搜档网
当前位置:搜档网 › 基于遗传算法的PID参数优化毕业设计(论文)

基于遗传算法的PID参数优化毕业设计(论文)

基于遗传算法的PID参数优化毕业设计(论文)
基于遗传算法的PID参数优化毕业设计(论文)

本科生毕业设计(论文)

论文题目:基于遗传算法的PID参数优化

毕业设计(论文)原创性声明和使用授权说明

原创性声明

本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:

指导教师签名:日期:

使用授权说明

本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:

学位论文原创性声明

本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日

学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日

导师签名:日期:年月日

注意事项

1.设计(论文)的内容包括:

1)封面(按教务处制定的标准封面格式制作)

2)原创性声明

3)中文摘要(300字左右)、关键词

4)外文摘要、关键词

5)目次页(附件不统一编入)

6)论文主体部分:引言(或绪论)、正文、结论

7)参考文献

8)致谢

9)附录(对论文支持必要时)

2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。

4.文字、图表要求:

1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写

2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画

3)毕业论文须用A4单面打印,论文50页以上的双面打印

4)图表应绘制于无格子的页面上

5)软件工程类课题应有程序清单,并提供电子文档

5.装订顺序

1)设计(论文)

2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订

指导教师评价:

一、撰写(设计)过程

1、学生在论文(设计)过程中的治学态度、工作精神

□优□良□中□及格□不及格

2、学生掌握专业知识、技能的扎实程度

□优□良□中□及格□不及格

3、学生综合运用所学知识和专业技能分析和解决问题的能力

□优□良□中□及格□不及格

4、研究方法的科学性;技术线路的可行性;设计方案的合理性

□优□良□中□及格□不及格

5、完成毕业论文(设计)期间的出勤情况

□优□良□中□及格□不及格

二、论文(设计)质量

1、论文(设计)的整体结构是否符合撰写规范?

□优□良□中□及格□不及格

2、是否完成指定的论文(设计)任务(包括装订及附件)?

□优□良□中□及格□不及格

三、论文(设计)水平

1、论文(设计)的理论意义或对解决实际问题的指导意义

□优□良□中□及格□不及格

2、论文的观念是否有新意?设计是否有创意?

□优□良□中□及格□不及格

3、论文(设计说明书)所体现的整体水平

□优□良□中□及格□不及格

建议成绩:□优□良□中□及格□不及格

(在所选等级前的□内画“√”)

指导教师:(签名)单位:(盖章)

年月日

评阅教师评价:

一、论文(设计)质量

1、论文(设计)的整体结构是否符合撰写规范?

□优□良□中□及格□不及格

2、是否完成指定的论文(设计)任务(包括装订及附件)?

□优□良□中□及格□不及格

二、论文(设计)水平

1、论文(设计)的理论意义或对解决实际问题的指导意义

□优□良□中□及格□不及格

2、论文的观念是否有新意?设计是否有创意?

□优□良□中□及格□不及格

3、论文(设计说明书)所体现的整体水平

□优□良□中□及格□不及格

建议成绩:□优□良□中□及格□不及格

(在所选等级前的□内画“√”)

评阅教师:(签名)单位:(盖章)

年月日

教研室(或答辩小组)及教学系意见

教研室(或答辩小组)评价:

一、答辩过程

1、毕业论文(设计)的基本要点和见解的叙述情况

□优□良□中□及格□不及格

2、对答辩问题的反应、理解、表达情况

□优□良□中□及格□不及格

3、学生答辩过程中的精神状态

□优□良□中□及格□不及格

二、论文(设计)质量

1、论文(设计)的整体结构是否符合撰写规范?

□优□良□中□及格□不及格

2、是否完成指定的论文(设计)任务(包括装订及附件)?

□优□良□中□及格□不及格

三、论文(设计)水平

1、论文(设计)的理论意义或对解决实际问题的指导意义

□优□良□中□及格□不及格

2、论文的观念是否有新意?设计是否有创意?

□优□良□中□及格□不及格

3、论文(设计说明书)所体现的整体水平

□优□良□中□及格□不及格

评定成绩:□优□良□中□及格□不及格教研室主任(或答辩小组组长):(签名)

年月日

教学系意见:

系主任:(签名)

年月日

基于遗传算法的PID参数优化

摘要

PID控制一直是工业生产过程中应用最为广泛而且最为成熟的一种控制,它以其算法简单、可靠性高、鲁棒性好等优点应用于工业控制领域。PID控制器有三个参数:比例、积分和微分系数,当PID结构确定的情况下,这三个参数将会决定控制器的品质,参数的调节和优化至关重要。遗传算法(Genetic Algorithm , GA)源于生物系统的研究,而后由Holland教授和学生创造出适合于复杂系统优化的自适应概率化技术,本文主要研究遗传算法的基本概念和原理,利用遗传算法对控制系统进行PID参数优化,遗传算法在优化的过程中,与常规方法相比更加便捷和迅速,整定的精度相对较高。最后通过MATLAB语言,对该系统进行了仿真,实验结果证明了遗传算法的动态特性和控制效果,证明其有效性与可靠性。

关键词:遗传算法, PID控制器, 参数优化, 仿真

PID Parameters Optimization Based on

Genetic Algorithm

Abstract

PID control has been the most extensive and the most mature of a control in the process of application on the industrial production. It has a wide application in the field of industrial control because of its simple algorithm and , reliability and robustness. PID controller has three parameters: proportional, integral and differential coefficient, when to determine the structure of the PID, the three parameters will determine the controller's quality, and the parameter regulation and optimization will be very important.Genetic algorithm (GA) sources in the study of biological systems, and then professors Holland and his student created a technology which is suitable for the complex system optimization of adaptive probability. The basic concept and principle of the main purpose of this paper is to study the genetic algorithm and using the genetic algorithm to optimize the PID parameters of the control system. The genetic algorithm compared to the conventional methods is more convenient and quickly in the optimization process, also it’s tuning accuracy is relatively high.At last, the system is simulated by MATLAB, and the results prove the dynamic characteristic and control effect of the genetic algorithm, and prove its validity and reliability.

Key words: Genetic algorithm;PID controller; Parameter optimization;Simulation

目录

1绪论 (1)

1.1选题意义与研究价值 (1)

1.1.1 PID控制器 (1)

1.1.2PID 控制器参数优化分类 (3)

1.1.3遗传算法的简介 (7)

1.2国内外研究现状 (7)

1.3本文的主要研究内容 (8)

2遗传算法 (9)

2.1遗传算法概要 (9)

2.2基本遗传算法的实现技术 (10)

2.2.1算法流程 (10)

2.2.2编码方法 (11)

2.2.3适应度函数 (11)

2.2.4选择、交叉、变异算子 (12)

2.3遗传算法与其他算法比较 (12)

2.4遗传算法优点 (14)

3基于遗传算法的PID控制器参数优化 (16)

3.1传统遗传算法的PID整定 (16)

3.2 算法步骤 (17)

3.3系统仿真—MATLAB语言 (17)

3.3.1遗传算法的参数设置 (18)

3.3.2MATLAB遗传算法操作 (18)

4基于遗传算法的PID参数优化的应用 (20)

4.1柴油机调速系统模型概述 (20)

4.1.1测速环节 (20)

4.1.2柴油机 (20)

4.1.3柴油机控制系统模型 (20)

4.1.4数学模型的建立 (21)

4.2柴油机调速系统的PID参数优化设计与仿真 (21)

4.3基于遗传算法优化柴油机调速系统PID参数 (23)

结论 (26)

致谢 (27)

参考文献 (28)

附录(程序清单) (28)

1 绪论

1.1选题意义与研究价值

20世纪30年代以来,自动化生产飞速发展,取得了惊人的成就,过程控制是工业自动化中的一个重要分支。生产对过程控制的要求为安全性、稳定性以及经济性,在很多情况下,PID控制器就可以实现其控制任务,而且,它也以自身结构简单、容易实现、鲁棒性强等优点,在各个工业生产控制中占据着主导地位。PID控制器的设计和应用,其核心问题就是参数的整定与优化,合适的控制器参数会使得生产更为高效与安全,在方案设计合理的基础上,参数的整定将会影响到控制器的质量[i]。

随着现代控制理论的建立与完善,过程控制的方法和思路也在不断创新,与此同时,为了适应日益提高的生产工艺,过程控制的要求也越来越高。传统的PID控制由于受到多方面的约束,在当今的生产控制中收到很多限制,因此提高PID控制算法能力或者根据现代控制理论来设计PID控制算法就显得尤为重要。尽管随着模糊控制、智能控制理论和神经网络的发展,形成了诸多智能PID控制策略,但这些控制策略要求参数优化的搜索空间可微,在应用中受到了很多限制,针对这些,人们一直在寻求更为简单、有效的PID参数优化技术[ii]。

遗传算法是模仿自然生物进化机制而发展起来的随机全局搜索和优化方法,借鉴达尔文的进化论和孟德尔的遗传学说,它的本质是一种高效、全局、并行的搜索方法,它与传统的算法不同,不依赖于梯度信息,通过模拟自然进化来寻找最优解[iii]。人们对遗传算法进行大量研究,其应用已经逐渐渗透到工业生产的各个领域,而遗传算法自身的优势,在PID控制器的参数优化中,也发挥着重要的作用。

1.1.1 PID控制器

模拟控制的系统中,控制器常用PID控制,其控制系统原理框图如图1.1所示。

被控对象

r(t)e(t)+-

u(t)

y(t)比例

积分微分

+

+

图1.1 PID 控制原理图

PID 控制为线性控制的方法,控制器根据给定值()r t 与实际输出值()y t 构成的控制偏差()e t ,即:

()()()e t r t y t =- (1-1)

通过对偏差进行比例、积分与微分运算,将结果相加,就得到了PID 控制

器的控制输出(

)u t 的表达式: 1()()()()p d i de t u t K e t e t dt T T dt ??=++????

? (1-2) 式中p K 为比例系数;i T 指积分时间常数;d T 代表微分时间常数。PID 控制

器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的

[iv]。

1.比例(P )控制

比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。

2.积分(I )控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI )控制器,可以使系统在进入稳态后无稳态误差。

3.微分(D )控制

在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay )组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入 “比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD )控制器能改善系统在调节过程中的动态特性。

近些年来,智能控制理论的发展与应用越来越广泛与深入,如何设计PID 控制器的算法,如何使PID 的控制算法最优化,已经成为了人们研究的热点问题。由上图我们看到,在PID 控制器中,比例系数(p K )、积分时间常数(i T )以及微分时间常数(d T )的选择直接关系到了系统性能,这三个值的选择是PID 控制

器设计的关键问题。

1.1.2 PID 控制器参数优化分类

PID 控制器在工业过程中广泛应用,但是传统的PID 控制器稳定性差,适应能力弱等不足,很难满足生产过程中控制的多变性与稳定性。PID 参数优化将变得尤为重要,其优化方法主要有:常规Z -N 法、基于模糊控制的PID 参数整定、衰减曲线法等。

1. 常规Z -N 整定方法

常规Z -N 整定方法是由Ziegler 和 Nichols 在1942年提出的[v],该方法基于受控过程的开环动态响应中一些特征参数而进行的PID 参数整定,经验公式基于带有延迟的一阶惯性模型而提出来的,对象模型如下:

()1s K G s e Ts τ-=

+

(1-3) 其中:K

为放大系数,T 为惯性时间常数,τ为延迟时间。其中K 、T 、τ

可以由图1.2求出来,同时也可以用已知频率求出相应数据,按表1.1求取控制器参数。

图1.2 作图法确定参数

表1.1 Ziegler-Nichols 参数整定算法 控制器

类 型 根据模型设定 根据频率响应设定 T K τα=

c c T ωπ2= p K i T

d T p K i T d T P α1

c K 5.0 PI

α9.0 τ3 c K 4.0 c T 8.0 PID

α2.1 τ2 2τ c K 6.0 c T 5.0 c T 12.0

2. 基于模糊控制的PID 参数整定

基于模糊控制的PID 参数整定就是将模糊控制理论应用到PID 三个参数的整定中,通过将模糊理论与PID 结合起来,进而构成模糊PID 控制器。

模糊控制就是以模糊集理论、模糊语言变量和逻辑推理为基础的一种智能控制,就是在行为上模仿人的模糊推理和决策的一种智能控制方法。其基本原理框图如图2.3所示。

计算控

量模糊量化处理模糊控制规则模糊决策逆模糊化处

理D/A

A/D 执行机构

被控对象传感器+

图1.3 模糊控制的基本原理框图

模糊自适应PID 控制就是运用模糊数学基本原理与方法,把规则的条件、操作用模糊集来表示,同时将这些模糊控制规则和相关信息存入计算机知识库中作为知识,计算机根据系统的响应情况,通过模糊推理,进而实现对PID 参数的调整,进而去得到最佳参数,该控制器的结构如图1.4所示。

模糊推理

PID 调节器对象ec +

-error Kp

Ki

Kd y(t)r(t) 图1.4模糊自适应PID 控制器结构

其中:()r t 表示系统的输入, ()y t 指系统的输出,error 是系统输入与输出的差,误差变化率。模糊自适应参数整定就是研究PID 三个参数与 、 之间关系,该系统在运行的过程中不断检测和

,PID 的三个参数将会被修改,

以满足不同和对控制参数的不同要求,进而使被控对象性能发挥到极致。

3.临界比例度法

临界比例度法是现在应用较为广泛的一种控制器参数整定法,其实质是首先让控制器在纯比例作用下,通过实验,寻找到等幅振荡的过渡的过程,记录该情况下的比例度κδ以及等幅振荡周期κT ,再有简单计算得到和,步骤如下:

1. =∞ ,=0,选择一个较大的δ值,当稳定时将控制系统进行自动控制。

2. 突然增大设定值,观察曲线的变化情况,此时应该为一个衰减曲线的过程,减小δ的值,当出现等幅振荡时,记下此时的比例度κδ和振荡曲线的周期κT 。按表1.2 计算控制器的参数。

表1.2 临界比例度法参数计算表 控制参数

控制作用

δ P

2κδ - - PI

2.2κδ 0.85κT - PID

1.7κδ 0.5κT 0.13κT

4.稳定边界法 稳定边界法是一种针对于闭环回路的调节过程,具体操作是先让控制器在纯比例的作用下,用实际仿真来进行调试,寻找出等幅振荡的过程曲线,然后记下此时的m K 以及等幅振荡周期u T ,而后经过简单的计算求出PID 的相关参数值。

表1.3 稳定边界法PID 整定公式

调节器参数 p K i T d T

控制规律

P

0.5m K PI

0.455m K 0.85u T PID

0.6m K 0.50u

T 0.125u T

1.1.3 遗传算法的简介 遗传算法是一种借鉴生物界中的自然选择和自然遗传机制的一种随机搜素算法(Random Searching Algorithms ),遗传算法对梯度信息没有依赖,最优解是经过模拟的自然进化而得到的,这也是它不同于传统算法的重要特征之一。遗传算法的这些特点决定了将其应用在PID 参数上的的优化上是可行的,因为它的开放性,并且容易与实际问题结合,便于运算,这已成功运用到很多实际优化问题。

1.2国内外研究现状

PID 控制的参数整定方法的研究历史悠久,早在1942年,Ziegler 和Nichols 就针对一阶惯性加纯延迟的对象提出了PID 控制器参数整定的Z -N 法,曲线拟合的方法将阶跃相应数据拟合为近似的一阶惯性加纯滞后环节的模型,从而来解决常规的控制对象。这种方法和理论很快就应用在了实际的生产中。同一年,Ziegler 提出了参数整定的临界振荡法,随着后来理论基础的发展,越来越多的参数整定方法开始出现。1993年,陈福祥等提出了增益优化的PID 参数整定方法,根据测量得到的阶跃响应的瞬时值去计算PID 控制器的参数值。1995年,UdoKuhn 提出基于总和时间常数的整定方法,该方法对阶跃响应曲线为S 型的自衡对象适用。

而针对于遗传算法的PID 控制器参数优化,国内外学者的理论研究与实际应用也很广泛,基于遗传算法的PID 控制器参数优化整定方法要优于传统的整定方法的观点在很多文献中已经证实。但是,遗传算法的研究并非顺风顺水,在它的研究过程中也在一定的程度上发现了几个问题:第一,遗传算法受适应度选

择影响,有时难以达到全局最优化,因为此时的遗传算法不一定会收敛于局部最优。第二,在动态数据上求系统最优解的问题上,遗传算法有其一定的局限性。近些年来,我国在遗传算法的理论和应用方面成果巨大,遗传算法已经被成功应用于各种不同领域,解决了实际应用中的很多问题。

1.3 本文的主要研究内容

本文主要研究基于遗传算法的PID参数优化,。研究内容主要为:

第一章:绪论。介绍该课题的研究背景与价值,对PID和遗传算法的概念进行了简单的介绍,分析了国内外对于该课题的研究情况。

第二章:遗传算法概述。对遗传算法的概念和特点进行介绍与研究,通过框图研究遗传算法的基本原理,同时将遗传算法与其他传统算法进行了比较和分析。

第三章:基于遗传算法的PID参数优化。研究基于遗传算法的PID整定,对遗传算法中的一些常用概念进行介绍,同时用,MATLAB语言对遗传算法进行简单的编程介绍。

第四章:柴油机调速系统的PID参数优化设计与仿真研究。首先建立柴油机调速系统的模型,将基于遗传算法的PID控制应用到该系统中,并优化参数,最后通过MATLAB来进行仿真,证明遗传算法相对传统算法的优势。

2 遗传算法

2.1 遗传算法概要

遗传算法的基本概念如下:

1.基因(gene):DNA或者RNA中占一定位置的基本遗传单位,也称遗传因子。在生物界中,生物的基因数量根据物种不同而多少不同,一个基因或者多个基因决定了氨基酸的组成比例及顺序。在遗传算法中,一个基因常有一个二进制位或一个整数或字符等来代表,人们利用基因的特性,用计算机来模仿对基因的操作过程。基因为遗传算法中的最小单位。

2.染色体((Chromosom):在生物界的生物细胞中,它是遗传物质的主要载体,由基因组成。染色体上包含着生物体的全部遗传信息,这也说明了染色体对生物来说相当重要。遗传算法中自然也少不了染色体,人们对染色体进行编码来模仿生物细胞中的染色体。实际应用中,可能解需要用合适的码子进行编码,其中用到最多的就是二进制,因为二进制编码相对简单,同时和生物体的染色体组成类似。由1和0组成的二进制编码串就作为染色体,其长度恒定不变,这些单个的0和1的字符即为基因。

MATLAB实验报告-遗传算法解最短路径以及函数最小值问题

硕士生考查课程考试试卷 考试科目:MATLAB教程 考生姓名:考生学号: 学院:专业: 考生成绩: 任课老师(签名) 考试日期:20 年月日午时至时

《MATLAB教程》试题: A、利用MATLAB设计遗传算法程序,寻找下图11个端点的最短路径,其中没有连接的端点表示没有路径。要求设计遗传算法对该问题求解。 a c d e f h i k 1 2 1 6 8 3 1 7 9 4 6 7 2 9 4 2 1 1 B、设计遗传算法求解f(x)极小值,具体表达式如下: 要求必须使用m函数方式设计程序。 C、利用MATLAB编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河? D、结合自己的研究方向选择合适的问题,利用MATLAB进行实验。 以上四题任选一题进行实验,并写出实验报告。

选择题目: A 一、问题分析(10分) 1 2 3 4 5 6 8 9 10 11 1 2 1 6 8 3 1 7 9 4 6 7 2 9 4 2 1 1 如图如示,将节点编号,依次为 1.2.3.4.5.6.7.8.9.10.11,由图论知识,则可写出其带权邻接矩阵为: 0 2 8 1 500 500 500 500 500 500 500 2 0 6 500 1 500 500 500 500 500 500 8 6 0 7 500 1 500 500 500 500 500 1 500 7 0 500 500 9 500 500 500 500 500 1 500 500 0 3 500 2 500 500 500 500 500 1 500 3 0 4 500 6 500 500 500 500 500 9 500 4 0 500 500 1 500 500 500 500 500 2 500 500 0 7 500 9 500 500 500 500 500 6 500 7 0 1 2 500 500 500 500 500 500 1 500 1 0 4 500 500 500 500 500 500 500 9 2 4 0 注:为避免计算时无穷大数吃掉小数,此处为令inf=500。 问题要求求出任意两点间的最短路径,Floyd算法采用的是在两点间尝试插入顶点,比较距离长短的方法。我思考后认为,用遗传算法很难找到一个可以统一表示最短路径的函数,但是可以对每一对点分别计算,然后加入for循环,可将相互之间的所有情况解出。观察本题可发现,所有节点都是可双向行走,则可只计算i到j的路径与距离,然后将矩阵按主对角线翻折即可得到全部数据。二、实验原理与数学模型(20分) 实现原理为遗传算法原理: 按所选择的适应度函数并通过遗传中的复制、交叉及变异对个体进行筛选,使得适应度高的个体被保留下来,组成新的群体,新的群体既继承了上一代的信息,又优于上一代。这样周而复始,群体中个体适应度不断提高,直到满足一定的条件。 数学模型如下: 设图由非空点集合和边集合组成,其中 又设的值为,故可表示为一个三元组 则求最短路径的数学模型可以描述为:

遗传算法应用论文

论文 题目:遗传应用算法 院系:计算机工程系 专业:网络工程 班级学号: 学生姓名: 2014年10月23日

摘要: 遗传算法是基于自然界生物进化基本法则而发展起来的一类新算法。本文在简要介绍遗传算法的起源与发展、算法原理的基础上,对算法在优化、拟合与校正、结构分析与图谱解析、变量选择、与其他算法的联用等方面的应用进行了综述。该算法由于无需体系的先验知识,是一种全局最优化方法,能有效地处理复杂的非线性问题,因此有着广阔的应用前景。 关键词: 遗传算法; 化学计量学; 优化 THEORY AND APPL ICATION OF GENETIC AL GORITHM ABSTRACT: Genetic Algo rithm( GA) is a kind of recursive computational procedure based on the simulation of principle principles of evaluati on of living organisms in nature1Based on brief int roduction of the principle ,the beginning and development of the algorithms ,the pape r reviewed its applications in the fields of optimization ,fitting an d calibration,structure analysis and spectra interpretation variable selection ,and it s usage in combination with othersThe application o f GA needs no initiating knowledge of the system ,and therefore is a comprehensive optimization method with extensive application in terms of processing complex nonlinear problems。 KEY WORDS : Genetic Algorithm( GA) Chemometrics Optimization 遗传算法是在模拟自然界生物遗传进化过程中形成的一种自适应优化的概率搜索算法,它于1962年被提出,直到1989年才最终形成基本框架。遗传算法是一种借鉴生物界自然选择和自然遗传机制的随机化搜索算法, 由美国J. H. Ho llad教授提出, 其主要特点是群体搜索策略和群体中个体之间的信息交换。该算法尤其适用于处理传统搜索方法难以解决的复杂和非线性问题, 可广泛用于组合优化、机器学习、自适应控制、规划设计和人工生命等领域。 顾名思义,遗传算法(Genetic Algorithm ,GA)是模拟自然界生物进化机制的一种算法 ,即遵循适者生存、优胜劣汰的法则 ,也就是寻优过程中有用的保留 ,无用的则去除。在科学和生产实践中表现为 ,在所有可能的解决方法中找出最符合该问题所要求的条件的解决方法 ,即找出一个最优解。这种算法是 1960 年由

遗传算法实验报告(仅供参照)

人工智能实验报告

遗传算法实验报告 一、问题描述 对遗传算法的选择操作,设种群规模为4,个体用二进制编码,适应度函数,x的取值区间为[0,30]。 若遗传操作规定如下: (1)选择概率为100%,选择算法为轮盘赌算法; (2)交叉概率为1,交叉算法为单点交叉,交叉顺序按个体在种群中的顺序; (3)变异几率为0 请编写程序,求取函数在区间[0,30]的最大值。 二、方法原理 遗传算法:遗传算法是借鉴生物界自然选择和群体进化机制形成的一种全局寻优算法。与传统的优化算法相比,遗传算法具有如下优点:不是从单个点,而是从多个点构成的群体开始搜索;在搜索最优解过程中,只需要由目标函数值转换得来的适应值信息,而不需要导数等其它辅助信息;搜索过程不易陷入局部最优点。目前,该算法已渗透到许多领域,并成为解决各领域复杂问题的有力工具。在遗传算法中,将问题空间中的决策变量通过一定编码方法表示成遗传空间的一个个体,它是一个基因型串结构数据;同时,将目标函数值转换成适应值,它用来评价个体的优劣,并作为遗传操作的依据。遗传操作包括三个算子:选择、交叉和变异。选择用来实施适者生存的原则,即把当前群体中的个体按与适应值成比例的概率复制到新的群体中,构成交配池(当前代与下一代之间的中间群体)。选择算子的作用效果是提高了群体的平均适应值。由于选择算子没有产生新个体,所以群体中最好个体的适应值不会因选择操作而有所改进。交叉算子可以产生新的个体,它首先使从交配池中的个体随机配对,然后将两两配对的个体按某种方式相互交换部分基因。变异是对个体的某一个或某一些基因值按某一较小概率进行改变。从产生新个体的能力方面来说,交叉算子是产生新个体的主要方法,它决定了遗传算法的全局搜索能力;而变异算子只是产生新个体的辅助方法,但也必不可少,因为它决定了遗传算法的局部搜索能力。交叉和变异相配合,共同完成对搜索空间的全局和局部搜索。 三、实现过程 (1)编码:使用二进制编码,随机产生一个初始种群。L 表示编码长度,通常由对问题的求解精度决定,编码长度L 越长,可期望的最优解的精度也就越高,过大的L 会增大运算量。 (2)生成初始群体:种群规模表示每一代种群中所含个体数目。随机产生N个初始串结构数据,每个串结构数据成为一个个体,N个个体组成一个初始群体,N表示种群规模的大小。当N取值较小时,可提高遗传算法的运算速度,但却降低种群的多样性,容易引起遗传算法早熟,出现假收敛;而N当取值较大时,又会使得遗传算法效率降低。一般建议的取值范围是20—100。遗传算法以该群体作为初始迭代点; (3)适应度检测:根据实际标准计算个体的适应度,评判个体的优劣,即该个体所代表的可行解的优劣。本例中适应度即为所求的目标函数; (4)选择:从当前群体中选择优良(适应度高的)个体,使它们有机会被选中进入下一次迭代过程,舍弃适应度低的个体。本例中采用轮盘赌的选择方法,即个体被选择的几率与其适应度值大小成正比; (5)交叉:遗传操作,根据设置的交叉概率对交配池中个体进行基因交叉操作,形成新一代的种群,新一代中间个体的信息来自父辈个体,体现了信息交换的原则。交叉概率控制

基于蚁群算法的PID控制参数优化Matlab源码

基于蚁群算法的PID控制参数优化Matlab源码 (2009-07-26 12:31:02) 除了蚁群算法,可用于PID参数优化的智能算法还有很多,比如遗传算法、模拟退火算法、粒子群算法、人工鱼群算法,等等。 function [BESTX,BESTY,ALLX,ALLY]=ACOUCP

(K,N,Rho,Q,Lambda,LB,UB,Num,Den,Delay,ts,StepNum,SigType,PIDLB,PIDUB) %% 此函数实现蚁群算法,用于PID控制参数优化 % GreenSim团队原创作品,转载请注明 % Email:greensim@https://www.sodocs.net/doc/4c2882841.html, % GreenSim团队主页:https://www.sodocs.net/doc/4c2882841.html,/greensim % [color=red]欢迎访问GreenSim——算法仿真团队→[url=https://www.sodocs.net/doc/4c2882841.html,/greensim] https://www.sodocs.net/doc/4c2882841.html,/greensim[/url][/color] %% 输入参数列表 % K 迭代次数 % N 蚁群规模 % Rho 信息素蒸发系数,取值0~1之间,推荐取值0.7~0.95 % Q 信息素增加强度,大于0,推荐取值1左右 % Lambda 蚂蚁爬行速度,取值0~1之间,推荐取值0.1~0.5 % LB 决策变量的下界,M×1的向量 % UB 决策变量的上界,M×1的向量 % Num 被控制对象传递函数的分子系数向量 % Den 被控制对象传递函数的分母系数向量 % Delay 时间延迟 % ts 仿真时间步长 % StepNum 仿真总步数 % SigType 信号类型,1为阶跃信号,2为方波信号,3为正弦波信号 % PIDLB PID控制输出信号限幅的下限 % PIDUB PID控制输出信号限幅的上限 %% 输出参数列表 % BESTX K×1细胞结构,每一个元素是M×1向量,记录每一代的最优蚂蚁 % BESTY K×1矩阵,记录每一代的最优蚂蚁的评价函数值 % ALLX K×1细胞结构,每一个元素是M×N矩阵,记录每一代蚂蚁的位置 % ALLY K×N矩阵,记录每一代蚂蚁的评价函数值

论文-遗传算法的基本步骤

遗传算法 遗传算法(Genetic Algorithm)是基于进化论的原理发展起来的一种广为应用,高效的随机搜索与优化的方法。它从一组随机产生的初始解称为“种群”,开始搜索过程。种群中的每个个体是问题的一个解,成为“染色体”是一串符号。这些染色体在每一代中用“适应度”来测量染色体的好坏, 通过选择、交叉、变异运算形成下一代。选择的原则是适应度越高,被选中的概率越大。适应度越低,被淘汰的概率越大。每一代都保持种群大小是常数。经过若干代之后,算法收敛于最好的染色体,它很可能是问题的最优解或次优解。这一系列过程正好体现了生物界优胜劣汰的自然规律。 比如有编号为1到10的特征,现在要选取其中的5个,基于遗传算法的特征选择可以如下这样直观的理解: 下续(表格) 下续……

即设有4个不同的初始特征组合,分别计算判别值,然后取最大的2个组合([1,2,3,4,9]和[1,3,5,7,8])进行杂交,即互换部分相异的特征(4和7),得到新的两个特征组合([1,2,3,7,9]和[1,3,4,5,8]),然后再计算这两个新的组合的判别值,和原来的放在一起,再从中选择2个具有最大判别值的组合进行杂交。如此循环下去,在某一代的时候就得到了一个最好的特征组合(比如第2代的[1,3,5,7,9]的特征组合)。当然,在实际中每代的个体和杂交的数量是比较大的。 遗传算法的具体的步骤如下:

1.编码:把所需要选择的特征进行编号,每一个特征就是一个基因,一个解就是一串基因的组合。为了减少组合数量,在图像中进行分块(比如5*5大小的块),然后再把每一块看成一个基因进行组合优化的计算。每个解的基因数量是要通过实验确定的。 2.初始群体(population)的生成:随机产生N个初始串结构数据,每个串结构数据称为一个个体。N个个体,构成了一个群体。GA以这N个串结构数据作为初始点开始迭代。这个参数N需要根据问题的规模而确定。 3.交换(crossover):交换(也叫杂交)操作是遗传算法中最主要的遗传操作。由交换概率( P)挑选的每两个父代 c 通过将相异的部分基因进行交换(如果交换全部相异的就变成了对方而没什么意义),从而产生新的个体。可以得到新一代个体,新个体组合了其父辈个体的特性。交换体现了信息交换的思想。 4.适应度值(fitness)评估检测:计算交换产生的新个体的适应度。适应度用来度量种群中个体优劣(符合条件的程度)的指标值,这里的适应度就是特征组合的判据的值。这个判据的选取是GA的关键所在。

MATLAB课程遗传算法实验报告及源代码

硕士生考查课程考试试卷 考试科目: 考生姓名:考生学号: 学院:专业: 考生成绩: 任课老师(签名) 考试日期:年月日午时至时

《MATLAB 教程》试题: A 、利用MATLA B 设计遗传算法程序,寻找下图11个端点最短路径,其中没有连接端点表示没有路径。要求设计遗传算法对该问题求解。 a e h k B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 C 、利用MATLAB 编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河? D 、结合自己的研究方向选择合适的问题,利用MATLAB 进行实验。 以上四题任选一题进行实验,并写出实验报告。

选择题目: B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 一、问题分析(10分) 这是一个简单的三元函数求最小值的函数优化问题,可以利用遗传算法来指导性搜索最小值。实验要求必须以matlab 为工具,利用遗传算法对问题进行求解。 在本实验中,要求我们用M 函数自行设计遗传算法,通过遗传算法基本原理,选择、交叉、变异等操作进行指导性邻域搜索,得到最优解。 二、实验原理与数学模型(20分) (1)试验原理: 用遗传算法求解函数优化问题,遗传算法是模拟生物在自然环境下的遗传和进化过程而形成的一种自适应全局优化概率搜索方法。其采纳了自然进化模型,从代表问题可能潜在解集的一个种群开始,种群由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体;初始种群产生后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的解:在每一代,概据问题域中个体的适应度大小挑选个体;并借助遗传算子进行组合交叉和主客观变异,产生出代表新的解集的种群。这一过程循环执行,直到满足优化准则为止。最后,末代个体经解码,生成近似最优解。基于种群进化机制的遗传算法如同自然界进化一样,后生代种群比前生代更加适应于环境,通过逐代进化,逼近最优解。 遗传算法是一种现代智能算法,实际上它的功能十分强大,能够用于求解一些难以用常规数学手段进行求解的问题,尤其适用于求解多目标、多约束,且目标函数形式非常复杂的优化问题。但是遗传算法也有一些缺点,最为关键的一点,即没有任何理论能够证明遗传算法一定能够找到最优解,算法主要是根据概率论的思想来寻找最优解。因此,遗传算法所得到的解只是一个近似解,而不一定是最优解。 (2)数学模型 对于求解该问题遗传算法的构造过程: (1)确定决策变量和约束条件;

基于粒子群算法的控制系统PID参数优化设计

基于粒子群算法的控制系统 PID 参数优化设计 摘 要 本文主要研究基于粒子群算法控制系统PID 参数优化设计方法以及对PID 控制的 改进。PID 参数的寻优方法有很多种,各种方法的都有各自的特点,应按实际的系统特点选择适当的方法。本文采用粒子群算法进行参数优化,主要做了如下工作:其一,选择控制系统的目标函数,本控制系统选用时间乘以误差的绝对值,通过对控制系统的逐步仿真,对结果进行分析。由于选取的这个目标函数的解析式不能直接写出,故采用逐步仿真来实现;其二,本文先采用工程上的整定方法(临界比例度法)粗略的确定其初始的三个参数p K ,i K ,d K ,再利用粒子群算法进行寻优,得到更好的PID 参数;其三,采用SIMULINK 的仿真工具对PID 参数优化系统进行仿真,得出系统的响应曲线。从中发现它的性能指标,都比原来有了很大的改进。因此,采用粒子群算法的优越性是显而易见的。 关键词 目标函数;PID 参数;粒子群算法;优化设计;SIMULINK

Optimal design of PID parameter of the control system based on Particle Swarm Optimization Abstract The main purpose of this paper is to study the optimal design of PID parameter of the control system based on Particle Swarm Optimization and find a way to improve the PID control. There are a lot of methods of optimization for the parameters of PID, and each of them has its own characteristics. The proper methods need to be selected according to the actual characteristics of the system. In this paper we adopt the Particle Swarm Optimization to tune the parameters. To finish it, the following tasks should be done. First, select the target function of the control system. The target function of the control system should be chosen as the absolute value of the error multiplied by time. Then we simulate the control system gradually, and analyze the results of the process. Because the solution of the target function cannot be worked out directly, this design adopts simulation gradually. Second, this paper adopts the engineering method (the critical ratio method) to determine its initial parameters p K ,i K ,d K , then uses the Particle Swarm Optimization to get a series better PID parameters. Third, this paper uses the tool of SIMULINK to optimize the parameters of PID and gets the response curve of the system. By contrast with the two response curves, it is clearly that the performance has improved a lot than the former one. Therefore, it is obviously to find the advantages in using the Particle Swarm Optimization. Key word : target function; PID parameters; Particle Swarm Optimization; optimal design; SIMULINK

遗传算法实验报告17643

信息与管理科学学院计算机科学系 实验报告 课程名称:人工智能 实验名称:遗传算法问题 姓名:苏鹏海贾美丽赵妍张汉昭 学号:1510003063 1510003024 班级:计科实验室:软件技术实验室指导教师:张慧日期: 2016.11.09

&&遗传算法问题 一、实验目的 1.熟悉和掌握遗传算法的原理、实质; 2.学会使用遗传算法解决问题; 3.学会编写遗传算法程序寻找函数最值; 二、实验原理 遗传算法是仿真生物遗传学和自然选择机理,通过人工方式所构造的一类搜索算法,从某种程度上说遗传算法是对生物进化构成进行的数学方式仿真。在遗传算法中染色体对应的是一系列符号序列,在标准的遗传算法(即基本遗传算法)中,通常用0, 1组成的位串表示,串上各个位置对应基因座,各位置上的取值对应等位基因。遗传算法对染色体进行处理,染色体称为基因个体。一定数量的基因个体组成基因种群。种群中个体的数目为种群的规模,各个体对环境的适应程度称为适应度。 三、实验内容 用遗传算法求根号2,也就是求方程f(x)=x*x-2=0的正整数解,x=1时f(1)<0,x=2时f(2)>0,由介值定理,则1到2中间存在一个根,根据代数基本定理和根的对称性知这就是我们要找的根,由目标函数得到适应度函数,我们选择个体都在[1,2]之间,那适应度函数我可以取 j(x)=40/(2+|x*x-2|)-10,由x的取值范围知j的范围是(0,10) x和y交叉就用取平均(x+y)/2,交叉概率取0.9,变异概率为0, 四、步骤分析 1.选择目标函数,确定变量定义域及编码精度,形成编码方案 2.随机产生一个规模为(即该种群中含有个体)的种群 2 3.个体评价:计算群体P(t)中各个个体适应度 4.选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传 到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建 立在群体中个体的适应度评估基础上的。(选择运算用轮盘赌算法) 5.对被选择进入匹配池中的个体进行交叉操作,形成新种群 6.以小概率在种群中选择个体进行变异操作形成新种群 7.计算每个个体的适值 8.根据适值概率选择新个体形成新种群 9.检查结束条件,若满足则算法结束,当前种群中适值最高的个体即所求 解;否则转3

基于自适应果蝇优化算法的PID参数优化

2018年10月 第46卷第20期 机床与液压 MACHINETOOL&HYDRAULICS Oct 2018 Vol 46No 20 DOI:10.3969/j issn 1001-3881 2018 20 033 收稿日期:2017-05-09 基金项目:陕西省重点研发计划资助项目(2018GY?042);咸阳市科技局资助项目(2017K02?05) 作者简介:李明辉(1972 ),男,博士,教授,主要从事智能及高级过程控制的研究三E-mail:60334@sust edu cn三 基于自适应果蝇优化算法的PID参数优化 李明辉1,曹泽1,王玉洁2 (1 陕西科技大学机电工程学院,陕西西安710021;2 上海亚太计算机信息系统有限公司,上海200040) 摘要:针对基本果蝇优化算法(FOA)控制精度不高且易陷入局部最优的缺陷,提出一种自适应果蝇优化算法 (IFOA)的PID参数优化方案三该算法以控制偏差绝对值和输入平方项的时间积分作为适应度函数,经过迭代寻优得到最优的PID参数值三通过二阶时滞系统测试并与基本果蝇优化算法比较,结果表明:该算法控制精度高二响应速度快二鲁棒性好,为PID参数优化提供了参考三 关键词:自适应果蝇优化算法(IFOA);适应度函数;PID;参数优化 中图分类号:TP273一一文献标志码:A一一文章编号:1001-3881(2018)20-144-4 OptimizationofPIDParametersBasedonImprovedFruit?flyOptimizationAlgorithm LIMinghui1,CAOZe1,WANGYujie2 (1 CollegeofMechanicalandElectricalEngineering,ShaanxiUniversityofScience&Technology,Xi anShaanxi710021,China;2 ShanghaiAsia&PacificComputerInformationSystemCo.,Ltd.,Shanghai200040,China) Abstract:Aimingatthedefectsofthebasicfruit?flyoptimizationalgorithm(FOA),thecontrolaccuracywasnothighandeasy tofallintolocaloptimum,amethodforparameteroptimizationofPIDcontrollerbasedonimprovedfruit?flyoptimizationalgorithm(IFOA)wasproposed,inwhichabsoluteerrorandthesquareofcontrolinputwereusedasfitnessfunctionandtheoptimalPIDparametervaluewasobtainedthroughiterativeoptimization.Comparedwiththebasicfruit?flyoptimizationalgorithm,thesimulationresultsshowthatthealgorithmhashighcontrolprecision,fastresponseandrobustnessthroughtwoorderdelaysystemtest.ItprovidesareferenceforPIDparameteroptimization. Keywords:Improvedfruit?flyoptimizationalgorithm(IFOA);Fitnessfunction;PID;Parameteroptimization 0一前言 PID控制器由于其算法简单二鲁棒性好二可靠性 高,被广泛应用于工业过程控制中[1]三传统的PID 控制器参数整定采用人工经验,很难得到理想的最优值三目前,随着人工智能技术的发展,不少学者针对PID参数整定提出新的算法,如遗传算法二粒子群算法等得到了一定的效果[2]三这些算法灵活二简单二易理解,在解决工业过程控制的实际问题中具有非常广阔的应用前景[3]三然而,遗传算法编程复杂,参数较多;粒子群算法在进化后期收敛速度减慢,同时陷入局部最优的可能性加大三 果蝇优化算法(Fruit?flyOptimizationAlgorithm,FOA)是2011年台湾学者潘文超提出的一种新的全局优化进化算法[4]三该算法由于程序代码简单二易于 理解二参数较少,且全局寻优能力强二收敛速度快等优点,在近几年来引起广泛关注[5]三JHAN等[6]采用果蝇优化算法进行PID参数整定,得到FOA避免早熟的结论;YLIU等[7 -8] 采用混沌搜索的FOA算法整 定PID参数,减少了适应度波动;宋娟[9]采用FOA与PSO相结合的混合寻优来优化PID整定参数,使得控制器有较好的控制效果和收敛特性三 作者针对基本果蝇优化算法(FOA)寻优精度不高二容易陷入局部最优的缺陷,提出一种自适应果蝇优化算法[10]的PID参数优化方案三通过在果蝇搜索过程中引入半径调节系数以及选择合适的适应度函数,对PID的3个参数进行了优化三结果表明该算法能够快速高效地寻找到最优参数,有效提高了PID控制器的控制精度三 1一PID控制器基本原理 PID控制器是通过对偏差信号进行比例二积分二微分3个参数的控制,使得系统表现较好性能三PID控制原理如图1所示 三 图1一PID控制系统框图

遗传算法参数调整实验报告(精)

遗传算法参数调整实验报告 算法设计: 编码方案:遍历序列 适应度函数:遍历路程 遗传算子设计: 选择算子:精英保留+轮盘赌 交叉算子:Pxover ,顺序交叉、双亲双子, 变异算子:Pmutation ,随机选择序列中一个染色体(城市)与其相邻染色体交换 首先,我们改编了我们的程序,将主函数嵌套在多层迭代之内,从外到内依此为: 过程中,我们的程序将记录每一次运行时种群逐代进化(收敛)的情况,并另外记录总体测试结果。 测试环境: AMD Athlon64 3000+ (Overclock to 2.4GHz)

目标:寻求最优Px 、Pm 组合 方式:popsize = 50 maxgen = 500 \ 10000 \ 15000 Px = 0.1~0.9(0.05) Pm = 0.01~0.1(0.01) count = 50 测试情况:运行近2万次,时间约30小时,产生数据文件总共5.8GB 测试结果:Px, Pm 对收敛结果的影响,用灰度表示结果适应度,黑色为适应度最低 结论:Px = 0.1 ,Pm = 0.01为最优,并刷新最优结果19912(之前以为是20310),但20000次测试中最优解只出现4次,程序需要改进。 Maxgen = 5000 Pm=0.01 Px = 0.1 Maxgen = 10000 0.1 0.9 Px = 0.1 0.9 0.1

目标:改进程序,再寻求最优参数 方式:1、改进变异函数,只保留积极变异; 2、扩大测试范围,增大参数步进 popsize = 100 \ 200 \ 400 \ 800 maxgen = 10000 Px = 0.1 \ 0.5 \ 0.9 Pm = 0.01 \ 0.04 \ 0.07 \ 0.1 count = 30 测试情况:运行1200次,时间8小时,产生数据文件600MB 测试结果: 结论:Px = 0.1,Pm = 0.01仍为最优,收敛情况大有改善,10000代基本收敛到22000附近,并多次达到最优解19912。变异函数的修改加快了整体收敛速度。 但是收敛情况对Pm并不敏感。另外,单个种群在遗传过程中收敛速度的统计,将是下一步的目标。

人工智能遗传算法新论文

论文 题目:遗传算法应用 院系:计算机工程系 专业:网络工程 班级学号:112055126 学生姓名:崔小杰 2014年10月23日

内容摘要 图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程。图像的分割是以灰度值作为分割的依据,通过各个像素的灰度值和事先确定的阈值的比较来分割图像。如何确定最合适的阈值是处理好图像分割的关键,这自然成为一直以来分割算法研究的焦点。 遗传算法是对生物进化论中自然选择和遗传学机理中生物进化过程的模拟来计算最优解的方法。遗传算法具有众多的优点,如鲁棒性、并行性、自适应性和快速收敛,可以应用在图像处理技术领域中图像分割技术来确定分割阈值。 本文主要介绍基于遗传算法的最小误差阈值法、最大类间方差法(Otsu法)以及最佳直方图熵法(KSW熵法)等三种方法分割图像。 关键词:图像分割,遗传算法,阈值分割

目录 第一章绪论 .................................................. - 1 - 第二章遗传算法概述 ........................................ . - 1 - 2.1遗传算法的研究历史....................................... - 1 - 2.2生物背景................................................. - 2 - 2.3遗传算法的基本思想....................................... - 2 - 2.4遗传算法的几个概念....................................... - 2 - 2.4.1适应度函数......................................... - 2 - 2.4.2遗传算法最常用的算子............................... - 3 - 2.5遗传算法运算的基本流程 (4) 第三章图像分割的现状 ........................................ - 4 - 3.1图像分割简介............................................. - 4 - 3.2图像分割方法............................................. - 5 - 3.2.1基于边缘检测的分割 (6) 3.2.2基于区域的分割..................................... - 5 - 3.2.3边缘与区域相结合的分割............................. - 5 - 3.3阈值选取................................................. - 6 - 第四章基于新的遗传算法的图像分割 ............................ - 6 - 4.1混沌遗传算法............................................. - 6 - 4.2量子遗传算法............................................. - 6 - 4.3免疫遗传算法............................................. - 6 - 结论 ........................................................... - 7 - 参考文献: ...................................................... - 7 -

用遗传算法求解Rosenbrock函数最优解实验报告

姓名学号 实验 成绩 华中师范大学计算机科学系 实验报告书 实验题目:用遗传算法求解Rosenbrock函数的最大值问题课程名称:智能计算 主讲教师:沈显君 辅导教师: 课程编号: 班级:2011级 实验时间:2011.11

用遗传算法求解Rosenbrock函数最大值问题 摘要: 本文利用遗传算法研究了求解Rosenbrock函数的最大值问题.在较多的计算机模拟实验结果中表明,用遗传算法可以有效地解决这一问题.文中分析了一种基于遗传算法对Rosenbrock函数最大值问题的求解,得到了适于解决此问题的合理的遗传操作,从而为有效地解决最速下降法所不能实现的某一类函数代化问题提供了一种新的途径.通过对基于遗传算法对Rosenbrock函数最大值问题的求解,进一步理解遗传算法对解决此类问题的思想。 关键词:遗传算法,Rosenbrock函数,函数优化,最速下降法。 Abstract: This paper deals with the maximum of Rosenbrock s function based ongenetic algorithms. The simulated results show that the problem can be solved effectivelyusing genetic algorithms. The influence of some rnodified genetic algorithms on searchspeed is also examined. Some genetic operations suitable to the optimization technique areobtained, therefore, a novel way of solving a class of optimizations of functions that cannot be realized using the method of steepest descent is proposed.Through dealing with the maximum of Rosenbrock s function based ongenetic algorithms,a better understanding of the genetic algorithm to solve such problems thinking. Keyword:ongenetic algorithms,Rosenbrock function,function optimization,Steepest descent method

粒子群算法优化模糊pid

本文选取常见的二阶惯性加纯滞后环节,传递函数为: )1)(1(21++=-s T s T e G s s τ 在这里,3.0,2,,121===τT T PID 参数取为2,1,2===i d p K K K 本设计中的模糊控制器采用两输入(e, ec),三输出(P,I,D)的形式来调整PID 参数。e 的论域为[-3,3],ec 的论域为[-3,3]。推理机使用 {,,,,,,}NB NM NS O PS PM PB ,表示{负大,负中,负小,零,正小,正中,正大}为了可以调节尽可能多的系统,此控制器选定在负边界处与正边界处分别选用平滑连续的Z 型隶属度函数与S 型隶属度函数,在中间部分采用灵敏度较强的三角形隶属度函数。规则表如下图所示: (1)主程序: clear clc %% 参数设置 w = 0、6; % 惯性因子 c1 = 1、414; % 加速常数 c2 = 1、623; % 加速常数 Dim = 5; % 维数 SwarmSize = 100; % 粒子群规模 ObjFun = @PSO_PID; % 待优化函数句柄

MaxIter = 100; % 最大迭代次数 MinFit = 0、01; % 最小适应值 Vmax = 2; Vmin =-2; Ub = [20 50 1 1 1]; Lb = [0 0 0 0 0]; %% 粒子群初始化 Range = ones(SwarmSize,1)*(Ub-Lb); Swarm = rand(SwarmSize,Dim)、*Range + ones(SwarmSize,1)*Lb; % 初始化粒子群 VStep = rand(SwarmSize,Dim)*(Vmax-Vmin) + Vmin; % 初始化速度 fSwarm = zeros(SwarmSize,1); for i=1:SwarmSize fSwarm(i,:) = feval(ObjFun,Swarm(i,:)); % 粒子群的适应值 end %% 个体极值与群体极值 [bestf,bestindex]=min(fSwarm); zbest=Swarm(bestindex,:); % 全局最佳 gbest=Swarm; % 个体最佳 fgbest=fSwarm; % 个体最佳适应值 fzbest=bestf; % 全局最佳适应值 %% 迭代寻优 iter = 0; y_fitness = zeros(1,MaxIter); % 预先产生4个空矩阵 K_p = zeros(1,MaxIter);

遗传算法实验报告

遗传算法实验报告 专业:自动化姓名:张俊峰学号:13351067 摘要:遗传算法,是基于达尔文进化理论发展起来的一种应用广泛、高效的随机搜索与优化方法。本实验利用遗传算法来实现求函数最大值的优化问题,其中的步骤包括初始化群体、个体评价、选择运算、交叉运算、变异运算、终止条件判断。该算法具有覆盖面大、减少进入局部最优解的风险、自主性等特点。此外,遗传算法不是采用确定性原则而是采用概率的变迁规则来指导搜索方向,具有动态自适应的优点。 关键词:串集最优化评估迭代变异 一:实验目的 熟悉和掌握遗传算法的运行机制和求解的基本方法。 遗传算法是一种基于空间搜索的算法,它通过自然选择、遗传、变异等操作以及达尔文的适者生存的理论,模拟自然进化过程来寻找所求问题的答案。其求解过程是个最优化的过程。一般遗传算法的主要步骤如下: (1)随机产生一个确定长度的特征字符串组成的初始种群。。 (2)对该字符春种群迭代地执行下面的步骤a和步骤b,直到满足停止准则为止: a计算种群中每个个体字符串的适应值; b应用复制、交叉和变异等遗传算子产生下一代种群。 (3)把在后代中表现的最好的个体字符串指定为遗传算法的执行结果,即为问题的一 个解。 二:实验要求 已知函数y=f(x 1,x 2 ,x 3 ,x 4 )=1/(x 1 2+x 2 2+x 3 2+x 4 2+1),其中-5≤x 1 ,x 2 ,x 3 ,x 4 ≤5, 用遗传算法求y的最大值。三:实验环境

操作系统:Microsoft Windows 7 软件:Microsoft Visual studio 2010 四:实验原理与步骤 1、遗传算法的思想 生物的进化是以集团为主体的。与此相对应,遗传算法的运算对象是由M个个体所组成的集合,称为群体。与生物一代一代的自然进化过程相类似,遗传算法的运算过程也是一个反复迭代过程,第t代群体极为P(t),进过一代遗传和进化后,得到第t+1代群体,他们也是由多个个体组成的集合,记做P(t+1)。这个群体不断地经过遗传和进化操作,并且每次都按照有优胜劣汰的规则将适应度较高的个体更多地遗传到下一代,这样最终在群体中将会得到一个优良的个体X,它所对应的表现性X将达到或接近于问题的最优解。 2、算法实现步骤 ①、产生初始种群:产生初始种群的方法通常有两种:一种是完全随机的方法产生的,适合于对问题的解无任何先验知识的情况;另一种是将某些先验知识转变为必须满足的一组要求,然后在满足这些要求的解中再随机地选择样本,t=0,随机产生n个个体形成一个初始群体P(t),该群体代表优化问题的一些可能解的集合; ②适应度评价函数:按编码规则,将群体P(t)中的每一个个体的基因码所对应的自变量取值代入目标函数,算出其函数值f,i=1,2,…,n,f越大,表示该个体有较高的适应度,更适合于f所定义的生存环境,适应度f为群体进化提供了依据; ③选择:按一定概率从群体P(t)中选出m个个体,作为双亲用于繁殖后代,产生新的个体加入下一个群体P(t+1)中。此处选用轮盘算法,也就是比例选择算法,个体被选择的概率与其适应度成正比。 ④交叉(重组):对于选中的用于繁殖的每一个个体,选择一种交叉方法,产生新的个体;此处采取生成随机数决定交叉的个体与交叉的位置。 ⑤变异:以一定的概率Pm从群体P(t+1)中随机选择若干个个体,对于选中的个体随机选择某个位置,进行变异; ⑥对产生新一代的群体返回步骤③再进行评价,交叉、变异如此循环往复,使群体中个体的适应度和平均适应度不断提高,直至最优个体的适应度达到某一限值或最优个体的适应度和群体的平均适应度不再提高,则迭代过程收敛,算法结束。 五:实验结果 实验结果的显示取决于判断算法终止的条件,这里可以有两种选择:1、在程序中设定迭代的次数;2在程序中设定适应值。本实验是在程序中实验者输入需要迭代的次数来判断程序终结的。

相关主题