搜档网
当前位置:搜档网 › 电磁场与电磁波第四版课后答案谢处方,

电磁场与电磁波第四版课后答案谢处方,

电磁场与电磁波第四版课后答案谢处方,
电磁场与电磁波第四版课后答案谢处方,

电磁场与电磁波(第四版)课后答案

第一章习题解答

1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e

4y z =-+B e e

52x z =-C e e

求:(1)A a ;(2)-A B ;(3)A B g ;(4)AB θ;(5)A 在B 上的分量;(6)?A C ;

(7)()?A B C g 和()?A B C g ;

(8)()??A B C 和()??A B

C 。 解 (1

)23A x y z +-=

==e e e A a e e e A (2)-=A B (23)(4)x y z y z +-

--+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (

4

cos AB θ

=

==A B A B g

,得

1cos AB θ-=(135.5=o (5)A 在B 上的分量 B A

=A cos AB θ=

=A B B g (6)?=A C 1

235

02x

y

z

-=-e e e 41310x y z ---e e e (7)由于?=B C 041502

x

y

z

-=-e e e 8520x y z ++e e e

?=A B 123041

x

y

z

-=-e e e 1014x y z ---e e e

所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e

(8)()??=A B C 1014502

x

y

z

---=-e e e 2405x y z -+e e e

()??=A B C 1

238

5

20

x y z -=e e e 554411x y z --e e e

1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123

PP P ?是否为一直角三角形; (2)求三角形的面积。

解 (1)三个顶点1(0,1,2)

P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为 12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e 则 12214x z =-=-R r r e e , 233228x y z =-=++R r r e e e ,

311367x y z =-=---R r r e e e

由此可见

1223(4)(28)0x z x y z =-++=R R e e e e e g g

故123

PP P ?为一直角三角形。 (2)三角形的面积

122312231117.1322S =?=?==R R R R

1.3 求(3,1,4)P '-点到(2,2,3)P -点的距离矢量R 及R 的方向。

解 34P x y z '=-++r e e e ,223P x y z =-+r e e e , 则 53P P P P x y z ''=-=--R r r e e e 且P P 'R 与x 、y 、z 轴的夹角分别为

11cos (

)cos 32.31x P P x P P φ--''===e R R o g

11cos (

)cos 120.47y P P

y P P φ'--'===e R R o g

11cos ()cos (99.73z P P z P P φ--''===e R R o g

1.4 给定两矢量234x y z =+-A e e e 和456x y z =-+B e e e ,求它们之间的夹角和A 在B 上的分量。

解 A 与B 之间的夹角为

11

cos ()cos 131θ--===AB

A B A B o g A 在B 上的分量为

3.532B A ===-B A B g 1.5 给定两矢量234x y z =+-A e e e 和64x y z =--+B e e e ,求?A B 在

x y z =-+C e e e 上的分量。

解 ?=A B 234641x y z

-=--e e e 132210x y z -++e e e

所以?A B 在C 上的分量为 ()?=

C A

B ()14.43?==-A B

C C g 1.6 证明:如果A B g =A C g 和?=A B ?A C ,则=B C ;

解 由?=A B ?A C ,则有()()??=??A A B A A C ,即

()()()()-=-A B A A A B A C A A A C g g g g

由于A B g =A C g ,于是得到 ()()=A A B A A C g g 故 =B C

1.7 如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。设A 为一已知矢量,p =A X g 而=?P A X ,p 和P 已知,试求X 。

解 由=?P A X ,有

()()()()p ?=??=-=-A P A A X A X A A A X A A A X g g g

故得 p -?=A A P X A A

g

1.8 在圆柱坐标中,一点的位置由2(4,,3)3

π定出,求该点在:(1)直角坐

标中的坐标;(2)球坐标中的坐标。

解 (1)在直角坐标系中

4cos(23)2x π==-、4sin(23)y π==3z = 故该点的直角坐标为

(2,-。

(2)在球坐标系中

5r ==、1tan (43)53.1θ-==o 、2120φπ==o

故该点的球坐标为(5,53.1,120)o o

1.9 用球坐标表示的场2

25r r

=E e , (1)求在直角坐标中点(3,4,5)--处的E 和x E ; (2)求在直角坐标中点(3,4,5)--处E 与矢量22x y z =-+B e e e 构成的夹角。 解 (1)在直角坐标中点(3,4,5)--处,2222(3)4(5)50r =-++-=,故

22512

r

r ==E e

1cos

2x x rx E θ====e E E g

(2)在直角坐标中点(3,4,5)--处,345x y z =-+-r e e e ,所以

233452525r r -+-===

e e e r E

故E 与B 构成的夹角为 11cos (

)cos (153.6θ--===EB E B E B o g g 1.10 球坐标中两个点111(,,)r θφ和222(,,)r θφ定出两个位置矢量1R 和2R 。证明1R 和2R 间夹角的余弦为

121212cos cos cos sin sin cos()γθθθθφφ=+- 解 由 111111111sin cos sin sin cos x y z r r r θφθφθ=++R e e e

222222222sin cos sin sin cos x y z r r r θφθφθ=++R e e e

得到 12

12

cos γ=

=R R R R g

1122112212sin cos sin cos sin sin sin sin cos cos θφθφθφθφθθ++=

121211212sin sin (cos cos sin sin )cos cos θθφφφφθθ++= 121212sin sin cos()cos cos θθφφθθ-+

1.11 一球面S 的半径为5,球心在原点上,计算: (3sin )d r S

θ?e S g ?的值。

解 (3sin )d (3sin )d r r r S

S

S θθ==

??e S e e g g 蜒22

20

d 3sin 5

sin d 75π

π

φθθθπ?=??

1.12 在由5r =、0z =和4z =围成的圆柱形区域,对矢量22r z r z =+A e e 验证散度定理。

解 在圆柱坐标系中 21()(2)32rr z r r r z

???=+=+??A g

所以 4

25

d d d (32)d 1200z r r r π

τ

τφπ?=+=????A g

2

d (2)(d d d )r

z r r z z S

S r

z S S S φφ=+++=??A S e e e e e g g 蜒

42522

00

00

5

5d d 24d d 1200z r r ππ

φφπ?+?=????

故有 d 1200τ

τπ?=?A g d S

=?A S g ?

1.13 求(1)矢量22222324x y z x x y x y z =++A e e e 的散度;(2)求?A g 对中

心在原点的一个单位立方体的积分;(3)求A 对此立方体表面的积分,验证散度定理。

解 (1)2222232222()()(24)

2272x x y x y z x x y x y z x y z

????=++=++???A g

(2)?A g 对中心在原点的一个单位立方体的积分为

121212

2222121212

1d (2272)d d d 24

x x y x y z x y z τ

τ---?=

++=

????

A g (3)A 对此立方体表面的积分

1212

1212

22

12121212

11d ()d d ()d d 22S y z y z ----=--+?????A S g ? 12121212

2

2221211212

11

2()d d 2()d d 22x x z x x z ------+????

12121212

2

2

3223112121111

24()d d 24()d d 2224x y x y x y x y ------=????

故有 1d 24τ

τ?=

?A g d S =?A S

g ? 1.14 计算矢量r 对一个球心在原点、半径为a 的球表面的积分,并求?r g 对球体积的积分。

解 22

30

d d d sin d 4r S

S

S aa

a ππ

φθθπ==

=????r S r e g g 蜒

又在球坐标系中,2

2

1()3r r r r

??==?r g ,所以 22

3000

d 3sin d d d 4a

r r a ππτ

τθθφπ?==????r g

1.15 求矢量22x y z x x y z =++A e e e 沿xy 平面上的一个边长为2的正方形回

路的线积分,此正方形的两边分别与x 轴和y 轴相重合。再求??A 对此回路所包围的曲面积分,验证斯托克斯定理。

解 2

2

2

2

2

d d d 2d 0d 8C

x x x x y y =-+-=?????A l g ?

又 2

222x y z

x z yz x x y z x

x y z

??

?

??=

=+???e e e A e e 所以 22

00

d (22)d d 8x z z S

yz x x y ??=+=???A S e e e g g

故有

d 8C

=?A l g ?d S

=???A S g

1.16 求矢量2x y x xy =+A e e 沿圆周222x y a +=的线积分,再计算??A 对此圆面积的积分。

解 2

d d d C

C

x x xy y =

+=??

A l g 蜒24

2

422

(cos sin cos sin )d 4

a a

a π

πφφφφφ-+=

?

d ()d y

x z z S S A A S x y ????=-=????A S e e g g 24222

00

d sin d d 4a S a y S r r r π

πφφ==??? 1.17 证明:(1)3?=R g ;(2)??=R 0;(3)()?=A R A g 。其中x y z x y z =++R e e e ,A 为一常矢量。

解 (1)3x y z

x y z

????=

++=???R g (2) x y z

x y z x y y

???

??=

=???e e e R 0

(3)设x x y y z z A A A =++A e e e ,则x y z A x A y A z =++A R g ,故

()()()x

x y z y x y z A x A y A z A x A y A z x y ???=++++++??A R e e g ()z x y z A x A y A z z

?

++=?e x x y y z z A A A ++=e e e A 1.18 一径向矢量场()r f r =F e 表示,如果0?=F g ,那么函数()f r 会有什么特点呢?

解 在圆柱坐标系中,由 1d [()]0d rf r r r

?==F g

可得到

()C

f r r

=

C 为任意常数。 在球坐标系中,由 221d [()]0d r f r r r ?==F g

可得到 2()C f r r

= 1.19 给定矢量函数x y y x =+E e e ,试求从点1(2,1,1)

P -到点2(8,2,1)P -的线积分d ?E l g :(1)沿抛物线2x y =;(2)沿连接该两点的直线。这个E 是保守场吗?

解 (1) d d d x y C

C

E x E y =+=??E l g d d C

y x x y +=?

222

1

d(2)2d y y y

y +=?2

21

6d 14y y =?

(2)连接点1(2,1,1)P -到点2(8,2,1)P -直线方程为

28

12

x x y y --=-- 即 640x y -+= 故

2

1

d d d d(64)(64)d x

y C

C

E

x E y y y y y =+=-+-=???E l g 2

1

(124)d 14y y -=?

由此可见积分与路径无关,故是保守场。

1.20 求标量函数2x yz ψ=的梯度及ψ在一个指定方向的方向导数,此方

向由单位矢量x

y z

+e e e 定出;求(2,3,1)点的方向导数值。 解 222()()()x y z x yz x yz x yz x y z ψ???

?=++=???e e e

222x y z xyz x z x y ++e e e

故沿方向l x y z

=+e e e e 的方向导数为

22

l l ψψ?=?=+?e g 点(2,3,1)处沿l e 的方向导数值为

l ψ?==

? 1.21 坐标中

y x z

A A A x y z

????=++

???A g 相似的方法推导圆柱坐标下的公式

1()z r A A rA r r r z

φφ???

?=

++???A g 。 解 在圆柱坐标中,取小体积元如题1.21图所示。矢量场A 沿r e 方向穿出该六面体的表面的通量为

题1.21图

()d d d d z z z z

r r

r r

r r z

z

A r r r A r r φφφφφ

φ

ψφφ+?+?+?+?+?=

+?-

≈????

[()(,,)(,,)]r r r r A r r z rA r z z φφφ+?+?-??≈

()()

1r r rA rA r z r r r

φτ?????=??? 同理

d d d d r r z z

r r z z

r

z

r

z

A r z A r z φφ

φφ

φφψ+?+?+?+?+?=

-

≈??

??

[(,,)(,,)]A r z A r z r z φφφφφ+?-??≈

A A r z r φφφτφ

φ

?????=

???

d d d d r r r r z z

z z

z z r

r

A r r A r r φφ

φφ

φ

φ

ψφφ+?+?+?+?+?=

-

≈????

[(,,)(,,)]z z A r z z A r z r r z φφφ+?-???≈

z z A A

r r z z z

φτ?????=??? 因此,矢量场A 穿出该六面体的表面的通量为

()1[]r z

r z A rA A ΨΨΨΨr r r z

φφτφ???=++≈++????

故得到圆柱坐标下的散度表达式 0()1lim r z

A rA A r r r z

φτψτφ?

→?????==++????A 1.22 方程222

222x y z u a b c

=++给出一椭球族。求椭球表面上任意点的单位法向矢量。

解 由于 222

222x y z

x y z u a b c ?=++e e e

u ?=

222(x y z u x y z a b c u

?=

=++?n e e e 1.23 现有三个矢量A 、B 、C 为

sin cos cos cos sin r θφθφθφφ=+-A e e e

22sin cos 2sin r z z z rz φφφφ=++B e e e 22(32)2x y z y x x z =-++C e e e

(1)哪些矢量可以由一个标量函数的梯度表示?哪些矢量可以由一个矢量函数的旋度表示?

(2)求出这些矢量的源分布。 解(1)在球坐标系中

22111()(sin )sin sin r A r A A r r r r φ

θ

θθθθφ

????=

++=???A g

22

111(sin cos )(sin cos cos )(sin )sin sin r r r r r θφθθφφθθθφ

???

++-=??? 2cos 2sin cos cos sin cos 0sin sin r r r r φθφφθφθθ

+--= 2

sin 1sin sin r

r r r r r

A rA r A θφ

θφ

θθθφθ?

??

??==???e e e A 2sin 10sin sin cos cos cos sin sin r

r r r r r r θφ

θθ

θφθφθφθφ

???

=???-e e e

故矢量A 既可以由一个标量函数的梯度表示,也可以由一个矢量函数的旋度表示;

在圆柱坐标系中

11()z r B B rB r r r z φφ????++=

???B =g 2211(sin )(cos )(2sin )rz z rz r r r z φφφφ???

++=???

22sin sin 2sin 2sin z z r r r r φφ

φφ-+= 22110sin cos 2sin r z r z r z r r r r z r r z B rB B z rz rz θθθφφφφφ

??????

??===??????e e e e e e B

故矢量B 可以由一个标量函数的梯度表示;

直角在坐标系中

y x z C C C x y z ????++=

???C =g 22(32)()(2)0

y x x z x y z ???

-++=??? 22(26)322x y z z x y x y z y x x z

???

??==-???-e e e C e

故矢量C 可以由一个矢量函数的旋度表示。 (2)这些矢量的源分布为 0?=A g ,0??=A ;

2sin r φ?B =g ,0??=B ; 0?=C g ,(26)z x y ??=-C e

1.24 利用直角坐标,证明

(完整版)电磁场与电磁波答案(第四版)谢处方

一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ; (4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ ===A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e

电磁场与电磁波理论 概念归纳

A.电磁场理论B基本概念 1.什么是等值面?什么是矢量线? 等值面——所有具有相同数值的点组成的面 ★空间中所有的点均有等值面通过; ★所有的等值面均互不相交; ★同一个常数值可以有多个互不相交的等值面。 矢量线(通量线)---- 一系列有方向的曲线。 线上每一点的切线方向代表该点矢量场方向, 而横向的矢量线密度代表该点矢量场大小。 例如,电场中的电力线、磁场中的磁力线。 2.什么是右手法则或右手螺旋法则?本课程中的应用有哪些?(图) 右手定则是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就是矢量积C=A*B的方向。 右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就是在右手螺旋从矢量A转到矢量B的前进方向。 本课程中的应用: ★无限长直的恒定线电流的方向与其所产生的磁场的方向。 ★平面电磁波的电场方向、磁场方向和传播方向。 3.什么是电偶极子?电偶极矩矢量是如何定义的?电偶极子的电磁场分布是怎样的? 电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。 电偶极矩矢量——大小等于点电荷的电量和间距的乘积,方向由负电荷指向正电荷。

4.麦克斯韦积分和微分方程组的瞬时形式和复数形式; 积分形式: 微分方式: (1)安培环路定律 (2)电磁感应定律 (3)磁通连续性定律 (4)高斯定律 5.结构方程

6.什么是电磁场边界条件?它们是如何得到的?(图) 边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。 边界条件是在无限大平面的情况得到的,但是它们适用于曲率半径足够大的光滑曲面。 7.不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义; (1)导电媒质分界面的边界条件 ★ 导电媒质分界面上不存在传导面电流,但可以有面电荷。 在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量和磁感应强度的法向分量永远是连续的 (2)理想导体表面的边界条件 ★ 理想导体内部,时变电磁场处处为零。导体表面可以存在时变的面电流和面电荷。

电磁场与电磁波复习

一、名词解释 1.通量、散度、高斯散度定理 通量:矢量穿过曲面的矢量线总数。(矢量线也叫通量线,穿出的为正,穿入的为负) 散度:矢量场中任意一点处通量对体积的变化率。 高斯散度定理:任意矢量函数A的散度在场中任意一个体积内的体积分,等于该矢量函在限定该体积的闭合面的法线分量沿闭合面的面积分。 2.环量、旋度、斯托克斯定理 环量:矢量A沿空间有向闭合曲线C的线积分称为矢量A沿闭合曲线l的环量。其物理意义随A 所代表的场而定,当A为电场强度时,其环量是围绕闭合路径的电动势;在重力场中,环量是重力所做的功。 旋度:面元与所指矢量场f之矢量积对一个闭合面S的积分除以该闭合面所包容的体积之商,当该体积所有尺寸趋于无穷小时极限的一个矢量。 斯托克斯定理:一个矢量函数的环量等于该矢量函数的旋度对该闭合曲线所包围的任意曲面的积分。 3.亥姆霍兹定理 在有限区域V内的任一矢量场,由他的散度,旋度和边界条件(即限定区域V的闭合 面S上矢量场的分布)唯一的确定。 说明的问题是要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度 4.电场力、磁场力、洛仑兹力电场力:电场 力:电场对电荷的作用称为电力。 磁场力:运动的电荷,即电流之间的作用力,称为磁场力。 洛伦兹力:电场力与磁场力的合力称为洛伦兹力。 5.电偶极子、磁偶极子 电偶极子:一对极性相反但非常靠近的等量电荷称为电偶极子。 磁偶极子:尺寸远远小于回路与场点之间距离的小电流回路(电流环)称为磁偶极子。 6.传导电流、位移电流 传导电流:自由电荷在导电媒质中作有规则运动而形成的电流。 位移电流:电场的变化引起电介质内部的电量变化而产生的电流。 7.全电流定律、电流连续性方程 全电流定律(电流连续性原理):任意一个闭合回线上的总磁压等于被这个闭合回线所包围的面内穿过的全部电流的代数和。 电流连续性方程: 8.电介质的极化、极化矢量 电介质的极化:把一块电介质放入电场中,它会受到电场的作用,其分子或原子内的正,负电荷将在电场力的作用下产生微小的弹性位移或偏转,形成一个个小电偶极子, 这种现象称为电介质的极化。 极化矢量P:单位体积内的电偶极矩矢量和。 9.磁介质的磁化、磁化矢量 磁介质的磁化:当把一块介质放入磁场中时,它也会受到磁场的作用,其中也会形成一个个 小的磁偶极子,这种现象称为介质的磁化。

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题6.1图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7) cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+? B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角 速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。 解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=?=?=E v B e e B e 故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。设0.2a m =、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

电磁场与电磁波理论基础自学指导书

电磁场与电磁波理论基础自学指导书 课程简介:电磁场理论是通信技术的理论基础,是通信专业本科学生必须具备的知识结构的重要组成部分之一。使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。培养学生正确的思维方法和分析问题的能力,使学生对"场"与"路"这两种既密切相关又相距甚远的理论有深刻的认识,并学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。为以后的学习和工作打下坚实的理论基础。 第一章矢量分析场论初步 1主要内容 本章从矢量分析入手,介绍了标量场和矢量场的基本概念,学习了矢量的通量、散度以及散度定理,矢量的环流、旋度以及斯托克斯定理,标量的梯度,以及上述的物理量在圆柱和球坐标系下的表达形式,最后介绍了亥姆霍兹定理,该定理说明了研究一个矢量场从它的散度和旋度两方面入手。通过本章的学习,使学生掌握场矢量的散度、旋度和标量的梯度的概念和数学计算为以后的电磁场分析打下基础。 2学习要求 深刻理解标量场和矢量场的概念;深刻理解散度、旋度和梯度的概念、物理意义及相关定理; 熟练使用直角坐标、圆柱坐标和球坐标进行矢量的微积分运算; 了解亥姆霍兹定理的内容。 3重点及难点 重点:在直角坐标、圆柱坐标和球坐标中计算矢量场的散度和旋度、标量场的梯度以及矢量的线积分、面积分和体积分。 难点:正确理解和掌握散度、旋度和梯度的概念及定理,可以借助流体的流量和涡旋等自然界中比较具体而形象的相似问题来理解。 4思考题合作业 1.4, 1.8, 1.9, 1.11, 1.14, 1.16, 1.24 第二章静电场 1主要内容 本章我们从点电荷的库仑定律发,推导出静电场的基本方程(微分表达及积分表达),该基本方程第一组与静电场的散度和通量有关(高斯定律),第二组有关静电场的环量和旋度,推导的过程运用了叠加原理。由静电场的基本方程中的环量和旋度的基本方程,我们引入了电位的概念,并给出了电场强度与电位之间的关系以及电位的计算公式。运用静电场的基本方程及电位可以解决静电场中的场源互求问题(已知源求场或已知场求源)。然后介绍了电偶极子的概念,推导了电偶极子的电场强度与电位的表达式。接着介绍了介质的极化,被极化的分子可等效为电偶极子,所以介质极化产生的电位就可以借用电偶极子的相关结论。由极化介质的电位公式我们推导了介质中的高斯定律,在该定律中引入了一个新的量—

电磁场与电磁波第四版谢处方版思考题目标准答案

一:1.7什么是矢量场的通量?通量的值为正,负或0分别表示什么意义? 矢量场F穿出闭合曲面S的通量为: 当大于0时,表示穿出闭合曲面S的通量多于进入的通量,此时闭合曲面S内必有发出矢量线的源,称为正通量源。 当小于0时,小于 有汇集矢量线的源,称为负通量源。 当等于0时等于、闭合曲面内正通量源和负通量源的代数和为0,或闭合面内无通量源。 1.8什么是散度定理?它的意义是什么? 矢量分析中的一个重要定理: 称为散度定理。意义:矢量场F的散度在体积V上的体积分等于矢量场F在限定该体积的闭合积分,是矢量的散度的体积与该矢量的闭合曲面积分之间的一个变换关系。 1.9什么是矢量场的环流?环流的值为正,负,或0分别表示什么意义? 矢量场F沿场中的一条闭合回路C的曲线积分,称为矢量场F沿 的环流。 大于0或小于0,表示场中产生该矢量的源,常称为旋涡源。

等于0,表示场中没有产生该矢量场的源。 1.10什么是斯托克斯定理?它的意义是什么?该定理能用于闭合曲面吗? 在矢量场F所在的空间中,对于任一以曲面C为周界的曲面S,存在如下重要关系 这就是是斯托克斯定理矢量场的旋度在曲面S上的面积分等于矢量场F在限定曲面的闭合曲面积分,是矢量旋度的曲面积分与该矢量沿闭合曲面积分之间的一个变换关系。能用于闭合曲面. 1,11 如果矢量场F能够表示为一个矢量函数的旋度,这个矢量场具有什么特性? =0,即F为无散场。 1.12如果矢量场F能够表示为一个标量函数的旋度,这个矢量场具有什么特性? =0即为无旋场 1.13 只有直矢量线的矢量场一定是无旋场,这种说法对吗?为什么? 不对。电力线可弯,但无旋。 1.14 无旋场与无散场的区别是什么? 无旋场F的旋度处处为0,即,它是有散度源所产生的,它总可以表示矢量场的梯度,即 =0

电磁场与电磁波答案(无填空答案).

电磁场与电磁波复习材料 简答 1. 简述恒定磁场的性质,并写出其两个基本方程。 2. 试写出在理想导体表面电位所满足的边界条件。 3. 试简述静电平衡状态下带电导体的性质。 答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分) 导体内部电场强度等于零,在导体表面只有电场的法向分量。(3分) 4. 什么是色散?色散将对信号产生什么影响? 答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。 (3分) 色散将使信号产生失真,从而影响通信质量。 (2分) 5.已知麦克斯韦第二方程为t B E ??- =?? ,试说明其物理意义,并写出方程的积分形式。 6.试简述唯一性定理,并说明其意义。 7.什么是群速?试写出群速与相速之间的关系式。

8.写出位移电流的表达式,它的提出有何意义? 9.简述亥姆霍兹定理,并说明其意义。 答:当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。 (3分) 亥姆霍兹定理告诉我们,研究任意一个矢量场(如电场、磁场等),需要从散度和旋度两个方面去研究,或者是从矢量场的通量和环量两个方面去研究 10.已知麦克斯韦第二方程为S d t B l d E S C ???-=???,试说明其物理意义,并写出方程的微 分形式。 答:其物理意义:随时间变化的磁场可以产生电场。 (3分) 方程的微分形式: 11.什么是电磁波的极化?极化分为哪三种? 答:电磁波的电场强度矢量的方向随时间变化所描绘的轨迹称为极化。(2分) 极化可以分为:线极化、圆极化、椭圆极化。 12.已知麦克斯韦第一方程为 t D J H ??+ =?? ,试说明其物理意义,并写出方程的积分形式。

南京邮电大学电磁场与电磁波考试必背公式

电磁场与电磁波复习 第一部分 知识点归纳 第一章 矢量分析 1、三种常用的坐标系 (1)直角坐标系 微分线元:dz a dy a dx a R d z y x → → → → ++= 面积元:?????===dxdy dS dxdz dS dydz dS z y x ,体积元:dxdydz d =τ (2)柱坐标系 长度元:?????===dz dl rd dl dr dl z r ??,面积元??? ??======rdrdz dl dl dS drdz dl dl dS dz rd dl dl dS z z z r z r ????,体积元:dz rdrd d ?τ= (3)球坐标系 长度元:??? ??===?θθ? θd r dl rd dl dr dl r sin ,面积元: ?? ? ??======θ ?θ? θθθ??θθ?rdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin 2,体积元:?θθτd drd r d sin 2= 2、三种坐标系的坐标变量之间的关系 (1)直角坐标系与柱坐标系的关系 ?? ?? ??? ==+=?????===z z x y y x r z z r y r x arctan ,sin cos 22??? (2)直角坐标系与球坐标系的关系 ? ?? ? ?? ??? =++=++=?????===z y z y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 2 222 22?θθ?θ?θ (3)柱坐标系与球坐标系的关系 ?? ? ? ???=+=+=?????===??θθ??θ2 2'2 2''arccos ,cos sin z r z z r r r z r r 3、梯度 (1)直角坐标系中: z a y a x a grad z y x ??+??+??=?=→→→ μ μμμμ (2)柱坐标系中: z a r a r a grad z r ??+??+??=?=→→→ μ ?μμμμ?1 (3)球坐标系中:

电磁场与电磁波(第四版)谢处方 第五章习题解答.

电磁场与电磁波(第四版)谢处方 第五章习题解答 5.1 真空中直线长电流I 的磁场中有一等边三角形回路,如题5.1图所示,求三角形回路内的磁通。 解 根据安培环路定理,得到长直导线的电流I 产生的磁场 02I r φ μπ=B e 穿过三角形回路面积的磁通为 d S ψ==?B S 0 00 2[d ]d d 2d d z d d I I z z x x x x μμππ= ? 由题5.1 图可知,()tan 6z x d π=-=,故得到 d d d x d x x ψ-== 0[)]22I b d μπ+ 5.2 通过电流密度为J 的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题5.2图所 示。计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。 解 将空腔中视为同时存在J 和J -的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J 、均匀分布在半径为b 的圆柱内,另一个电流密度为J -、均匀分布在半径为a 的圆柱内。由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。 由安培环路定律 d C I μ?=?B l ,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电 I 题 5.1 图 题5.2图

流产生的磁场为 0 2 0222 b b b b b b r b b r b r J r B J r μμ???? 电流密度为J -、均匀分布在半径为a 的圆柱内的电流产生的磁场为 2 0222a a a a a a r a a r a r J r B J r μμ?-??? 这里a r 和b r 分别是点a o 和b o 到场点P 的位置矢量。 将a B 和b B 叠加,可得到空间各区域的磁场为 圆柱外:22 222b a b a b a r r B J r r μ??=?- ??? ()b r b > 圆柱内的空腔外:2 022b a a a r B J r r μ??=?- ?? ? (,)b a r b r a <> 空腔内: ()0022 b a B J r r J d μμ=?-=? ()a r a < 式中d 是点和b o 到点a o 的位置矢量。由此可见,空腔内的磁场是均匀的。 5.3 下面的矢量函数中哪些可能是磁场?如果是,求其源变量J 。 (1) 0,r ar H e B H μ== (圆柱坐标) (2) 0(),x y ay ax H e e B H μ=-+= (3) 0,x y ax ay H e e B H μ=-= (4) 0,ar H e B H φμ==(球坐标系) 解 根据恒定磁场的基本性质,满足0B ??=的矢量函数才可能是磁场的场矢量,否则,不是磁场的场矢量。若是磁场的场矢量,则可由J H =??求出源分布。 (1)在圆柱坐标中 211()()20r rB ar a r r r r B ????===≠?? 该矢量不是磁场的场矢量。 (2) ()()0ay ax x y B ?? ??= -+=?? 该矢量是磁场的矢量,其源分布为 20 x y z z a x y z a y a x e e e J H e ???=??==???- (3) ()()0ax ay x y B ?? ??=+-=??

电磁场与电磁波(第三版)课后答案第1章

第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B ;(4)A B θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C 和()?A B C ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= = =e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 ( 4 ) 由 c o s AB θ =1 1 2 3 8 = A B A B , 得 1 c o s A B θ- =(135.5- = (5)A 在B 上的分量 B A =A c o s AB θ = =- A B B (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 1 230 4 1 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()?=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123P P P ?是否为一直角三角形; (2)求三角形的面积。

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第2章习题解答

第2章习题解答 2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0V a ρρρρ =, ()0a ρ≤≤。试求总电量Q 。 解:2π20000 2d d d d π3 l a V V Q V z la a ρρ ρρρ?ρ= ==? ? ?? 2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。当球以角速度ω绕某一直径(z 轴)旋转时,试求 其表面上的面电流密度。 解:面电荷密度为 2 04πS Q R ρ= 面电流密度为 002 00 sin sin sin 4π4πS S S Q Q J v R R R R ωθ ρρωθωθ=?== = 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=。已知导线的直径为d ,导线中的电流为0I ,试 求0S J 。 解:每根导线的体电流密度为 00 22 4π(/2)πI I J d d = = 由于导线是均匀密绕,则根据定义面电流密度为 04πS I J Jd d == 因此,等效面电流密度为 04πS I J e d ?= 2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。为使中间的 点电荷处于平衡状态,试求其位置。当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。由库仑定律,实验电荷受02q 的排斥力为 12 214πq F x ε= 实验电荷受0q 的排斥力为 022 1 4π()q F d x ε= - 要使实验电荷保持平衡,即21F F =,那么由0022 211 4π4π() q q x d x εε=-,可以解得 d d x 585.01 22=+= 如果实验电荷为0q -,那么平衡位置仍然为d d x 585.01 22=+=。只是这时实验电荷与0q 和02q 不 是排斥力,而是吸引力。 2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。 解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电 场为 ( ) ( 00 2 22 00001114π4π4π221x y y x x y q q q E e e e e a a q e e εεε? =+++ ?+=+

电磁场与电磁波试题答案

《电磁场与电磁波》试题1 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的导磁率为,则磁感应强度和磁场满足的方程为:。 2.设线性各向同性的均匀媒质中,称为方程。 3.时变电磁场中,数学表达式称为。 4.在理想导体的表面,的切向分量等于零。 5.矢量场穿过闭合曲面S的通量的表达式为:。 6.电磁波从一种媒质入射到理想表面时,电磁波将发生全反射。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于。 8.如果两个不等于零的矢量的等于零,则此两个矢量必然相互垂直。 9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合关系。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用函数的旋度来表示。 二、简述题(每小题5分,共20分) 11.已知麦克斯韦第二方程为,试说明其物理意义,并写出方程的积分形式。 12.试简述唯一性定理,并说明其意义。 13.什么是群速?试写出群速与相速之间的关系式。 14.写出位移电流的表达式,它的提出有何意义? 三、计算题(每小题10分,共30分) 15.按要求完成下列题目 (1)判断矢量函数是否是某区域的磁通量密度? (2)如果是,求相应的电流分布。

16.矢量,,求 (1) (2) 17.在无源的自由空间中,电场强度复矢量的表达式为 (1)试写出其时间表达式; (2)说明电磁波的传播方向; 四、应用题(每小题10分,共30分) 18.均匀带电导体球,半径为,带电量为。试求 (1)球内任一点的电场强度 (2)球外任一点的电位移矢量。 19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出);(2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。 20.如图2所示的导体槽,底部保持电位为,其余两面电位为零,(1)写出电位满足的方程; (2)求槽内的电位分布

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第1章习题解答

第1章习题解答 1.4 计算下列标量场u 的梯度u ? : (1)234u x y z =; (2)u xy yz zx =++; (3)222323u x y z =-+。 解:(1) 34224233234x y z x y z u u u u e e e e xy z e x y z e x y z x y z ????=++=++??? (2)()()()x y z x y z u u u u e e e e y z e x z e y x x y z ????=++=+++++??? (3)646x y z x y z u u u u e e e e x e y e z x y z ????=++=-+??? 1.6 设()22,,1f x y z x y y z =++。试求在点()2,1,3A 处f 的方向导数最大的方向的单位矢量及其方向导 数。方向导数最小值是多少?它在什么方向? 解: ()2222x y z x y z f f f f e e e e xy e x yz e y x y z ????=++=+++??? 因为410x y z x y z A f f f f e e e e e e x y z ????=++=++??? 所以 ( max 410l x y z f e e e e l ?==++? ( min 410l x y z f e e e e l ?==-++? 1.10 求下列矢量场在给定点的散度值: (1)()x y z A xyz e x e y e z =++ 在()1,3,2M 处; (2)242x y z A e x e xy e z =++ 在()1,1,3M 处; (3)())1222x y z A e x e y e z x y z =++++ 在()1,1,1M 处。 解:(1) 222636y x z M A A A A xyz xyz xyz xyz A x y z ?????=++=++=??=??? (2)42212y x z M A A A A x z A x y z ?????= ++=++??=??? (3)y x z A A A A x y z ?????=++ ??? ( )( )( ) 2222 2222 2222 3 3 3 x y z x x y z y x y z z ++-++-++ -= + + = M A ??=

电磁场与电磁波试题及答案

《电磁场与电磁波》试题2 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的介电常数为ε,则电位移矢量D ?和电场E ? 满足的 方程为: 。 2.设线性各向同性的均匀媒质中电位为φ,媒质的介电常数为ε,电荷体密度为V ρ,电位 所满足的方程为 。 3.时变电磁场中,坡印廷矢量的数学表达式为 。 4.在理想导体的表面,电场强度的 分量等于零。 5.表达式()S d r A S ? ????称为矢量场)(r A ? ?穿过闭合曲面S 的 。 6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生 。 7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于 。 8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 。 9.对横电磁波而言,在波的传播方向上电场、磁场分量为 。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是 场,因此,它可用磁矢位函数的旋度来表示。 二、简述题 (每小题5分,共20分) 11.试简述磁通连续性原理,并写出其数学表达式。 12.简述亥姆霍兹定理,并说明其意义。 13.已知麦克斯韦第二方程为S d t B l d E S C ???????-=???,试说明其物理意义,并写出方程的微 分形式。 14.什么是电磁波的极化?极化分为哪三种? 三、计算题 (每小题10分,共30分) 15.矢量函数 z x e yz e yx A ??2+-=? ,试求 (1)A ? ?? (2)A ? ?? 16.矢量 z x e e A ?2?2-=? , y x e e B ??-=? ,求 (1)B A ? ?- (2)求出两矢量的夹角

电磁场与电磁波课程知识点汇总和公式

电磁场与电磁波课程知识点汇总和公式

————————————————————————————————作者:————————————————————————————————日期:

电磁场与电磁波课程知识点总结与主要公式 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 000 ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-? ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0 )0 )(0 )==-?==-?==-?==-? ((

(1)基本方程 00 2 2 =?==?- =?=?=??=?=??? ??A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ 本构关系: E D ε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注 意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能 量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 : a b ρ r ε ρs r S a b ε q l 球对称 轴对称 面对称

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第7章习题解答

第7章习题解答 7.6 如题7.6图所示相距为a 的平板金属波导,当/0y ??=时,沿z 方向可传播 TEM 模、TE 模和TM 模。试求:(1)各种模式的场分量;(2)各种模式的传播常数;(3)画出基本模式的场结构及其导体表面的传导电流。 解:(1) 各种模式的场分量 对TEM 模,在均匀波导横截面上的分布规律与同样边界条件下的二维静态场的分布规律是完全一样的。对静电场情况,无限大平板之间的电场强度为均匀电场0E ,则对应的TEM 模中电场为 j t 0e kz x x x E e E e E -== 利用平面波电场与磁场关系,即 j 0t t w 1 e 120π kz z y E H e E e Z -= ?= 对TE 模,0=z E ,而z H 满足的导波方程为 22t c 0z z H k H ?+= 式中2 2 2 c k k γ=+,2 2t 2x ??=?,则上式变成 22c 2 d 0d z z H k H x += 因此波动方程的解为 c c sin cos z H A k x B k x =+ 由0=x 时 0=??x H z 可得到0=A ;由a x =时0=??x H z 可得到c sin 0k x =,即c m k a π= 。因此 πcos z m m x H H a = 式中m H 取决于波源的激励强度。由于波沿着z 方向传播,则j z k γ=,因此 z k ==利用各横向场分量与纵向场分量之间关系可以得到 j 22c c 0 j ππj sin e z x k z z y m E H m m x E H k x k a a ωμωμ-=?==-? j 22c c j j ππsin e 0z k z z z z x m y k H k m m x H H k x k a a H -?=- =?= 对TM 模,0=z H ,而z E 满足的导波方程为 22c 2 d 0d z z E k E x += 因此波动方程的解为 c c sin cos z E A k x B k x =+ 由0=x 时0=z E 可得到0=B ;由a x =时0=z E 可得到c sin 0k x =,即c m k a π=。因此 πsin z m m x E E a = 式中m E 取决于波源的激励强度。利用各横向场分量与纵向场分量之间关系可以得到

电磁场与电磁波课程知识点总结和公式

电磁场与电磁波课程知识点总结与主要公式 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 000 ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-? ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0 )0 )(0 )==-?==-?==-?==-? ((

(1)基本方程 00 2 2 =?==?- =?=?=??=?=??? ??A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ 本构关系: E D ε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注 意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能 量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 : ρ s 球对称 轴对称 面对称

电磁场与电磁波理论(第二版)(徐立勤曹伟)第3章习题测验解答

第3章习题解答 3.1 对于下列各种电位分布,分别求其对应的电场强度和体电荷密度: (1)()2,,x y z Ax Bx C Φ=++; (2)(),,x y z Axyz Φ=; (3)()2,,sin z A B z Φρ?ρ?ρ=+; (4)()2,,sin cos r Ar Φθ?θ?=。 解:已知空间的电位分布,由E Φ=-?和2 0/Φρε?=-可以分别计算出电场强度和体电荷密度。 (1) ()2x E e Ax B Φ=-?=-+ 0202εερA -=Φ?-= (2) () x y z E A e yz e xz e xy Φ=-?=-++ 020=Φ?-=ερ (3) (2sin )cos z E e A Bz e A e B ρ?Φρ?ρ?ρ??=-?=-+++?? 20004sin sin 3sin Bz Bz A A A ρεΦε??ε?ρρ???? =-?=-+ -=-+ ? ???? ? (4) ()2sin cos cos cos sin r E e Ar e Ar e Ar θ?Φθ?θ??=-?=-+- 200cos 2cos cos 6sin cos sin sin A A A θ??ρεΦεθ?θθ?? =-?=-+ - ?? ? 3.5 如题3.5图所示上下不对称的鼓形封闭曲面,其上均匀分布着密度为0S ρ的面电荷。 试求球心处的电位。 解:上顶面在球心产生的电位为 22001111100 ()()22S S d R d R d ρρ Φεε= +-=- 下顶面在球心产生的电位为 22 002222200 ()()22S S d R d R d ρρΦεε= +-=- 侧面在球心产生的电位为 030 014π4πS S S S R R ρρΦεε= = ? 式中2 12124π2π()2π()2π()S R R R d R R d R d d =----=+。因此球心总电位为 1230 S R ρΦΦΦΦε=++= 3.6有02εε=和05εε=的两种介质分别分布在0z >和0z <的半无限大空间。已知0z >时, 201050x y z E e e e =-+V /m 。试求0z <时的D 。 解:由电场切向分量连续的边界条件可得 1t 2t E E =? 000520510x y z D D εε<=?=-? 代入电场法向方向分量满足的边界条件可得 1n 2n D D =? 050z z D <= 于是有 0001005050x y z z D e e e εε<=-+ 3.9 如题 3.9图所示,有一厚度为2d 的无限大平面层,其中充满了密度为 ()0πcos x x d ρρ=的体电荷。若选择坐标原点为零电位参考点,试求平面层 之内以及平面层以外各区域的电位和电场强度。

电磁场与电磁波习题答案

第二章 2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。 解 要使系统处于平衡状态,点电荷q '受到点电荷q 1及 q 2的力应该大小相等,方向相反,即q q q q F F ''=2 1 。那么, 由 122 2 022 1 01244r r r q q r q q =?'= 'πεπε,同时考虑到d r r =+21,求得 d r d r 3 2 ,3121== 可见点电荷q '可以任意,但应位于点电荷q 1和q 2的连线上,且与点电荷1q 相距d 3 1 。 2-2 已知真空中有三个点电荷,其电量及位置分别为: ) 0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。 解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。 利用点电荷的场强公式r e E 2 04r q πε= ,其中r e 为点电 荷q 指向场点P 的单位矢量。那么,

1q 在P 点的场强大小为0 2 1 011814πεπε= = r q E ,方向为 ()z y r e e e +- =2 11。 2q 在P 点的场强大小为0 2 2 022121 4πεπε= =r q E ,方向为()z y x r e e e e ++- =3 12。 3q 在P 点的场强大小为0 2 3 033414πεπε= =r q E ,方向为 y r e e -=3 则P 点的合成电场强度为 ?? ???????? ??++???? ??+++-=++=z e e e E E E E y x 312128141312128131211 03 21πε 2-3 直接利用式(2-2-14)计算电偶极子的电场强度。 解 令点电荷q -位于坐标原点,r 为点电荷q -至场点P 的距离。再令点电荷q +位于+z 坐标轴上,1r 为点电荷q +至场点P 的距离。两个点电荷相距为l ,场点P 的坐标为(r,θ, )。 根据叠加原理,电偶极子在场点P 产生的电场为 ???? ??-= 311304r r q r r E πε 考虑到r >> l ,1r e = e r ,θcos 1l r r -=,那么上式变为 r r r r r r r r q r r r r q e e E ??? ? ??+-=???? ??-=2121102122210))((44πεπε

相关主题