搜档网
当前位置:搜档网 › 激波捕捉格式与对称性问题

激波捕捉格式与对称性问题

激波捕捉格式与对称性问题
激波捕捉格式与对称性问题

函数对称性与周期性关系

函数 对称性与周期性关系 【知识梳理】 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。 如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即 点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数)(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,

《函数的奇偶性与周期性》教案

教学过程 一、课堂导入 我们生活在美的世界中,有过许多对美的感受,请想一下有哪些美? 对于对称美,请想一下哪些事物给过你对称美的感觉呢? 生活中的美引入我们的数学领域中,它又是怎样的情况呢?若给它适当地建立直角坐标系,那么会发现什么特点? 数学中对称的形式也很多,这节课我们就来复习在坐标系中对称的函数

二、复习预习 1、复习单调性的概念 2、复习初中的轴对称和中心对称 3、预习奇偶性的概念 4、预习奇偶性的应用

三、知识讲解 考点1 函数的奇偶性 [探究] 1. 提示:定义域关于原点对称,必要不充分条件. 2.若f(x)是奇函数且在x=0处有定义,是否有f(0)=0?如果是偶函数呢? 提示:如果f(x)是奇函数时,f(0)=-f(0),则f(0)=0;如果f(x)是偶函数时,f(0)不一定为0,如f(x)=x2+1. 3.是否存在既是奇函数又是偶函数的函数?若有,有多少个? 提示:存在,如f(x)=0,定义域是关于原点对称的任意一个数集,这样的函数有无穷多个.

考点2 周期性 (1)周期函数: 对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y =f(x)为周期函数,称T为这个函数的周期. (2)最小正周期: 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.

四、例题精析 【例题1】 【题干】判断下列函数的奇偶性 (1)f(x)=lg 1-x 1+x ;(2)f(x)= ? ? ?x2+x(x>0), x2-x(x<0); (3)f(x)= lg(1-x2) |x2-2|-2 .

函数的对称性与周期性

函数的对称性与周期性 一、相关结论 1.关于x 轴、y 轴、原点、x y =对称 2.周期性(内同) ① 若)()(x f T x f =+(0≠T ),则)(x f 为周期函数,T 为一个周期。 ② 若)()(b x f a x f +=+(b a ≠),则)(x f 为周期函数,||a b -为一个周期。 ③ 若)()(x f a x f -=+(0≠a ),则)(x f 为周期函数,a 2为一个周期。 ④ 若) (1 )(x f a x f =+(0≠a ),则)(x f 为周期函数,a 2为一个周期。 3.自对称性(内反) ①若)()(x b f x a f -=+,则)(x f 的图像关于直线2 b a x += 对称;特别地,若)()(x a f x a f -=+,则)(x f 的图像关于直线a x =对称;0=a 为偶函数。 ②若)()(x b f x a f --=+,则)(x f 的图像关于点)0,2 ( b a +对称;特别地,若)()(x a f x a f --=+,则)(x f 的图像关于点)0,(a 对称;0=a 为奇函数。 ③若c x b f x a f =-++)()(,则)(x f 的图像关于点)2 ,2(c b a +对称。 4.互对称性 ①函数)(x a f y +=与函数)(x b f y -=的图像关于直线2a b x -=对称; ②函数)(x a f y +=与函数)(x b f y --=的图像关于点)0,2 (a b -对称; ③函数)(x a f y +=与函数)(x a f y -=的图像关于直线0=x 对称。 5. 对称性与周期性的关系 ①若)(x f 的图像有两条对称轴a x =和b x =(b a ≠),则)(x f 为周期函数, ||2a b -为一个周期。 ②若)(x f 的图像有两个对称中心)0,(a 和)0,(b (b a ≠),则)(x f 为周期函数, ||2a b -为一个周期。 若)(x f 的图像有一条对称轴a x =和一个对称中心)0,(b (b a ≠),则)(x f 为周期函 数,||4a b -为一个周期。

函数的周期性与对称性

第5炼 函数的对称性与周期性 一、基础知识 (一)函数的对称性 1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称 2、轴对称的等价描述: (1)()()f a x f a x -=+?()f x 关于x a =轴对称(当0a =时,恰好就是偶函数) (2)()()()f a x f b x f x -=+?关于2 a b x +=轴对称 在已知对称轴的情况下,构造形如()()f a x f b x -=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2 a b x +=为所给对称轴即可。例如:()f x 关于1x =轴对称()()2f x f x ?=-,或得到()()31f x f x -=-+均可,只是在求函数值方面,一侧是()f x 更为方便 (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。 ① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分: 若()f x 是偶函数,则()()f x a f x a +=-+????:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+???? ② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。

函数对称性、周期性和奇偶性的规律总结大全 .分解

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==, 即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即) (11x f y =,通过 b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或 C 、 )(1)(1)2(x f x f T x f -+=+或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

函数的奇偶性与周期性练习题

函数的奇偶性与周期性 1.奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (1)=1,则f (8)+f (9)= ( ) A. -2 B.-1 C. 0 D. 1 2.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π +=x y ,④)42tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ 3.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 4.已知()f x 是定义在R 上的奇函数,且是以2为周期的周期函数,若当(]0,1x ∈时 2()1f x x =-,则7()2 f 的值为 A 34- B 34 C 12- D 12 5.下列函数为偶函数的是 A. sin y x = B. 3y x = C. x y e = D. y = 6.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5 ()2f -= (A) -12 (B)1 4- (C)14 (D)12 7.下列函数中,既是偶函数又在()0,+∞单调递增的函数是 (A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= 8.下列函数为偶函数的是() A.()1f x x =- B.()2f x x x =+ C.()22x x f x -=- D.()22x x f x -=+ 9.偶函数y=f(x)的图像关于直线x=2对称,f(3)=3,则f(-1)=_______. 10.函数)4)(()(-+=x a x x f 为偶函数,则实数a = . 11.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则 .

(完整版)常见函数对称性和周期性

(一)函数)(x f y =图象本身的对称性(自身对称) 若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。 推论1:)()(x a f x a f -=+ ?)(x f y =的图象关于直线a x =对称 推论2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称 推论3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称 推论1、b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称 推论3、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称 2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数 3、函数)(x f y =与()y f x =-图象关于X 轴对称 4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称 推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称

函数的奇偶性与周期性 知识点与题型归纳

1.结合具体函数,了解函数奇偶性的含义. 2.会运用函数的图象理解和研究函数的奇偶性. 3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. ★备考知考情 1.对函数奇偶性的考查,主要涉及函数奇偶性的判断,利用奇偶函数图象的特点解决相关问题,利用函数奇偶性求函数值,根据函数奇偶性求参数值等. 2.常与函数的求值及其图象、单调性、对称性、零点等知识交汇命题. 3.多以选择题、填空题的形式出现. 一、知识梳理《名师一号》P18 注意: 研究函数奇偶性必须先求函数的定义域 知识点一函数的奇偶性的概念与图象特征 1.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=f(x),那么函数f(x)就叫做偶函数. 2.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=-f(x),那么函数f(x)就叫做奇函数. 1

2 3.奇函数的图象关于原点对称; 偶函数的图象关于y 轴对称. 知识点二 奇函数、偶函数的性质 1.奇函数在关于原点对称的区间上的单调性相同, 偶函数在关于原点对称的区间上的单调性相反. 2. 若f (x )是奇函数,且在x =0处有定义,则(0)0=f . 3. 若f (x )为偶函数,则()()(||)f x f x f x =-=. 《名师一号》P19 问题探究 问题1 奇函数与偶函数的定义域有什么特点? (1)判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. (2)判断函数f (x )的奇偶性时,必须对定义域内的 每一个x , 均有f (-x )=-f (x )、f (-x )=f (x ), 而不能说存在x 0使f (-x 0)=-f (x 0)、f (-x 0)=f (x 0). (补充) 1、若奇函数()f x 的定义域包含0,则(0)0=f . (0)0=f 是()f x 为奇函数的 既不充分也不必要条件 2.判断函数的奇偶性的方法 (1)定义法: 1)首先要研究函数的定义域,

函数的奇偶性及周期性综合运用

函数的奇偶性及周期性 1. 已知定义在 R 上的奇函数 f(x) 满足 f(x+2)= -f(x) f(6) 的值为 ( ) A.-1 B.0 C.1 D.2 【答案】 B 【解析】 ∵ f(x+2)=-f(x), ∴ f(6)=f(4+2)=-f(4)=f(2)= -f(0) 又 f(x) 为R 上的奇函数 , ∴ f(0)=0. ∴ f(6)=0. 2. 函数 f ( x) x 3 sin x 1( x R), 若 f(a)=2, 则 f(-a) 的值为 ( ) A.3 B.0 C.-1 D.-2 【答案】 B 【解析】 设 g ( x) 3 sinx, 很明显 g(x) 是一个奇函数 . x ∴ f(x)=g(x)+1. ∵ f(a)=g(a)+1=2, ∴ g(a)=1. ∴ g(-a)=-1. ∴ f(-a)=g(-a)+1=-1+1=0. 3. 已知 f(x) 是定义在 R 上的偶函数 , 并满足 f(x+2)= 1 1 x 2 时 ,f(x)=x-2, 则 f ( x) f(6.5) 等于?? ( ) A.4.5 B.-4.5 C.0.5 D.-0.5 【答案】 D 【 解 析 】 由 f(x 2) 1 得 f(x 4) 1 f ( x ) f ( x 2) f(6.5)=f(2.5). 因为 f(x) 是偶函数 , 得 f(2.5)=f(-2.5)=f(1.5), 而 1 x 2 时 ,f(x)=x-2, 所以 f(1.5)=-0.5. 综上 , 知f(6.5)=-0.5. 4. 已知函数 f(x) 是定义在 R 上的奇函数 , 当 x>0时 ,f(x)= - 是 ( ) A. ( 1) B. ( 1] C. (1 ) D. [1 ) 【答案】 A 【解析】 当 x>0时 f ( x ) 1 2 x 1 1 x 2 当 x<0时,-x>0, ∴ f( x ) 1 2 x . 又∵ f(x) 为 R 上的奇函数 , ∴ f(-x)=-f(x). ∴ f ( x ) 1 2 x . ∴ f ( x ) 2 x 1 . ∴ f ( x) 2 1 1 即 2 x 1 . x ∴ x<-1. 2 2 ∴不等式 f ( x ) 1 的解集是 ( 1) . 2 5. 设 g(x) 是定义在 R 上、以 1为周期的函数 . 若函数 f(x)=x+g(x) 则f(x) 在区间 [0,3] . f ( x) 那 么 f(x) 的 周 期 是 4, 得 2 x 则不等式 f ( x) 1 的解集 2 1 2 在区间 [0,1] 上的值域为 [-2,5],

函数的对称性与周期性例题、习题(供参考)

函数的对称性与周期性 【知识梳理】 1. 周期的概念:设函数(),y f x x D =∈,如果存在非零常数T ,使得对任意x D ∈都有 ,则函数()y f x =为周期函数,T 为()y f x =的一个周期; 2. 周期函数的其它形式 ()()f x a f x b +=+? ;()()f x a f x +=-? ;()()1f x a f x +=? ; ()()1f x a f x +=-? ;)(1)(1)(x f x f a x f +-=+? ,)(1)(1)(x f x f a x f -+=+? )()()2(x f a x f a x f -+=+? 1 )(1)(+-=+x f a x f ? , 3. 函数图像的对称性 1).若()()f x f x =-,则()y f x =的图像关于直线 对称; 2).若()()0f x f x +-=,则()y f x =的图像关于点 对称; 3)若()()f a x f a x +=-,则()y f x =的图像关于直线 对称; 4)若()()2f x f a x =-,则()y f x =的图像关于直线 对称; 5)若()()2f a x f a x b ++-=,则()y f x =的图像关于点 对称; 6)若()()22f x f a x b +-=,则()y f x =的图像关于点 对称; 4. 常见函数的对称性 1)函数()()0ax b f x c cx d +=≠+的图像关于点 对称; 2)函数()()0f x ax b a =-≠的图像关于直线 对称; 3)函数()()20f x ax bx c a =++≠的图像关于直线 对称; 【例题选讲】 题型一 根据解析式判断函数图像的对称性 1. 函数()2331 x f x x +=-的图像关于 对称; 2. 函数()f x 的定义域为R ,且()()1f x f x -=,则()f x 的图像关于 对称; 3. 函数()23f x x =-的图像关于 对称; 4. 函数()3sin 23f x x π??=- ?? ?的图像关于直线 对称;关于点 对称; 题型二 平移变换后,函数图像的对称性 1.已知函数()y f x =是偶函数,()2f x -在[]0,2递减,则( ) 2.已知()2y f x =-是偶函数,则()y f x =的图像关于 对称; 3.已知()y f x =是奇函数,则()12y f x =+-的图像关于 对称; 题型三 函数图像的对称性求函数解析式

(完整版)函数的周期性与对称性总结

一:有关周期性的讨论 在已知条件()()f a x f b x +=-或 ()()f x a f x b +=-中, (1) 等式两端的两自变量部分相加得常数,如()()a x b x a b ++-=+,说明f x ()的图像具有对称性,其对称轴为2 b a x +=。 (2)等式两端的两自变量部分相减得常数,如()()x a x b a b +--=+,说明 f (x )的图像具有周期性,其周期T=a +b 。 设a 为非零常数,若对于)(x f 定义域内的任意x 恒有下列条件之一成立 周期性规律 对称性规律 (1))()(a x f a x f +=- a T 2=? (1))()(x a f x a f -=+ a x =? (2))()(a x f x f += a T =? (2))()(x b f x a f -=+ 2 b a x += ? (3))()(x f a x f -=+ a T 2=? (3) )()(x b f x a f +=- 2b a x +=? (4))(1)(x f a x f =+ a T 2=? (4) )()(x b f x a f --=+ 中心点)0,2 (b a +? (5))(1)(x f a x f - =+ a T 2=? (5) )()(x a f x a f --=+ 为对称中心点)0,(a ? (6)1 )(1)()(-+=+x f x f a x f a T 2=? (7) 1()()1() f x f x a f x -+=+ a T 2=? (8) 1()()1()f x f x a f x -+=- + a T 4=? (9) ) (1)(1)(x f x f a x f -+=+ a T 4=? (10) )()()(a x f a x f x f ++-=, 0>a a T 6=?

1.10基本初等函数奇偶性和周期性

1.10基本初等函数奇偶性和周期性 姓名___________ 本节重点:①能够正确判断函数的奇偶性和周期性;②运用基本初等函数的性质解题。 一.基础练习 1. 写出下列函数中,奇函数是________;偶函数是________;非奇非偶函数是________ ①sin 2y x = ②2cos y x = ③4221y x x =++ ④2(1)y x =- ⑤()x x f x e e -=- ⑥1()1 x f x x -=+ ⑦1()lg 1 x f x x -=+ ⑧23 ()f x x -= 2. 已知多项式函数32()f x ax bx cx d =+++,系数,,,a b c d 满足__________时,()f x 是奇函数; 满足___________时,它是偶函数. 3. 定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(2)f =________. 4. 函数sin 2y x =的周期是________;tan y x π=的周期是________. 5. 已知函数()f x 是定义在(-3,3)上的奇函数,当03x << ()f x 图象如右,则不等式 ()0f x x >的解集是____________. 二、例题讲解 例1:判断下列函数的奇偶性 (1)2 ()2||3f x x x =-- (2)22 2,0 ()2,0 x x x f x x x x ?-≥?=?--,实数a 的范围是____________.

函数的周期性与对称性

函数的周期性与对称性 1、函数的周期性 若a 是非零常数,若对于函数y =f(x)定义域内的任一变量x 点有下列条件之一成立,则函数y =f(x)是周期函数,且2|a|是它的一个周期。 ①f(x+a)=f(x -a) ②f(x+a)=-f(x) ③f(x+a)=1/f(x) ④f(x+a)=-1/f(x) 2、函数的对称性与周期性 性质5 若函数y =f(x)同时关于直线x =a 与x =b 轴对称,则函数f(x)必为周期函数,且T =2|a -b| 性质6、若函数y =f(x)同时关于点(a ,0)与点(b ,0)中心对称,则函数f(x)必为周期函数,且T =2|a -b| 性质7、若函数y =f(x)既关于点(a ,0)中心对称,又关于直线x =b 轴对称,则函数f(x)必为周期函数,且T =4|a -b| 3.函数)(x f y =图象本身的对称性(自身对称) 若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。 1、)()(x b f x a f -=+ ?)(x f y =图象关于直线2 2)()(b a x b x a x += -++= 对称 推论1:)()(x a f x a f -=+ ?)(x f y =的图象关于直线a x =对称 推论2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称 推论3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称 2、c x b f x a f 2)()(=-++ ?)(x f y =的图象关于点),2 ( c b a +对称 推论1、 b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称 推论3、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称 例题分析: 1.设)(x f 是),(+∞-∞上的奇函数,)()2(x f x f -=+,当10≤≤x 时,x x f =)(,则 )5.47(f 等于 ( ) (A )0.5 (B )5.0- (C )1.5 (D )5.1- 2、(山东)已知定义在R 上的奇函数)(x f 满足(2)()f x f x +=-,则(6)f 的值为( ) A .-1 B .0 C .1 D .2 3.设)(x f 是定义在R 上的奇函数,(1)2,(1)(6),f f x f x =+=+求(10).f 4.函数)(x f 对于任意实数x 满足条件1 (2)() f x f x += ,若(1)5f =-,则[(5)]f f =___

函数的奇偶性与周期性试题(答案)

函数的奇偶性与周期性 一、选择题 1.(2015·四川绵阳诊断性考试)下列函数中定义域为R ,且是奇函数的是( ) A .f(x)=x2+x B .f(x)=tan x C .f(x)=x +sin x D .f(x)=lg 1-x 1+x 2.(2014·新课标全国卷Ⅰ)设函数f(x),g(x)的定义域都为R ,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( ) A .f(x)g(x)是偶函数 B .|f(x)|g(x)是奇函数 C .f(x)|g(x)|是奇函数 D .|f(x)g(x)|是奇函数 3.(2015·长春调研)已知函数f(x)=x2+x +1x2+1,若f(a)=23 ,则f(-a)=( ) A.23 B .-23 C.43 D .-43 4.已知f(x)在R 上是奇函数,且满足f(x +4)=f(x),当x ∈(0,2)时,f(x)=2x2,则f(7)等于( ) A .-2 B .2 C .-98 D .98 5.函数f(x)是周期为4的偶函数,当x ∈[0,2]时,f(x)=x -1,则不等式xf(x)>0在[-1,3]上的解集为( ) A .(1,3) B .(-1,1) C .(-1,0)∪(1,3) D .(-1,0)∪(0,1) 6.设奇函数f(x)的定义域为R ,最小正周期T =3,若f(1)≥1,f(2)=2a -3a +1 ,则a 的取值范围是( ) A .a<-1或a≥23 B .a<-1 C .-1

函数的奇偶性与周期性

函数的奇偶性与周期性 考点梳理 一、函数的奇偶性 (探究:奇、偶函数的定义域有何特点?若函数f(x)具有奇偶性,则f(x)的定义域关于原点对称,反之,若函数的定义域不关于原点对称,则函数无奇偶性。) 二、奇、偶函数的性质 1、奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上单调性相反。 2、在公共定义域内, (1)两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数。(2)两个偶函数的和函数、积函数是偶函数。 (3)一个奇函数,一个偶函数的积函数是奇函数。 3、若f(x)是奇函数且在x=0处有定义,则f(0)=0。 (探究:若f(x)是偶函数且在x=0处有定义,是否有f(x)=0?不一定,

如f(x)= 21x +,而f(0)=1。) 三、函数的周期性 一般的,对于函数f(x),如果存在一个非零常数T ,使得当x 取定义域的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期。 对于一个周期函数f(x),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期。 (探究:若偶函数f(x)满足对任意的x R ∈,都有f(2+x)=f(-x),那么函数f(x)是周期函数吗? 是周期函数,()()(),(2)() (2)(),()=2f x f x f x f x f x f x f x f x T ∴-=+=-∴ += 是偶函数, 又所以是以为周期的函数) 例题解析 要点1:函数奇偶性的判定 判断函数奇偶性的一般方法 (1)首先确定函数的定义域,看其是否关于原点对称,否则,既不是奇函数也不是偶函数。 (2)若定义域关于原点对称,则可用下述方法进行判断: ①定义判断: ()()()()-()()f x f x f x f x f x f x -=?-=?为偶函数, 为奇函数。 ②等价形式判断:

函数的周期性和对称性(解析版)

专题二:函数的周期性和对称性 【高考地位】 函数的周期性和对称性是函数的两个基本性质。在高中数学中,研究一个函数,首看定义域、值域,然后就要研究对称性(中心对称、轴对称),并且在高考中也经常考查函数的对称性和周期性,以及它们之间的联系。因此,我们应该掌握一些简单常见的几类函数的周期性与对称性的基本方法。 【方法点评】 一、函数的周期性求法 使用情景:几类特殊函数类型 解题模板:第一步 合理利用已知函数关系并进行适当地变形; 第二步 准确求出函数的周期性; 第三步 运用函数的周期性求解实际问题. 例1 (1) 函数)(x f 对于任意实数x 满足条件) (1 )2(x f x f = +,若5)1(-=f ,则=))5((f f ( ) A .5- B .5 C .51 D .5 1- 【答案】D 考点:函数的周期性. (2) 已知()x f 在R 上是奇函数,且满足()()x f x f -=+5,当()5,0∈x 时,()x x x f -=2 ,则()=2016f ( ) A 、-12 B 、-16 C 、-20 D 、0 【答案】A 试题分析:因为()()5f x f x +=-,所以()()()105f x f x f x +=-+=,()f x 的周期为10,因此 ()()()()20164416412f f f =-=-=--=-,故选A . 考点:1、函数的奇偶性;2、函数的解析式及单调性. 【点评】(1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值.(2)求函数周期的方法 【变式演练1】已知定义在R 上的函数()f x 满足()()f x f x -=-,(3)()f x f x -=,则(2019)f =( ) A .3- B .0 C .1 D .3 【答案】B

函数的奇偶性与周期性

函数的奇偶性与周期性 1.函数的奇偶性 2.(1)周期函数 对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期 如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)若f (x )是定义在R 上的奇函数,则f (-x )+f (x )=0.(√) (2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×) (3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.(√) (4)定义域关于原点对称是函数具有奇偶性的一个必要条件.(√) (5)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.(√) (6)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.(√) (7)函数f (x )=0,x ∈(0,+∞)既是奇函数又是偶函数.(×) (8)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.(√) (9)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.(√) (10)若某函数的图象关于y 轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√) 考点一 判断函数的奇偶性

函数的奇偶性及周期性

函数的奇偶性及周期性 1.函数的奇偶性 (1)周期函数 对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x +T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期. (2)最小正周期 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. [小题体验] 1.下列函数中为偶函数的是() A.y=x2sin x B.y=x2cos x C.y=|ln x|D.y=2-x 答案:B 2.若函数f(x)是周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(8)-f(14)=________. 答案:-1 3.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(1+x),则x<0时,f(x)=________. 答案:x(1-x) 1.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. 2.判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)=-f(x)或f(-

x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0). 3.分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性. [小题纠偏] 1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13 B.13 C.12 D .-1 2 解析:选B ∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数, ∴a -1+2a =0,∴a =1 3.又f (-x )=f (x ), ∴b =0,∴a +b =1 3 . 2.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时, f (x )= ? ???? -4x 2+2,-1≤x <0,x , 0≤x <1,则f ????32=________. 解析:由题意得,f ????32=f ????-12=-4×????-122+2=1. 答案:1 考点一 函数奇偶性的判断(基础送分型考点——自主练透) [题组练透] 判断下列函数的奇偶性: (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3; (3)f (x )=3x -3- x ; (4)(易错题)f (x )=4-x 2 |x +3|-3 ; (5)(易错题)f (x )=????? x 2+x ,x >0, x 2-x ,x <0. 解:(1)∵由? ???? x 2-1≥0, 1-x 2≥0,得x =±1, ∴f (x )的定义域为{-1,1}. 又f (1)+f (-1)=0,f (1)-f (-1)=0,

函数对称性与周期性几个重要结论赏析

函数对称性与周期性几个重要结论赏析 对称性和周期性是函数的两个重要性质,下面总结这两个性质的几个重要结论及运用它们解决抽象型函数的有关习题。 一、 几个重要的结论 (一)函数图象本身的对称性(自身对称) 1、函数)(x f y =满足)()(x T f x T f -=+(T 为常数)的充要条件是)(x f y =的图象关于直线T x =对称。 2、函数)(x f y =满足)2()(x T f x f -=(T 为常数)的充要条件是)(x f y =的图象关于直线T x =对称。 3、函数)(x f y =满足)()(x b f x a f -=+的充要条件是)(x f y =图象关于直线2 2)()(b a x b x a x +=-++=对称。 4、如果函数 )(x f y =满足)()(11x T f x T f -=+且)()(22x T f x T f -=+,(1T 和2T 是不相等的常数),则)(x f y =是以为)(212T T -为周期的周期函数。 5、如果奇函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以4T 为周期的周期性函数。 6、如果偶函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以2T 为周期的周期性函数。 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、曲线 )(x f y =与)(x f y -=关于X 轴对称。 2、曲线)(x f y =与)(x f y -=关于Y 轴对称。 3、曲线)(x f y =与)2(x a f y -=关于直线a x =对称。 4、曲线0),(=y x f 关于直线b x =对称曲线为0)2,(=-y b x f 。 5、曲线0),(=y x f 关于直线0=++c y x 对称曲线为0),(=----c x c y f 。 6、曲线0),(=y x f 关于直线0=+-c y x 对称曲线为0),(=+-c x c y f 。 7、曲线0),(=y x f 关于点),(b a P 对称曲线为0)2,2(=--y b x a f 。 二、试试看,练练笔 1、定义在实数集上的奇函数 )(x f 恒满足)1()1(x f x f -=+,且)0,1(-∈x 时, 512)(+=x x f ,则=)20(log 2f ________。 2、已知函数)(x f y =满足0)2()(=-+x f x f ,则)(x f y =图象关于__________对称。 3、函数)1(-=x f y 与函数)1(x f y -=的图象关于关于__________对称。 4、设函数)(x f y =的定义域为R ,且满足)1()1(x f x f -=-,则)(x f y =的图象关于__________ 对称。 5、设函数)(x f y =的定义域为R ,且满足)1()1(x f x f -=+,则)1(+=x f y 的图象关于__________对称。)(x f y =图象关于__________对称。 6、设)(x f y =的定义域为R ,且对任意R x ∈,有)2()21(x f x f =-,则)2(x f y =图象关于__________对称,)(x f y =关于__________对称。 7、已知函数)(x f y =对一切实数x 满足)4()2(x f x f +=-,且方程0)(=x f 有5个实根,则这5个实根之和为( ) A 、5 B 、10 C 、15 D 、18 8、设函数 )(x f y =的定义域为R ,则下列命题中,①若)(x f y =是偶函数,则)2(+=x f y 图象

相关主题