搜档网
当前位置:搜档网 › 建筑风环境CFD模拟案例

建筑风环境CFD模拟案例

建筑风环境CFD模拟案例
建筑风环境CFD模拟案例

某小区区建筑风环境模拟报告

目录

1. 模拟过程及使用软件介绍 (2)

1.1 建筑风环境模拟使用软件介绍 (2)

1.2 建筑风环境模拟过程 (2)

1.2.1 几何模型的建立 (3)

1.2.2 网格的划分 (5)

1.2.3 求解参数设置 (6)

2. 模拟结果 (12)

3. 建筑风环境模拟研究思路及问题 (16)

附录I 从百度地图获取三维几何模型的尝试 (17)

附录2 Fluent入口边界速度UDF命令 (19)

REFERENCE (19)

建筑风环境的研究主要有三种方式:现场实测、数值模拟和风洞试验。

随着计算机软硬件技术水平的发展,计算能力及计算精度不断提高,计算流体力学(Computational Fluid Dynamics:CFD)的理论和方法得到了不断改进。基于CFD 技术对流场进行模拟具有操作周期短,操作成本低,可反复修改的特性,相比较于现场实测和风洞试验具有更广阔的应用前景。但是由于数值模拟技术对输入的参数十分敏感,必须辅以现场实测或风洞试验的验证。

本次模拟区域直径500m,模拟的工况为10m高度处风速为10m/s,风向为225°,输出结果查看高度10m,20m,40m,78m,100m处的速度云图、速度矢量图和压力云图。

1. 模拟过程及使用软件介绍

1.1 建筑风环境模拟使用软件介绍

(1)前处理软件ANSYS ICEM CFD 15.0

ICEM是ANSYS CFD软件族中前处理软件之一。具有强大的网格划分功能,接口丰富,可接受绝大多数几何模型格式导入,例如AUTO CAD、SolidWorks、PRO/E等。

(2)求解软件ANSYS Fluent 15.0

占据CFD领域绝对领先地位的流体仿真软件。具有多种物理算法、物理模型。在医学、航天、机械工程等领域均应用广泛。

(3)后处理软件Tecplot 360

提供丰富的绘图格式,具备强大的CFD结果可视化功能,图形美观。

1.2 建筑风环境模拟过程

使用计算流体力学对建筑室外风场进行数值模拟一般包括以下四个步骤:

(1)几何模型的建立

(2)对几何模型进行合适的网格划分

(3)将划分网格后的模型导入Fluent,设置求解参数并求解

(4)结果的后处理(速度云图、速度矢量图、压力云图等)

1.2.1 几何模型的建立

在几何模型的建立部分,现阶段采用的是陈宸的模型,他是根据彰武校区附近区域的城

规图建立CAD 三维模型(据陈宸描述来自他建筑学院的朋友提供)。对于后续的研究,比如

其他的密集城市高层区域或更大的研究尺度,应寻找更高效易推广的方式,对于此种方式初

步的探索及困难见附录I 。

除了建筑物本身的几何模型外,对于建筑室外风环境的模拟,应限定流场的范围,即建

立计算域。计算域的尺寸会影响CFD 模拟的结果,设置的计算域要考虑风场不受堵塞效果的

影响,同时为了求解的速度(及对计算机性能的要求),应尽可能小以减小网格数目。

建筑的阻塞率由下式计算:

w d

=A A 建筑物最大迎风面积阻塞率流域横截面积 阻塞率大时,风路变狭会产生比实际模型大的风速。为防止这种现象,有必要将建筑物

投影面积与计算区域断面面积的比例控制在5%以下[s]。同时,建筑物在计算域的摆放位置

应距离出流面有较大的距离以保证流动能够充分发展。若出流位置太靠近建筑物,则流动可

能还没有达到完全发展的状态,甚至可能还处在因建筑物阻挡而形成的尾流回流区中,见图

1.1,因此,摆放好建筑物在计算域中的位置是获得良好数值模拟结果的前提。

图1.1 建筑物尾部回流区示意

孙晓颖[s]对单体建筑物CFD 模拟时的计算域及模型摆放位置进行了研究,结果如图1.2

所示,对于高层建筑和底层建筑,计算域的尺寸有所区别,见表1.1。

图1.2 建筑物在计算域中摆放的位置规定

表1.1 不同高度建筑物的计算域尺寸

上述计算域尺寸是针对单体建筑的,对于群体建筑应有所区别。根据Franke[F]等编撰的城市风环境模拟指南,城市建筑群的计算域应按图1.3选取。

图1.3 计算域尺寸及位置示意图

几何模型取彰武6号楼为中心的直径500m的区域,该尺度介于单体建筑和城市群建筑之间,参照其他学者[z]关于小区尺度的CFD模拟,确定的计算域尺寸如图2.4所示(红色圆点表示区域中心,彰武6号楼西南侧角点),区域内最高的建筑物为彰武6号楼,高度为78.8m,入口边界距区域中心点取500m,出口边界距区域中心取1200m,两侧边界距区域中心取750m,计算域的高度取240m。建筑的三维几何模型见图1.5(红色箭头所示为彰武6号楼).

图1.4 计算域尺寸示意

图1.5 彰武校区3维几何模型示意

1.2.2 网格的划分

将cad 模型输出为iges 格式,导入到ANSYS ICEM CFD 中,划分网格并初步设置边界条件

(需要在Fluent 中重新设定)。由于流场在建筑壁面处收到建筑物阻挡,流动趋于复杂,所

以在建筑壁面处网格细分。在远离建筑区域的部分,最大网格尺寸允许达到10m,建筑表面最

大网格允许达到5m ,平均网格尺寸为2m 。划分后的网格见图

1.6.

出口边界

图1.6 彰武6号楼CFD模拟有限元模型

1.2.3 求解参数设置

将ICEM划分好网格的文件输出为msh文件,导入Fluent,进行求解参数的设置。主要参数包括求解基的选择,湍流模型的选择,边界条件的确定,残差控制设置等。

(1)求解基的选择

Fluent提供两种求解基,即Pressure-Based和Density-Based求解器,如图1.7所示。其中Pressure-Based是针对低速、不可压缩流开发的,Density-Based是针对高速、可压缩流开发的。

图1.7 Fluent求解器

风是由于空气受热不均匀,密度改变引起的流动。空气理论上是可压缩流体,但是在常温常压下气体做低速流动时(V<=100m/s),气体的密度相对变化小于5%,可按不可压缩流体处理(Boussinesq假设)。不可压缩流体的连续方程如下所示

U1,u2,u3是速度沿坐标轴方向的分量。该方程相比较于一般的质量守恒方程(见下式),由于密度不随时间变化,故更易于求解。

选用Pressure-Based基求解。

关于非定常还是定常求解,风是随机过程,理论上是非定常的,但是目前学者们多采用定常来模拟,本次也选择非定常求解。

(2)湍流模型的选择

湍流是普遍存在的,层流是个例。对建筑物室外风场的模拟需要考虑湍流的影响。目前对湍流的数值模拟方法见图1.8。

图1.8 湍流的数值模拟方法

Reynolds平均法是目前应用最广泛的湍流模拟方法,根据对Reynolds应力做出的假定不同,又可分为Reynolds应力模型和涡粘模型,见图1.9。本次模拟最终采用RSM模型进行湍流的模拟(事实上,湍流模型的选择并不是唯一的,可以进行不同湍流模型之间的对比)。在Fluent里湍流模型的设置见图1.10.

图1.9 Reynolds平均法的分类

图1.10 Fluent里湍流模型的设置

(3)边界条件的确定

边界条件是流场变量在计算边界上应该满足的数学物理条件,指在求解域的边界上所求解的变量或其一阶导数随地点及时间变化的规律。边界条件与初始条件一起并称为定解条件,只有在边界条件和初始条件确定后,流场的解才存在,并且是唯一的。边界条件是否合理决定着计算过程中是否发散(divergence)

对于流动入口,在入口压力未知的情况下,一般选用速度入口边界条件(velocity-inlet),对于速度入口边界条件,需要定义流入的速度形式,可以选择平均风分布或风剖面的形式。平均风分布风速不随高度改定,仅输入风速的大小和方向,较为粗糙。风剖面能够反映风速随高度变化,及下垫面的粗糙情况,更接近实际情况,但需要用户自己写出函数的程序语言通过UDF(user defined function)调用,本次选取风剖面形式定义入口速度。

风剖面一般采用指数律或对数律两种形式表达。指数律是由Davenport[D]根据大量观测资料总结出来的表达形式,由于使用起来比较简便,广泛应用于工程中,如中国《建筑结构荷载规范》(GB50009-2012)、美国规范(ASCE7-05)和日本规范(AIJ2004)均采用了指

数律。对数律在气象学中应用得比较多,在100 m 高度范围内使用对数律风剖面能够得出比较满意的结果。

对数律的表达公式见下式

指数律的表达公式见下式

式中Z d——零平面位移;

U r——参考高度Z r处的风速;

Z r——参考高度,一般取10m高度处;

——地面粗糙度指数。

指数律和对数律均属于半经验、半理论公式,两种形式计算的结果相差不大。本次模拟采用指数律的表达形式。参考高度取离地10m。10m高度处的风速设置为10m/s,风向设置为(1,0,0)数根据荷载规范取为0.3。荷载规范对不同类型地表的粗糙度规定见表1.2。udf 命令见附录2。

表1.2 粗糙度指数表

出口边界假定流动完全发展,定义为outflow,即流场任意物理量沿出口法向梯度为零。

建筑物壁面和地面采用无滑移(no-slip)的壁面条件;计算域顶面和两个侧面采用自由滑移的壁面条件。在Fluent里壁面设置选项见图1.11。

图1.11 Fluent里壁面设置选项

(4)残差控制设置

残差采取Fluent默认设置。计算过程中的残差曲线见图1.12。

图1.12 计算过程中的残差收敛曲线

2. 模拟结果

建筑风环境的CFD模拟,一般查看流场在不同高度处的速度分布云图、速度矢量图和压力分布云图。由于Fluent自身的后处理功能并不强大,因此采用Tecplot对结果进行后处理。在Fluent中结果的展示见图1.13.

图1.13 10m高度处速度矢量图分布(Fluent自身后处理图片)将fluent文件输出为plt 格式,导入Tecplot 360 2015 中,分别显示高度10m、20m、40m、78m、100m处的速度云图、速度矢量图和压力云图。

在设定的工况下,10m高度处风速为10m/s, 风向为225°。不同高度处的速度云图、速度矢量图和压力云图见图1.14.

(a)10m高度处速度云图(b)10m高度处速度矢量图(c)10m高度处压力分布云图

(a)20m高度处速度云图(b)20m高度处速度矢量图(c)20m高度处压力分布云图

(a)40m高度处速度云图(b)40m高度处速度矢量图(c)40m高度处压力分布云图

(a)78m高度处速度云图(b)78m高度处速度矢量图(c)78m高度处压力分布云图

(a)100m高度处速度云图(b)100m高度处速度矢量图(c)100m高度处压力分布云图

图1.14 不同高度处的速度云图、速度矢量图和压力分布云图

区域内三维视角下的建筑物表面风压分布见图1.15,图中黑色箭头处表示彰武6号楼。

图1.15 三维视角下的建筑物表面风压分布

3. 建筑风环境模拟研究思路及问题

对于CFD 本身的模拟流程,建模是最困难的一步,如何获取一定尺度下相对准确的区域三维模型有待深入研究。而仅仅是CFD 模拟的结果并不能令人信服,需要辅以现场实测或风洞试验的数据,加以验证,因为在建模、求解的过程中都存在着各种简化和假定,比如计算域的形状和大小,网格的质量均会对结果产生影响。

如何验证模型的正确性?现在彰武6号楼有一个测点的一年的数据,是否可以利用这一个测点的数据进行验证,验证的标准是什么?对于该尺度下的区域,一个测点是否足够?风洞试验是否有必要做?周胜涛[z]在做香港九龙地区的CFD 模拟时,采用模拟区域内三个测风站的数据进行验证。采用速度比和风向比作为验证的因素,速度比的定义公式如下:

.CFD CFD ref CFD

U K U

.m m ref m

U K U = 100%CFD m m

K K E K -=?

赵炎[zy]在对某住宅小区进行室外热环境的模拟时在小区内布置了2个固定测点和25个流动测点获取气象数据,并于CFD 模拟的结果进行对比,对比项为各测点的数据差值百分比。许昌[x]在对城市分布式风力电力应用了CFD 模拟,在区域内设置了2个测风塔,对比在测风塔位置处的物理量值。

综上所述,对于城市密集高层的风资源评估,现阶段主要存在的难点如下:

(1) 三维几何模型的获取

(2) CFD 模拟结果的验证

(3) 对于CFD 模拟的结果,如何将其应用到风力发电的实际工程中

附录I 从百度地图获取三维几何模型的尝试

几何模型的建立是CFD 模拟的第一步,也是最重要的部分。计算域的确定,网格的划分及求解精度的控制均依托于几何模型。如何获取密集城市高层建筑区域的建筑物平面尺寸及高度信息是CFD 模拟的第一个难点。该部分内容是关于获取特定建筑区域三维几何模型的初步尝试(尚未取得最终成果),并对其他学者已经做过的CFD 分析中模型的建立做了举例。

周盛涛[Z]对香港九龙湾沿岸城区进行了CFD 风场模拟,并对香港地区常见的拉锁式广告牌进行了风灾易损性分析,他采用香港天文台提供的带有地形高程信息的STL 格式建筑群模型,简化几何细节,去掉道路、河流信息,并通过MATlab 对STL 格式中携带的数据进行处理生成地形曲面,最终得到CFD 的几何模型。

陈士凌[c]对山地城市(重庆主城)近地层风环境进行了CFD模拟,在建模方面,通过高程提取软件在Google earth上提取数字高程信息,通过GIS技术生成3d模型。

本次尝试通过地图获得区域内建筑物平面分布图。采用“百度地图截获器”软件获得指定中心点区域内的建筑底图,见附录图1(图中红色圆圈内为彰武校区).

附录图1 通过“百度地图截获器”获得的建筑底图(.png)再通过对建筑底图进行矢量化,输出为CAD图形文件,见附录图2(仅展示了彰武校区部分)。

附录图2 通过Adobe Illustrator矢量化得到的CAD文件(.dwg)

Difficults:

1.矢量化得到的图中,建筑物的轮廓失真,需要经过大量修正工作才能得到建筑平面图,

如何修正?是否有必要修正?(建筑外立面对风场的影响程度?)

2.地图中没有直接的建筑物高度信息,如何获得?

附录2 Fluent入口边界速度UDF命令

入口风剖面的用户自定义函数如下:

#include "udf.h"

#define U10 10.0

/*定义速度分布*/

DEFINE_PROFILE(velocity,t,i)

{

real z,x[ND_ND];

face_t f;

begin_f_loop(f,t)

{

F_CENTROID(x,f,t);

z=x[2];

F_PROFILE(f,t,i)=U10*pow(z/10.0,0.3);

}

end_f_loop(f,t)

}

REFERENCE

[C] 陈士凌. 适于山地城市规划的近地层风环境研究[D]. 重庆大学, 2012.

[D]Davenport A G. The Relationship of Wind Structure to Wind Loading[C]//The Symposium on Wind Effect on Buildings and Structures, 1965:54-102.

[F] Franke J, Hellsten A, Schlünzen H, et al. Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment [M]. Brussels:COST Office, 2007:1-33.

[S] 孙晓颖. 《计算流体力学》课件

[Z] 周盛涛. 香港九龙湾沿岸城区CFD风场模拟及风灾易损性分析[D]. 哈尔滨工业大学, 2015.

[zy]赵炎. 住宅小区室外热环境的实测与模拟[D]. 重庆大学, 2008.

第七 章 CFD仿真模拟

第七章CFD仿真模拟 一.初识CFD CFD是英文Computational Fluid Dynamics(计算流体动力学)的简称。它是伴随着计算机技术、数值计算技术的发展而发展的。简单地说,CFD相当于"虚拟"地在计算机做实验,用以模拟仿真实际的流体流动情况。而其基本原理则是数值求解控制流体流动的微分方程,得出流体流动的流场在连续区域上的离散分布,从而近似模拟流体流动情况。可以认为CFD是现代模拟仿真技术的一种。 1933年,英国人Thom首次用手摇计算机数值求解了二维粘性流体偏微分方程,CFD由此而生。1974年,丹麦的Nielsen首次将CFD用于暖通空调工程领域,对通风房间内的空气流动进行模拟。之后短短的20多年内,CFD技术在暖通空调工程中的研究和应用进行得如火如荼。如今,CFD技术逐渐成为广大空调工程师和建筑师解决分析工程问题的有力工具。 二.为什么用CFD CFD是一种模拟仿真技术,在暖通空调工程中的应用主要在于模拟预测室内外或设备内的空气或其他工质流体的流动情况。以预测室内空气分布为例,目前在暖通空调工程中采用的方法主要有四种:射流公式,Zonal model,CFD以及模型实验。 由于建筑空间越来越向复杂化、多样化和大型化发展,实际空调通风房间的气流组织形式变化多样,而传统的射流理论分析方法采用的是基于某些标准或理想条件理论分析或试验得到的射流公式对空调送风口射流的轴心速度和温度、射流轨迹等进行预测,势必会带来较大的误差。并且,射流分析方法只能给出室内的一些集总参数性的信息,不能给出设计人员所需的详细资料,无法满足设计者详细了解室内空气分布情况的要求; Zonal model是将房间划分为一些有限的宏观区域,认为区域内的相关参数如温度、浓度相等,而区域间存在热质交换,通过建立质量和能量守恒方程并充分考虑了区域间压差和流动的关系来研究房间内的温度分布以及流动情况,因此模拟得到的实际上还只是一种相对"精确"的集总结果,且在机械通风中的应用还存在较多问题; 模型实验虽然能够得到设计人员所需要的各种数据,但需要较长的实验周期和昂贵的实验费用,搭建实验模型耗资很大,有文献指出单个实验通常耗资3000~20000美元,而对于不同的条件,可能还需要多个实验,耗资更多,周期也长达数月以上,难于在工程设计中广泛采用。 另一方面,CFD具有成本低、速度快、资料完备且可模拟各种不同的工况等独特的优点,故其逐渐受到人们的青睐。由表1给出的四种室内空气分布预测方法的对比可见,就目前的三种理论预测室内空气分布的方法而言,CFD方法确实具有不可比拟的优点,且由于当前计算机技术的发展,CFD方法的计算周期和成本完全可以为工程应用所接受。尽管CFD方法还存在可靠性和对实际问题的可算性等问题,但这些问题已经逐步得到发展和解决。因此,CFD方法可应用于对室内空气分布情况进行模拟和预测,从而得到房间内速度、温度、湿度以及有害物浓度等物理量的详细分布情况。 进一步而言,对于室外空气流动以及其它设备内的流体流动的模拟预测,一般只有模型实验或CFD方法适用。表1的比较同样表明了CFD方法比模型实验的优越性。故此,CFD方法可作为解决暖通空调工程的流动和传热传质问题的强有力工具而推广应用。 表1四种暖通空调房间空气分布的预测方法比较 比较项目 1射流公式 2 ZONAL MODEL 3CFD 4模型实验 房间形状复杂程度简单较复杂基本不限基本不限 ?对经验参数的依赖性几乎完全很依赖一些不依赖

十七中室外风环境模拟分析实施报告

室外风环境模拟分析报告北京市第十七中学分校改扩建工程 建筑专业 主持人: (设计总负责人)_____________________________ 审定人:______________________________ 校审人:________________________________ 计算人:________________________________

北京中帝恒成建筑设计有限公司

2016年02月18日

1建筑概况 ....................................................................................... 2.. 2评价依据 ....................................................................................... 2.. 3?分析方法....................................................................................... 2.. 3.1原理概述 (2) 3.2模拟软件 (3) 3.3计算原理 (3) 3.4模型设置 (5) 3.5参数设置 (5) 4评价标准 ....................................................................................... 6.. 5模拟结果和分析 ................................................................................ 6.. 5.1风环境模拟模型 (6) 5.2工况1 (冬季平均风速工况) (7) 5.3工况2 (夏季平均风速工况) (9) 5.4工况3 (过渡季平均风速工况) .............................................................. .10 ........ 6结论 ........................................................................................... 1.1.

076风环境模拟在城市空间形态优化中的应用研究——以上海崇明陈家镇实验生态社区为例

风环境模拟在城市空间形态优化中的应用研究 ——以上海崇明陈家镇实验生态社区为例 刘超陈蔚镇许鹏张量张锟 【摘要】在城市扩张和高密度开发趋势下,城市形态对城市风环境的影响和塑造作用越来越大,但同时人们对环境的舒适性和能源节约性要求日渐提高。为解决这一矛盾,本文以上海崇明陈家镇实验生态社区为例,对其社区风环境进行模拟,分析城市空间形态在风环境舒适度的不足和问题,进而提出优化形态的策略,并定量分析优化形态后的社区能源节约量,达到提高宜居和节能的双重目标。 【关键词】风环境模拟空间形态优化节能陈家镇实验生态社区 1.城市形态与风环境介绍 城市的微环境主要包括风环境、光环境、热环境、声环境和污染物环境等。在这一系列的微环境中,风环境受城市规划设计影响较大。它与城市内建筑物布局、形体特征、空间关系、围护结构的产生、相关技术的选择以及人们舒适度、能源使用等有着密切的关系[1]。 本文定义的社区空间形态主要是指两层含义:其一为平面上各功能区域建筑群落的分布;其二为竖直方向上建筑群落的高度分布。社区的形态会影响到社区内气候的情况,形成所谓的“微气候”:建筑群落会改变社区内风的流向;建筑之间会存在遮挡的现象从而影响到社区中太阳辐射的分布。 风环境对城市的能耗影响是显著的:夏季较小的室外风速不利于自然散热势必会增加空调制冷的使用概率,而冬季较大的室外风速则会造成建筑外表面散热和室外渗透的增加,这两种情况都会导致供暖负荷的增加。因此,社区形态会影响风环境,进而影响居民的生活质量,能源消耗和温室气体排放。如何在保证甚至提高风环境舒适度的前提下,从节能低碳的角度来对社区形态进行评估和优化,是本文关注和将要解决的问题。 2.城市风环境研究与应用方法介绍 2.1 城市风环境评价方法 目前,对于风环境的评价与优化方法主要有三种:模拟试验、现场检测和数值模拟方法

论风环境对建筑设计的重要性以及风环境模拟的方法

论风环境对建筑设计的重要性以及风环境模拟的方法 成员 组长:黄瑞云 2011012314 组员:赵小玲 2011012311 组员:王丹 2011012309

摘要:本论文论述了风环境对建筑设计的重要性以及各种风环境的模拟方法介绍,最后利用风环境模拟方法中的PHOENICS软件模拟了行政服务中心项目的风环境。 关键词:风环境绿色建筑舒适流通风速风压 PHOENICS 正文: 随着人们生活水平的提高,人们对居住、办公环境的要求越来越高。如何在建筑室内各部分维护良好通风的同时避免废弃回流,在室外环境规划中维护“风道”,促进城市空气流通更新与人们聚集区域的风速舒适与减轻污染,成为设计建筑风环境的基本考虑。建筑群风环境与建筑室内通风是营造人体生理舒适性的主要因素,而且通风效率与建筑节能直接相关,是可持续发展的“绿色建筑”的重要主题。对于中国这样广大地区的气候环境差异,造成南北方、长江流域以及亚热带地区完全不同的风环境考虑,建筑布局如何适应当地气流条件,以及采暖节能与制冷节能对风环境的完全不同要求,都对建筑设计提出了要求。 随着人口密度的提高,用地开始紧张,高层建筑成了开发商们的首选。风荷载是高层建筑的主要侧向荷载之一。1926年9月美国迈阿密市麦芽喀隆大楼在台风袭击后发生塑形变形,顶部残余位移达0.61米。我国深圳一座超高层建筑在多次不同风洞测验中,还发现横风向强烈风震现象。众多工程实例表明,结构抗风分析是高层建筑重要设计计算的因素。 当然风环境不仅对建筑产生影响还会对建筑周边的行人产生影

响。当一栋大楼矗立起来,不可避免地改变了原来吹经此处的风的走向,即改变此片地块的风环境。这种改变有可能产生不良影响。例如商业街和成排成列的住宅区两旁,形成人工“街道峡谷”,也可以说是弄堂,风汇合在街道弄堂里,由于“峡谷效应”,风速加大,出现局部强风,加上建筑物的阻滞,形成漩涡和强烈变化的升降气流等复杂的空气流动现象。不仅群体建筑会形成不良区域性风气候,单体高层建筑福今年也会出现不利的风环境。高层建筑趋于将高空的高速气流引至地面,特别是建筑转角处,流动加速,并在建筑前方形成停驻的漩涡,将恶化建筑周围行人高度的风环境,危及过往行人安全。 以上我们叙述了风环境对我们的重要性,但是期望在建筑风荷载规范里寻找具体地貌区域里,设计外形各异的建筑物风荷载体形系数供设计计算之用,无疑是困难的。何况不同风向角下,其流态是不同的,风荷载体形系数是变化的,建筑物间也存在相互干扰,风荷载的影响是难以评估的,故只有通过模型的风洞试验来了解在风力作用下高层建筑群体间的相互干扰影响和改变其外表周边风压分布情况,获取必要的风荷载数据,才能准确评估各个高度上局部风环境详情,确保安全舒适的风环境。 风洞试验是当前建筑室外风环境及风工程领域使用的主要方法,它是通过制作实际建筑物的缩尺模型在大气边界层风洞中进行的,通过必要的手段产生类似于实际建筑周围的风场,然后通过布置在模型表面及周围的试验仪器测量风速、风压等相关数据,当前研究内容已经涵盖了建筑物在不同地貌下以及各种体型的高层建筑的风压风速

一维CFD模拟仿真设计

CFD simulation in Laval nozzle SIAE 090441313 Abstract We aim to simulate the quasi one dimension flow in the Laval nozzle based on CFD computation in this paper .We consider the change of the temperature ,the pressure ,the density and the speed of the flow to study the flow.The analytic solution of the flow in the Laval nozzle is provided when the input velocity is supersonic.We use the Mac-Cormack Explicit Difference Scheme to slove the question. Key words :Laval nozzle ,CFD,throat narrow. Contents Abstract .................................................. . (1) Introduction .............................................. .. (2) Simulation of one-dimensional steady flow (3)

Basis equations ................................................. (3) Dimensionless .......................................... . (10) Mac -Cormack Explicit Difference Scheme (11) Boundary conditions ................................................ (13) Reference .............................................. (13) Annex .................................................. .. (14) Introduction Laval nozzle is the most commonly used components of rocket engines and aero-engine, constituted by two tapered tube, one shrink tube, another expansion tube. Laval nozzle is an important part of the thrust chamber. The first half of the nozzle from large to small contraction to a narrow throat to the middle. Narrow throat and then expand

室外风环境模拟分析报告精编

室外风环境模拟分析报 告精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

通锦.国际新城三期项目(通锦.国际嘉园) 1号地块室外风通风 --室外风环境模拟分析报告 提供者:深圳市筑道建筑工程设计有限公司 成都分公司

声明: 1、本报告无咨询单位签字盖章无效; 2、本报告涂改、复印均无效; 3、本报告仅对本项目有效。 项目名称:通锦·国际新城三期项目(通锦·国际嘉园) 委托单位:深圳市筑道建筑工程设计有限公司成都分公司 报告编写人: 校对人: 审核人: 项目负责人: 批准人: 报告编号: 报告日期: 2016年1月

目录

1 模拟概述 项目概况 1、工程名称:通锦?国际新城三期项目 2、建设单位:四川路桥通锦房地产开发有限公司 3、建设用地:该项目位于四川省达州市,位于四川省东北部,重庆以北,是由原达川地区更名建立的一个地级市,总面积16591平方千米。 达州市辖1个市辖区、5个县、1个县级市,有大面积的园林,是四川省的人口大市、农业大市、工业重镇,素有着中国气都和中国苎麻之乡的“川东明珠”美誉。达州地理坐标为北纬30 o75′-32 o07′,东经106 o94′-108 o06′,属亚热带湿润季风气候类型,冬暖夏凉。达州地势东北高,西南低,北部山体切割剧烈,山势陡峭,形成中、低山地地貌单元; 图1 达州市通锦·国际新城三期项目总平面

本项目位于达州中南部,地势较为平缓,形成平等谷底地貌单元。 气候概况 达州市属湿润季风气候类型。由于地形复杂,区域性气候差异大。海拔800米以下的、、地区气候温和,、、夏热、,四季分明,长;海拔800至1000米的低、中山气候温凉、阴湿,回春迟,夏日酷热,秋凉早,冬寒长;海拔1000米以上的中山区,光热资源不足,寒冷期较长,春寒和秋霜十分突出。达州市热量资源丰富,雨热同期,全年平均气温度-度之间,无霜期300天左右。 风环境影响 建筑群和高大建筑物会显着改变城市近地面层风场结构。近地风的状况与建筑物的外形、尺寸、建筑物之间的相对位置以及周围地形地貌有着很复杂的关系。在有较强来流时,建筑物周围某些地区会出现强风;如果这些强风区出现在建筑物入口、通道、露台等行人频繁活动的区域,则可能使行人感到不舒适、甚至带来伤害,形成恶劣的风环境问题。在一般的气候条件下,他们直接影响着城市环境的小气候和环境的舒适性;一旦遇到大风,这种影响往往会变成灾害,使建筑外墙局部的玻璃幕墙、窗扇、雨棚等受到破坏,威胁着室内外的安全。 调查统计显示:在建筑周围行人区,若平均风速V>5 m/s 的出现频率小于10%,行人不会有什么抱怨(在10%大风情况下建筑周围行人区风速小于5 m/s,即可认为建筑周围行人区是舒

室外风环境模拟计算报告123

新项目 室外风环境模拟计算报告 计算软件:风模拟分析软件PKPM-CFD 开发单位:中国建筑科学研究院 建研科技股份 合作单位:Software Cradle Co., Ltd. 韵能建筑科技 应用版本:Ver1.00 2015.10.19

室外风环境模拟分析报告 项目名称:新项目 项目地址: 建设单位: 设计单位: 参与单位: 规标准参考依据: 1、《绿色建筑评价标准》(GB/T 50378-2014) 2、《民用建筑设计通则》(GB 50352-2005) 3、《绿色建筑评价技术细则》

一、项目概述 1.1计算模型概况 1.2建筑物概况 图1 建筑群平面图,红线建筑为目标建筑

二、指标要求 针对室外风环境评价依据为《绿色建筑评价标准》(GB/T 50378-2014)中有关室外风环境的条目要求。 2.1规的评价要求 《绿色建筑评价标准》(GB/T 50378-2014)中有关室外风环境的具体要求如下: 4.2.6 场地风环境有利于室外行走、活动舒适和建筑的自然通风。评分规则如下: 1 冬季典型风速和风向条件下,建筑物周围人行区风速低于5m/s,且室外风速放大系数小于2,得2分;除迎风第一排建筑外,建筑迎风面与背风面表面风压差不超过5Pa,再得1分。 2 过渡季、夏季典型风速和风向条件下,场地人活动区不出现涡旋或无风区,得2分;50%以上可开启外窗室外表面的风压差大于0.5Pa,得1分。 2.2模拟条件设置要求 1、室外风环境模拟的边界条件和基本设置需满足以下规定: 1)计算区域:建筑覆盖区域小于整个计算域面积3%;以目标建筑为中心,半径5H 围为水平计算域。建筑上方计算区域要大于3H;H为建筑主体高度; 2)网格划分:建筑的每一边人行高度区1.5m或2m高度应划分10个网格或以上; 3)湍流模型选择:标准k-ε模型。高精度要求时采用Durbin模型或MMK模型。

CFD仿真验证及有效性指南

CFD仿真验证及有效性指南 摘要 本文提出评估CFD建模和仿真可信性的指导方法。评估可信度的两个主要原则是:验证和有效。验证,即确定计算模拟是否准确表现概念模型的过程,但不要求仿真和现实世界相关联。有效,即确定计算模拟是否表现真实世界的过程。本文定义一些重要术语,讨论基本概念,并指定进行CFD仿真验证和有效的一般程序。本文目的在于提供验证和有效的重要问题和概念的基础,因为一些尚未解决的重要问题,本文不建议作为该领域的标准。希望该指南通过建立验证和有效的共同术语和方法,以助于CFD仿真的研究、发展和使用。这些术语和方法也可用于其他工程和科学学科。 前言 现在,使用计算机模拟流体的流动过程,用于设计,研究和工程系统的运行,并确定这些系统在不同工况下的性能。CFD模拟也用于提高对流体物理和化学性质的理解,如湍流和燃烧,有助于天气预报和海洋。虽然CFD模拟广泛用于工业、政府和学术界,但目前评估其可信度的方法还很少。这些指导原则基于以下概念,没有适用于所有CFD模拟的固定的可信度和精确度。模拟所需的精确度取决于模拟的目的。 建立可信度的两个主要原则是验证和有效(V&V)。这里定义,验证即确定模型能准确表现设计者概念模型的描述和模型解决方案的过程,有效即确定预期模型对现实世界表现的准确度的过程。该定义表明,V&V的定义还在变动,还没有一个明确的最终定义。通常完成或充分由实际问题决定,如预算限制和模型的预期用途。复合建模和计算模拟没有任何包括准确性的证明,如在数学分析方面的发展。V&V的定义也强调准确度的评价,一般在验证过程中,准确度以对简化模型问题的基准解决方法符合性确定;有效性时,准确度以对实验数据即现实的符合性确定。 通常,不确定性和误差可视为与建模和仿真准确度相关的正常损失。不确定性,即在任一建模过程中由于缺乏知识导致的潜在缺陷。知识缺乏通常是由对物理特性或参数的不完全了解造成的,如对涡轮叶片表面粗糙度分布的不充分描述。知识缺乏的另一个原因是物理过程的复杂性,如湍流燃烧。误差即在建模和

城市建筑风环境模拟及风能利用研究

Advances in Energy and Power Engineering 电力与能源进展, 2016, 4(1), 17-27 Published Online February 2016 in Hans. https://www.sodocs.net/doc/5316036847.html,/journal/aepe https://www.sodocs.net/doc/5316036847.html,/10.12677/aepe.2016.41003 Research on Wind Environment Simulation and Wind Energy Utilization in Urban Construction Environment Ping Ding, Ying Deng, De Tian North China Electric Power University, Beijing Received: Mar. 2nd 2016; accepted: Mar. 25th, 2016; published: Mar. 29th, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.sodocs.net/doc/5316036847.html,/licenses/by/4.0/ Abstract With the rapid development of distributed energy resource and urbanization, it gradually be-comes a great concern on utilizing wind energy resources in city buildings. In this study, a model of the main building of North China Electric Power University was built by Gambit and the numer-ical calculation was performed in the flow field to discuss the wind power generation potential with the computational fluid dynamics method. Then, characteristics of wind energy distribution were analyzed, and some sections with large wind velocity, such as passageway, rooftops and cor-ners, were chosen to conduct further analysis with denser meshes. Finally, considering different types of wind power use patterns and different constructions, the optimization design of wind turbines was proposed to solve the problem of wind power utilization in cities and the concen-trated concept was brought in wind power utilization of constructions for the first time. Study re-sults of this paper can provide references for the wind power utilization in buildings and distri-buted generation in the urban areas. Keywords Urban Architectural Wind Environment, Wind Power Generation, Computational Fluid Dynamics Method 城市建筑风环境模拟及风能利用研究 丁平,邓英,田德 华北电力大学,北京

车流量仿真分析-Flotran CFD

2006年用户年会论文 基于ANSYS流体动力学的车流量仿真分析1 [刘长虹,郑杰,朱晓华,张海波,黄虎,陈力华] [上海工程技术大学汽车工程学院,上海,201600] [ 摘要 ] 将交通流比拟为管道流体模型并且利用有限元分析软件ANSYS中的FLOTRAN CFD流体分析模块对隧道口交通流进行比拟及仿真,得出相应交通流量模型和车辆流动模拟图。并对不同车速下 交叉道口的通行能力进行模拟,确定出最佳车速比。且对不同入口形状进行车流通畅度的 ANSYA软件比较模拟,通过模拟直观的展示出不同道路入口形状对车流和道路的影响。最后对 高峰路段路口设计提出有关建议。 [ 关键词]交通流,交通流模型,ANSYS,模拟 Simulating to Traffic Flux By the ANSYS Fluid Dynamic Analysis [Liu Changhong, Zheng Jie, Zhu Xiaohua, Zhang Haibo, Huang Hu, Chen Lihua] [Automobile College Shanghai University of Engineering Science, Shanghai 201600] [Abstract ] Firstly, based on the fluid dynamic mechanics of channel, a traffic flow model is built. Secondly, the traffic flow model on cross road is simulated with the finite element method software (ANSYS). Then according to the calculating results, the simulating traffic ability at the entrance of the roadl in different speed and the different entrance figures are calculated directly. Finally, some suggestions of designing the heavy road are given. [ Keyword ] traffic flow, traffic flow simulation, ANSYS, Simulation. 1.前言 当前,社会经济的迅速发展与交通建设的相对滞后,已经构成非常突出的世界性矛盾,在发展中国家尤其突出。在我国许多大城市中,交通堵塞,事故频繁,成了众所周知的“都市顽症”。以上海市为例,上世纪九十年代的资料表明,在交通高峰期,市中心机动车平均车速不到15km/h,最低的车速仅仅为4km/h,即低于正常的步行速度。解决这个矛盾的一个重要办法是大力进行市政交通建设,实现交通的立体化,现代化。同时还要保证建设道路的合理性。交通流理论是解决这类方法的一种理论方法[1,2],其中有根据流体动力学理 1上海市教委基金项目(041NE31)和上海市科委基金项目(04QMX1452)资助

室外风环境模拟分析报告

室外风环境模拟分析报告

目录 1项目概况 (3) 1.1总平面图..................................................................................................................... 错误!未定义书签。 1.2三维视图..................................................................................................................... 错误!未定义书签。2模拟概述............................................................................................................................ 错误!未定义书签。 2.1室外风环境 (3) 2.2自然通风 (3) 3技术路线 (4) 3.1分析方法 (4) 3.2软件介绍 (4) 3.3紊流模型 (4) 3.4模拟工况 (5) 4参考依据 (6) 5评价说明 (6) 6室外风环境模拟建模 (7) 6.1物理模型 (7) 6.2参数设置..................................................................................................................... 错误!未定义书签。 6.2.1来流边界条件 (7) 6.2.2出流边界条件 (8) 6.2.3收敛判断 (8) 7室外风环境模拟分析结果 (9) 7.1工况1(冬季最盛行风,E) (9) 7.1.1流场与风速 (9) 7.1.2风压 (10) 7.2工况2(夏季盛行风,SW) (11) 7.2.1风压 ...................................................................................................................... 错误!未定义书签。 7.3工况3(过度季最盛行风,S) (13) 7.3.1风压 (13) 8结论 (14) 8.1舒适性 (14) 8.2自然通风 (14) 8.3达标判断 (15)

深圳某项目室外风环境模拟分析

深圳某项目室外风环境模拟分析 发表时间:2019-07-31T14:00:19.513Z 来源:《建筑模拟》2019年第24期作者:严谨 [导读] 本文采用基于CFD原理的计算模拟软件PHOENICS作为模拟工具,分析和评价本项目小区的室外风环境现状与室内自然通风的潜力。 严谨 深圳国研建筑科技有限公司广东深圳 518000 摘要:城市中高大建筑的数量和高度与日俱增,这些建筑的建成显著改变了城市的风环境。一方面高大密集的建筑群,降低了城市的通风、自净能力,加剧了在低风速条件下城市的空气污染和热岛效应;而另一方面在风速较大时,高大建筑周围会产生局部强风,影响到行人的舒适与安全,引出行人风环境问题。本文采用基于CFD原理的计算模拟软件PHOENICS作为模拟工具,分析和评价本项目小区的室外风环境现状与室内自然通风的潜力。 关键词:室外风;坏境模拟;风速; 1.概况 1.1项目概况 本工程为深圳某医院项目。总用地面积20844.41平方米,总建筑面积109084.35平方米,计容积率面积61567.01平方米,框架结构。地上18层,地下3层。本项目主要有医疗综合楼、行政后勤楼、发热感染楼及高压氧仓综合楼、门卫等。其中医疗综合楼、行政后勤楼、发热感染楼及高压氧仓综合楼为一级耐火等级,门卫为二级耐火等级。 根据深圳市多年的气象资料,深圳的地面风向存在非常明显的季节变化,秋、冬季偏北风为主,春、夏季则以偏东风为主;根据深圳市近多年风向观测记录,深圳市全年的风向频率以东北风最高,秋季与冬季盛行东北风,春季与夏季盛行东南风。 2风速边界条件 2.1入口边界条件: 由于随着高度的增加,风速会增大,因此,模拟中采用沿高度方向梯度风设置。 考虑实测存在的周围遮挡情况,城市梯度风按照以下公式计算: 2.2出流面的边界条件: 假定出流面上的流动已充分发展,流动已恢复为无建筑物阻碍时的正常流动,故其出口边界相对压力为零;建筑物表面为有摩擦的平滑墙壁。 3.风环境模拟分析 根据报告前面的项目地点气象特点分析,项目的室外风环境研究分为三部分进行: 夏季主导风:风速为2.7m/s,风向为东南; 冬季主导风:风速为3.4 m/s,风向为东北; 过渡季主导风:风速为3.0m/s,风向为东南偏南。 3.1夏季风工况 夏季主导风向为东南,平均风速2.7m/s。 图3-1~图3-3为夏季东南风向情况下室外风环境模拟计算结果。 在夏季东南风作用下,本项目整个室外人行高度1.5m区域风速约为0.50-4.69m/s,满足国家《绿色建筑评价标准》GB/T50378-2014对室外风速的要求。区块内风路流畅,未出现明显无风区或旋涡区。人行高度风速放大系数约为0.01-1.25,风速放大系数满足国家《绿色建筑

室外风环境模拟软件介绍

风环境模拟软件 风环境模拟软件是由PKPM与Cradle公司为满足中国绿色建筑标准而定制合作研发的一款软件,属于PKPM绿色建筑系列软件之一,是实现绿色建筑系列软件中室外风环境、室内自然通风以及热岛模拟计算等CFD模拟分析的专业软件。该软件已经发展成为用户界面友好,计算速度高,并具有丰富功能的风环境模拟软件。 【软件特点】 l 向导模式,易于掌握 软件提供向导模式,用户可根据向导指导进行操作,软件的操作具有提示性,会一路提示操作者设定边界条件,方便新用户快速掌握。经过几天培训,没使用过风环境模拟软件的设计师就能利用其进行简单的分析计算。 l 高效的操作流程 软件直接导入PKPM绿建系列软件统一的数据模型,设置好室外边界、室外辅助参数(比如地形高差、种植绿化等)等信息后,由软件自动划分网格进行计算,大大提高工作效率,最后通过强大的可视化处理,生成高质量图片,甚至可以输出高清的动画效果,给予客户更直观,更清晰的感受。

l 快而有效的求解 软件基于WIN平台开发,相对于其他同类软件,对同等规模的网格数所需要的硬件要求更低,效率更高,能够多核并行计算,快速实现超高网格数量的模型计算。 【软件功能】 1)强大的导模和建模功能 软件不仅自带强大的建模功能,可快速进行复杂模型的建模,同时能导入多种格式的模型数据,比如CAD、revit等输出的dxf、gbXML等模型文件。 2)模型简化分析功能 软件还有常见形状的图形库,图形库基本涵盖了建筑分析所需要的模型。除此之外,软件还有模型简化功能,能够去掉一些不影响分析结果但会增加网格数目的地方。 3)自动划分网格 计算机在短时间能自动划分网格,同时, 直观易懂的接口让完成划分网格的工作无需丰富的经验知识。

室外风环境模拟分析报告

通锦.国际新城三期项目(通锦.国际嘉园) 1号地块室外风通风 --室外风环境模拟分析报告 提供者:深圳市筑道建筑工程设计有限公司成都分公司

声明: 1、本报告无咨询单位签字盖章无效; 2、本报告涂改、复印均无效; 3、本报告仅对本项目有效。 项目名称:通锦·国际新城三期项目(通锦·国际嘉园) 委托单位:深圳市筑道建筑工程设计有限公司成都分公司 报告编写人: 校对人: 审核人: 项目负责人: 批准人: 报告编号: 报告日期:2016年1月

目录 1 模拟概述 (2) 项目概况 (2) 气候概况 (2) 达州市属湿润季风气候类型。由于地形复杂,区域性气候差异大。海拔800米以下的、、地区气候温和,、、夏热、,四季分明,长;海拔800至1000米的低、中山气候温凉、阴湿,回春迟,夏日酷热,秋凉早,冬寒长;海拔1000米以上的中山区,光热资源不足,寒冷期较长,春寒和秋霜十分突出。达州市热量资源丰富,雨热同期,全年平均气温度-度之间,无霜期300天左右。 (2) 风环境影响 (3) 参考依据 (3) 评价标准 (4) 2 分析流程 (4) 评价方法 (4) 几何模型 (5) 网格划分 (6) 湍流模型 (7) 边界条件 (8) 数学模型 (9) 求解方法 (10) 模拟工况 (10) 3 结果分析 (11) 工况1(夏季工况) (11) 工况2(冬季工况) (14) 4 结论 (16)

1 模拟概述 项目概况 1、工程名称:通锦?国际新城三期项目 2、建设单位:四川路桥通锦房地产开发有限公司 3、建设用地:该项目位于四川省达州市,位于四川省东北部,重庆以北,是由原达川地区更名建立的一个地级市,总面积16591平方千米。 达州市辖1个市辖区、5个县、1个县级市,有大面积的园林,是四川省的人口大市、农业大市、工业重镇,素有着中国气都和中国苎麻之乡的“川东明珠”美誉。达州地理坐标为北纬30 o75′-32 o07′,东经106 o94′-108 o06′,属亚热带湿润季风气候类型,冬暖夏凉。达州地势东北高,西南低,北部山体切割剧烈,山势陡峭,形成中、低山地地貌单元; 图1达州市通锦·国际新城三期项目总平面 本项目位于达州中南部,地势较为平缓,形成平等谷底地貌单元。 气候概况 达州市属湿润季风气候类型。由于地形复杂,区域性气候差异大。海拔800米以下的、、地区气候温和,、、夏热、,四季分明,长;海拔800至1000米的低、中山气候温凉、阴湿,回春迟,夏日酷热,秋凉早,冬寒长;海拔1000米以上的中山区,光热资源不足,寒冷期较长,春寒和秋霜十分突出。达州市热量资源丰富,雨热同期,全年平均气温度-度之间,无霜期300天左右。

建筑风环境CFD模拟案例

某小区区建筑风环境模拟报告 目录 1. 模拟过程及使用软件介绍 (2) 1.1 建筑风环境模拟使用软件介绍 (2) 1.2 建筑风环境模拟过程 (2) 1.2.1 几何模型的建立 (3) 1.2.2 网格的划分 (5) 1.2.3 求解参数设置 (6) 2. 模拟结果 (12) 3. 建筑风环境模拟研究思路及问题 (16) 附录I 从百度地图获取三维几何模型的尝试 (17) 附录2 Fluent入口边界速度UDF命令 (19) REFERENCE (19)

建筑风环境的研究主要有三种方式:现场实测、数值模拟和风洞试验。 随着计算机软硬件技术水平的发展,计算能力及计算精度不断提高,计算流体力学(Computational Fluid Dynamics:CFD)的理论和方法得到了不断改进。基于CFD 技术对流场进行模拟具有操作周期短,操作成本低,可反复修改的特性,相比较于现场实测和风洞试验具有更广阔的应用前景。但是由于数值模拟技术对输入的参数十分敏感,必须辅以现场实测或风洞试验的验证。 本次模拟区域直径500m,模拟的工况为10m高度处风速为10m/s,风向为225°,输出结果查看高度10m,20m,40m,78m,100m处的速度云图、速度矢量图和压力云图。 1. 模拟过程及使用软件介绍 1.1 建筑风环境模拟使用软件介绍 (1)前处理软件ANSYS ICEM CFD 15.0 ICEM是ANSYS CFD软件族中前处理软件之一。具有强大的网格划分功能,接口丰富,可接受绝大多数几何模型格式导入,例如AUTO CAD、SolidWorks、PRO/E等。 (2)求解软件ANSYS Fluent 15.0 占据CFD领域绝对领先地位的流体仿真软件。具有多种物理算法、物理模型。在医学、航天、机械工程等领域均应用广泛。 (3)后处理软件Tecplot 360 提供丰富的绘图格式,具备强大的CFD结果可视化功能,图形美观。 1.2 建筑风环境模拟过程 使用计算流体力学对建筑室外风场进行数值模拟一般包括以下四个步骤: (1)几何模型的建立 (2)对几何模型进行合适的网格划分 (3)将划分网格后的模型导入Fluent,设置求解参数并求解 (4)结果的后处理(速度云图、速度矢量图、压力云图等)

CFD案例5-发动机仿真

ANSYS对航空工业解决方案(三)航空发动机仿真方案_2 发表时间:2008-10-23 作者: 安世亚太来源: 安世亚太 关键字: 航空航天 CAE 仿真解决方案 ANSYS 安世亚太 第三章航空发动机仿真方案航空发动机行业概况航空发动机研制中的典型CAE问题航空发动机结构力学计算需求及ANSYS实现航空发动机流体力学和温度场的计算需求及ANSYS实现航空发动机电磁场计算需求及ANSYS实现航空发动机耦合场计算需求及ANSYS实现航空发动机关键零部件的设计分析流程简要说明 4航空发动机流体力学和温度场的计算需求及ANSYS实现 航空燃气涡轮发动机内的流场很复杂,不仅动静流场同时存在,同时还伴有多相流、传热、燃烧等现象,即使从物理上进行很大的简化,模型最后仍然是三维、有粘、非定常的可压流动。航空发动机流场数值计算的发展经历了S2流面法、基于一元管道的流线曲率法、有限差分方法求解非正交曲线坐标系中的S1、S2流面基本方程、有限差分、有限体积和有限差分与流线曲率混合的方法对S1流面跨音速流场的计算,而现在由S1与S2流面相互迭代形成的准三元和全三元计算也发展起来了。现在的采用有限体积法求解NS方程全三维流场计算已经广泛采用,航空发动机的流场数值计算已趋于成熟,可以充分考虑旋转流动、转静干涉问题、多相流、燃烧、亚超跨音速等复杂现象。而且现在求解的规模也不断扩大,利用并行等成熟的CFD技术可以计算达几千万甚至上亿的计算网格。因此结果也更为真实有效。 ANSYSCFX凭借TASCFLOW在叶轮机旋转流动的传统优势,结合更为先进的网格处理技术和高效的求解器,更适合航空发动机流动的复杂性,求解问题的规模和计算精度大大提高,一直处于航空发动机流动模拟的最前沿。

深圳某项目室外风环境模拟分析

深圳某项目室外风环境模拟分析 摘要:城市中高大建筑的数量和高度与日俱增,这些建筑的建成显著改变了城 市的风环境。一方面高大密集的建筑群,降低了城市的通风、自净能力,加剧了 在低风速条件下城市的空气污染和热岛效应;而另一方面在风速较大时,高大建 筑周围会产生局部强风,影响到行人的舒适与安全,引出行人风环境问题。本文 采用基于CFD原理的计算模拟软件PHOENICS作为模拟工具,分析和评价本项目 小区的室外风环境现状与室内自然通风的潜力。 关键词:室外风;坏境模拟;风速; 1.概况 1.1项目概况 本工程为深圳某医院项目。总用地面积20844.41平方米,总建筑面积109084.35平方米,计容积率面积61567.01平方米,框架结构。地上18层,地下3层。本项目主要有医疗综合楼、行政后勤楼、发热感染楼及高压氧仓综合楼、 门卫等。其中医疗综合楼、行政后勤楼、发热感染楼及高压氧仓综合楼为一级耐 火等级,门卫为二级耐火等级。 根据深圳市多年的气象资料,深圳的地面风向存在非常明显的季节变化,秋、冬季偏北风为主,春、夏季则以偏东风为主;根据深圳市近多年风向观测记录, 深圳市全年的风向频率以东北风最高,秋季与冬季盛行东北风,春季与夏季盛行 东南风。 2风速边界条件 2.1入口边界条件: 由于随着高度的增加,风速会增大,因此,模拟中采用沿高度方向梯度风设置。 考虑实测存在的周围遮挡情况,城市梯度风按照以下公式计算: 2.2出流面的边界条件: 假定出流面上的流动已充分发展,流动已恢复为无建筑物阻碍时的正常流动,故其出口 边界相对压力为零;建筑物表面为有摩擦的平滑墙壁。 3.风环境模拟分析 根据报告前面的项目地点气象特点分析,项目的室外风环境研究分为三部分进行: 夏季主导风:风速为2.7m/s,风向为东南; 冬季主导风:风速为3.4 m/s,风向为东北; 过渡季主导风:风速为3.0m/s,风向为东南偏南。 3.1夏季风工况 夏季主导风向为东南,平均风速2.7m/s。 图3-1~图3-3为夏季东南风向情况下室外风环境模拟计算结果。 在夏季东南风作用下,本项目整个室外人行高度1.5m区域风速约为0.50-4.69m/s,满足 国家《绿色建筑评价标准》GB/T50378-2014对室外风速的要求。区块内风路流畅,未出现明 显无风区或旋涡区。人行高度风速放大系数约为0.01-1.25,风速放大系数满足国家《绿色建 筑评价标准》GB/T50378-2014。 夏季迎风面风压平均值约为8.73Pa,背风面风压为-7.63Pa,前后压差约为16.36pa,有利

相关主题