搜档网
当前位置:搜档网 › FLUENT操作过程及全参数选择

FLUENT操作过程及全参数选择

FLUENT操作过程及全参数选择
FLUENT操作过程及全参数选择

振动流化床仿真操作过程及参数选择

1创建流化床模型。

根据靳海波论文提供的试验机参数,创建流化床模型。流化床直148mm 高1m开孔率9%孔径2mm在筛板上铺两层帆布保证气流均布。

因为实验机为一个圆形的流化床,所以可简化为仅二维模型。而实际实验中流化高度远小于1m甚至500mm所以为提高计算时间,可将模型高度缩为500mm由于筛板上铺设两层帆布以达到气流均分的目的,所以认为沿整个筛板的进口风速为均匀的。最终简化模型如下图所示:

上图为流化后的流化床模型,可以看出流化床下端的网格相对上端较密,因为流化行为主要发生的流化床下端,为了加快计算时间,所以采用这种下密上疏的划分方式。其中进口设置为velocity inlet ;出口设置为outflow ;左右两边分为设置为wall。在GAMBIT中设置完毕后,输出二维模型vfb.msh。

outflow 边界条件不需要给定任何入口的物理条件,但是应用也会有限制,大致为以下四点:

1.只能用于不可压缩流动

2.出口处流动充分发展

3.不能与任何压力边界条件搭配使用(压力入口、压力出口)

4.不能用于计算流量分配问题(比如有多个出口的问题)

2 打开FLUENT 6326,导入模型vfb.msh

点击GRID—CHECK检查网格信息及模型中设置的信息,核对是否正确,尤其查看是否出现负体积和负面积,如出现马上修改。核对完毕后,点击GRID-SCAL弹出SCALEGRID窗口,设置单位为mm 并点击change length unit 按钮。具体设置如下:

3设置求解器

保持其他设置为默认,更改TIME为unsteady,因为实际流化的过程是随时间变化的。

(1)pressure based 求解方法在求解不可压流体时,如果我们联立求解

从动量方程和连续性方程离散得到的代数方程组,可以直接得到各速

度分量及相应的压力值,但是要占用大量的计算内存,这一方法已可以在

Fluent6.3中实现,所需内存为分离算法的1.5-2倍。density based求解方法

是针对可压流体设计的,因而更适合于可压流场的计

算,以速度分量、密度(密度基)作为基本变量,压力则由状态方程求解。

Pressure-Based Solver它是基于压力法的求解器,使用的是压力修正算法,

求解的控制方程是标量形式的,擅长求解不可压缩流动,对于可压流动也可

以求解;Flue nt 6.3 以前的版本求解器,只

有Segregated Solver 和Coupled Solver ,其实也就是Pressure-Based

Solver 的两种处理方法;Den sity-Based Solver

是Flue nt 6.3 新发展出来的,它是基于密度法的求解器,求解的控制方程

是矢量形式的,主要离散格式有Roe, AUSM,+该方法的初衷

是让Flue nt具有比较好的求解可压缩流动能力,但目前格式没有添加任何

限制器,因此还不太完善;它只有Coupled的算法;对于低速问题,他们是

使用Preconditioning 方法来处理,使之也能够计算低

速问题。Density-Based Solver 下肯定是没有SIMPLEC PISO这些选项的,因

为这些都是压力修正算法,不会在这种类型的求解器中出现的;一般还是使

用Pressure-Based Solver 解决问题。

(2)再GRADIENOPTIOF选项组中,指定通过哪种压力梯度来计算控制方程中的导

数项。CELL-BASED按单元中的压力梯度计算)和NODE-BASED按节点的案例梯度

计算)。Porous formulation 选项组用于制定多孔介质速度的方法。

(3)当选择UNSTEAD Y,会出现UNSTEASDY FORMULA■选项组,让用户据顶时间相

关项的计算公式及方法。对于巨大多数问题选一阶隐式就足够了。只有对

精度有特别要求时才选二阶隐式。

4设置多相流模型

设置为欧拉模型,相数设置为2即为两相流,具体设置如下:

在Flue nt中,共有三种欧拉-欧拉多相流模型,即VOF(Volume Of Fluid) 模型、混合物(Mixture)模型和欧拉(Eulerian)模型。

⑴VOF模型。

VOF莫型是一种在固定的欧拉网格下的表面跟踪方法。当需要得到一种或多种互不相融流体间的交界面时,可以采用这种模型。在VOF模型中,不同的流体组分共用着一套动量方程,计算时在整个流场的每个计算单元内,都记录下各流

体组分所占有的体积率。voF莫型的应用例子包括分层流、自由面流动、灌注、晃动、液

体中大气泡的流动、水坝决堤时的水流以及求得任意液-气分界面的稳

态或瞬时分界面。

(2)混合物模型。

混合物模型可用于两相流或多相流(流体或颗粒)。因为在欧拉模型中,各相被处理为互相贯通的连续体,混合物模型求解的是混合物的动量方程,并通过相对速度来描述离散相。混合物模型的应用包括低负载的粒子负载流、气泡流、沉降和旋风分离器。混合物模型也可用于没有离散相相对速度的均匀多相流。

⑶Eulerian 模型。

Flue nt中最复杂的多相流模型。它建立了一套包含有n个的动量方程和连续方程来求解每一相,压力项和各界面交换系数是耦合在一起的。耦合的方式则依赖于所含相的情况,颗粒流(流-固)的处理与非颗粒流(流-流)是不同的。欧拉模型的应用包括气泡柱、上浮、颗粒悬浮和流化床。

根据振动流化床的实际情况,本论文采用欧拉模型进行模拟。

5设置粘性模型。

第一步,DEFINE-MODELS-VISCQU弹出VISCOUS MODE 对话框,选择K-EPSILO模型,点击确定。第二步,在操作窗口内键入下面的命令:

defi ne/models/viscous/turbule nce-expert/low-re-k

屏幕显示:

/define/models/viscous/turbulence-expert> low-re-k

En able the low-Re k-epsilo n turbule nee model? [no]

输入y,在模型选择面板中我们就可以看见低雷模型low-re-ke model 了。默认

使用第0种低雷诺数模型。

第三步,Flue nt中提供6种低雷诺数模型,使用low-re-ke-i ndex 命令设定一种。low-re-ke-i ndex

本仿真中默认使用第0种低雷诺数模型。

标准k-epsilo模型使用与湍流发展非常充分的湍流流动建立的,它是一种针对高雷诺数的湍流计算模型,它比零方程模型和一方程模型有了很大的改进,但是在用于强旋流、弯曲壁面流动或弯曲流线流动时会产生失真。而相较标准模型,RN(k- &模型修正了湍动粘度,考虑了平均流动的旋转及旋流流动情况,可以更好地处理高应变率及流线弯曲成都较大的流动,它还是针对充分发展的湍流,即还是高雷诺数模型。Realizable k- &模型一般被应用在包含有射流和混合流的自由流动、管道内流动、边界层流动等。由于实际计算出的雷诺数较小,和上述三种湍流模型都不是很匹配。而在

FLUENT供了数种专家模型,他们针

对标准K- &进行部分修正,使其能够适合低雷诺数使用,即为低雷诺数k-epsilo 模型。6定义材料属性。

DEFINE-MATERIALS单出材料对话框,点CREATE钮,首先选择空气作为气相。然后点击FLUENEATABASMATERIAL按钮,在材料库中任意选择一种流体,点击COP嵌钮。再将该材料的密度及名称改为所需材料的材料属性,设置如下, 最后点击CHANGE

7定义相

DEFINE-PHASE首先定义空气为主相,操作如下:

接着设置次相为固相MILLET点millet 后点击SET按钮,弹出secondary phase对话框,进下如下设置。

学习fluent(流体常识及软件计算参数设置)

luent 中一些问题 ( 目录 ) 离散化的目的 计算区域的离散及通常使用的网格 控制方程的离散及其方法 各种离散化方法的区别 8 9 10在GAMBIT 中显示的“check 主要通过哪几种来判断其网格的质量?及其在做网格时大 致注意到哪些细节? 11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克 服这种情况呢? 12在设置GAMBIT 边界层类型时需要注意的几个问题: a 、没有定义的边界线如何处理? b 、计算域内的内部边界如何处理( 2D )? 13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪 些? 14 20 何为流体区域( fluid zone )和固体区域( solid zone )?为什么要使用区域的概念? FLUENT 是怎样使用区域的? 15 21 如何监视 FLUENT 的计算结果?如何判断计算是否收敛?在 FLUENT 中收敛准则是 如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些 参数?解决不收1 如何入门 2 CFD 2.1 2.2 2. 3 2.4 2.5 2.6 计算中涉及到的流体及流动的基本概念和术语 理想流体( Ideal Fluid )和粘性流体( Viscous Fluid ) 牛顿流体( Newtonian Fluid )和非牛顿流体( non-Newtonian Fluid ) 可压缩流体 ( Compressible Fluid )和不可压缩流体( Incompressible Fluid ) 层流( Laminar Flow )和湍流( Turbulent Flow ) 定常流动( Steady Flow )和非定常流动( Unsteady Flow ) 亚音 速流动 (Subsonic) 与超音速流动( Supersonic ) 热传导( Heat Transfer )及扩散 ( Diffusion ) 2.7 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常 使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有 什么不 同? 3.1 3.2 3.3 3.4 4 常见离散格式的性能的对比(稳定性、精度和经济性) 5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是 什 么? 6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反 而比 可压缩流动有更多的困难? 6.1 可压缩 Euler 及 Navier-Stokes 方程数值解 6.2 不可压缩 Navier-Stokes 方程求解 什么叫边界条件?有何物理意义?它与初始条件有什么关系? 在数值计算中,偏微分方程的 双曲型方程、椭圆型方程、抛物型方程有什么区别? 在网格生成技术中,什么叫贴体坐标 系?什么叫网格独立解?

FLUENT中的求解器、算法和离散方法

FLUENT中的求解器、算法和离散方法 作为一个非科班出身的CFD工程师,一开始常常被CFD软件里各种概念搞的晕头转向。最近终于静下心来看了看CFD理论的书,理清了一些概念。就此写一遍博文,顺便整理一下所学内容。 I 求解器: FLUENT中求解器的选择在如下图所示界面中设置: FLUENT中的求解器主要是按照是否联立求解各控制方程来区分的,详见下图:

II 算法: 算法是求解时的策略,即按照什么样的方式和步骤进行求解。FLUENT中算法的选择在如下图所示的界面中设置:

这里简单介绍一下SIMPLE、SIMPLEC、PISO等算法的基本思想和适用范围。 SIMPLE算法:基本思想如前面讲求解器的那张图中解释分离式求解器的例子所示的一样,这里再贴一遍: 1.假设初始压力场分布。 2.利用压力场求解动量方程,得到速度场。 3.利用速度场求解连续性方程,使压力场得到修正。 4.根据需要,求解湍流方程及其他方程 5.判断但前计算是否收敛。若不收敛,返回第二步。 简单说来,SIMPLE算法就是分两步走:第一步预测,第二步修正,即预测-修正。 SIMPLC算法:是对SIMPLE算法的一种改进,其计算步骤与SIMPLE算法相同,只是压力修正项中的一些系数不同,可以加快迭代过程的收敛。 PISO算法:比SIMPLE算法增加了一个修正步,即分三步:第一步预测,第二步修正得到一个修正的场分布,第三步在第二步基础上在进行一侧修正。即预测-修正-修正。PISO算法在求解瞬态问题时有明显优势。对于稳态问题可能SIMPLE 或SIMPLEC更合适。 如果你实在不知道该如何选择,就保持FLUENT的默认选项好了。因为默认选项可以很好解决70%以上的问题,而且对于大部分出了问题的计算来说,也很少是因为算法选择不恰当所致。 III 离散方法: 离散方法是指按照什么样的方式将控制方程在网格节点离散,即将偏微分格式的控制方程转化为各节点上的代数方程组。FLUENT中离散方法的选择在如下图所示的界面中设置:

FLUENT中文全教程1-250

FLUENT 教程 赵玉新 I、目录 第一章、开始 第二章、操作界面 第三章、文件的读写 第四章、单位系统 第五章、读入和操作网格 第六章、边界条件 第七章、物理特性 第八章、基本物理模型 第九章、湍流模型 第十章、辐射模型 第十一章、化学输运与反应流 第十二章、污染形成模型 第十三章、相变模拟 第十四章、多相流模型 第十五章、动坐标系下的流动 第十六章、解算器的使用 第十七章、网格适应 第十八章、数据显示与报告界面的产生 第十九章、图形与可视化 第二十章、Alphanumeric Reporting 第二十一章、流场函数定义 第二十二章、并行处理 第二十三章、自定义函数 第二十四章、参考向导 第二十五章、索引(Bibliography) 第二十六章、命令索引 II、如何使用该教程 概述 本教程主要介绍了FLUENT 的使用,其中附带了相关的算例,从而能够使每一位使用 者在学习的同时积累相关的经验。本教程大致分以下四个部分:第一部分包括介绍信息、用户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。第二和第三部分包含物理模型,解以及网格适应的信息。第四部分包括界面的生成、后处理、图形报告、并行处理、自定义函数以及FLUENT 所使用的流场函数与变量的定义。 下面是各章的简略概括 第一部分: z开始使用:本章描述了FLUENT 的计算能力以及它与其它程序的接口。介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。在本章中,我们给出

了一个可以在你自己计算机上运行的简单的算例。 z使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。同时也提供了远程处理与批处理的一些方法。(请参考关于特定的文本界面命令的在线帮助) z读写文件:本章描述了FLUENT 可以读写的文件以及硬拷贝文件。 z单位系统:本章描述了如何使用FLUENT 所提供的标准与自定义单位系统。 z读和操纵网格:本章描述了各种各样的计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。本章还描述了非一致(nonconformal)网格的使用. z边界条件:本章描述了FLUENT 所提供的各种类型边界条件,如何使用它们,如何定义它们and how to define boundary profiles and volumetric sources. z物理特性:本章描述了如何定义流体的物理特性与方程。FLUENT 采用这些信息来处理你的输入信息。 第二部分: z基本物理模型:本章描述了FLUENT 计算流体流动和热传导所使用的物理模型(包括自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流)。以及在使用这些模型时你需要输入的数据,本章也包含了自定义标量的信息。 z湍流模型:本章描述了FLUENT 的湍流模型以及使用条件。 z辐射模型:本章描述了FLUENT 的热辐射模型以及使用条件。 z化学组分输运和反应流:本章描述了化学组分输运和反应流的模型及其使用方法。本章详细的叙述了prePDF 的使用方法。 z污染形成模型:本章描述了NOx 和烟尘的形成的模型,以及这些模型的使用方法。 第三部分: z相变模拟:本章描述了FLUENT 的相变模型及其使用方法。 z离散相变模型:本章描述了FLUENT 的离散相变模型及其使用方法。 z多相流模型:本章描述了FLUENT 的多相流模型及其使用方法。 z Flows in Moving Zones(移动坐标系下的流动):本章描述了FLUENT 中单一旋转坐标系,多重移动坐标系,以及滑动网格的使用方法。 z Solver 的使用:本章描述了如何使用FLUENT 的解法器(solver)。 z网格适应:本章描述了explains the solution-adaptive mesh refinement feature in FLUENT and how to use it 第四部分: z显示和报告数据界面的创建:本章描述了explains how to create surfaces in the domain on which you can examine FLUENT solution data z图形和可视化:本章描述了检验FLUENT 解的图形工具 z Alphanumeric Reporting:本章描述了如何获取流动、力、表面积分以及其它解的数据。 z流场函数的定义:本章描述了如何定义FLUENT 面板内出现的变量选择下拉菜单中的流动变量,并且告诉我们如何创建自己的自定义流场函数。 z并行处理:本章描述了FLUENT 的并行处理特点以及使用方法 z自定义函数:本章描述了如何通过用户定义边界条件,物理性质函数来形成自己的FLUENT 软件。 如何使用该手册 z根据你对CFD 以及FLUENT 公司的熟悉,你可以通过各种途径使用该手册 对于初学者,建议如下:

fluent学习笔记

fluent技术基础与应用实例 4.2.2 fluent数值模拟步骤简介 主要步骤: 1、根据实际问题选择2D或3Dfluent求解器从而进行数值模拟。 2、导入网格(File→Read→Case,然后选择有gambit导出的.msh文件) 3、检查网格(Grid→Check)。如果网格最小体积为负值,就要重新 进行网格划分。 4、选择计算模型。 5、确定流体物理性质(Define→Material)。 6、定义操作环境(Define→operating condition) 7、制定边界条件(Define→Boundary Conditions) 8、求解方法的设置及其控制。 9、流场初始化(Solve→Initialize) 10、迭代求解(Solve→Iterate) 11、检查结果。 12、保存结果,后处理等。 具体操作步骤: 1、fluent2d或3d求解器的选择。 2、网格的相关操作 (1)、读入网格文件 (2)、检查网格文件 文件读入后,一定要对网格进行检查。上述的操作可以得到网格信息,从中看出几何区域的大小。另外从minimum volume 可以知道最小网格的体积,若是它的值大于零,网格可以用于计算,否则就要重新划 分网格。 (3)、设置计算区域 在gambit中画出的图形是没有单位的,它是一个纯数量的模型。故 在进行实际计算的时候,要根据实际将模型放大或缩小。方法是改变fluent总求解器的单位。 (4)、显示网格。 Display→Grid 3、选择计算模型

(1)、基本求解器的定义 Define→Models→Solver Fluent中提供了三种求解方法: ·非耦合求解 segregated ·耦合隐式求解 coupled implicit ·耦合显示求解 coupled explicit 非耦合求解方法主要用于不可压缩流体或者压缩性不强的流体。 耦合求解方法用在高速可压缩流体 fluent默认设置是非耦合求解方法,但对于高速可压缩流动,有强的体积力(浮力或离心力)的流动,求解问题时网格要比较密集,建 议采用耦合隐式求解方法。耦合能量和动量方程,可以较快的得到收敛值。耦合隐式求解的短板:运行所需要的存比较大。若果必须要耦合求解而机器存不够用,可以考虑采用耦合显示求解方法。盖求解方法也耦合了动量,能量和组分方程,但是存却比隐式求解方法要小。 需要指出的是,非耦合求解器的一些模型在耦合求解器里并不一定都有。耦合求解器里没有的模型包括:多相流模型、混合分数/PDF燃烧模型、预混燃烧模型。污染物生成模型、相变模型、Rosseland辐射模型、确定质量流率的周期性流动模型和周期性换热模型。 %%%有点重复,但是可以看看加深理解 Fluent提供三种不同的求解方法;分离解、隐式耦合解、显示耦合解。分理解和耦合解的主要区别在于:连续方程、动量方程、能量方程和 组分方程解的步骤不同。 分离解按照顺序解,耦合解是同时解。两种解法都是最后解附加的标量方程。隐式解和显示解的区别在于线性耦合方程的方式不同。 Fluent默认使用分离求解器,但是对于高速可压流动,强体积力导致 的强烈耦合流动(流体流动耦合流体换热耦合流体的混合,三者相互耦合的过程—文档整理者注)(浮力或者旋转力),或者在非常精细的网格上的流动,需要考虑隐式解。这一解法耦合了流动和能量方程, 收敛很快。%%% (2)、其他求解器的选择 在实际问题中,除了要计算流场,有时还要计算温度场或者浓度场等,因此还需要其他的模型。主要的模型有: Multiphase(多相流动)viscous(层流或湍流)energy(是否考虑传热)species(反应及其传热相关) (3)操作环境的设置 Define→operation→condition

学习fluent (流体常识及软件计算参数设置)

luent中一些问题----(目录) 1 如何入门 2 CFD计算中涉及到的流体及流动的基本概念和术语 2.1 理想流体(Ideal Fluid)和粘性流体(Viscous Fluid) 2.2 牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid) 2.3 可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid) 2.4 层流(Laminar Flow)和湍流(Turbulent Flow) 2.5 定常流动(Steady Flow)和非定常流动(Unsteady Flow) 2.6 亚音速流动(Subsonic)与超音速流动(Supersonic) 2.7 热传导(Heat Transfer)及扩散(Diffusion) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不 同? 3.1 离散化的目的 3.2 计算区域的离散及通常使用的网格 3.3 控制方程的离散及其方法 3.4 各种离散化方法的区别 4 常见离散格式的性能的对比(稳定性、精度和经济性) 5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么? 6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难? 6.1 可压缩Euler及Navier-Stokes方程数值解 6.2 不可压缩Navier-Stokes方程求解 7 什么叫边界条件?有何物理意义?它与初始条件有什么关系? 8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别? 9 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解? 10 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节? 11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢? 12 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理? b、计算域内的内部边界如何处理(2D)? 13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些? 14 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的? 15 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收

利用FLUENT 3D求解器求解

利用FLUENT 3D求解器求解 一、在FLUENT中读入网格文件,检查网格并定义长度单位 1、启动FLUENT,进入3D模式 操作:开始→程序→FLUENT→3d→Run,进入FLUENT。 2、读入网格文件 操作:File→Read→Case,选择在Gambit中绘制的网格文件.msh文件,点击OK完成数据读入。 3、调整网格尺寸比例 操作:Grid→Scale 打开“Scale Grid”对话框 (1)在Units Conversion 下的Grid Was Created In 右侧列表中选择合适的单位如:cm (在gambit中一般是以m为单位,要转化成fluent对应的单位cm); (2)点击Change length Units: 此时左侧的Scale Factors下的X,Y,Z项都变为0.01。 (3)点击下边的Scale按钮:此时,Domain Extents下的单位由m变成cm;并给出区域的范围; (4)点击Close关闭对话框。 4、检查网格 操作:Grid→Check Fluent会对网格进行各种检查并在信息反馈窗口显示检查过程和结果,其中要注意保持最小体积为正值。 5、显示网格 操作:Display→Grid 打开网格显示对话框后,点击Display。 注意:用鼠标右键点击边界线,则在信息反馈窗口内将显示此边界的类型等信息。也可用此方法检查任何内部节点和网格线的信息。 二、创建计算模型 1、设置求解器 操作:Define→Models→Solver (1)在Solver项选择Segregated; (2)在Formulation项选择Implicit; (3)在Space项选择3D; (4)在Time项选择Unsteady; (5)Velocity Formulation,Unsteady Formulation保持默认值; (6)点击OK。 2、定义多相流模型 操作:Define→Models→Multiphase (1)在Model项选择Volume of Fluid; (2)在Number of Phase下选2; (3)在VOF Scheme项选择Geo-Reconstruct,Courant Number保持默认值; (fluent6.3.26里边VOF Scheme选expicity。) 在Body Force Formulation项选择Implicit Body Force; (4)点击OK。 3 、设置标准的k﹣ε湍流模型 操作:Define→Models→Viscous

fluent使用基本步骤

fluent使用基本步骤 步骤一:网格 1.读入网格(*.msh) File →Read →Case 读入网格后,在窗口显示进程 2.检查网格 Grid →Check Fluent对网格进行多种检查,并显示结果。注意最小容积,确保最小容积值为正。 3.显示网格 Display →Grid ①以默认格式显示网格 能够用鼠标右键检查边界区域、数量、名称、类型将在窗口显示,本操作关 于同样类型的多个区域情形专门有用,以便快速区别它们。 4.网格显示操作 Display →Views (a)在Mirror Planes面板下,axis (b)点击Apply,将显示整个网格 (c)点击Auto scale, 自动调整比例,并放在视窗中间 (d)点击Camera,调整目标物体位置 (e)用鼠标左键拖动指标钟,使目标位置为正 (f)点击Apply,并关闭Camera Parameters 和Views窗口 步骤二:模型 1. 定义瞬时、轴对称模型

Define →models→Solver (a)保留默认的,Segregated解法设置,该项设置,在多相运算时使用。 (b)在Space面板下,选择Axisymmetric (c)在Time面板下,选择Unsteady 2. 采纳欧拉多相模型 Define→Models→Multiphase (a) 选择Eulerian作为模型 (b)假如两相速度差较大,则需解滑移速度方程 (c)假如Body force比粘性力和对流力大得多,则需选择implicit body force 通过考虑压力梯度和体力,加快收敛 (d)保留设置不变

FLUENT中求解方法的区别与选择

FLUENT中求解方法的区别与选择 2012-02-11 12:08:37| 分类:数值模拟|字号订阅 1.非耦合求解( Segregated );2.耦合隐式求解( Coupled Implicit );3.耦合显式求 解( Coupled Explicit ) 非耦合求解方法主要用于不可压缩或压缩性不强的流体流动。耦合求解则可以用在高速可压缩流动。FLUENT默认设置是非耦合求解,但对于高速可压流动,有强的体积力(浮力或离心力)的流动,求解问题时网格要比较密,建议采用耦合隐式求解方法,可以耦合求解能量和动量方程,能比较快地得到收敛解。缺点是需要的内存比较大(是非耦合求解迭代时间的1.5-2倍)。如果必须要耦合求解,但是你的机器内存不够,这时候可以考虑用耦合显式解法器求解问题。该解法器也耦合了动量,能量及组分方程,但内存却比隐式求解方法小。缺点是收敛时间比较长。 这里需要指出的是非耦合求解的一些模型在耦合求解解法器里并不都有。耦合解法器没有的模型包括:多相流模型,混合分数/PDF燃烧模型,预混燃烧模型,污染物生成模型,相变模型,Rosseland辐射模型,确定质量流率的周期性流动模型及周期性换热模型等。 隐式( Implicit ):对于给定变量,单元内的未知值用邻近单元的已知和未知值计算得出。因此,每一个未知值会在不止一个方程中出现,这些方程必须同时解来给出未知量。 显式( Explicit ):对于给定变量,每一个单元内的未知量用只包含已知量的关系式计算得到。因此未知量只在一个方程中出现,而且每一个单元内的未知量的方程只需解一次就可以给出未知量的值。 一阶迎风格式( First Order Upwind ):当需要一阶精度时,我们假定描述单元内变量平均值的单元中心变量就是整个单元内各个变量的值,而且单元表面的量等于单元内的量。因此,当选择一阶迎风格式时,表面值被设定等于迎风单元的单元中心值。 二阶迎风格式( Second Order Upwind ):当需要二阶精度时,使用多维线性重建方法来计算单元表面处的值。在这种方法中,通过单元中心解在单元中心处的泰勒展开来实现单元表面的二阶精度值。因此,当使用二阶迎风格式时,用下面的方程来计算表面值; QUICK格式:对于四边形和六面体网格,我们可以确定它们唯一的上游和下游表面以及单元。FLUENT还提供了计算对流变量在表面处高阶值的QUICK格式。QUICK类型的格式是通过变量的二阶迎风与中心插值加上适当的权因子得到的; 亚松驰( Under-Relaxation ):由于FLUENT所解方程组的非线性,我们有必要控制的变化。一般用亚松驰方法来实现控制,该方法在每一部迭代中减少了f的变化量。亚松驰最简单的形式为:单元内变量f等于原来的值f_old加上亚松驰因子a与f变化的积. SIMPLE:SIMPLE算法使用压力和速度之间的相互校正关系来强制质量守恒并获取压力场。

辐射和对流模型Fluent参数设置

辐射和对流模型Fluent参数设置 1.读入***.mesh文件,并对网格文件进行进行检查,Grid→cheek,主要看最小体积和最小面积不能为负,之后进行刻度转换,Grid→scale,在Gmbit 里面建模默认尺寸为米,与实际尺寸之间要进行转化,如下图: 2.选择求解器,Define→Models→sover……根据情况选择,如上图:接着选择辐射模型,Define→Models→Radiation,如下图,当Radiation Model面板上 点击ok时,会出现一个信息提示框,告诉你新 的材料物性被添加了,你将在后面设置物性参 数,因此现在只需单击ok确认这个信息即可, 如下图: 注意:当你激活辐射模型后,Fluent会自动打开能量求解器,如下图: 不用再Define→Models→Energy……

3.设置流体粘性,由于模型中空气流速比较大,设成双方程模型:如下图: 4.设置操作条件,此模型此有流体,属有重力情况,Define→Operating Conditions,选中 Gravity.Y方向加速度设置为-9.8 2 m,击OK确定。 /s 设置工作温度,在后面要激活的Boussinesq model要用到,(Boussinesq model:

考虑温度变化而忽略压强变化引起的密度变化叫做Boussinesq 假设) 5. 定义材料并设置其物理属性 Define →Material …… 先定义空气物性,要定义成有浮力的,取Boussinesq 选项。 Density=1.1653/m kg ,()k kg j C p ?=/1005 Thermal Conductivity=0.0267()k m w ?/,Material Type :fluid ; Thermal Expansion Coefficient =0.0033()k /1。 通过滚动条使先前面板中不可见的物性显示出来。在Scattering Coefficient 和Scattering Phase Function 中保持默认值,在要解决的问题中不涉及到散射问题;设定热扩散系数(用boussinesq 模型时)为1e-5K -1。单击Change/Create ,关闭Materials 面板。 6.设置边界条件Define → Boundary Conditions ……

Fluent经典问题及解答

Fluent经典问题及解答 1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?(#61) 2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。(13楼) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?(#80) 4 常见离散格式的性能的对比(稳定性、精度和经济性)(#62) 5 在利用有限体积法建立离散方程时,必须遵守哪几个基本原则?(#81) 6 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?(#130) 7 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?(#55) 8 什么叫边界条件?有何物理意义?它与初始条件有什么关系?(#56) 9 在一个物理问题的多个边界上,如何协调各边界上的不同边界条件?在边界条件的组合问题上,有什么原则? 10 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?(#143) 11 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?(#35) 12 在GAMBIT的foreground和background中,真实体和虚实体、实操作和虚操作四个之间是什么关系? 13 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?(#38) 14 画网格时,网格类型和网格方法如何配合使用?各种方法有什么样的应用范围及做网格时需注意的问题?(#169) 15 对于自己的模型,大多数人有这样的想法:我的模型如何来画网格?用什么样的方法最简单?这样做网格到底对不对?(#154) 16 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?(#40) 17 依据实体在GAMBIT建模之前简化时,必须遵循哪几个原则?(#170) 18 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?(#128) 19 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?(#127) 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?(#41) 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?(9楼) 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?(7楼)

Fluent求解参数设置

求解参数设置(Solution Methods/Solution Controls): 在设置完计算模型和边界条件后,即可开始求解计算了,因为常会出现求解不收敛或者收敛速度很慢的情况,所以就要根据具体的模型制定具体的求解策略,主要通过修改求解参数来完成。在求解参数中主要设置求解的控制方程、选择压力速度耦合方法、松弛因子、离散格式等。 在VOF模型中,PISO比较适合于不复杂的流体,SIMPLE和SIMPLEC适合于可压缩的流体或者处于封闭域中的流体。 ? 求解的控制方程: 在求解参数设置中,可以选择所需要求 解的控制方程。可选择的方程包括Flow(流动方 程)、Turbulence(湍流方程)、Energy(能量方 程)、Volume Fraction(体积分数方程)等。在 求解过程中,有时为了得到收敛的解,先关闭 一些方程,等一些简单的方程收敛后,再开启 复杂的方程一起计算。 ? 选择压力速度耦合方法: 在基于压力求解器中,FLUENT提供了压 力速度耦合的4种方法,即SIMPLE、 SIMPLEC(SIMPLE.Consistent)、PISO以及 Coupled。定常状态计算一般使用SIMPLE或者 SIMPLEC方法,对于过渡计算推荐使用PISO方 法。PISO方法还可以用于高度倾斜网格的定常 状态计算和过渡计算。需要注意的是压力速度 耦合只用于分离求解器,在耦合求解器中不可 以使用。 在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC算法,默认是SIMPLE算法,但对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松弛迭代时。 对于相对简单的问题(如没有附加模型激活的层流流动),其收敛性可以被压力速度耦合所限制,用户通常可以使用SIMPLEC算法很快得到收敛解。在SIMPLEC算法中,压力校正亚松弛因子通常设为1.0,它有助于收敛,但是,在有些问题中,将压力校正松弛因子增加到1.0可能会导致流动不稳定,对于这种情况,则需要使用更为保守的亚松弛或者使用SIMPLE算法。对于包含湍流或附加物理模型的复杂流动,只要用压力速度耦合做限制,SIMPLEC就会提高收敛性,它通常是一种限制收敛性的附加模拟参数,在这种情况下,SIMPLE和SIMPLEC 会给出相似的收敛速度。 对于所有的过渡流动计算,推荐使用PISO算法邻近校正。它允许用户使用大的时间步,而且对于动量和压力都可以使用亚松弛因子1.0。对于定常状态问题,具有邻近校正的PISO并不会比具有较好的亚松弛因子的SIMPLE或SIMPLEC好。对于具有较大扭曲网格上的定常状态和过渡计算推荐使用PISO倾斜校正。 当使用PISO邻近校正时,对所有方程都推荐使用亚松弛因子为1.0或者接近1.0。如果只对高度扭曲的网格使用PISO倾斜校正,则要设定动量和压力的亚松弛因子之和为1.0(例如,压力亚松弛因子0.3,动量亚松弛因子0.7)。

FLUENT知识点解读(良心出品必属精品)

一、基本设置 1.Double Precision的选择 启动设置如图,这里着重说说Double Precision(双精度)复选框,对于大多数情况,单精度求解器已能很好的满足精度要求,且计算量小,这里我们选择单精度。然而对于以下一些特定的问题,使用双精度求解器可能更有利[1]。 a.几何特征包含某些极端的尺度(如非常长且窄的管道),单精度求解器可能不能足够精确地表达各尺度方向的节点信息。 b.如果几何模型包含多个通过小直径管道相互连接的体,而某一个区域的压力特别大(因为用户只能设定一个总体的参考压力位置),此时,双精度求解器可能更能体现压差带来的流动(如渐缩渐扩管的无粘与可压缩流动模拟)。 c.对于某些高导热系数比或高宽纵比的网格,使用单精度求解器可能会遇到收敛性不佳或精确度不足不足的问题,此时,使用双精度求解器可能会有所帮助。 [1] 李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战:FLUENT GAMBIT ICEM CFD Tecplot[M]. 北京,人民邮电出版社,2011:114-116

2.网格光顺化 用光滑和交换的方式改善网格:通过Mesh下的Smooth/Swap来实现,可用来提高网格质量,一般用于三角形或四边形网格,不过质量提高的效果一般般,影响较小,网格质量的提高主要还是在网格生成软件里面实现,所以这里不再用光滑和交换的方式改善网格,其原理可参考《FLUENT全攻略》(已下载)。 3.Pressure-based与Density-based 求解器设置如图。下面说一说Pressure-based和Density-based 的区别: Pressure-Based Solver是Fluent的优势,它是基于压力法的求解器,使用的是压力修正算法,求解的控制方程是标量形式的,擅长求解不可压缩流动,对于可压流动也可以求解;Fluent 6.3以前的版本求解器,只有Segregated Solver和Coupled Solver,其实也是Pressure-Based Solver的两种处理方法;

详细FLUENT实例讲座翼型计算

详细FLUENT实例讲座翼型计算 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

CAE联盟论坛精品讲座系列 详细FLUENT实例讲座-翼型计算 主讲人:流沙 CAE联盟论坛总版主 1.1 问题描述 翼型升阻力计算是CFD最常规的应用之一。本例计算的翼型为 RAE2822,其几何参数可以查看翼型数据库。本例计算在来流速度0.75马赫,攻角3.19°情况下,翼型的升阻系数及流场分布,并将计算结果与实验数据进行对比。模型示意图如图1所示。 b5E2RGbCAP 1.p ng(12.13 K>2018/7/29 23:41:251.2 FLUENT前处理设置Step 1:导入计算模型 以3D,双精度方式启动FLUENT14.5。 利用菜单【File】>【Read】>【Mesh…】,在弹出的文件选择对话框中选择网格文件rae2822_coarse.msh,点击OK按钮选择文件。如图2所示。p1EanqFDPw

点击FLUENT模型树按钮General,在右侧设置面板中点击按钮Display…,在弹出的设置对话框中保持默认设置,点击Display按钮,显示网格。如图3所示。DXDiTa9E3d 2.png(11.51 K>2018/7/29 23:41:25

3.png(33.41 K>2018/7/29 23:41:253-2.png(52.04 K>2018/7/29 23:41:25Step 2:检查网格 采用如图4所示步骤进行网格的检查与显示。点击FLUENT模型树节点General节点,在右侧面板中通过按钮Scale…、Check及 Report Quality实现网格检查。 4.png(12. 10 K>RTCrpUDGiT2018/7/29 23:41:25点击按钮Check,在命令输出按钮出现如图5所示网格统计信息。从图中可以看出,网格尺寸分布: x轴:-48.97~50m

求解器的使用

求解器的使用 FLUENT提供了三种不同的求解器 Segregated,coupled implicit,coupled explicit(显式格式主要用于激波等波动解的捕捉问题) 传统上,分离解法(segregated)主要用于不可压缩以及适度压缩的流动中。相反,耦合算法是为高速可压流体设计的。 默认情况下,fluent使用分离求解器。对于高速可压流体,与很强的体积力高度耦合的流动,或者是在非常精确的网格上求解流动情况,可以考虑使用耦合隐式算法代替。 对于需要使用耦合隐式算法(coupled implicit)的case,如果电脑没有足够的内存,可以使用分离解法(segregated)或者耦合显式算法(coupled explicit)代替。(显示算法节约内存,但是需要更多的计算步数达到收敛。) 选择离散格式 1.一阶迎风格式v.s. 二阶迎风格式 当流动与网格匹配(校准)时,一阶迎风格式是可以接受的。对于三角形和四面体网格,由于流动不会与网格匹配,通常使用二阶离散格式会得到更准确的结果。对于四边形/六面体网格,使用二阶离散格式会取得更好的结果,尤其是复杂的流动情况。对于大多数情况,可以在计算初始,使用二阶的离散格式。然而在一些情况下,可以开始使用一阶的离散格式然后在一些计算之后转变为二阶格式。例如,如果正在运行一个高马赫数的流动计算,这个的初始解与期望的解相差很大,最终,如果二阶离散格式很难收敛,应该尝试使用一阶离散格式。 2.Quick格式v.s. Upwind(Quick格式适用于网络结构,流动方向与网格一致,对于非结 构网格推荐使用二阶迎风) 对于在四边形或者六面体网格中的旋转或者回旋流,Quick离散格相比于二阶离散格式可以提供更准确的结果。对于存在震动的可压缩流动(网格为四边形,六面体或者混合网格),推荐对所有的变量使用Quick离散格式,包括密度。 3.中心差分格式v.s. 迎风格式 当使用LES湍流模型时,是可以使用中心差分格式的,并且只有当网格间距足够好,以至于局部的Peclet数的大小小于1时才可以使用。 4.power法则(power law)v.s. 迎风 power法则是可以使用的,但是总体上产生与一阶格式相同的准确度 选择压力离散格式 当使用分离式求解器时(segregated),可以使用多种压力离散格式。在大多数情况下,(默认的)标准的格式是可以接受的,但是一些类型的模型会在其他格式中取得更好的结果:对于包含大的体积力的问题,推荐使用体积力重量(body-force-weighted)格式。 对于包含高的漩涡数,高瑞利数的自然对流,高速的旋转流动,包含多孔介质的流动,在高度弯曲区域中的流动,使用PRESTO!格式 对于可压流,应使用二阶格式 当其他格式并不合适时,使用二阶格式以提高准确性。 选择密度离散格式(求解一个单相可压流动) 如果计算一个含有震动的可压流动时,一阶迎风格式可以平滑震动;对于这样的流动,应该使用二阶迎风或者Quick格式

Fluent_操作手册

第01章fluent简单算例21 FLUENT是用于模拟具有复杂外形的流体流动以及热传导的计算机程序。 对于大梯度区域,如自由剪切层和边界层,为了非常准确的预测流动,自适应网格是非常有用的。 FLUENT解算器有如下模拟能力: ●用非结构自适应网格模拟2D或者3D流场,它所使用的非结构网格主要有三角形/五边 形、四边形/五边形,或者混合网格,其中混合网格有棱柱形和金字塔形。(一致网格和悬挂节点网格都可以) ●不可压或可压流动 ●定常状态或者过渡分析 ●无粘,层流和湍流 ●牛顿流或者非牛顿流 ●对流热传导,包括自然对流和强迫对流 ●耦合热传导和对流 ●辐射热传导模型 ●惯性(静止)坐标系非惯性(旋转)坐标系模型 ●多重运动参考框架,包括滑动网格界面和rotor/stator interaction modeling的混合界面 ●化学组分混合和反应,包括燃烧子模型和表面沉积反应模型 ●热,质量,动量,湍流和化学组分的控制体源 ●粒子,液滴和气泡的离散相的拉格朗日轨迹的计算,包括了和连续相的耦合 ●多孔流动 ●一维风扇/热交换模型 ●两相流,包括气穴现象 ●复杂外形的自由表面流动 上述各功能使得FLUENT具有广泛的应用,主要有以下几个方面 ●Process and process equipment applications ●油/气能量的产生和环境应用 ●航天和涡轮机械的应用 ●汽车工业的应用 ●热交换应用 ●电子/HV AC/应用 ●材料处理应用 ●建筑设计和火灾研究 总而言之,对于模拟复杂流场结构的不可压缩/可压缩流动来说,FLUENT是很理想的软件。 当你决定使FLUENT解决某一问题时,首先要考虑如下几点问题:定义模型目标:从CFD模型中需要得到什么样的结果?从模型中需要得到什么样的精度;选择计算模型:你将如何隔绝所需要模拟的物理系统,计算区域的起点和终点是什么?在模型的边界处使用什么样的边界条件?二维问题还是三维问题?什么样的网格拓扑结构适合解决问题?物理模型的选取:无粘,层流还湍流?定常还是非定常?可压流还是不可压流?是否需要应用其它的物理模型?确定解的程序:问题可否简化?是否使用缺省的解的格式与参数值?采用哪种解格式可以加速收敛?使用多重网格计算机的内存是否够用?得到收敛解需要多久的时间?在使用CFD分析之前详细考虑这些问题,对你的模拟来说是很有意义的。当你计划一

fluent求解器

Model slover slover:求解器 Pressuere based: 基于压力 Density based:基于密度 Formulation:算法 implicit: 隐式算法 explicit:显式算法 space:选择空间属性 2D:二维空间 Axisymmetric:轴对称空间 Axisymmetric swirl:轴对称旋转空间 3D:三维空间 time:时间 steady:稳态 unsteady:非稳态 (~~~~~~~~~~~~~~~~~) velocity formulation:速度属性 absolute:绝对速度 relative:相对速度 Gradient option:梯度选项 Green-Gauss Cell-Based:格林-高斯基于单元体-默认方法;解有伪扩散(求解域的拖尾现象)。伪扩散是指在平流扩散方程数值解中因平流项有限差分的截断误差引起的虚假扩散。这是解方程欧拉型模式所特有的。其大小与所用的有限差分格式有关,有时甚至完全掩盖方程中其他扩散项的作用。为克服伪扩散,须采取特殊的技术措施和各种不同的差分格式。 Green-Gauss Node-Based:格林-高斯基于节点-更精确;最小化伪扩散;推荐用在三角网格上。 least-quares cell based:基于单元体的最小二乘法插值。推荐用于多面体网格,与基于节点的格林-高斯格式具有相同的 精度和格式。 porous formulation:选择多孔算法 superficial velocity:表面速度算法 physical velocity:物理速度算法 Multiphase Model:多相流模型 Volume of Fluid:VOF模型 Mixture:混合模型 Eulerian:欧拉模型 Energy:能量方程

相关主题