1 MSa ??▌╈????㈨ 16 MSa ▌╈???▌╈???? ???? —?? LXI C ??? —????????????? TFT ?????????????????????????? —??? BenchL ink Waveform Builder Pro ????????????信号保真度 ???????????????? ??????????????? ??????????????? ??????????????? ????? 33500 ????/??? ??????????????? ??????? 40 ps ?⒔??? ???/??????? 10 ???? ??????????? 16 ??? ???? 0.04% ???????? ▕ 250 MSa/s (16 ?) ??????? ????????????▌╈?? ????????????⒋??? ???????????????? ???????????? 灵活的信号生成 33521A ? 33522A ???????? ??????????????? ? (DTMF) ????? 33522A ??? ?????????????ㄩ?? ???????勚???????? ??????????????(? ???????) ??????⒋? ???????????????? ???????????⒋??? 逐点波形 33500??????????? ???????????? (alias- protected) ?????????? ?????????????? ???33521A ? 33522A ??? ? 30 MHz ???????⒋?? ??????????????? ??????????????? ???????????????? ??????????????? ???????????????? ????????? 用户界面 ????????????? TFT ? ???????????????? ???????????????? ?????? 33500 ?????? LXI C ??????? USB 2.0 ? 10/100 Base-T ???????????㎡? ???? PC ?????????? ???????????????? ?? GPIB ????????? 可选 33503A BenchLink Waveform Builder Pro 软件 Benchlink Waveform Builder Pro ? ??????????????? ??????????????? ??? Microsoft Windows ???? ???????????????? ???????????????? ??????????????? ???????????????? ?╖????????㎡???? ??????????????? ??????????????? BenchLink Waveform Builder Pro? ???????????????? ???????????????? ?????╱????????? ㎡??????????????? ??????????????? ??? 30 ??????????? https://www.sodocs.net/doc/54902529.html,/? nd/33503

利用Labview实现任意波形发生器的设计

沈阳理工大学课程设计专用纸No I

1 引言 波形发生器是一种常用的信号源,广泛应用于通信、雷达、测控、电子对抗以及现代化仪器仪表等领域,是一种为电子测量工作提供符合严格技术要求的电信号设备。随着现代电子技术的飞速发展,现代电子测量工作对波形发生器的性能提出了更高的要求,不仅要求能产生正弦波、方波等标准波形,还能根据需要产生任意波形,且操作方便,输出波形质量好,输出频率范围宽,输出频率稳定度、准确度及分辨率高,频率转换速度快且频率转换时输出波形相位连续等。可见,为适应现代电子技术的不断发展和市场需求,研究制作高性能的任意波形发生器十分有必要,而且意义重大。 波形发生器的核心技术是频率合成技术,主要方法有:直接模拟频率合成、锁相环频率合成(PLL),直接数字合成技术(DDS)。 传统的波形发生器一般基于模拟技术。它首先生成一定频率的正弦信号,然后再对这个正弦信号进行处理,从而输出其他波形信号。早期的信号发生器大都采用谐振法,后来出现采用锁相环等频率合成技术的波形发生器。但基于模拟技术的传统波形发生器能生成的信号类型比较有限,一般只能生成正弦波、方波、三角波等少数的规则波形信号。随着待测设备的种类越来越丰富,测试用的激励信号也越来越复杂,传统波形发生器已经不能满足这些测试需要,任意波形发生器(AWG)就是在这种情况下,为满足众多领域对于复杂的、可由用户自定义波形的测试信号的日益增长的需要而诞生的。随着微处理器性能的提高,出现了由微处理器、D/A以及相关硬件、软件构成的波形发生器。它扩展了波形发生器的功能,产生的波形也比以往复杂。实质上它采用了软件控制,利用微处理器控制D/A,就可以得到各种简单波形。但由于微处理器的速度限制,这种方式的波形发生器输出频率较低。目前的任意波形发生器普遍采用DDS(直接数字频率合成)技术。基于DDS技术的任意波形发生器(AWG)利用高速存储器作为查找表,通过高速D/A转换器对存储器的波形进行合成。它不仅可以产生正弦波、方波、三角波和锯齿波等规则波形,而且还可以通过上位机编辑,产生真正意义上的任意波形。

医院水处理方案

医院污水处理方案 第一章、二氧化氯处理医院污水的机理 一、综合性医院的污水含菌分析 1、多种病菌、病毒和寄生虫卵; 2、肝炎病毒; 3、结核杆菌; 4、病原性细菌; 5、医院污水中含酚量超标(医院常用的消毒剂、药剂残留或废弃药品造成)。 二、二氧化氯处理医院污水的机理 二氧化氯是一种黄绿色的气体,易溶于水,在水中的溶解度约为2900mg/L。二氧化氯中的氯以正四价存在,其活性可为氯的2.5倍,经科学研究证实,二氧化氯对大肠杆菌、细菌、芽孢、病毒及藻类均有极好的杀灭作用。其机理是:二氧化氯对细胞壁有较好的吸附和穿透作用,可有效地氧化细胞内含巯氢的酶,抑制微生物蛋白质的合成。二氧化氯的杀菌能力和在水中的稳定性均优于氯气等其它消毒剂,二氧化氯对医院污水中的某些化学物质可以有效地氧化,如酚、氰、硫及产生臭味的物质硫醇、仲胺、叔胺等,改善水质及除臭除味。 三、设备介绍 HB系列二氧化氯发生器由供料、反应、吸收、温控及残液处理等几大系统组成。采用高新技术和化学反应负压曝气(多级)新工艺制取二氧化氯消毒液。 该设备的突出优点是实现了无动力连续运行,自动化程度高,化学反应完全、发生能力强,产率高,无残液,避免了二次污染。 设备运行安全可靠,故障率低,使用寿命长;操作维护简单,不需专人值守,定期加足药剂即可长时间运行,操作人员只需定时开启或关闭阀门,就可控制设备正常运行。 设备投资省、运行费用低,处理每吨医院污水不足0.12元。 设备结构合理,外形美观,占地面积小,化学法二氧化氯发生器是目前用于医院污水消毒处理的理想设备。第二章、治理方案 一、设计依据 1、由贵院提供的污水水质、用水量等资料; 2、《医疗机构水污染物排放标准》(GB18466—2005); 3、《医院污水处理设计规范》(CECS07:88); 4、《建筑给水排放设计规范》(GBJ15—88): 二、设计原则

DSP任意波形信号发生器毕业设计

目录 摘 要 (2) Abstract (3) 1 绪论 (4) 1.1概述 (4) 1.2选题的目的、意义 (4) 1.3 选题的背景 (5) 1.4 本文所研究的内容 (6) 2 波形信号发生器的原理及方案选择 (7) 2.1任意波形信号发生器的原理 (7) 2.1.1 直接模拟法 (7) 2.1.2 直接数字法 (7) 2.2 任意波形发生器的设计方案 (9) 2.2.1 查表法 (9) 2.2.2计算法 (9) 2.2.3传统方法 (10) 3 基于DSP 5416的任意波形信号发生器的软件设计 (12) 3.1 TMS320C5416的开发流程 (12) 3.2软件开发环境 (13) 3.3任意波形信号发生器的软件编程 (14) 3.3.1 计算法实现波形输出 (14) 3.3.2 D/A转换 (15) 3.3.3波形控制及软件设计流程图 (16) 3.4参数的设定 (18) 4 基于DSP 5416的任意波形信号发生器的硬件设计 (20) 4.1 TMS320VC5416开发板 (20) 4.2 TMS320VC5416实验箱的连接 (23) 4.3 波形信号发生器的硬件测试过程 (23) 5 任意波形信号发生器展望 (28) 结束语 (29) 致谢 (30) 参考文献 (31)

摘 要 任意波形发生器是信号源的一种,它是具有信号源所具有的特点,更因它高的性能优势而倍受人们青睐。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在各种实验应用和试验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。 随着无线电应用领域的扩展,针对广播、电视、雷达、通信的专用信号发生器获得了长足的发展,表现在载波调制方式的多样化,从调幅、调频、调相到脉冲调制。如果采用多台信号发生器获得测量信号显然是很不方便的。因此需要任意波形发生器(Arbitrary Waveform Generator,AWG),使其能够产生任意频率的载频信号和多种载波调制信号。 目前我国已经开始研制任意波形发生器,并取得了可喜的成果。但总的来说,我国任意波形发生器还没有形成真正的产业。并且我国目前在任意波形发生器的种类和性能都与国外同类产品存在较大的差距,因此加紧对这类产品的研制显得迫在眉睫。 本文主要工作分为以下几个方面:首先,介绍研制任意波形信号发生器的目的、意义、背景,以及利用CCS仿真工具用软件实现任意波形信号发生器的的过程 ;之后,对硬件的连接及测试结果作介绍;最后,简要的对任意波形信号发生器的未来作一下展望。 关键词:DSP,任意波形信号发生器,DDS

国产函数、任意波形发生器大比拼

国产函数、任意波形发生器大比拼 典型的DDS原理框图如图所示。 其实质是数模转换,仍然要遵循奈奎斯特采样定理。即输出的频率不超过采样率的一半,事实上商用的采用DDS技术的函数/任意波形发生器由于受到低通滤波器设计以及杂散分布的影响限制,输出波形的最高频率均不超过采样率的40%。相对于直接模拟频率合成,锁相频率合成,其优点如下: ·频率分辨率高。若时钟频率不变,DDS频率分辨率仅由相位累加器位数来决定,也就是理论上的值越大,就可以得到足够高的频率分辨率。目前,大多数DDS的分辨率在1Hz数量级,许多都小于1mHz甚至更小,这是其他频率合成器很难做到的。 ·工作频带较宽。根据Nyquist定律,只要输出信号的最高频率分辨率分量小于或等于fclk/2就可以实现。而实际当中由于受到低通滤波器设计以及杂散分布的影响限制,仅能做到40% fclk左右。 ·超高速频率转换时间。DDS是一个开环系统,无任何反馈环节,这种结构使得DDS的频率转换时间极短。DDS 的频率转换时间可达到纳秒数量级,比使用其它的频率合成方法都要小几个数量级。 ·相位变化连续。改变DDS输出频率,实际上改变的是每一个时钟周期的相位增量,相位函数的曲线是连续的,只是在改变频率的瞬间其频率发生了突变,因而保持了信号相位的连续性。 ·具有任意输出波形的能力。只要ROM中所存的幅值满足并且严格遵守Nyquist定律,即可得到输出波形。例如三角波、锯齿波和矩形波。 ·具有调制能力。由于DDS是相位控制系统,这样也就有利于各种调制功能。 同时DDS合成技术也有一些固有的缺点,如下: ·杂散分量丰富。这些杂散分量主要由相位舍位、幅度量化和DAC的非理想特性所引起。因为在实际的DDS电路中,为了达到足够小的频率分辨率,通常将相位累加器的位数取大。但受体积和成本的限制,即使采用先进的存储方法,ROM的容量都远小于此,因此在对ROM寻址时,只是用相位累加器的高位去寻址,这样不可避免地引起误差,即相位舍位误差。另外,一个幅值在理论上只能用一个无限长的二进制代码才能精确表示,由于ROM的存储能力,只采用了有限比特代码来表示这一幅值,这必然会引起幅度量化误差。另外,DAC的有限分辨率以及非线性也会引起误差。所以对杂散的分析和抑制,一直是国内外研究的特点,因为它从很大程度上决定了DDS的性能。 ·频带受限。由于DDS内部DAC和ROM的工作速度限制,使得DDS输出的最高频率有限。目前市场上采用CMOS、TTL等工艺制作的DDS芯片工作频率一般在几十MHz至几百MHz左右。但随着高速GaAs器件的出现,频带限制已明显改善,芯片工作频率可达到2GHz范围左右。 以上摘自:《现代DDS的研究进展与概述》一文,https://www.sodocs.net/doc/54902529.html,/event/emag/20080226.htm。 将DDS应用于波形发生器,能非常方便的产生任意波形。一般除了具备常规函数发生器所具备的正弦波、方波、锯齿波、脉冲、噪声外,还有指数上升、指数下降、Sinc波、心电图波、直流,以及地震波等任意波形。能采用直接在仪器上手动编辑或windows 下软件编辑的方式产生任意波形,用于模拟电路或应用环境中可能发生的情况,此外还具备非常丰富的调制功能,甚至有些调制功能是以往只能在高端信号源上才能看到的。 下面找出主要以国产厂商为主的函数/任意波形发生器做一个对比,以此来了解国内DDS的应用水平,并给出一个大概的选购指南,以便您在需要的时候能够快捷的找到合手的信号源。Agilent在很早之前就推出了33200系列

使用任意波形发生器-Tektronix

使用任意波形发生器 创建无线信号 入门手册

使用任意波形发生器创建无线信号入门手册 2 https://www.sodocs.net/doc/54902529.html,/signal_generators

使用任意波形发生器创建无线信号 入门手册 目 录 摘要??????????????????????????????????????????????4简介??????????????????????????????????????????????4无线应用与数字调制??????????????????????????????????????5-12无线发射面临的挑战?????????????????????????????????????5为什么要数字调制??????????????????????????????????????6什么是数字调制???????????????????????????????????????7数字调制应用????????????????????????????????????????12数字无线测试?????????????????????????????????????????12-19发射机-I-Q调制器测试???????????????????????????????????13 IF滤波器效率和损伤测试???????????????????????????????????14发射机-RF功率放大器线性度?????????????????????????????????15接收机-IF解调器测试????????????????????????????????????16接收机-RF功能测试????????????????????????????????????17接收机-平衡器特性评估???????????????????????????????????18接收机-干扰灵敏度?????????????????????????????????????18 RF频谱环境仿真???????????????????????????????????????19使用任意波形发生器(AWG)生成调制信号????????????????????????????19-25生成基带I-Q信号??????????????????????????????????????19 IF生成???????????????????????????????????????????20 RF生成???????????????????????????????????????????21编译复合信号????????????????????????????????????????23回绕式考虑?????????????????????????????????????????24展望??????????????????????????????????????????????26 https://www.sodocs.net/doc/54902529.html,/signal_generators 3

任意波形发生器

基于CPLD和单片机的任意波形发生器设计 在电子工程设计与测试中,常常需要一些复杂的、具有特殊要求的信号,要求其波形可任意产生,频率方便可调。通常的信号产生器难以满足要求,市场上出售的任意信号产生器价格昂贵。结合实际需要,我们设计了一种任意波形发生器。电路设计中充分利用MATLAB的仿真功能,将希望得到的波形信号在MATLAB中完成信号的产生、抽样和模数转换,并将得到的数字波形数据存放在数据存储器中,通过单片机和CPLD控制,将波形数据读出,送入后向通道进行A/D转换和放大处理后得到所需的模拟信号波形。利用上述方法设计的任意波形发生器,信号产生灵活方便、功能扩展灵活、信号参数可调,实现了硬件电路的软件化设计。具有电路结构简单、实用性强、成本低廉等优点。 任意波形发生器的设计思想,是利用MATLAB的强大仿真功能,方便、快捷的生成给定频率、周期、脉宽的任意波形数据;并将数据预存在数据存储器中。在单片机控制下,利用CPLD电路产生地址读出数据,送入D/A转换电路,得到所需的任意波形信号。系统结构框图如图1;图中分频电路和地址发生器由CPLD实现。 图1 系统框图 单片机采用AT89C52芯片,通过软件编程产生所要求的控制信号。主要的控制参数包括:信号周期、脉宽;分频电路的开始信号、地址发生器的复位信号;E2PROM的选通信号;D/A转换电路的选通信号。在具体电路中,端口P1.0控制分频电路的启动、P1.1控制地址发生器的清零,P2.0控制 28C256和AD7545的选通信号。单片机工作在定时器0方式,软件设计利用C语言实现。流程图如图2所示。 图2 软件流程图 MATLAB作为一款优秀的数学工具软件,具有强大的运算功能;可以方便的产生各种信号波形,在软件中实现波形信号的产生、抽样和模数转换。设计的任意波形发生器,数据存储器选用28C256芯片,信号波形通过MATLAB仿真产生;得到的波形数据存放在数据存储器28C256中。具体设计中,我们要求产生周期为200ms,脉宽为5ms的单/调频混合信号,其中单频信号的脉宽为4ms,频率为 30KHz;调频信号的脉宽为1ms,频率为30KHz_35KHz。在MATLAB中设定抽样率为500KHz,得到了

二氧化氯发生器产气量分析

159 Design Ideas 二氧化氯发生器产气量分析 张淑丽 辽宁大金重工股份有限公司 摘要:本文对二氧化氯发生器的产气量进行了分析,并就化学法产生二氧化氯、电解法产生二氧化氯做了详细的阐述和比校,努力为未来提高二氧化氯发生器的产气量提供参考。关键词:二氧化氯 发生器 产气量 分析 产量的准确性,我们加了20g的余量,即设计上参照220g ?气/h设计,再计入实验中确定的最小有效氯转化率,那么,设备理论有效氯值为: 220 M理论= = 366.6g/h 60% 综上所述,CYH200的设计是有据可依的,是经过给出余量,并计入最小有效氯转化率而得来的理论有效氯值,将设计过程逐一往回推算,即可得出CYH200的实际产量完全可以达到200g ?气/h这一定论。 二、亚氯酸钠法发生二氧化氯 亚氯酸钠法的产气量分析与氯酸钠法相似,其具体设计过程如下:1.设备理论产量的确定 设1gNaClO 2理论产生xg ClO 2, 反应方程式如下:5NaClO 2+4HCl =4ClO 2+5NaCl +2 H 2O 452.5 270 1 x 270 x = = 0.60g 452.5 经计算得出:1gNaClO 2理论产生0.60g ClO 2,已知二氧化氯的氧化能力相当于氯气的2.63倍,所以1gNaClO 2理论有效氯产量为: M=0.60×2.63=1.58g 2.实际产量的确定 实验中我们采用8% NaClO 2的和10%的HCl进行反应, 分别做了投加比例为1:1.5、1:2、1:2.5、1:3的实验,经过对实验过程中所产气体的检测、分析,得出了其各种投加比例下的实际有效氯产量,见表2: 表2 实际有效氯产量表 3.有效氯转化率的确定 由表2可知,投加比例为1:1.5时,实际有效氯产量最低,此时,有效氯转化率为: 0.95 η= ×100%=60.2% 1.58 与氯酸钠法同理,将最小转化率η作为设计依据。 4.发生器的设计 仍以CYH200为例,加20g的余量,并计入实验中确定的最小有效氯转化率,那么,设备理论有效氯值为: 220 M理论= =365.4g/h 60.2% 同样,亚氯酸钠法CYH200也能达到有效氯产量200g/h这一实际生产能力。 一、化学法二氧化氯发生器(氯酸钠法) 以CYH200为例:CYH200指产气量为200g ?气/h的化学法二氧化氯发生器,据《环保技术认定条件》规定,200g ?气/h是指设备的有效氯产量。那,我们设计的CYH200在实际运行时能否达到这一产量?很多用户表示怀疑,下面就针对这一问题进行论述: CYH200的设计是通过一些理论计算和对实验数据的分析而做出的一种设计方案。200g ?气/h的有效氯产量是设备的实际生产能力,为了确保设备在实际工作运行中能够达到这一产量,在设计上,我们进行了一系列的理论计算和实验,以理论数据为依据,结合实验数据的综合分析,做出了CYH200的设计方案,其具体设计过程如下: 1.设备理论产量的确定 设1gNaClO3理论产生xg ClO2,yg Cl2,反应方程式如下:2NaClO3+4HCl = 2ClO2+Cl2+2NaCl +2 H2O 213 135 71 1 x y 135 x = = 0.63g 213 71y = = 0.33g 213 计算得出:1gNaClO3理论产生0.63g ClO2、0.33gCl 2,已知二氧化氯的氧化能力相当于氯气的2.63倍,所以1gNaClO 3理论有效氯产量为:M=0.63×2.63+0.33=2g 2.实际产量的确定 实验中我们采用35% NaClO 3的和30%的HCl进行反应, 分别做了投加比例为1:1.5、1:2、1:2.5的实验,并对实验过程中所产气体用新出台的五步碘量法进行了检测、分析,其各种投加比例下的实际有效氯产量见表1: 表1 实际有效氯产量表 3.有效氯转化率的确定 从表1中可以看出,投加比例为1:1.5时,实际有效氯产量最低,此时,有效氯转化率为: 1.19 η= ×100%=60% 2 η与有效氯产量成正比,所以η也为最小转化率,现将实验中确定的最小转化率η作为设计依据,更能有效地保证发生器的实际有效氯产量。 4.发生器的设计 现设计一个生产能力为200g ?气/h的发生器,为保证发生器实际 投加比例 (NaClO 3:HCl)1:1.5 1:2 1:2.5 1gNaClO 3的 有效氯产量(g) 1.19 1.72 1.93 投加比例 (NaClO 2:HCl)1:1.5 1:2 1:2.5 1:3 1gNaClO 2的有效氯产量(g) 0.95 1.04 1.05 1.08

频率可变的任意波形发生器

深圳大学实验报告 课程名称:V erilog使用及其应用 实验名称:频率可变的任意波形发生器 学院:电子科学与技术学院 一、前言 波形发生器是一种数据信号发生器,在调试硬件时,常常需要加入一些信号,以观察电路工作是否正常,在实验与工程中都具有重要的作用。随着电子技术的发展与成熟,电子工程领域对波形发生器的要求越来越高,不仅要求波形发生器具有连续的相位变换,频率稳定等特点,还要求波形发生器可以模拟各种复杂信号,并能做到幅度、频率,相位,波形动态可调。V erilog HDL是一种硬件描述语言(HDL:Hardware Discription Language),是一种以文本形式来描述数字系统硬件的结构和行为的语言,用它可以表示逻辑电路图、逻辑表达式,还可以表示数字逻辑系统所完成的逻辑功能。 本实验正是基于V erilog HDL语言对波形发生器的功能进行描述,并进行仿真,从而了解与掌握波形发生器的内部工作原理,并进一步熟悉与掌握V erilog HDL语言,将课堂所学知识进行实践。

二、实验原理 总体设计方案及其原理说明: DDS是一种把数字信号通过数/模转换器转换成模拟信号的合成技术。它由相位累加器、相幅转换函数表、D/A转换器以及内部时序控制产生器等电路组成。 参考频率f_clk为整个合成器的工作频率,输入的频率字保存在频率寄存器中,经N位相位累加器,累加一次,相位步进增加,经过内部ROM波形表得到相应的幅度值,经过D/A转换和低通滤波器得到合成的波形。△P为频率字,即相位增量;参考频率为f_clk;相位累加 器的长度为N位,输出频率f_out为: F_out——输出信号的频率;

基于labVIEW的任意波形发生器设计余洪伟详解

沈阳航空航天大学 课程设计 (论文) 题目基于labVIEW的任意波形发生器设计 班级 34070102 学号 2013040701060 学生姓名余洪伟 指导教师于明月

沈阳航空航天大学 课程设计任务书 课程名称虚拟仪器课程设计 院(系)自动化学院专业测控技术与仪器 班级34070102 学号2013040701060 姓名余洪伟 课程设计题目基于LabVIEW的任意波形发生器设计 课程设计时间: 2016 年7 月4 日至2016 年7 月15 日课程设计的内容及要求: 1. 内容 任意波形发生器是仿真实验的最佳仪器,任意波形发生器是信号源的一种,它具有信号源所有的特点。基于此,利用LabVIEW 设计一个任意波形发生器。 2. 要求 (1)可以产生三种以上波形(如正弦、锯齿、方波、三角波等),波形的幅值及频率可以调节; (2)可以实现不同波形的转换并显示; (3)可以实现波形数据的存储及回放; (4)虚拟仪器前面板的设计美观大方、操作方便。 指导教师年月日 负责教师年月日 学生签字年月日

目录 0. 前言 (1) 1. 总体方案设计 (1) 2.程序流程图 (2) 3. 程序框图设计 (3) 3.1波形的产生及参数的设计 (3) 3.1.1 正弦波 (3) 3.1.2方波 (4) 3.1.3锯齿波 (4) 3.1.4三角波 (5) 3.1.5公式波形 (6) 3.2波行转换设计 (6) 3.3噪声波形实现 (7) 3.4波形的存储与回放 (8) 4. 前面板的设计 (9) 5.调试过程与结果显示 (10) 5.1波形的调试 (10) 5.1.1 正弦波的工作过程及波形验证 (10) 5.1.2 方波的工作过程及波形验证 (11) 5.1.3 三角波的工作过程及波形验证 (12) 5.1.4 锯齿波的工作过程及波形验证 (12) 5.1.5 公式波形的工作过程及波形验证 (13) 5.2 波形的存储与回放 (14)

二氧化氯泄露预案

二氧化氯发生器爆炸泄漏事故应急措施 1.基本情况 两江口污水处理厂使用杀毒灭菌剂为二氧化氯(ClO2)。二氧化氯由二氧化氯发生器产生(共3台),日生产量约为200kg。 二氧化氯设备间位于厂区最西侧的中部,其东侧为混凝剂投加池和混凝剂仓库,西侧为物资仓库,南侧为反应池、沉淀池。 二氧化氯发生器位于设备间内,配臵原料罐3个。其中2个原料罐储存盐酸共16吨;一个原料罐储存氯酸钠原料2吨。 2.使用状况 两江口污水处理厂在污水处理生产时,通常24小时连续使用二氧化氯发生器,通过加氯系统对清水进行消毒。同时,还备存有原料盐酸、氯酸钠共18吨。目前存在的危险主要有二氧化氯发生器因压力过大发生爆炸,以及原料使用、运输、储存和管理不当造成泄漏事故,为重大危险源。 二氧化氯设备间和混凝剂加药间为同一生产岗位,制定了严格的安全操作规程,实行24小时2人值班。该岗位工人均经过了安全培训,掌握了基本的操作要领,一人操作一人监督,通常能够保证加氯设备安全运行。 3.事故危害及应急措施 3.1 二氧化氯发生器 3.1.1一般情况下,二氧化氯反应器在-110mmHg下运行,其气相中ClO2的浓度控制在8%以下,使反应器的气相空间减至最少,保证生成的ClO2在反应空间中停留时间小于1秒。同时反应系统采用两段分级反应,即第一段反应中原料浓度较高,但控制温度较低,反应速度较慢;第二段反应中控制温度较高,但反应物料浓度较低,反应速度仍控制在较低范围内。同时,设备关键部位设臵2个安全阀,实现对运

行过程的双保险。另外,设备内部为负压状态,并有非常灵敏的防爆装臵,一旦设备出现正压,即可通过防爆装臵泄压。 设备间所有操作人员必须严守操作规程和安全措施,并应安排专人定期巡视,定期检查设备及阶段性原料罐、泵、阀是否正常无损坏;设备出现异常,应立即停车,在排队故障、确保无误后再重新开机。 3.1.2二氧化氯发生器产生事故的原因为操作失误、设备失修、腐蚀或设备本身的原因等。可能产生容器破裂、阀门断开或加药管线破损而引起二氧化氯和原料泄漏,最严重是因反应速度控制不当导致压力过大产生爆炸,气体或原料扩散形成危害。 二氧化氯为黄绿色至桔红色气体,沸点11o C,冰点-59o C,易溶于水,饱和溶解量为2900ml/L。二氧化氯为强氧化剂,其毒性及对人体的危害性远低于常用消毒剂氯气,在吸入高浓度气体时可引起咳嗽,并损害呼吸道粘膜,但不造成致命伤害。当密闭空间内二氧化氯含量达到10%时,形成易爆气体。其危害因季节、风向等因素的不同,波及范围也不一样。 3.1.3应急处臵 如遇突发停水或停电,发生器中的残余气体可通过设备安全通道自动溢出过滤器,造成二氧化氯泄漏,如果出现二氧化氯微量泄漏,可通过余氯监测及自动报警系统、岗位操作人员巡检等方式及时发现,并按要求迅速采取相应措施进行排查和处臵,可以避免事故范围扩大,减少环境污染。 如果出现反应容器开裂或阀门断开,出现大量泄露,自动报警系统或值班人员虽然能及时发现,但一时难以控制和处臵,可能造成人员伤害,并波及厂区周边范围。值班人员应迅速配戴呼吸器,并立即切断原料罐阀门、打开设备间通风系统,在通风20分钟后用水大量冲洗设备间;两江口污水处理厂应确定职工紧急疏散点,由一名负责人负责组织,按

陈冲EDA课程设计_任意波形信号发生器

EDA课程设计 任 意 波 形 信 号 发 生 器

姓名: 陈冲 班级: 07通信工程 指导老师:孙惠章 目录 一.简述 (3) 二.设计性能要求 (3) 三.系统框图 (3) 四.系统电路图 (3) 五.基本工作原理 (4) 六. 单元电路模块源程序及功能 (5)

七.系统仿真波形 (10) 八.引脚锁定 (11) 九.实验结果及硬件验证 (11) 十.实验心得 (13) 任意波形信号发生器的设计 一.简述 随着信息科技的发展,波形发生器在科技社会等多个领域发挥着越来越重要作 用。采用eda技术利用quartus60软件平台,基于大规模可编程逻辑器件fpga 设计的多功能波形发生器系统,大大简化其结构, 降低成本, 提高了系统的可靠性 和灵活性。设计中运用计数器,数据选择器,对所需的频率进行选择和同步。使用宏 功能模块存储波形。然后多波形进行幅度的选择。产生满足需要的不用频率和幅度的 波形。 二.设计性能要求 1.能输出正弦波,锯齿波,阶梯波,三角波,方波,矩形脉冲等八种波形。 2.具有幅度和频率的调整。 3.单元电路模块使用VHDL语言编写。

三.系统框图 图1.任意波形信号发生器系统框图四.系统电路图

图2.任意波形信号发生器系统电路图 五.基本工作原理 将要产生的波形数据存入波形存储器中, 然后在参考脉冲的作用下, 对输入的频率数据进行累加, 并将累加器输出的一部分作为读取波形存储器的地址, 将读出的波形数据经D/A 转换为相应的电压信号,D/A 转换器输出的一系列的阶梯电压信号经低通滤波器滤波后便输出了光滑的合成波形的信号。 选择八种基础波形为设计与实现的对象,而八个波形作为同一个任意波形发生器里的四个部分,是有着同一个输入与输出,因此在设计上还需要对波形进行选择与控制的部分,通过对时钟脉冲输入的选择,使得八个波形模块只有一个输入为时钟脉冲,其他三个模块则输入始终为0。在波形输出时,设计一个模块控制输出的波形是所要求输出的波形,在时钟脉冲选择与输出波形选择两模块之间。 对于频率的选择可以选择分频器,同时也可以选择计数器,本实验采用的是计数器以实现分频的效果,输出分别为二分频,四分频,八分频,十六分频用以实现不同的频率。幅度调节可以使用lpm_divide,可以实现八种不同的幅度调节。 六.单元电路模块源程序及功能 1.分频模块 以下为分频模块(CT74161)的VHDL语言编程源程序 LIBRARY IEEE;

基于LabVIEW的任意波形发生器设计

---------------------------------------------------------------范文最新推荐------------------------------------------------------ 基于LabVIEW的任意波形发生器设计 摘要任意波形发生器是现代测试领域应用最为广泛的通用仪器之一,本论文的主要工作是结合虚拟仪器技术,进行任意波形发生器的研究与设计。 论文介绍了虚拟仪器技术的基本理论,进行了任意波形发生器的软件设计,制定了系统整体方案。本利用功能强大的图形化虚拟仪器开发平台LabVIEW,主要完成对软件系统的设计,采用模块化的设计思想,每个功能的实现由一个模块完成。其中主要包括标准信号(正弦波、方波、三角波、锯齿波)、均匀白噪声、高斯白噪声以及任意波形的生成。最后对虚拟任意波形发生器进行了系统测试和性能分析,实验结果达到了预先的设计要求。9224 关键词虚拟仪器;任意波形发生器;LabVIEW 毕业设计说明书(论文)外文摘要 1 / 20

TitleDesign of Arbitrary Waveform Generator based on LabVIEW Abstract Arbitrary Waveform Generator is a modern field test one of the most widely used general-purpose equipment. The main task of this paper is a combination of virtual instrument technology,arbitrary waveform generator of the research and design. The paper introduces the basic theory of virtual instrument technology.The paper carried out arbitrary waveform generator software design.Developed a system as a whole program.This paper,a powerful graphical development platform Virtual Instrument LabVIEW,mainly to complete the design of software systems,using modular design concept,every function of transition from one module to complete.Which mainly include the generation of Standarded signals(Sine wave,Triangular wave,Square wave,Sawtooth wave),Uniform white noise,Gaussian white

电解法二氧化氯发生器产品说明

KW-10 型二氧化氯发生器 1、技术说明: 1.1 概述 二氧化氯是消毒剂中最理想的消毒剂。它具有广谱、高效、无毒、用量小、药效长等特点。其杀菌能力为其它氯系杀菌消毒剂的2 — 5倍。是其它杀菌消毒剂的3-17倍。被世界卫生组织(WHO)认定的最高级(AI级)消毒剂。因为二氧化氯是一种氧化剂而不是氯化剂,与氯气相比,它的氧化能力是氯气的2.63倍,其杀菌能力远高于2.6倍。如杀灭水中99%的细菌,ClO2为0.5PPm,Cl2则为7PPm。另外,二氧化氯对水中病毒的抑制能力比氯高3倍,比O3高2倍。特别是当水中细菌和病毒含量较高时,二氧化氯的杀灭率比氯高10倍,比次氯酸钠(NaClO)高2倍。0.25PPm ClO2的可杀死囊虫,0.5PPm ClO2的可以防止小型甲壳动物在水中繁殖,抑制水中藻类生物的繁殖,如果用Cl2则需7PPm。二氧化氯的杀菌能力随季节和温度的变化也有差异,温度越高,二氧化氯的杀菌能力越强,试验证实,0.25PPm的ClO2在5 ℃时,110秒可杀死99%的细菌,10℃时为41秒,30℃时为26秒。这一点使得二氧化氯更加适合作为冷却循环水的杀生剂。但二氧化氯极不稳定,虽有稳定性二氧化氯消毒液成品,但浓度过低,制成费用及运输费用高,使用时需现场活化,其活化率大打折扣,最好方案是使用二氧化氯发生器在使用地点现场发生。1.2 二氧化氯特点: 1、使用二氧化氯杀菌消毒灭藻,用量小,效果好,可以单独长期使用而不发生抗药性。且由于二氧化氯持续时间长,可采取定期定量投加的方式。 2、二氧化氯在很大的PH围(5.8—10.5)都有极强的杀菌能力。二氧化氯的杀菌效果不受介质PH值的影响。在循环冷却水的处理方案中,用二氧化氯来控制菌藻比使用其它杀菌剂效果好得多。 3、二氧化氯不与磷及磷系、氨及胺基化合物反应,其杀菌效果不受影响,故可减少杀菌剂的使用量,并且不对磷系缓蚀剂的阻垢效果产生影响。此特点特别适用于磷系缓蚀剂的冷却水体系。 4、二氧化碳不仅能杀死微生物,而且能分解残留的细胞结构,具有杀孢子和病菌的作用。从而可有效地控制细菌、藻类及粘泥的生长。

任意波形信号发生器

目录 一、题目要求及分析 (1) 1.1题目要求 (1) 1.2题目分析 (1) 二、任意波形信号发生器方案设计 (3) 2.1系统设计框图与思路 (3) 2.2 系统设计原理图 (5) 2.3 相关芯片介绍 (6) 三、相关模块具体程序实现 (10) 四、仿真及实际结果与分析 (16) 4.1波形选择及仿真结果 (16) 4.2波形选择及实际结果 (18) 4.3结果分析与相关问题解决 (23) 五、总结与体会 (24) 参考文献 (25) 附录 (26)

一、题目要求及分析 1.1题目要求 任意波形信号发生器 利用FPGA器件产生控制信号及数据信号,经DAC0832和TL082转换产生以下波形: 1)正斜率斜波; 2)正弦波; 3)锯齿波; 4)任意波形。 用示波器观察输出波形。 硬件电路内容和要求:用DAC0832实现数模转换电路,用TLC082实现电流-电压转换电路,画出电路原理图。 软件设计内容和要求:VHDL编程实现任意波形的信号控制器。要求可以用开关切换不同的波形数据输出。 扩展:增加衰减控制信号,通过开关控制衰减倍数,并在数码管显示。 1.2题目分析 VHDL语言是随着集成电路系统化和高度集成化的发展而逐步发展起来的,是一种用于数字系统的设计和测试的硬件描述语言。相比传统的电路系统的设计方法,VHDL 具有多层次描述系统硬件功能的能力,支持自顶向下和基于库的设计的特点,因此设计者可以不必了解硬件结构。从系统设计入手,在顶层进行系统方框图的划分和结构设计,在方框图一级用VHDL对电路的行为进行描述,并进行仿真和纠错,然后在系统一级进行验证,最后再用逻辑综合优化工具生成具体的门级逻辑电路的网表,下载到具体的CPLD器件中去,从而实现可编程的专用集成电路(ASIC)的设计。 在本次课程设计中,函数发生器的设计采用自顶向下的系统设计的方法,通过MAX+plusⅡ开发环境进行编辑、综合、波形仿真,并下载到CPLD器件中,采用模块化

如何使用函数信号发生器

如何使用函数信号发生器 认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发. 这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正弦波整型电路产生正弦波,同时经由比较器的比较产生方波,换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路: 改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性,但其最主要的缺点是占空比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下: 将方波产生电路比较器的参考幅度予以固定(正、负可利用电路予以切换),改变充放电斜率,即可达成。 这种方式的设计一般使用者的反应是“难调”,这是大缺点,但它可以产生10%以下的占空比却是在采样时的必备条件。 以上的两种占空比调整电路设计思路,各有优缺点,当然连带的也影响到是否能产生“像样的”锯齿波。 接下来PA(功率放大器)的设计。首先是利用运算放大器(OP) ,再利用推拉式(push-pull)放大器(注意交越失真Cross-distortion的预防)将信号送到衰减网路,这部分牵涉到信号源输出信号的指标,包含信噪比、方波上升时间及信号源的频率响应,好的信号源当然是正弦波信噪比高、方波上升时间快、三角波线性度要好、同时伏频特性也要好,(也即频率上升,信号不能衰减或不能减太大),这部分电路较为复杂,尤其在高频时除利用电容作频率补偿外,也牵涉到PC板的布线方式,一不小心,极易引起振荡,想设计这部分电路,除原有的模拟理论基础外尚需具备实际的经验,“Try Error”的耐心是不可缺少的。 PA信号出来后,经过π型的电阻式衰减网路,分别衰减10倍(20dB)或100倍(40dB),此时一部基本的函数波形发生器即已完成。(注意:选用π型衰减网络而不是分压电路是要让输出阻抗保持一定)。 一台功能较强的函数波形发生器,还有扫频、VCG、TTL、 TRIG、 GATE及频率计等功能,其设

相关主题